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Abstract

Markov decision processes capture sequential decision making under uncertainty, where
an agent must choose actions so as to optimize long term reward. The paper studies ef-
ficient reasoning mechanisms for Relational Markov Decision Processes (RMDP) where
world states have an internal relational structure that can be naturally described in terms
of objects and relations among them. Two contributions are presented. First, the paper
develops First Order Decision Diagrams (FODD), a new compact representation for func-
tions over relational structures, together with a set of operators to combine FODDs, and
novel reduction techniques to keep the representation small. Second, the paper shows how
FODDs can be used to develop solutions for RMDPs, where reasoning is performed at the
abstract level and the resulting optimal policy is independent of domain size (number of
objects) or instantiation. In particular, a variant of the value iteration algorithm is devel-
oped by using special operations over FODDs, and the algorithm is shown to converge to
the optimal policy.

1. Introduction

Many real-world problems can be cast as sequential decision making under uncertainty.
Consider a simple example in a logistics domain where an agent delivers boxes. The agent
can take three types of actions: to load a box on a truck, to unload a box from a truck, and
to drive a truck to a city. However the effects of actions may not be perfectly predictable.
For example its gripper may be slippery so load actions may not succeed, or its navigation
module may not be reliable and it may end up in a wrong location. This uncertainty
compounds the already complex problem of planning a course of action to achieve some
goals or maximize rewards.

Markov Decision Processes (MDP) have become the standard model for sequential deci-
sion making under uncertainty (Boutilier, Dean, & Hanks, 1999). These models also provide
a general framework for artificial intelligence (AI) planning, where an agent has to achieve
or maintain a well-defined goal. MDPs model an agent interacting with the world. The
agent can fully observe the state of the world and takes actions so as to change the state.
In doing that, the agent tries to optimize a measure of the long term reward it can obtain
using such actions.

The classical representation and algorithms for MDPs (Puterman, 1994) require enu-
meration of the state space. For more complex situations we can specify the state space
in terms of a set of propositional variables called state attributes. These state attributes
together determine the world state. Consider a very simple logistics problem that has only
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one box and one truck. Then we can have state attributes such as truck in Paris (TP), box
in Paris (BP), box in Boston (BB), etc. If we let the state space be represented by n binary
state attributes then the total number of states would be 2n. For some problems, however,
the domain dynamics and resulting solutions have a simple structure that can be described
compactly using the state attributes, and previous work known as the propositionally fac-
tored approach has developed a suite of algorithms that take advantage of such structure
and avoid state enumeration. For example, one can use dynamic Bayesian networks, de-
cision trees, and algebraic decision diagrams to concisely represent the MDP model. This
line of work showed substantial speedup for propositionally factored domains (Boutilier,
Dearden, & Goldszmidt, 1995; Boutilier, Dean, & Goldszmidt, 2000; Hoey, St-Aubin, Hu,
& Boutilier, 1999).

The logistics example presented above is very small. Any realistic problem will have
a large number of objects and corresponding relations among them. Consider a problem
with four trucks, three boxes, and where the goal is to have a box in Paris, but it does not
matter which box is in Paris. With the propositionally factored approach, we need to have
one propositional variable for every possible instantiation of the relations in the domain,
e.g., box 1 in Paris, box 2 in Paris, box 1 on truck 1, box 2 on truck 1, and so on, and
the action space expands in the same way. The goal becomes a ground disjunction over
different instances stating “box 1 in Paris, or box 2 in Paris, or box 3 in Paris, or box 4 in
Paris”. Thus we get a very large MDP and at the same time we lose the structure implicit
in the relations and the potential benefits of this structure in terms of computation.

This is the main motivation behind relational or first order MDPs (RMDP).1 A first
order representation of MDPs can describe domain objects and relations among them, and
can use quantification in specifying objectives. In the logistics example, we can intro-
duce three predicates to capture the relations among domain objects, i.e., Bin(Box,City),
T in(Truck,City), and On(Box, Truck) with their obvious meaning. We have three param-
eterized actions, i.e., load(Box, Truck), unload(Box, Truck), and drive(Truck,City). Now
domain dynamics, reward, and solutions can be described compactly and abstractly using
the relational notation. For example, we can define the goal using existential quantification,
i.e., ∃b,Bin(b, Paris). Using this goal one can identify an abstract policy, which is optimal
for every possible instance of the domain. Intuitively when there are 0 steps to go, the
agent will be rewarded if there is any box in Paris. When there is one step to go and there
is no box in Paris yet, the agent can take one action to help achieve the goal. If there is a
box (say b1) on a truck (say t1) and the truck is in Paris, then the agent can execute the
action unload(b1, t1), which may make Bin(b1, Paris) true, thus the goal will be achieved.
When there are two steps to go, if there is a box on a truck that is in Paris, the agent
can take the unload action twice (to increase the probability of successful unloading of the
box), or if there is a box on a truck that is not in Paris, the agent can first take the action
drive followed by unload. The preferred plan will depend on the success probability of the
different actions. The goal of this paper is to develop efficient solutions for such problems
using a relational approach, which performs general reasoning in solving problems and does
not propositionalize the domain. As a result the complexity of our algorithms does not

1. Sanner and Boutilier (2005) make a distinction between first order MDPs that can utilize the full power
of first order logic to describe a problem and relational MDPs that are less expressive. We follow this in
calling our language RMDP.
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change when the number of domain objects changes. Also the solutions obtained are good
for any domain of any size (even infinite ones) simultaneously. Such an abstraction is not
possible within the propositional approach.

Several approaches for solving RMDPs were developed over the last few years. Much
of this work was devoted to developing techniques to approximate RMDP solutions using
different representation languages and algorithms (Guestrin, Koller, Gearhart, & Kanodia,
2003a; Fern, Yoon, & Givan, 2003; Gretton & Thiebaux, 2004; Sanner & Boutilier, 2005,
2006). For example, Dzeroski, De Raedt, and Driessens (2001) and Driessens, Ramon, and
Gärtner (2006) use reinforcement learning techniques with relational representations. Fern,
Yoon, and Givan (2006) and Gretton and Thiebaux (2004) use inductive learning methods
to learn a value map or policy from solutions or simulations of small instances. Sanner and
Boutilier (2005, 2006) develop an approach to approximate value iteration that does not need
to propositionalize the domain. They represent value functions as a linear combination of
first order basis functions and obtain the weights by lifting the propositional approximate
linear programming techniques (Schuurmans & Patrascu, 2001; Guestrin, Koller, Par, &
Venktaraman, 2003b) to handle the first order case.

There has also been work on exact solutions such as symbolic dynamic programming
(SDP) (Boutilier, Reiter, & Price, 2001), the relational Bellman algorithm (ReBel) (Ker-
sting, Otterlo, & De Raedt, 2004), and first order value iteration (FOVIA) (Großmann,
Hölldobler, & Skvortsova, 2002; Höolldobler, Karabaev, & Skvortsova, 2006). There is no
working implementation of SDP because it is hard to keep the state formulas consistent and
of manageable size in the context of the situation calculus. Compared with SDP, ReBel and
FOVIA provide more practical solutions. They both use restricted languages to represent
RMDPs, so that reasoning over formulas is easier to perform. In this paper we develop a
representation that combines the strong points of these approaches.

Our work is inspired by the successful application of Algebraic Decision Diagrams (ADD)
(Bryant, 1986; McMillan, 1993; Bahar, Frohm, Gaona, Hachtel, Macii, Pardo, & Somenzi,
1993) in solving propositionally factored MDPs and POMDPs (Hoey et al., 1999; St-Aubin,
Hoey, & Boutilier, 2000; Hansen & Feng, 2000; Feng & Hansen, 2002). The intuition
behind this idea is that the ADD representation allows information sharing, e.g., sharing
the value of all states that belong to an “abstract state”, so that algorithms can consider
many states together and do not need to resort to state enumeration. If there is sufficient
regularity in the model, ADDs can be very compact, allowing problems to be represented
and solved efficiently. We provide a generalization of this approach by lifting ADDs to
handle relational structure and adapting the MDP algorithms. The main difficulty in lifting
the propositional solution, is that in relational domains the transition function specifies a
set of schemas for conditional probabilities. The propositional solution uses the concrete
conditional probability to calculate the regression function. But this is not possible with
schemas. One way around this problem is to first ground the domain and problem at hand
and only then perform the reasoning (see for example Sanghai, Domingos, & Weld, 2005).
However this does not allow for solutions abstracting over domains and problems. Like
SDP, ReBel, and FOVIA, our constructions do perform general reasoning.

First order decision trees and even decision diagrams have already been considered in
the literature (Blockeel & De Raedt, 1998; Groote & Tveretina, 2003) and several semantics
for such diagrams are possible. Blockeel and De Raedt (1998) lift propositional decision
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trees to handle relational structure in the context of learning from relational datasets.
Groote and Tveretina (2003) provide a notation for first order Binary Decision Diagrams
(BDD) that can capture formulas in Skolemized conjunctive normal form and then provide
a theorem proving algorithm based on this representation. The paper investigates both
approaches and identifies the approach of Groote and Tveretina (2003) as better suited
for the operations of the value iteration algorithm. Therefore we adapt and extend their
approach to handle RMDPs. In particular, our First Order Decision Diagrams (FODD) are
defined by modifying first order BDDs to capture existential quantification as well as real-
valued functions through the use of an aggregation over different valuations for a diagram.
This allows us to capture MDP value functions using algebraic diagrams in a natural way.
We also provide additional reduction transformations for algebraic diagrams that help keep
their size small, and allow the use of background knowledge in reductions. We then develop
appropriate representations and algorithms showing how value iteration can be performed
using FODDs. At the core of this algorithm we introduce a novel diagram-based algorithm
for goal regression where, given a diagram representing the current value function, each
node in this diagram is replaced with a small diagram capturing its truth value before the
action. This offers a modular and efficient form of regression that accounts for all potential
effects of an action simultaneously. We show that our version of abstract value iteration is
correct and hence it converges to optimal value function and policy.

To summarize, the contributions of the paper are as follows. The paper identifies the
multiple path semantics (extending Groote & Tveretina, 2003) as a useful representation for
RMDPs and contrasts it with the single path semantics of Blockeel and De Raedt (1998).
The paper develops FODDs and algorithms to manipulate them in general and in the
context of RMDPs. The paper also develops novel weak reduction operations for first order
decision diagrams and shows their relevance to solving relational MDPs. Finally the paper
presents a version of the relational value iteration algorithm using FODDs and shows that
it is correct and thus converges to the optimal value function and policy. While relational
value iteration was developed and specified in previous work (Boutilier et al., 2001), to our
knowledge this is the first detailed proof of correctness and convergence for the algorithm.

This section has briefly summarized the research background, motivation, and our ap-
proach. The rest of the paper is organized as follows. Section 2 provides background on
MDPs and RMDPs. Section 3 introduces the syntax and the semantics of First Order De-
cision Diagrams (FODD), and Section 4 develops reduction operators for FODDs. Sections
5 and 6 present a representation of RMDPs using FODDs, the relational value iteration
algorithm, and its proof of correctness and convergence. The last two sections conclude the
paper with a discussion of the results and future work.

2. Relational Markov Decision Processes

We assume familiarity with standard notions of MDPs and value iteration (see for example
Bellman, 1957; Puterman, 1994). In the following we introduce some of the notions. We
also introduce relational MDPs and discuss some of the previous work on solving them.

Markov Decision Processes (MDPs) provide a mathematical model of sequential opti-
mization problems with stochastic actions. A MDP can be characterized by a state space
S, an action space A, a state transition function Pr(sj|si, a) denoting the probability of
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transition to state sj given state si and action a, and an immediate reward function r(s),
specifying the immediate utility of being in state s. A solution to a MDP is an optimal
policy that maximizes expected discounted total reward as defined by the Bellman equation:

V ∗(s) = maxa∈A[r(s) + γ
∑

s′∈S

Pr(s′|s, a)V ∗(s′)]

where V ∗ represents the optimal state-value function. The value iteration algorithm (VI)
uses the Bellman equation to iteratively refine an estimate of the value function:

Vn+1(s) = maxa∈A[r(s) + γ
∑

s′∈S

Pr(s′|s, a)Vn(s′)] (1)

where Vn(s) represents our current estimate of the value function and Vn+1(s) is the next
estimate. If we initialize this process with V0 as the reward function, Vn captures the optimal
value function when we have n steps to go. As discussed further below the algorithm is
known to converge to the optimal value function.

Boutilier et al. (2001) used the situation calculus to formalize first order MDPs and a
structured form of the value iteration algorithm. One of the useful restrictions introduced
in their work is that stochastic actions are specified as a randomized choice among deter-
ministic alternatives. For example, action unload in the logistics example can succeed or
fail. Therefore there are two alternatives for this action: unloadS (unload success) and
unloadF (unload failure). The formulation and algorithms support any number of action
alternatives. The randomness in the domain is captured by a random choice specifying
which action alternative (unloadS or unloadF ) gets executed when the agent attempts an
action (unload). The choice is determined by a state-dependent probability distribution
characterizing the dynamics of the world. In this way one can separate the regression over
effects of action alternatives, which is now deterministic, from the probabilistic choice of
action. This considerably simplifies the reasoning required since there is no need to perform
probabilistic goal regression directly. Most of the work on RMDPs has used this assump-
tion, and we use this assumption as well. Sanner and Boutilier (2007) investigate a model
going beyond this assumption.

Thus relational MDPs are specified by the set of predicates in the domain, the set of
probabilistic actions in the domain, and the reward function. For each probabilistic action,
we specify the deterministic action alternatives and their effects, and the probabilistic choice
among these alternatives. A relational MDP captures a family of MDPs that is generated
by choosing an instantiation of the state space. Thus the logistics example corresponds to
all possible instantiations with 2 boxes or with 3 boxes and so on. We only get a concrete
MDP by choosing such an instantiation.2 Yet our algorithms will attempt to solve the entire
MDP family simultaneously.

Boutilier et al. (2001) introduce the case notation to represent probabilities and rewards
compactly. The expression t = case[φ1, t1; · · · ;φn, tn], where φi is a logical formula, is
equivalent to (φ1 ∧ (t = t1)) ∨ · · · ∨ (φn ∧ (t = tn)). In other words, t equals ti when φi is

2. One could define a single MDP including all possible instances at the same time, e.g. it will include some
states with 2 boxes, some states with 3 boxes and some with an infinite number of boxes. But obviously
subsets of these states form separate MDPs that are disjoint. We thus prefer the view of a RMDP as a
family of MDPs.
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true. In general, the φi’s are not constrained but some steps in the VI algorithm require
that the φi’s are disjoint and partition the state space. In this case, exactly one φi is
true in any state. Each φi denotes an abstract state whose member states have the same
value for that probability or reward. For example, the reward function for the logistics
domain, discussed above and illustrated on the right side of Figure 1, can be captured as
case[∃b,Bin(b, Paris), 10;¬∃b,Bin(b, Paris), 0]. We also have the following notation for
operations over function defined by case expressions. The operators ⊕ and ⊗ are defined
by taking a cross product of the partitions and adding or multiplying the case values.

case[φi, ti : i ≤ n] ⊕ case[ψj , vj : j ≤ m] = case[φi ∧ ψj , ti + vj : i ≤ n, j ≤ m]

case[φi, ti : i ≤ n] ⊗ case[ψj , vj : j ≤ m] = case[φi ∧ ψj , ti · vj : i ≤ n, j ≤ m].

In each iteration of the VI algorithm, the value of a stochastic action A(�x) parameterized
with free variables �x is determined in the following manner:

QA(�x)(s) = rCase(s) ⊕ [γ ⊗⊕j(pCase(nj(�x), s) ⊗ Regr(nj(�x), vCase(do(nj(�x), s))))] (2)

where rCase(s) and vCase(s) denote reward and value functions in case notation, nj(�x)
denotes the possible outcomes of the action A(�x), and pCase(nj(�x), s) the choice probabil-
ities for nj(�x). Note that we can replace a sum over possible next states s′ in the standard
value iteration (Equation 1) with a finite sum over the action alternatives j (reflected in ⊕j

in Equation 2), since different next states arise only through different action alternatives.
Regr, capturing goal regression, determines what states one must be in before an action

in order to reach a particular state after the action. Figure 1 illustrates the regression of
∃b,Bin(b, Paris) in the reward function R through the action alternative unloadS(b∗, t∗).
∃b,Bin(b, Paris) will be true after the action unloadS(b∗, t∗) if it was true before or box
b∗ was on truck t∗ and truck t∗ was in Paris. Notice how the reward function R partitions
the state space into two regions or abstract states, each of which may include an infinite
number of complete world states (e.g., when we have an infinite number of domain objects).
Also notice how we get another set of abstract states after the regression step. In this
way first order regression ensures that we can work on abstract states and never need to
propositionalize the domain.

After the regression, we get a parameterized Q-function which accounts for all possible
instances of the action. We need to maximize over the action parameters of the Q-function
to get the maximum value that could be achieved by using an instance of this action. To
illustrate this step, consider the logistics example where we have two boxes b1 and b2, and
b1 is on truck t1, which is in Paris (that is, On(b1, t1) and T in(t1, Paris)), while b2 is in
Boston (Bin(b2, Boston)). For the action schema unload(b∗, t∗), we can instantiate b∗ and
t∗ with b1 and t1 respectively, which will help us achieve the goal; or we can instantiate b∗

and t∗ with b2 and t1 respectively, which will have no effect. Therefore we need to perform
maximization over action parameters to get the best instance of an action. Yet, we must
perform this maximization generically, without knowledge of the actual state. In SDP, this
is done in several steps. First, we add existential quantifiers over action parameters (which
leads to non disjoint partitions). Then we sort the abstract states in QA(�x) by the value in
decreasing order and include the negated conditions for the first n abstract states in the
formula for the (n+1)th, ensuring mutual exclusion. Notice how this step leads to complex
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Figure 1: An example illustrating regression over the action alternative unloadS(b∗, t∗).

description of the resulting state partitions in SDP. This process is performed for every
action separately. We call this step object maximization and denote it with obj-max(QA(�x)).

Finally, to get the next value function we maximize over the Q-functions of different
actions. These three steps provide one iteration of the VI algorithm which repeats the
update until convergence.

The solutions of ReBel (Kersting et al., 2004) and FOVIA (Großmann et al., 2002;
Höolldobler et al., 2006) follow the same outline but use a simpler logical language for rep-
resenting RMDPs. An abstract state in ReBel is captured using an existentially quantified
conjunction. FOVIA (Großmann et al., 2002; Höolldobler et al., 2006) has a more complex
representation allowing a conjunction that must hold in a state and a set of conjunctions
that must be violated. An important feature in ReBel is the use of decision list (Rivest,
1987) style representations for value functions and policies. The decision list gives us an
implicit maximization operator since rules higher on the list are evaluated first. As a result
the object maximization step is very simple in ReBel. Each state partition is represented
implicitly by the negation of all rules above it, and explicitly by the conjunction in the rule.
On the other hand, regression in ReBel requires that one enumerate all possible matches
between a subset of a conjunctive goal (or state partition) and action effects, and reason
about each of these separately. So this step can potentially be improved.

In the following section we introduce a new representation – First Order Decision Dia-
grams (FODD). FODDs allow for sharing of parts of partitions, leading to space and time
saving. More importantly the value iteration algorithm based on FODDs has both simple
regression and simple object maximization.
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3. First Order Decision Diagrams

A decision diagram is a graphical representation for functions over propositional (Boolean)
variables. The function is represented as a labeled rooted directed acyclic graph where each
non-leaf node is labeled with a propositional variable and has exactly two children. The
outgoing edges are marked with values true and false. Leaves are labeled with numerical
values. Given an assignment of truth values to the propositional variables, we can traverse
the graph where in each node we follow the outgoing edge corresponding to its truth value.
This gives a mapping from any assignment to a leaf of the diagram and in turn to its
value. If the leaves are marked with values in {0, 1} then we can interpret the graph as
representing a Boolean function over the propositional variables. Equivalently, the graph
can be seen as representing a logical expression which is satisfied if and only if the 1 leaf is
reached. The case with {0, 1} leaves is known as Binary Decision Diagrams (BDDs) and the
case with numerical leaves (or more general algebraic expressions) is known as Algebraic
Decision Diagrams (ADDs). Decision Diagrams are particularly interesting if we impose
an order over propositional variables and require that node labels respect this order on
every path in the diagram; this case is known as Ordered Decision Diagrams (ODD). In
this case every function has a unique canonical representation that serves as a normal form
for the function. This property means that propositional theorem proving is easy for ODD
representations. For example, if a formula is contradictory then this fact is evident when
we represent it as a BDD, since the normal form for a contradiction is a single leaf valued
0. This property together with efficient manipulation algorithms for ODD representations
have led to successful applications, e.g., in VLSI design and verification (Bryant, 1992;
McMillan, 1993; Bahar et al., 1993) as well as MDPs (Hoey et al., 1999; St-Aubin et al.,
2000). In the following we generalize this representation for relational problems.

3.1 Syntax of First Order Decision Diagrams

There are various ways to generalize ADDs to capture relational structure. One could
use closed or open formulas in the nodes, and in the latter case we must interpret the
quantification over the variables. In the process of developing the ideas in this paper we
have considered several possibilities including explicit quantifiers but these did not lead to
useful solutions. We therefore focus on the following syntactic definition which does not
have any explicit quantifiers.

For this representation, we assume a fixed set of predicates and constant symbols, and
an enumerable set of variables. We also allow using an equality between any pair of terms
(constants or variables).

Definition 1 First Order Decision Diagram

1. A First Order Decision Diagram (FODD) is a labeled rooted directed acyclic graph,
where each non-leaf node has exactly two children. The outgoing edges are marked
with values true and false.

2. Each non-leaf node is labeled with: an atom P (t1, . . . , tn) or an equality t1 = t2 where
each ti is a variable or a constant.

3. Leaves are labeled with numerical values.
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p (x) 

q (x) h (y) 

 1 0   1 0

Figure 2: A simple FODD.

Figure 2 shows a FODD with binary leaves. Left going edges represent true branches.
To simplify diagrams in the paper we draw multiple copies of the leaves 0 and 1 (and
occasionally other values or small sub-diagrams) but they represent the same node in the
FODD.

We use the following notation: for a node n, n↓t denotes the true branch of n, and n↓f

the false branch of n; n↓a is an outgoing edge from n, where a can be true or false. For
an edge e, source(e) is the node that edge e issues from, and target(e) is the node that edge e
points to. Let e1 and e2 be two edges, we have e1 = sibling(e2) iff source(e1) = source(e2).

In the following we will slightly abuse the notation and let n↓a mean either an edge or
the sub-FODD this edge points to. We will also use n↓a and target(e1) interchangeably
where n = source(e1) and a can be true or false depending on whether e1 lies in the
true or false branch of n.

3.2 Semantics of First Order Decision Diagrams

We use a FODD to represent a function that assigns values to states in a relational MDP.
For example, in the logistics domain, we might want to assign values to different states in
such a way that if there is a box in Paris, then the state is assigned a value of 19; if there is
no box in Paris but there is a box on a truck that is in Paris and it is raining, this state is
assigned a value of 6.3, and so on.3 The question is how to define the semantics of FODDs
in order to have the intended meaning.

The semantics of first order formulas are given relative to interpretations. An inter-
pretation has a domain of elements, a mapping of constants to domain elements and, for
each predicate, a relation over the domain elements which specifies when the predicate is
true. In the MDP context, a state can be captured by an interpretation. For example in
the logistics domain, a state includes objects such as boxes, trucks, and cities, and relations
among them, such as box 1 on truck 1 (On(b1, t1)), box 2 in Paris (Bin(b2, Paris)) and so
on. There is more than one way to define the meaning of FODD B on interpretation I. In
the following we discuss two possibilities.

3.2.1 Semantics Based on a Single Path

A semantics for relational decision trees is given by Blockeel and De Raedt (1998) and it can
be adapted to FODDs. The semantics define a unique path that is followed when traversing

3. This is a result of regression in the logistics domain cf. Figure 19(l).
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B relative to I. All variables are existential and a node is evaluated relative to the path
leading to it.

In particular, when we reach a node some of its variables have been seen before on the
path and some are new. Consider a node n with label l(n) and the path leading to it from
the root, and let C be the conjunction of all labels of nodes that are exited on the true

branch on the path. Then in the node n we evaluate ∃�x,C ∧ l(n), where �x includes all the
variables in C and l(n). If this formula is satisfied in I then we follow the true branch.
Otherwise we follow the false branch. This process defines a unique path from the root
to a leaf and its value.

For example, if we evaluate the diagram in Figure 2 on the interpretation I1 with
domain {1, 2, 3} and where the only true atoms are {p(1), q(2), h(3)} then we follow the
true branch at the root since ∃x, p(x) is satisfied, but we follow the false branch at q(x)
since ∃x, p(x)∧ q(x) is not satisfied. Since the leaf is labeled with 0 we say that B does not
satisfy I. This is an attractive approach, because it partitions the set of interpretations into
mutually exclusive sets and this can be used to create abstract state partitions in the MDP
context. However, for reasons we discuss later, this semantics leads to various complications
for the value iteration algorithm, and it is therefore not used in the paper.

3.2.2 Semantics Based on Multiple Paths

The second alternative builds on work by Groote and Tveretina (2003) who defined seman-
tics based on multiple paths. Following this work, we define the semantics first relative to a
variable valuation ζ. Given a FODD B over variables �x and an interpretation I, a valuation
ζ maps each variable in �x to a domain element in I. Once this is done, each node predicate
evaluates either to true or false and we can traverse a single path to a leaf. The value
of this leaf is denoted by MAPB(I, ζ).

Different valuations may give different values; but recall that we use FODDs to represent
a function over states, and each state must be assigned a single value. Therefore, we next
define

MAPB(I) = aggregateζ{MAPB(I, ζ)}

for some aggregation function. That is, we consider all possible valuations ζ, and for each
valuation we calculate MAPB(I, ζ). We then aggregate over all these values. In the special
case of Groote and Tveretina (2003) leaf labels are in {0, 1} and variables are universally
quantified; this is easily captured in our formulation by using minimum as the aggregation
function. In this paper we use maximum as the aggregation function. This corresponds
to existential quantification in the binary case (if there is a valuation leading to value 1,
then the value assigned will be 1) and gives useful maximization for value functions in the
general case. We therefore define:

MAPB(I) = max
ζ

{MAPB(I, ζ)}.

Using this definition B assigns every I a unique value v = MAPB(I) so B defines a function
from interpretations to real values. We later refer to this function as the map of B.

Consider evaluating the diagram in Figure 2 on the interpretation I1 given above where
the only true atoms are {p(1), q(2), h(3)}. The valuation where x is mapped to 2 and y is
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mapped to 3 denoted {x/2, y/3} leads to a leaf with value 1 so the maximum is 1. When leaf
labels are in {0,1}, we can interpret the diagram as a logical formula. When MAPB(I) = 1,
as in our example, we say that I satisfies B and when MAPB(I) = 0 we say that I falsifies
B.

We define node formulas (NF) and edge formulas (EF) recursively as follows. For a node
n labeled l(n) with incoming edges e1, . . . , ek, the node formula NF(n) = (∨iEF(ei)). The
edge formula for the true outgoing edge of n is EF(n↓t) = NF(n)∧ l(n). The edge formula
for the false outgoing edge of n is EF(n↓f ) = NF(n) ∧ ¬l(n). These formulas, where all
variables are existentially quantified, capture the conditions under which a node or edge are
reached.

3.3 Basic Reduction of FODDs

Groote and Tveretina (2003) define several operators that reduce a diagram into normal
form. A total order over node labels is assumed. We describe these operators briefly and
give their main properties.

(R1) Neglect operator: if both children of a node p in the FODD lead to the same node q
then we remove p and link all parents of p to q directly.

(R2) Join operator: if two nodes p, q have the same label and point to the same two
children then we can join p and q (remove q and link q’s parents to p).

(R3) Merge operator: if a node and its child have the same label then the parent can point
directly to the grandchild.

(R4) Sort operator: If a node p is a parent of q but the label ordering is violated (l(p) >
l(q)) then we can reorder the nodes locally using two copies of p and q such that labels
of the nodes do not violate the ordering.

Define a FODD to be reduced if none of the four operators can be applied. We have the
following:

Theorem 1 (Groote & Tveretina, 2003)
(1) Let O ∈ {Neglect, Join, Merge, Sort} be an operator and O(B) the result of applying O
to FODD B, then for any B, I, and ζ, MAPB(I, ζ) = MAPO(B)(I, ζ).
(2) If B1, B2 are reduced and satisfy ∀ζ, MAPB1(I, ζ) = MAPB2(I, ζ) then they are identical.

Property (1) gives soundness, and property (2) shows that reducing a FODD gives a normal
form. However, this only holds if the maps are identical for every ζ and this condition is
stronger than normal equivalence. This normal form suffices for Groote and Tveretina
(2003) who use it to provide a theorem prover for first order logic, but it is not strong
enough for our purposes. Figure 3 shows two pairs of reduced FODDs (with respect to R1-
R4) such that MAPB1(I) = MAPB2(I) but ∃ζ,MAPB1(I, ζ) 
= MAPB2(I, ζ). In this case
although the maps are the same the FODDs are not reduced to the same form. Consider
first the pair in part (a) of the figure. An interpretation where p(a) is false but p(b) is
true and a substitution {x/a, y/b} leads to value of 0 in B1 while B2 always evaluates to
1. But the diagrams are equivalent. For any interpretation, if p(c) is true for any object
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Figure 3: Examples illustrating weakness of normal form.

c then MAPB1(I) = 1 through the substitution {x/c}; if p(c) is false for any object c
then MAPB1(I) = 1 through the substitution {x/c, y/c}. Thus the map is always 1 for
B1 as well. In Section 4.2 we show that with the additional reduction operators we have
developed, B1 in the first pair is reduced to 1. Thus the diagrams in (a) have the same form
after reduction. However, our reductions do not resolve the second pair given in part (b)
of the figure. Notice that both functions capture a path of two edges labeled p in a graph
(we just change the order of two nodes and rename variables) so the diagrams evaluate to
1 if and only if the interpretation has such a path. Even though B1 and B2 are logically
equivalent, they cannot be reduced to the same form using R1-R4 or our new operators. To
identify a unique minimal syntactic form one may have to consider all possible renamings
of variables and the sorted diagrams they produce, but this is an expensive operation. A
discussion of normal form for conjunctions that uses such an operation is given by Garriga,
Khardon, and De Raedt (2007).

3.4 Combining FODDs

Given two algebraic diagrams we may need to add the corresponding functions, take the
maximum or use any other binary operation, op, over the values represented by the func-
tions. Here we adopt the solution from the propositional case (Bryant, 1986) in the form
of the procedure Apply(B1,B2,op) where B1 and B2 are algebraic diagrams. Let p and q
be the roots of B1 and B2 respectively. This procedure chooses a new root label (the lower
among labels of p, q) and recursively combines the corresponding sub-diagrams, according
to the relation between the two labels (≺, =, or �). In order to make sure the result is
reduced in the propositional sense one can use dynamic programming to avoid generating
nodes for which either neglect or join operators ((R1) and (R2) above) would be applicable.

Figure 4 illustrates this process. In this example, we assume predicate ordering as
p1 ≺ p2, and parameter ordering x1 ≺ x2. Non-leaf nodes are annotated with numbers and
numerical leaves are underlined for identification during the execution trace. For example,
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Figure 4: A simple example of adding two FODDs.

the top level call adds the functions corresponding to nodes 1 and 3. Since p1(x1) is the
smaller label it is picked as the label for the root of the result. Then we must add both
left and right child of node 1 to node 3. These calls are performed recursively. It is easy
to see that the size of the result may be the product of sizes of input diagrams. However,
much pruning will occur with shared variables and further pruning is made possible by weak
reductions presented later.

Since for any interpretation I and any fixed valuation ζ the FODD is propositional, we
have the following lemma. We later refer to this property as the correctness of Apply.

Lemma 1 Let C = Apply(A,B, op), then for any I and ζ, MAPA(I, ζ) op MAPB(I, ζ) =
MAPC(I, ζ).

Proof: First we introduce some terminology. Let #nodes(X) refer to the set of all nodes
in a FODD X. Let the root nodes of A and B be Aroot and Broot respectively. Let the
FODDs rooted at Aroot↓t

, Aroot↓f
, Broot↓t

, Broot↓f
, Croot↓t

, and Croot↓f
be Al, Ar, Bl, Br,

C l and Cr respectively.
The proof is by induction on n = |#nodes(A)| + |#nodes(B)|. The lemma is true for

n = 2, because in this case both Aroot and Broot have to be single leaves and an operation
on them is the same as an operation on two real numbers. For the inductive step we need
to consider two cases.

Case 1: Aroot = Broot. Since the root nodes are equal, if a valuation ζ reaches Al,
then it will also reach Bl and if ζ reaches Ar, then it will also reach Br. Also, by the
definition of Apply, in this case C l = Apply(Al, Bl, op) and Cr = Apply(Ar, Br, op). There-
fore the statement of the lemma is true if MAPAl(I, ζ) op MAPBl(I, ζ) = MAPCl(I, ζ) and
MAPAr(I, ζ) op MAPBr(I, ζ) = MAPCr(I, ζ) for any ζ and I. Now, since |#nodes(Al) +
#nodes(Bl)| < n and |#nodes(Ar)+#nodes(Br)| < n, this is guaranteed by the induction
hypothesis.

Case 2: Aroot 
= Broot. Without loss of generality let us assume that Aroot ≺ Broot.
By the definition of Apply, C l = Apply(Al, B, op) and Cr = Apply(Ar, B, op). Therefore
the statement of the lemma is true if MAPAl(I, ζ) op MAPB(I, ζ) = MAPCl(I, ζ) and
MAPAr(I, ζ) op MAPB(I, ζ) = MAPCr(I, ζ) for any ζ and I. Again this is guaranteed by
the induction hypothesis. �
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3.5 Order of Labels

The syntax of FODDs allows for two “types” of objects: constants and variables. Any
argument of a predicate can be a constant or a variable. We assume a complete ordering
on predicates, constants, and variables. The ordering ≺ between two labels is given by the
following rules.

1. P (x1, ..., xn) ≺ P ′(x′
1, ..., x

′
m) if P ≺ P ′

2. P (x1, ..., xn) ≺ P (x′
1, ..., x

′
n) if there exists i such that xj = x′

j for all j < i, and
type(xi) ≺ type(x′

i) (where “type” can be constant or variable) or type(xi) = type(x′
i)

and xi ≺ x′
i.

While the predicate order can be set arbitrarily it appears useful to assign the equality
predicate as the first in the predicate ordering so that equalities are at the top of the
diagrams. During reductions we often encounter situations where one side of the equality
can be completely removed leading to substantial space savings. It may also be useful to
order the argument types so that constant ≺ variables. This ordering may be helpful for
reductions. Intuitively, a variable appearing lower in the diagram can be bound to the
value of a constant that appears above it. These are only heuristic guidelines and the best
ordering may well be problem dependent. We later introduce other forms of arguments:
predicate parameters and action parameters. The ordering for these is discussed in Section 6.

4. Additional Reduction Operators

In our context, especially for algebraic FODDs, we may want to reduce the diagrams further.
We distinguish strong reductions that preserve MAPB(I, ζ) for all ζ and weak reductions
that only preserve MAPB(I). Theorem 1 shows that R1-R4 given above are strong reduc-
tions. The details of our relational VI algorithm do not directly depend on the reductions
used. Readers more interested in RMDP details can skip to Section 5 which can be read
independently (except where reductions are illustrated in examples).

All the reduction operators below can incorporate existing knowledge on relationships
between predicates in the domain. We denote this background knowledge by B. For example
in the Blocks World we may know that if there is a block on block y then it is not clear:
∀x, y, [on(x, y) → ¬clear(y)].

In the following when we define conditions for reduction operators, there are two types
of conditions: the reachability condition and the value condition. We name reachability
conditions by starting with P (for Path Condition) and the reduction operator number. We
name conditions on values by starting with V and the reduction operator number.

4.1 (R5) Strong Reduction for Implied Branches

Consider any node n such that whenever n is reached then the true branch is followed. In
this case we can remove n and connect its parents directly to the true branch. We first
present the condition, followed by the lemma regarding this operator.

(P5) : B |= ∀�x, [NF(n) → l(n)] where �x are the variables in EF(n↓t).
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Let R5(n) denote the operator that removes node n and connects its parents directly
to the true branch. Notice that this is a generalization of R3. It is easy to see that the
following lemma is true:

Lemma 2 Let B be a FODD, n a node for which condition P5 holds, and B′ the result
of R5(n). Then for any interpretation I and any valuation ζ we have MAPB(I, ζ) =
MAPB′(I, ζ).

A similar reduction can be formulated for the false branch, i.e., if B |= ∀�x, [NF(n) →
¬l(n)] then whenever node n is reached then the false branch is followed. In this case we
can remove n and connect its parents directly to the false branch.

Implied branches may simply be a result of equalities along a path. For example (x =
y) ∧ p(x) → p(y) so we may prune p(y) if (x = y) and p(x) are known to be true. Implied
branches may also be a result of background knowledge. For example in the Blocks World
if on(x, y) is guaranteed to be true when we reach a node labeled clear(y) then we can
remove clear(y) and connect its parent to clear(y)↓f .

4.2 (R7) Weak Reduction Removing Dominated Edges

Consider any two edges e1 and e2 in a FODD whose formulas satisfy that if we can follow
e2 using some valuation then we can also follow e1 using a possibly different valuation. If
e1 gives better value than e2 then intuitively e2 never determines the value of the diagram
and is therefore redundant. We formalize this as reduction operator R7.4

Let p = source(e1), q = source(e2), e1 = p↓a, and e2 = q↓b, where a and b can be true

or false. We first present all the conditions for the operator and then follow with the
definition of the operator.
(P7.1) : B |= [∃�x,EF(e2)] → [∃�y,EF(e1)] where �x are the variables in EF(e2) and �y the
variables in EF(e1).
(P7.2) : B |= ∀�u, [[∃�w,EF(e2)] → [∃�v,EF(e1)]] where �u are the variables that appear in
both target(e1) and target(e2), �v the variables that appear in EF(e1) but are not in �u, and
�w the variables that appear in EF(e2) but are not in �u. This condition requires that for
every valuation ζ1 that reaches e2 there is a valuation ζ2 that reaches e1 such that ζ1 and
ζ2 agree on all variables that appear in both target(e1) and target(e2).
(P7.3) : B |= ∀�r, [[∃�s,EF(e2)] → [∃�t,EF(e1)]] where �r are the variables that appear in both
target(e1) and target(sibling(e2)), �t the variables that appear in EF(e1) but are not in �r,
and �s the variables that appear in EF(e2) but are not in �r. This condition requires that for
every valuation ζ1 that reaches e2 there is a valuation ζ2 that reaches e1 such that ζ1 and
ζ2 agree on all variables that appear in both target(e1) and target(sibling(e2)).
(V7.1) : min(target(e1)) ≥ max(target(e2)) where min(target(e1)) is the minimum leaf
value in target(e1), and max(target(e2)) the maximum leaf value in target(e2). In this case
regardless of the valuation we know that it is better to follow e1 and not e2.
(V7.2) : min(target(e1)) ≥ max(target(sibling(e2))).
(V7.3) : all leaves in D = target(e1) � target(e2) have non-negative values, denoted as
D ≥ 0. In this case for any fixed valuation it is better to follow e1 instead of e2.

4. We use R7 and skip the notation R6 for consistency with earlier versions of this paper. See further
discussion in Section 4.2.1.
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(V7.4) : all leaves in G = target(e1) � target(sibling(e2)) have non-negative values.

We define the operators R7-replace(b, e1, e2) as replacing target(e2) with a constant b
that is between 0 and min(target(e1)) (we may write it as R7-replace(e1, e2) if b = 0),
and R7-drop(e1, e2) as dropping the node q = source(e2) and connecting its parents to
target(sibling(e2)).

We need one more “safety” condition to guarantee that the reduction is correct:

(S1) : NF(source(e1)) and the sub-FODD of target(e1) remain the same before and after
R7-replace and R7-drop. This condition says that we must not harm the value promised
by target(e1). In other words, we must guarantee that p = source(e1) is reachable just as
before and the sub-FODD of target(e1) is not modified after replacing a branch with 0. The
condition is violated if q is in the sub-FODD of p↓a, or if p is in the sub-FODD of q↓b. But
it holds in all other cases, that is when p and q are unrelated (one is not the descendant of
the other), or q is in the sub-FODD of p↓a, or p is in the sub-FODD of q

↓b
, where a, b are

the negations of a, b.

Lemma 3 Let B be a FODD, e1 and e2 edges for which conditions P7.1, V7.1, and S1
hold, and B′ the result of R7-replace(b, e1, e2), where 0 ≤ b ≤ min(target(e1)), then for any
interpretation I we have MAPB(I) = MAPB′(I).

Proof: Consider any valuation ζ1 that reaches target(e2). Then according to P7.1,
there is another valuation reaching target(e1) and by V7.1 it gives a higher value. There-
fore, MAPB(I) will never be determined by target(e2) so we can replace target(e2) with a
constant between 0 and min(target(e1)) without changing the map. �

Lemma 4 Let B be a FODD, e1 and e2 edges for which conditions P7.2, V7.3, and S1
hold, and B′ the result of R7-replace(b, e1, e2), where 0 ≤ b ≤ min(target(e1)), then for any
interpretation I we have MAPB(I) = MAPB′(I).

Proof: Consider any valuation ζ1 that reaches target(e2). By P7.2 there is another
valuation ζ2 reaching target(e1) and ζ1 and ζ2 agree on all variables that appear in both
target(e1) and target(e2). Therefore, by V7.3 it achieves a higher value (otherwise, there
must be a branch in D = target(e1)�target(e2) with a negative value). Therefore according
to maximum aggregation the value of MAPB(I) will never be determined by target(e2), and
we can replace it with a constant as described above. �

Note that the conditions in the previous two lemmas are not comparable since P7.2
→ P7.1 and V7.1 → V7.3. Intuitively when we relax the conditions on values, we need
to strengthen the conditions on reachability. The subtraction operation D = target(e1) �
target(e2) is propositional, so the test in V7.3 implicitly assumes that the common vari-
ables in the operands are the same and P7.1 does not check this. Figure 5 illustrates
that the reachability condition P7.1 together with V7.3, i.e., combining the weaker por-
tions of conditions from Lemma 3 and Lemma 4, cannot guarantee that we can replace
a branch with a constant. Consider an interpretation I with domain {1, 2, 3, 4} and rela-
tions {h(1, 2), q(3, 4), p(2)}. In addition assume domain knowledge B = [∃x, y, h(x, y) →
∃z,w, q(z,w)]. So P7.1 and V7.3 hold for e1 = [q(x, y)]↓t and e2 = [h(z, y)↓t]. We have
MAPB1(I) = 3 and MAPB2(I) = 0. It is therefore not possible to replace h(z, y)↓t with 0.
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Figure 5: An example illustrating the subtraction condition in R7.
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Figure 6: An example illustrating the condition for removing a node in R7.

Sometimes we can drop the node q completely with R7-drop. Intuitively, when we
remove a node, we must guarantee that we do not gain extra value. The conditions for
R7-replace can only guarantee that we will not lose any value. But if we remove the node
q, a valuation that was supposed to reach e2 may reach a better value in e2’s sibling. This
would change the map, as illustrated in Figure 6. Notice that the conditions P7.1 and
V7.1 hold for e1 = [p(x)]↓t and e2 = [p(y)]↓t so we can replace [p(y)]↓t with a constant.
Consider an interpretation I with domain {1, 2} and relations {q(1), p(2), h(2)}. We have
MAPB1(I) = 10 via valuation {x/2} and MAPB2(I) = 20 via valuation {x/1, y/2}. Thus
removing p(y) is not correct.

Therefore we need the additional condition to guarantee that we will not gain extra value
with node dropping. This condition can be stated as: for any valuation ζ1 that reaches e2

and thus will be redirected to reach a value v1 in sibling(e2) when q is removed, there is a
valuation ζ2 that reaches a leaf with value v2 ≥ v1. However, this condition is too complex
to test in practice. In the following we identify two stronger conditions.

Lemma 5 Let B be a FODD, e1 and e2 edges for which condition V7.2 hold in addition to
the conditions for replacing target(e2) with a constant, and B′ the result of R7-drop(e1, e2),
then for any interpretation I we have MAPB(I) = MAPB′(I).

Proof: Consider any valuation reaching target(e2). As above its true value is dominated
by another valuation reaching target(e1). When we remove q = source(e2) the valuation
will reach target(sibling(e2)) and by V7.2 the value produced is smaller than the value from
target(e1). So again the map is preserved. �
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Lemma 6 Let B be a FODD, e1 and e2 edges for which P7.3 and V7.4 hold in addition
to conditions for replacing target(e2) with a constant, and B′ the result of R7-drop(e1, e2),
then for any interpretation I we have MAPB(I) = MAPB′(I).

Proof: Consider any valuation ζ1 reaching target(e2). As above its value is dominated
by another valuation reaching target(e1). When we remove q = source(e2) the valuation
will reach target(sibling(e2)) and by the conditions P7.3 and V7.4, the valuation ζ2 will
reach leaf of greater value in target(e1)(otherwise there will be a branch in G leading to a
negative value). So under maximum aggregation the map is not changed. �

To summarize if P7.1 and V7.1 and S1 hold or P7.2 and V7.3 and S1 hold then we can
replace target(e2) with a constant. If we can replace and V7.2 or both P7.3 and V7.4 hold
then we can drop q = source(e2) completely.

In the following we provide a more detailed analysis of applicability and variants of R7.

4.2.1 R6: A Special Case of R7

We have a special case of R7 when p = q, i.e., e1 and e2 are siblings. In this context R7
can be considered to focus on a single node n instead of two edges. Assuming that e1 = n↓t

and e2 = n↓f , we can rewrite the conditions in R7 as follows.

(P7.1) : B |= [∃�x,NF(n)] → [∃�x, �y,EF(n↓t)]. This condition requires that if n is reachable
then n↓t is reachable.

(P7.2) : B |= ∀�r, [∃�v,NF(n)] → [∃�v, �w,EF(n↓t)] where �r are the variables that appear in
both n↓t and n↓f , �v the variables that appear in NF(n) but not in �r, and �w the variables
in l(n) and not in �r or �v.

(P7.3) : B |= ∀�u, [∃�v,NF(n)] → [∃�v, �w,EF(n↓t)] where �u are the variables that appear in
n↓t (since sibling(e2) = e1), �v the variables that appear in NF(n) but not in �u, and �w the
variables in l(n) and not in �u or �v.

(V7.1) : min(n↓t) ≥ max(n↓f ).

(V7.2) : n↓t is a constant.

(V7.3) : all leaves in the diagram D = n↓t � n↓f have non-negative values.

Conditions S1 and V7.4 are always true. We have previously analyzed this special case
as a separate reduction operator named R6 (Wang, Joshi, & Khardon, 2007). While this is
a special case, it may still be useful to check for it separately before applying the generalized
case of R7, as it provides large reductions and seems to occur frequently in example domains.

An important special case of R6 occurs when l(n) is an equality t1 = y where y is a
variable that does not occur in the FODD above node n. In this case, the condition P7.1
holds since we can choose the value of y. We can also enforce the equality in the sub-
diagram of n↓t. Therefore if V7.1 holds we can remove the node n connecting its parents to
n↓t and substituting t1 for y in the diagram n↓t. (Note that we may need to make copies of
nodes when doing this.) In Section 4.4 we introduce a more elaborate reduction to handle
equalities by taking a maximum over the left and the right children.

4.2.2 Application Order

In some cases several instances of R7 are applicable. It turns out that the order in which
we apply them is important. In the following, the first example shows that the order affects
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Figure 7: An example illustrating the effect of application order for R7.

the number of steps needed to reduce the diagram. The second example shows that the
order affects the final result.

Consider the FODD in Figure 7(a). R7 is applicable to edges e1 = [p(x1, y1)]↓t and
e2 = [p(x2, y2)]↓t, and e′1 = [q(x3)]↓t and e′2 = [q(x2)]↓t. If we reduce in a top down
manner, i.e., first apply R7 on the pair [p(x1, y1)]↓t and [p(x2, y2)]↓t, we will get the FODD
in Figure 7(b), and then we apply R7 again on [q(x3)]↓t and [q(x2)]↓t, and we will get the
FODD in Figure 7(c). However, if we apply R7 first on [q(x3)]↓t and [q(x2)]↓t thus getting
Figure 7(d), R7 cannot be applied to [p(x1, y1)]↓t and [p(x2, y2)]↓t because [p(x1, y1)]↓t �
[p(x2, y2)]↓t will have negative leaves. In this case, the diagram can still be reduced. We can
reduce by comparing [q(x3)]↓t and [q(x2)]↓t that is in the right part of FODD. We can first
remove q(x2) and get a FODD shown in Figure 7(e), and then use the neglect operator to
remove p(x2, y2). As we see in this example applying one instance of R7 may render other
instances not applicable or may introduce more possibilities for reductions so in general
we must apply the reductions sequentially. Wang (2007) develops conditions under which
several instances of R7 can be applied simultaneously.

One might hope that repeated application of R7 will lead to a unique reduced result but
this is not true. In fact, the final result depends on the choice of operators and the order of
application. Consider Figure 8(a). R7 is applicable to edges e1 = [p(x)]↓t and e2 = [p(y)]↓t,
and e′1 = [q(x)]↓t and e′2 = [q(y)]↓t. If we reduce in a top down manner, i.e., first apply
R7 on the pair [p(x)]↓t and [p(y)]↓t, we will get the FODD in Figure 8(b), which cannot be
reduced using existing reduction operators (including the operator R8 introduced below).
However, if we apply R7 first on [q(x)]↓t and [q(y)]↓t we will get Figure 8(c). Then we can
apply R7 again on e1 = [p(x)]↓t and e2 = [p(y)]↓t and get the final result Figure 8(d), which
is clearly more compact than Figure 8(b). It is interesting that the first example seems to
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(c) 
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Figure 8: An example illustrating that the final result of R7 reductions is order dependent.

suggest applying R7 in a top down manner (since it takes fewer steps), while the second
seems to suggest the opposite (since the final result is more compact). More research is
needed to develop useful heuristics to guide the choice of reductions and the application
order and in general develop a more complete set of reductions.

Note that we could also consider generalizing R7. In Figure 8(b), if we can reach [q(y)]↓t
then clearly we can reach [p(x)]↓t or [q(x)]↓t. Since both [p(x)]↓t and [q(x)]↓t give better val-
ues, we can safely replace [q(y)]↓t with 0, thus obtaining the final result Figure 8(d). In the-
ory we can generalize P7.1 as B |= [∃�x,EF(e2)] → [∃�y1,EF(e11)]∨ · · ·∨ [∃ �yn,EF(e1n)] where
�x are the variables in EF(e2) and �yi the variables in EF(e1i) where 1 ≤ i ≤ n, and generalize
the corresponding value condition V7.1 as ∀i ∈ [1, n],min(target(e1i)) ≥ max(target(e2)).
We can generalize other reachability and value conditions similarly. However the resulting
conditions are too expensive to test in practice.

4.2.3 Relaxation of Reachability Conditions

The conditions P7.2 and P7.3 are sufficient, but not necessary to guarantee correct re-
ductions. Sometimes valuations just need to agree on a smaller set of variables than the
intersection of variables. To see this, consider the example as shown in Figure 9, where
A� B > 0 and the intersection is {x, y, z}. However, to guarantee A� B > 0 we just need
to agree on either {x, y} or {x, z}. Intuitively we have to agree on the variable x to avoid
the situation when two paths p(x, y)∧¬q(x) and p(x, y)∧ q(x)∧h(z) can co-exist. In order
to prevent the co-existence of two paths ¬p(x, y)∧¬h(z) and p(x, y)∧ q(x)∧ h(z), either y
or z has to be the same as well. Now if we change this example a little bit and replace each
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h(z) with h(z, v), then we have two minimal sets of variables of different size, one is {x, y},
and the other is {x, z, v}. As a result we cannot identify a minimum set of variables for the
subtraction and must either choose the intersection or heuristically identify a minimal set,
for example, using a greedy procedure.

A B 

p(x, y) 

q(x) h(z) 

3 2 3 2

p(x, y) 

q(x) 

1

h(z) 

2 1h(z) 

3 1

Figure 9: An example illustrating that the minimal set of variables for subtraction is not
unique.

4.3 (R8) Weak Reduction by Unification

Consider a FODD B. Let �v denote its variables, and let �x and �y be disjoint subsets of �v,
which are of the same cardinality. We define the operator R8(B,�x, �y) as replacing variables
in �x by the corresponding variables in �y. We denote the resulting FODD by B{�x/�y} so the
result has variables in �v \�x. We have the following condition for the correctness of R8:

(V8) : all leaves in B{�x/�y} � B are non negative.

Lemma 7 Let B be a FODD, B′ the result of R8(B,�x, �y) for which V8 holds, then for any
interpretation I we have MAPB(I) = MAPB′(I).

Proof: Consider any valuation ζ1 to �v in B. By V8, B{�x/�y} gives a better value on the
same valuation. Therefore we do not lose any value by this operator. We also do not gain
any extra value. Consider any valuation ζ2 to variables in B′ reaching a leaf node with value
v, we can construct a valuation ζ3 to �v in B with all variables in �x taking the corresponding
value in �y, and it will reach a leaf node in B with the same value. Therefore the map will
not be changed by unification. �

Figure 10 illustrates that in some cases R8 is applicable where R7 is not. We can apply
R8 with {x1/x2} to get a FODD as shown in Figure 10(b). Since (b)� (a) ≥ 0, (b) becomes
the result after reduction. Note that if we unify in the other way, i.e.,{x2/x1}, we will get
Figure 10(c), it is isomorphic to Figure 10(b), but we cannot reduce the original FODD to
this result, because (c)�(a) 
≥ 0. This phenomenon happens since the subtraction operation
(implemented by Apply) used in the reductions is propositional and therefore sensitive to
variable names.

4.4 (R9) Equality Reduction

Consider a FODD B with an equality node n labeled t = x. Sometimes we can drop n and
connect its parents to a sub-FODD that is the result of taking the maximum of the left and
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(b) 

p(x2) 

q(x2) 
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x1 / x2

x2/ x1

 0 
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p(x1) 

p(x2) 

q(x2) 0

 0 

Figure 10: An example illustrating R8.

the right children of n. For this reduction to be applicable B has to satisfy the following
condition.

(E9.1) : For an equality node n labeled t = x at least one of t and x is a variable and it
appears neither in n↓f nor in the node formula for n. To simplify the description of the
reduction procedure below, we assume that x is that variable.

Additionally we make the following assumption about the domain.

(D9.1) : The domain contains more than one object.

The above assumption guarantees that valuations reaching the right child of equality
nodes exist. This fact is needed in proving correctness of the Equality reduction operator.
First we describe the reduction procedure for R9(n). Let Bn denote the FODD rooted at
node n in FODD B. We extract a copy of Bn↓t

(and name it Bn↓t
-copy), and a copy of

Bn↓f
(Bn↓f

-copy) from B. In Bn↓t
-copy, we rename the variable x to t to produce diagram

B′
n↓t

-copy. Let B′
n = Apply(B′

n↓t
-copy, Bn↓f

-copy,max). Finally we drop the node n in B

and connect its parents to the root of B′
n to obtain the final result B′. An example is shown

in Figure 11.

Informally, we are extracting the parts of the FODD rooted at node n, one where x = t
(and renaming x to t in that part) and one where x 
= t. The condition E9.1 and the
assumption D9.1 guarantee that regardless of the value of t, we have valuations reaching
both parts. Since by the definition of MAP, we maximize over the valuations, in this case
we can maximize over the diagram structure itself. We do this by calculating the function
which is the maximum of the two functions corresponding to the two children of n (using
Apply) and replacing the old sub-diagram rooted at node n by the new combined diagram.
Theorem 9 proves that this does not affect the map of B.

One concern for implementation is that we simply replace the old sub-diagram by the
new sub-diagram, which may result in a diagram where strong reductions are applicable.
While this is not a problem semantically, we can avoid the need for strong reductions by
using Apply that implicitly performs strong reductions R1(neglect) and R2(join) as follows.

452



First Order Decision Diagrams for Relational MDPs

Let Ba denote the FODD resulting from replacing node n in B with 0, and Bb the
FODD resulting from replacing node n with 1 and all leaves other than node n by 0, we
have the final result B′ = Ba ⊕ B′

b where B′
b = Bb ⊗ B′

n. By correctness of Apply the two
forms of calculating B′ give the same map.

 

x=y 

(a) 

b=x 

0 

q(x) 

10 

p(y) 

q(x) 

5 0 

p(y) 

10 

p(x) 

q(x) 

0 

(c) 

10 

q(x) 

0 

(b) 

5 

q(x) 

0 

(d) 

b=x 

0 

q(x) 

10 

p(x) 

q(x) 

5 0 

(e) 

Figure 11: An example of the equality reduction. (a) The FODD before reduction. The
node x = y satisfies condition E9.1 for variable y. (b) Bn↓t

-copy (n↓t extracted).
(c) Bn↓t

-copy renamed to produce B′
n↓t

-copy. (d) Bn↓f
-copy. (e) Final result

with node n replaced by apply(B′
n↓t

-copy, Bn↓f
-copy,max)

In the following we prove that for any node n where equality condition E9.1 holds in B
we can perform the equality reduction R9 without changing the map for any interpretation
satisfying D9.1. We start with properties of FODDs defined above, e.g., Ba, Bb, and B′

b. Let
Γn denote the set of all valuations reaching node n and let Γm denote the set of all valuations
not reaching node n in B. From the basic definition of MAP we have the following:

Claim 1 For any interpretation I,
(a) ∀ ζ ∈ Γm, MAPBa(I, ζ) = MAPB(I, ζ).
(b) ∀ ζ ∈ Γn, MAPBa(I, ζ) = 0.
(c) ∀ ζ ∈ Γm, MAPBb

(I, ζ) = 0.
(d) ∀ ζ ∈ Γn, MAPBb

(I, ζ) = 1.

From Claim 1 and the definition of MAP, we have,

Claim 2 For any interpretation I,
(a) ∀ ζ ∈ Γm, MAPB′

b
(I, ζ) = 0.

(b) ∀ ζ ∈ Γn, MAPB′
b
(I, ζ) = MAPB′

n
(I, ζ).

From Claim 1, Claim 2, and the definition of MAP we have,
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Claim 3 For any interpretation I,
(a) ∀ ζ ∈ Γm, MAPB′(I, ζ) = MAPB(I, ζ).
(b) ∀ ζ ∈ Γn, MAPB′(I, ζ) = MAPB′

n
(I, ζ).

Next we prove the main property of this reduction stating that for all valuations reaching
node n in B, the old sub-FODD rooted at n and the new (combined) sub-FODD produce
the same map.

Lemma 8 Let Γn be the set of valuations reaching node n in FODD B. For any interpre-
tation I satisfying D9.1, maxζ∈Γn MAPBn(I, ζ) = maxζ∈Γn MAPB′

n
(I, ζ).

Proof: By condition E9.1, the variable x does not appear in NF (n) and hence its value
in ζ ∈ Γn is not constrained. We can therefore partition the valuations in Γn into disjoint
sets, Γn = {ΓΔ | Δ is a valuation to variables other than x}, where in ΓΔ variables other
than x are fixed to their value in Δ and x can take any value in the domain of I. Assumption
D9.1 guarantees that every ΓΔ contains at least one valuation reaching Bn↓t

and at least one
valuation reaching Bn↓f

in B. Note that if a valuation ζ reaches Bn↓t
then t = x is satisfied

by ζ thus MAPBn↓t
(I, ζ) = MAPB′

n↓t
-copy(I, ζ). Since x does not appear in Bn↓f

we also

have that MAPB′
n↓f

-copy(I, ζ) is constant for all ζ ∈ ΓΔ. Therefore by the correctness of

Apply we have maxζ∈ΓΔ
MAPBn(I, ζ) = maxζ∈ΓΔ

MAPB′
n
(I, ζ).

Finally, by the definition of MAP, maxζ∈Γn MAPBn(I, ζ) = maxΔ maxζ∈ΓΔ
MAPBn(I, ζ)

= maxΔ maxζ∈ΓΔ
MAPB′

n
(I, ζ) = maxζ∈Γn MAPBn(I, ζ). �

Lemma 9 Let B be a FODD, n a node for which condition E9.1 holds, and B′ be the result
of R9(n), then for any interpretation I satisfying D9.1, MAPB(I) = MAPB′(I).

Proof: Let X = maxζ∈Γm MAPB′(I, ζ) and Y = maxζ∈Γn MAPB′(I, ζ). By the defini-
tion of MAP, MAPB′(I) = max(X,Y ). However, by Claim 3, X = maxζ∈Γm MAPB(I, ζ)
and by Claim 3 and Lemma 8, Y = maxζ∈Γn MAPB′

n
(I, ζ) = maxζ∈Γn MAPBn(I, ζ). Thus

max(X,Y ) = MAPB(I) = MAPB′(I). �

While Lemma 9 guarantees correctness, when applying it in practice it may be important
to avoid violations of the sorting order (which would require expensive re-sorting of the
diagram). If both x and t are variables we can sometimes replace both with a new variable
name so the resulting diagram is sorted. However this is not always possible. When such a
violation is unavoidable, there is a tradeoff between performing the reduction and sorting
the diagram and ignoring the potential reduction.

To summarize, this section introduced several new reductions that can compress di-
agrams significantly. The first (R5) is a generic strong reduction that removes implied
branches in a diagram. The other three (R7, R8, R9) are weak reductions that do not alter
the overall map of the diagram but do alter the map for specific valuations. The three
reductions are complementary since they capture different opportunities for space saving.

5. Decision Diagrams for MDPs

In this section we show how FODDs can be used to capture a RMDP. We therefore use
FODDs to represent the domain dynamics of deterministic action alternatives, the proba-
bilistic choice of action alternatives, the reward function, and value functions.
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5.1 Example Domain

We first give a concrete formulation of the logistics problem discussed in the introduc-
tion. This example follows exactly the details given by Boutilier et al. (2001), and is used
to illustrate our constructions for MDPs. The domain includes boxes, trucks and cities,
and predicates are Bin(Box,City), T in(Truck,City), and On(Box, Truck). Following
Boutilier et al. (2001), we assume that On(b, t) and Bin(b, c) are mutually exclusive, so a
box on a truck is not in a city and vice versa. That is, our background knowledge includes
statements ∀b, c, t, On(b, t) → ¬Bin(b, c) and ∀b, c, t, Bin(b, c) → ¬On(b, t). The reward
function, capturing a planning goal, awards a reward of 10 if the formula ∃b,Bin(b, Paris)
is true, that is if there is any box in Paris. Thus the reward is allowed to include constants
but need not be completely ground.

The domain includes 3 actions load, unload, and drive. Actions have no effect if their
preconditions are not met. Actions can also fail with some probability. When attempting
load, a successful version loadS is executed with probability 0.99, and an unsuccessful ver-
sion loadF (effectively a no-operation) with probability 0.01. The drive action is executed
deterministically. When attempting unload, the probabilities depend on whether it is rain-
ing or not. If it is not raining then a successful version unloadS is executed with probability
0.9, and unloadF with probability 0.1. If it is raining unloadS is executed with probability
0.7, and unloadF with probability 0.3.

5.2 The Domain Dynamics

We follow Boutilier et al. (2001) and specify stochastic actions as a randomized choice
among deterministic alternatives. The domain dynamics are defined by truth value dia-
grams (TVDs). For every action schema A(�a) and each predicate schema p(�x) the TVD
T (A(�a), p(�x)) is a FODD with {0, 1} leaves. The TVD gives the truth value of p(�x) in
the next state when A(�a) has been performed in the current state. We call �a action pa-
rameters, and �x predicate parameters. No other variables are allowed in the TVD; the
reasoning behind this restriction is explained in Section 6.2. The restriction can be some-
times sidestepped by introducing more action parameters instead of the variables.

The truth value of a TVD is valid when we fix a valuation of the parameters. The
TVD simultaneously captures the truth values of all instances of p(�x) in the next state.
Notice that TVDs for different predicates are separate. This can be safely done even if an
action has coordinated effects (not conditionally independent) since the action alternatives
are deterministic.

Since we allow both action parameters and predicate parameters, the effects of an action
are not restricted to predicates over action arguments so TVD are more expressive than
simple STRIPS based schemas. For example, TVDs can easily express universal effects of
an action. To see this note that if p(�x) is true for all �x after action A(�a) then the TVD
T (A(�a), p(�x)) can be captured by a leaf valued 1. Other universal conditional effects can be
captured similarly. On the other hand, since we do not have explicit universal quantifiers,
TVDs cannot capture universal preconditions.

For any domain, a TVD for predicate p(�x) can be defined generically as in Figure 12.
The idea is that the predicate is true if it was true before and is not “undone” by the action
or was false before and is “brought about” by the action. TVDs for the logistics domain
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p( x ) 

   1    0   0

undo
bring 
about 

Figure 12: A template for the TVD

Bin (B, C)

B= b* 

Tin( t*, C)

0 

0

1

(c)

On (B, T) 

B= b* 

T= t* 

0 

0

1

(b)

Bin (B, C)

1 B= b* 

On (B, t*) 

Tin (t*, C)

1 0

(a)

On (B, T) 

1 B= b* 

T= t*

Tin (T, c*)

1 0

(d)

Bin (B, c*)

Tin (T, C) 

T= t* 

C� c* 

0 1

T= t* 

C= c* 

1 0

(e)

rain

0.7 0.9

Bin (b, Paris) 

10 0 

(f) (g)

C= c* 

Figure 13: FODDs for logistics domain: TVDs, action choice, and reward func-
tion. (a)(b) The TVDs for Bin(B,C) and On(B,T ) under action choice
unloadS(b∗, t∗). (c)(d) The TVDs for Bin(B,C) and On(B,T ) under action
choice loadS(b∗, t∗, c∗). Note that c∗ must be an action parameter so that (d)
is a valid TVD. (e) The TVD for T in(T,C) under action choice driveS(t∗, c∗).
(f) The probability FODD for the action choice unloadS(b∗, t∗). (g) The reward
function.
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in our running example are given in Figure 13. All the TVDs omitted in the figure are
trivial in the sense that the predicate is not affected by the action. In order to simplify the
presentation we give the TVDs in their generic form and did not sort the diagrams using
the order proposed in Section 3.5; the TVDs are consistent with the ordering Bin ≺ “=”
≺ On ≺ T in ≺ rain. Notice that the TVDs capture the implicit assumption usually taken
in such planning-based domains that if the preconditions of the action are not satisfied then
the action has no effect.

Notice how we utilize the multiple path semantics with maximum aggregation. A pred-
icate is true if it is true according to one of the paths specified so we get a disjunction
over the conditions for free. If we use the single path semantics of Blockeel and De Raedt
(1998) the corresponding notion of TVD is significantly more complicated since a single
path must capture all possibilities for a predicate to become true. To capture that, we must
test sequentially for different conditions and then take a union of the substitutions from
different tests and in turn this requires additional annotation on FODDs with appropriate
semantics. Similarly an OR operation would require union of substitutions, thus compli-
cating the representation. We explain these issues in more detail in Section 6.3 after we
introduce the first order value iteration algorithm.

5.3 Probabilistic Action Choice

One can consider modeling arbitrary conditions described by formulas over the state to
control nature’s probabilistic choice of action. Here the multiple path semantics makes it
hard to specify mutually exclusive conditions using existentially quantified variables and in
this way specify a distribution. We therefore restrict the conditions to be either propositional
or depend directly on the action parameters. Under this condition any interpretation follows
exactly one path (since there are no variables and thus only the empty valuation) thus the
aggregation function does not interact with the probabilities assigned. A diagram showing
action choice for unloadS in our logistics example is given in Figure 13. In this example,
the condition is propositional. The condition can also depend on action parameters, for
example, if we assume that the result is also affected by whether the box is big or not, we
can have a diagram as in Figure 14 specifying the action choice probability.

Big(b*) 

rain

0.7 0.9

 0.9

Figure 14: An example showing that the choice probability can depend on action parame-
ters.

Note that a probability usually depends on the current state. It can depend on arbi-
trary properties of the state (with the restriction stated as above), e.g., rain and big(b∗),
as shown in Figure 14. We allow arbitrary conditions that depend on predicates with ar-
guments restricted to action parameters so the dependence can be complex. However, we
do not allow any free variables in the probability choice diagram. For example, we cannot
model a probabilistic choice of unloadS(b∗, t∗) that depends on other boxes on the truck t∗,
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e.g., ∃b,On(b, t∗)∧ b 
= b∗ : 0.2; otherwise, 0.7. While we can write a FODD to capture this
condition, the semantics of FODD means that a path to 0.7 will be selected by max aggre-
gation so the distribution cannot be modeled in this way. While this is clearly a restriction,
the conditions based on action arguments still give a substantial modeling power.

5.4 Reward and Value Functions

Reward and value functions can be represented directly using algebraic FODDs. The reward
function for our logistics domain example is given in Figure 13.

6. Value Iteration with FODDs

Following Boutilier et al. (2001) we define the first order value iteration algorithm as follows:
given the reward function R and the action model as input, we set V0 = R,n = 0 and repeat
the procedure Rel-greedy until termination:

Procedure 1 Rel-greedy
1. For each action type A(�x), compute:

Q
A(�x)
Vn

= R ⊕ [γ ⊗⊕j(prob(Aj(�x)) ⊗ Regr(Vn, Aj(�x)))] (3)

2. QA
Vn

= obj-max(Q
A(�x)
Vn

).

3. Vn+1 = maxA QA
Vn

.

The notation and steps of this procedure were discussed in Section 2 except that now ⊗
and ⊕ work on FODDs instead of case statements. Note that since the reward function does
not depend on actions, we can move the object maximization step forward before adding
the reward function. I.e., we first have

T
A(�x)
Vn

= ⊕j(prob(Aj(�x)) ⊗ Regr(Vn, Aj(�x))),

followed by

QA
Vn

= R ⊕ γ ⊗ obj-max(T
A(�x)
Vn

).

Later we will see that the object maximization step makes more reductions possible; there-
fore by moving this step forward we get some savings in computation. We compute the
updated value function in this way in the comprehensive example of value iteration given
later in Section 6.8.

Value iteration terminates when ‖Vi+1 −Vi‖ ≤ ε(1−γ)
2γ

(Puterman, 1994). In our case we

need to test that the values achieved by the two diagrams is within ε(1−γ)
2γ

.
Some formulations of goal based planning problems use an absorbing state with zero

additional reward once the goal is reached. We can handle this formulation when there is
only one non-zero leaf in R. In this case, we can replace Equation 3 with

Q
A(�x)
Vn

= max(R, γ ⊗⊕j(prob(Aj(�x)) ⊗ Regr(Vn, Aj(�x))).

To see why this is correct, note that due to discounting the max value is always ≤ R. If R
is satisfied in a state we do not care about the action (max would be R) and if R is 0 in a
state we get the value of the discounted future reward.

458



First Order Decision Diagrams for Relational MDPs

Note that we can only do this in goal based domains, i.e., there is only one non-zero
leaf. This does not mean that we cannot have disjunctive goals, but it means that we must
value each goal condition equally.

6.1 Regressing Deterministic Action Alternatives

We first describe the calculation of Regr(Vn, Aj(�x)) using a simple idea we call block re-
placement. We then proceed to discuss how to obtain the result efficiently.

Consider Vn and the nodes in its FODD. For each such node take a copy of the cor-
responding TVD, where predicate parameters are renamed so that they correspond to the
node’s arguments and action parameters are unmodified. BR-regress(Vn, A(�x)) is the FODD
resulting from replacing each node in Vn with the corresponding TVD, with outgoing edges
connected to the 0, 1 leaves of the TVD.

Recall that a RMDP represents a family of concrete MDPs each generated by choosing a
concrete instantiation of the state space (typically represented by the number of objects and
their types). The formal properties of our algorithms hold for any concrete instantiation.

Fix any concrete instantiation of the state space. Let s denote a state resulting from
executing an action A(�x) in state ŝ. Notice that Vn and BR-regress(Vn, A(�x)) have exactly
the same variables. We have the following lemma:

Lemma 10 Let ζ be any valuation to the variables of Vn (and thus also the variables of
BR-regress(Vn, A(�x))). Then MAPVn(s, ζ) = MAPBR−regress(Vn,A(�x))(ŝ, ζ).

Proof: Consider the paths P, P̂ followed under the valuation ζ in the two diagrams. By the
definition of TVDs, the sub-paths of P̂ applied to ŝ guarantee that the corresponding nodes
in P take the same truth values in s. So P, P̂ reach the same leaf and the same value is
obtained. �

A naive implementation of block replacement may not be efficient. If we use block
replacement for regression then the resulting FODD is not necessarily reduced and moreover,
since the different blocks are sorted to start with the result is not even sorted. Reducing
and sorting the results may be an expensive operation. Instead we calculate the result as
follows. For any FODD Vn we traverse BR-regress(Vn, A(�x)) using postorder traversal in
terms of blocks and combine the blocks. At any step we have to combine up to 3 FODDs
such that the parent block has not yet been processed (so it is a TVD with binary leaves)
and the two children have been processed (so they are general FODDs). If we call the parent
Bn, the true branch child Bt and the false branch child Bf then we can represent their
combination as [Bn ⊗ Bt] ⊕ [(1 � Bn) ⊗ Bf ].

Lemma 11 Let B be a FODD where Bt and Bf are FODDs, and Bn is a FODD with {0, 1}

leaves. Let B̂ be the result of using Apply to calculate the diagram [Bn⊗Bt]⊕[(1�Bn)⊗Bf ].
Then for any interpretation I and valuation ζ we have MAPB(I, ζ) = MAP

B̂
(I, ζ).

Proof: This is true since by fixing the valuation we effectively ground the FODD and all
paths are mutually exclusive. In other words the FODD becomes propositional and clearly
the combination using propositional Apply is correct. �

A high-level description of the algorithm to calculate BR-regress(Vn, A(�x)) by block
combination is as follows:
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Procedure 2 Block Combination for BR-regress(Vn, A(�x))

1. Perform a topological sort on Vn nodes (see for example Cormen, Leiserson, Rivest,
& Stein, 2001).

2. In reverse order, for each non-leaf node n (its children Bt and Bf have already been
processed), let Bn be a copy of the corresponding TVD, calculate [Bn ⊗ Bt] ⊕ [(1 �
Bn) ⊗ Bf ].

3. Return the FODD corresponding to the root.

Notice that different blocks share variables so we cannot perform weak reductions during
this process. However, we can perform strong reductions in intermediate steps since they
do not change the map for any valuation. After the process is completed we can perform
any combination of weak and strong reductions since this does not change the map of the
regressed value function.

Big(t)

Blue (b) 

Big(t)

Bin (b, c) 

0

(c)

0

Blue (b) 

On(b,t)

0 1

On (B, T) 

1 B= b*

T= t*

Tin (T, c) 

1 0

Bin (B, c) 

On (b, t) 

0 b= b*

t= t*

Tin (t, c) 

0 1

(a)

(b)

Figure 15: An example illustrating why variables are not allowed in TVDs.

We can now explain why we cannot have variables in TVDs through an example illus-
trated in Figure 15. Suppose we have a value function as defined in Figure 15(a), saying
that if there is a blue block and a big truck such that the block is not on the truck then
value 1 is assigned. Figure 15(b) gives the TVD for On(B,T ) under action loadS, in
which c is a variable instead of an action parameter. Figure 15(c) gives the result after
block replacement. Consider an interpretation ŝ with domain {b1, t1, c1, c2} and relations
{Blue(b1), Big(t1), Bin(b1, c1), T in(t1, c1)}. After the action loadS(b1, t1) we will reach the
state s = {Blue(b1), Big(t1), On(b1, t1), T in(t1, c1)}, which gives us a value of 0. But Fig-
ure 15(c) with b∗ = b1, t

∗ = t1 evaluated in ŝ gives value of 1 by valuation {b/b1, c/c2, t/t1}.
Here the choice c/c2 makes sure the precondition is violated. By making c an action pa-
rameter, applying the action must explicitly choose a valuation and this leads to a correct
value function. Object maximization turns action parameters into variables and allows us
to choose the argument so as to maximize the value.
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6.2 Regressing Probabilistic Actions

To regress a probabilistic action we must regress all its deterministic alternatives and com-
bine each with its choice probability as in Equation 3. As discussed in Section 2, due to
the restriction in the RMDP model that explicitly specifies a finite number of deterministic
action alternatives, we can replace the potentially infinite sum of Equation 1 with the finite
sum of Equation 3. If this is done correctly for every state then the result of Equation 3 is
correct. In the following we specify how this can be done with FODDs.

Recall that prob(Aj(�x)) is restricted to include only action parameters and cannot in-
clude variables. We can therefore calculate prob(Aj(�x))⊗Regr(Vn, Aj(�x)) in step (1) directly
using Apply. However, the different regression results are independent functions so that in
the sum ⊕j(prob(Aj(�x))⊗Regr(Vn, Aj(�x))) we must standardize apart the different regres-
sion results before adding the functions (note that action parameters are still considered
constants at this stage). The same holds for the addition of the reward function. The need
to standardize apart complicates the diagrams and often introduces structure that can be
reduced. When performing these operations we first use the propositional Apply procedure
and then follow with weak and strong reductions.

q (x) 

p (x) 

 10 0

 5 

(a) 

q (x1) 

q (A) 

 1 

p (x1) 

 0 

   5 0

 2.5

p (A) 

A=x* 1 

 0 

(c) 

V0 ASucc(x*)

(b) 

x1= x* 

q (x1) 

+

q (x2) 

p (x2) 

 5 0

2.5

q (x2) 

q (x1) 

p (x1) 

x1= x* 

q (x1) 

   7.5

 …

Figure 16: An example illustrating the need to standardize apart.

Figure 16 illustrates why we need to standardize apart different action outcomes. Action
A can succeed (denoted as ASucc) or fail (denoted as AFail, effectively a no-operation),
and each is chosen with probability 0.5. Part (a) gives the value function V 0. Part (b) gives
the TVD for P (A) under the action choice ASucc(x∗). All other TVDs are trivial. Part
(c) shows part of the result of adding the two outcomes for A after standardizing apart
(to simplify the presentation the diagrams are not sorted). Consider an interpretation with
domain {1, 2} and relations {q(1), p(2)}. As can be seen from (c), by choosing x∗ = 1, i.e.
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action A(1), the valuation x1 = 1, x2 = 2 gives a value of 7.5 after the action (without
considering the discount factor). Obviously if we do not standardize apart (i.e x1 = x2),
there is no leaf with value 7.5 and we get a wrong value. Intuitively the contribution of
ASucc to the value comes from the “bring about” portion of the diagram and AFail’s
contribution uses bindings from the “not undo” portion and the two portions can refer to
different objects. Standardizing apart allows us to capture both simultaneously.

From Lemma 10 and 11 and the discussion so far we have:

Lemma 12 Consider any concrete instantiation of a RMDP. Let Vn be a value function
for the corresponding MDP, and let A(�x) be a probabilistic action in the domain. Then

Q
A(�x)
Vn

as calculated by Equation 3 is correct. That is, for any state s, MAP
Q

A(�x)
Vn

(s) is the

expected value of executing A(�x) in s and then receiving the terminal value Vn.

6.3 Observations for Single Path Semantics

Section 5.2 suggested that the single path semantics of Blockeel and De Raedt (1998) does
not support value iteration as well as the multiple path semantics. Now with the explanation
of regression, we can use an example to illustrate this. Suppose we have a value function
as defined in Figure 17(a), saying that if we have a red block in a big city then value 1 is
assigned. Figure 17(b) gives the result after block replacement under action unloadS(b∗, t∗).
However this is not correct. Consider an interpretation ŝ with domain {b1, b2, t1, c1} and
relations {Red(b2), Blue(b1), Big(c1), Bin(b1, c1), T in(t1, c1), On(b2, t1)}. Note that we use
the single path semantics. We follow the true branch at the root since ∃b, c,Bin(b, c) is true
with {b/b1, c/c1}. But we follow the false branch at Red(b) since ∃b, c,Bin(b, c) ∧Red(b)
is not satisfied. Therefore we get a value of 0. Clearly, we should get a value of 1 instead
with {b/b2, c/c1}, but it is impossible to achieve this value in Figure 17(b) with the single
path semantics. The reason block replacement fails is that the top node decides on the true
branch based on one instance of the predicate but we really need all true instances of the
predicate to filter into the true leaf of the TVD.

To correct the problem, we want to capture all instances that were true before and
not undone and all instances that are made true on one path. Figure 17(c) gives one
possible way to do it. Here ← means variable renaming, and ∪ stands for union operator,
which takes a union of all substitutions. Both can be treated as edge operations. Note
that ∪ is a coordinated operation, i.e., instead of taking the union of the substitutions for
b′ and b′′, c′ and c′′ separately we need to take the union of the substitutions for (b′, c′)
and (b′′, c′′). This approach may be possible but it clearly leads to complicated diagrams.
Similar complications arise in the context of object maximization. Finally if we are to use
this representation then all our procedures will need to handle edge marking and unions of
substitutions so this approach does not look promising.

6.4 Object Maximization

Notice that since we are handling different probabilistic alternatives of the same action
separately we must keep action parameters fixed during the regression process and until
they are added in step 1 of the algorithm. In step 2 we maximize over the choice of action
parameters. As mentioned above we get this maximization for free. We simply rename
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Figure 17: An example illustrating union or.

the action parameters using new variable names (to avoid repetition between iterations)
and consider them as variables. The aggregation semantics provides the maximization and
by definition this selects the best instance of the action. Since constants are turned into
variables additional reduction is typically possible at this stage. Any combination of weak
and strong reductions can be used. From the discussion we have the following lemma:

Lemma 13 Consider any concrete instantiation of a RMDP. Let Vn be a value function
for the corresponding MDP, and let A(�x) be a probabilistic action in the domain. Then
QA

Vn
as calculated by object maximization in step 2 of the algorithm is correct. That is, for

any state s, MAPQA
Vn

(s) is the maximum over expected values achievable by executing an

instance of A(�x) in s and then receiving the terminal value Vn.

A potential criticism of our object maximization is that we are essentially adding more
variables to the diagram and thus future evaluation of the diagram in any state becomes
more expensive (since more substitutions need to be considered). However, this is only true
if the diagram remains unchanged after object maximization. In fact, as illustrated in the
example given below, these variables may be pruned from the diagram in the process of
reduction. Thus as long as the final value function is compact the evaluation is efficient and
there is no such hidden cost.

6.5 Maximizing Over Actions

The maximization Vn+1 = maxA QA
n+1 in step (3) combines independent functions. There-

fore as above we must first standardize apart the different diagrams, then we can follow
with the propositional Apply procedure and finally follow with weak and strong reductions.
This clearly maintains correctness for any concrete instantiation of the state space.
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6.6 Order Over Argument Types

We can now resume the discussion of ordering of argument types and extend it to predicate
and action parameters. As above, some structure is suggested by the operations of the
algorithm. Section 3.5 already suggested that we order constants before variables.

Action parameters are “special constants” before object maximization but they become
variables during object maximization. Thus their position should allow them to behave as
variables. We should therefore also order constants before action parameters.

Note that predicate parameters only exist inside TVDs, and will be replaced with domain
constants or variables during regression. Thus we only need to decide on the relative
order between predicate parameters and action parameters. If we put action parameters
before predicate parameters and the latter is replaced with a constant then we get an order
violation, so this order is not useful. On the other hand, if we put predicate parameters
before action parameters then both instantiations of predicate parameters are possible.
Notice that when substituting a predicate parameter with a variable, action parameters
still need to be larger than the variable (as they were in the TVD). Therefore, we also order
action parameters after variables.

To summarize, the ordering: constants ≺ variables (predicate parameters in case of
TVDs) ≺ action parameters, is suggested by heuristic considerations for orders that maxi-
mize the potential for reductions, and avoid the need for re-sorting diagrams.

Finally, note that if we want to maintain the diagram sorted at all times, we need
to maintain variant versions of each TVD capturing possible ordering of replacements of
predicate parameters. Consider a TVD in Figure 18(a). If we rename predicate parameters
X and Y to be x2 and x1 respectively, and if x1 ≺ x2, then the resulting sub-FODD as
shown in Figure 18(b) violates the order. To solve this problem we have to define another
TVD corresponding to the case where the substitution of X � the substitution of Y , as
shown in Figure 18(c). In the case of replacing X with x2 and Y with x1, we use the TVD
in Figure 18(c) instead of the one in Figure 18(a).

 

On(X, Y) 

p(X) 

p(Y) 

1 0 

(a) 

On(x2, x1) 

p(x2) 

p(x1) 

1 0 

(b) 
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p(X) 

1 0 

(c) 

Figure 18: An example illustrating the necessity to maintain multiple TVDs.

6.7 Convergence and Complexity

Since each step of Procedure 1 is correct we have the following theorem:
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Theorem 2 Consider any concrete instantiation of a RMDP. Let Vn be the value function
for the corresponding MDP when there are n steps to go. Then the value of Vn+1 calculated
by Procedure 1 correctly captures the value function when there are n + 1 steps to go. That
is, for any state s, MAPVn+1(s) is the maximum expected value achievable in s in n + 1
steps.

Note that for RMDPs some problems require an infinite number of state partitions.
Thus we cannot converge to V ∗ in a finite number of steps. However, since our algorithm
implements VI exactly, standard results about approximating optimal value functions and
policies still hold. In particular the following standard result (Puterman, 1994) holds for
our algorithm, and our stopping criterion guarantees approximating optimal value functions
and policies.

Theorem 3 Let V ∗ be the optimal value function and let Vk be the value function calculated
by the relational VI algorithm.

(1) If r(s) ≤ M for all s then ‖Vn − V ∗‖ ≤ ε for n ≥
log( 2M

ε(1−γ)
)

log 1
γ

.

(2) If ‖Vn+1 − Vn‖ ≤ ε(1−γ)
2γ

then ‖Vn+1 − V ∗‖ ≤ ε.

While the algorithm maintains compact diagrams, reduction of diagrams is not guar-
anteed for all domains. Therefore we can only provide trivial upper bounds in terms of
worst case time complexity. Notice first that every time we use the Apply procedure the
size of the output diagram may be as large as the product of the size of its inputs. We
must also consider the size of the FODD giving the regressed value function. While Block
replacement is O(N) where N is the size of the current value function, it is not sorted
and sorting may require both exponential time and space in the worst case. For example,
Bryant (1986) illustrates how ordering may affect the size of a diagram. For a function of
2n arguments, the function x1 · x2 + x3 · x4 + · · · + x2n−1 · x2n only requires a diagram of
2n + 2 nodes, while the function x1 · xn+1 + x2 · xn+2 + · · · + xn · x2n requires 2n+1 nodes.
Notice that these two functions only differ by a permutation of their arguments. Now if
x1 · x2 + x3 · x4 + · · · + x2n−1 · x2n is the result of block replacement then clearly sorting
requires exponential time and space. The same is true for our block combination procedure
or any other method of calculating the result, simply because the output is of exponential
size. In such a case heuristics that change variable ordering, as in propositional ADDs
(Bryant, 1992), would probably be very useful.

Assuming TVDs, reward function, and probabilities all have size ≤ C, each action
has ≤ M action alternatives, the current value function Vn has N nodes, and worst case
space expansion for regression and all Apply operations, the overall size of the result and
the time complexity for one iteration are O(CM2(N+1)). However note that this is the
worst case analysis and does not take reductions into account. While our method is not
guaranteed to always work efficiently, the alternative of grounding the MDP will have an
unmanageable number of states to deal with, so despite the high worst case complexity our
method provides a potential improvement. As the next example illustrates, reductions can
substantially decrease diagram size and therefore save considerable time in computation.
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6.8 A Comprehensive Example of Value Iteration

Figure 19 traces steps in the application of value iteration to the logistics domain. The
TVDs, action choice probabilities, and reward function for this domain are given in Fig-
ure 13. To simplify the presentation, we continue using the predicate ordering Bin ≺ “=”
≺ On ≺ T in ≺ rain introduced earlier.5

Given V0 = R as shown in Figure 19(a), Figure 19(b) gives the result of regression of
V0 through unloadS(b∗, t∗) by block replacement, denoted as Regr(V0, unloadS(b∗, t∗)).

Figure 19(c) gives the result of multiplying Regr(V0, unloadS(b∗, t∗)) with the choice
probability of unloadS Pr(unloadS(b∗, t∗)).

Figure 19(d) gives the result of Pr(unloadF (b∗, t∗))⊗Regr(V0, unloadF (b∗, t∗)). No-
tice that this diagram is simpler since unloadF does not change the state and the TVDs
for it are trivial.

Figure 19(e) gives the unreduced result of adding two outcomes for unload(b∗, t∗), i.e.,
the result of adding [Pr(unloadS(b∗, t∗))⊗Regr(V0, unloadS(b∗, t∗))] to [Pr(unloadF (b∗, t∗))
⊗Regr(V0, unloadF (b∗, t∗))]. Note that we first standardize apart diagrams for unloadS(b∗, t∗)
and unloadF (b∗, t∗) by respectively renaming b as b1 and b2. Action parameters b∗ and t∗

at this stage are considered as constants and we do not change them. Also note that the
recursive part of Apply (addition ⊕) has performed some reductions, i.e., removing the node
rain when both of its children lead to value 10.

In Figure 19(e), we can apply R6 to node Bin(b2, Paris) in the left branch. The
conditions
P7.1: [∃b1, Bin(b1, Paris)] → [∃b1, b2, Bin(b1, Paris) ∧ Bin(b2, Paris)],
V7.1: min(Bin(b2, Paris)↓t) = 10 ≥ max(Bin(b2, Paris)↓f ) = 9,
V7.2: Bin(b2, Paris)↓t is a constant
hold. According to Lemma 3 and Lemma 5 we can drop node Bin(b2, Paris) and connect its
parent Bin(b1, Paris) to its true branch. Figure 19(f) gives the result after this reduction.

Next, consider the true child of Bin(b2, Paris) and the true child of the root. The
conditions
P7.1: [∃b1, b2,¬Bin(b1, Paris) ∧ Bin(b2, Paris)] → [∃b1, Bin(b1, Paris)],
V7.1: min(Bin(b1, Paris)↓t) = 10 ≥ max(Bin(b2, Paris)↓t) = 10,
V7.2: min(Bin(b1, Paris)↓t) = 10 ≥ max(Bin(b2, Paris)↓f ) = 9
hold. According to Lemma 3 and Lemma 5, we can drop the node Bin(b2, Paris) and
connect its parent Bin(b1, Paris) to Bin(b2, Paris)↓f . Figure 19(g) gives the result after

this reduction and now we get a fully reduced diagram. This is T
unload(b∗,t∗)
V0

.
In the next step we perform object maximization to maximize over action parameters

b∗ and t∗ and get the best instance of the action unload. Note that b∗ and t∗ have now
become variables, and we can perform one more reduction: we can drop the equality on
the right branch by R9. Figure 19(h) gives the result after object maximization, i.e.,

obj-max(T
unload(b∗,t∗)
V0

). Note that we have renamed the action parameters to avoid the
repetition between iterations.

Figure 19(i) gives the reduced result of multiplying Figure 19(h), obj-max(T
unload(b∗,t∗)
V0

),

by γ = 0.9, and adding the reward function. This result is Qunload
1 .

5. The details do not change substantially if we use the order suggested in Section 3.5 (where equality is
first).
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Figure 19: An example of value iteration in the Logistics Domain.
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We can calculate Qload
1 and Qdrive

1 in the same way and results are shown in Figure 19(j)
and Figure 19(k) respectively. For drive the TVDs are trivial and the calculation is
relatively simple. For load, the potential loading of a box already in Paris is dropped from
the diagram by the reduction operators in the process of object maximization.

Figure 19(l) gives V1, the result after maximizing over Qunload
1 , Qload

1 and Qdrive
1 . Here

again we standardized apart the diagrams, maximized over them, and then reduced the
result. In this case the diagram for unload dominates the other actions. Therefore Qunload

1

becomes V1, the value function after the first iteration.

Now we can start the second iteration, i.e., computing V2 from V1. Figure 19(m) gives
the result of block replacement in regression of V 1 through action alternative unloadS(b∗, t∗).
Note that we have sorted the TVD for on(B,T ) so that it obeys the ordering we have chosen.
However, the diagram resulting from block replacement is not sorted.

To address this we use the block combination algorithm to combine blocks bottom
up. Figure 19(n) illustrates how we combine blocks T in(t, Paris), which is a TVD, and
its two children, which have been processed and are general FODDs. After we combine
T in(t, Paris) and its two children, On(b, t)↓t has been processed. Since On(b, t)↓f = 0,
now we can combine On(b, t) and its two children in the next step of block combination.
Continuing this process we get a sorted representation of Regr(V1, unloadS(b∗, t∗)).

6.9 Extracting Optimal Policies

There is more than one way to represent policies with FODDs. Here we simply note that
a policy can be represented implicitly by a set of regressed value functions. After the value
iteration terminates, we can perform one more iteration and compute the set of Q-functions
using Equation 3.

Then, given a state s, we can compute the maximizing action as follows:

1. For each Q-function QA(�x), compute MAPQA(�x)(s), where �x are considered as variables.

2. For the maximum map obtained, record the action name and action parameters (from
the valuation) to obtain the maximizing action.

This clearly implements the policy represented by the value function. An alternative
approach that represents the policy explicitly was developed in the context of a policy
iteration algorithm (Wang & Khardon, 2007).

7. Discussion

ADDs have been used successfully to solve propositional factored MDPs. Our work gives one
proposal of lifting these ideas to RMDPs. While the general steps are similar, the technical
details are significantly more involved than the propositional case. Our decision diagram
representation combines the strong points of the SDP and ReBel approaches to RMDP. On
the one hand we get simple regression algorithms directly manipulating the diagrams. On
the other hand we get object maximization for free as in ReBel. We also get space saving
since different state partitions can share structure in the diagrams. A possible disadvantage
compared to ReBel is that the reasoning required for reduction operators might be complex.

468



First Order Decision Diagrams for Relational MDPs

In terms of expressiveness, our approach can easily capture probabilistic STRIPS style
formulations as in ReBel, allowing for more flexibility since we can use FODDs to capture
rewards and transitions. For example, our representation can capture universal effects of
actions. On the other hand, it is more limited than SDP since we cannot use arbitrary
formulas for rewards, transitions, and probabilistic choice. For example we cannot express
universal quantification using maximum aggregation, so these cannot be used in reward
functions or in action preconditions. Our approach can also capture grid-world RL domains
with state based reward (which are propositional) in factored form since the reward can be
described as a function of location.

By contrasting the single path semantics with the multiple path semantics we see an
interesting tension between the choice of representation and task. The multiple path method
does not directly support state partitions, which makes it awkward to specify distributions
and policies (since values and actions must both be specified at leaves). However, this
semantics simplifies many steps by easily supporting disjunction and maximization over
valuations which are crucial for for value iteration so it is likely to lead to significant saving
in space and time.

An implementation and empirical evaluation are in progress. The precise choice of
reduction operators and their application will be crucial to obtain an effective system, since
in general there is a tradeoff between run time needed for reductions and the size of resulting
FODDs. We can apply complex reduction operators to get the maximally reduced FODDs,
but it takes longer to perform the reasoning required. This optimization is still an open issue
both theoretically and empirically. Additionally, our implementation can easily incorporate
the idea of approximation by combining leaves with similar values to control the size of
FODDs (St-Aubin et al., 2000). This gives a simple way of trading off efficiency against
accuracy of the value functions.

There are many open issues concerning the current representation. Our results for
FODDs give a first step toward a complete generalization of ADDs. Crucially we do not
yet have a semantically appropriate normal form that is important in simplifying reasoning.
While one can define a normal form (cf., Garriga et al., 2007, for a treatment of conjunctions)
it is not clear if this can be calculated incrementally using local operations as in ADDs. It
would be interesting to investigate conditions that guarantee a normal form for a useful set
of reduction operators for FODDs.

Another possible improvement is that the representation can be modified to allow further
compression. For example we can allow edges to rename variables when they are traversed
so as to compress isomorphic sub-FODDs as illustrated above in Figure 17(c). Another
interesting possibility is a copy operator that evaluates several copies of a predicate (with
different variables) in the same node as illustrated in Figure 20. For such constructs to be
usable one must modify the FODD and MDP algorithmic steps to handle diagrams with
the new syntactic notation.

8. Conclusion

The paper makes two main contributions. First, we introduce FODDs, a generalization of
ADDs, for relational domains that may be useful in various applications. We have developed
calculus of FODDs and reduction operators to minimize their size but there are many open
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p (x) 

q (x) 

 1 

p (y) 

f (y) 

 2 

   0

0

 0 

p (x) ∧  p (y)

q (x) 

 1 

f (y) 

 2 

0

 0 

Figure 20: Example illustrating the copy operator.

issues regarding the best choice of operators and reductions. The second contribution is
in developing a FODD-based value iteration algorithm for RMDPs that has the potential
for significant improvement over previous approaches. The algorithm performs general
relational probabilistic reasoning without ever grounding the domains and it is proved to
converge to the abstract optimal value function when such a solution exists.
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