
FIRST-ORDER DECISION-THEORETIC PLANNING IN STRUCTURED

RELATIONAL ENVIRONMENTS

by

Scott Patrick Sanner

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

Copyright c© 2008 by Scott Patrick Sanner

Abstract

First-order Decision-theoretic Planning in Structured Relational Environments

Scott Patrick Sanner

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2008

We consider the general framework of first-order decision-theoretic planning in structured re-

lational environments. Most traditional solution approaches to these planning problems ground

the relational specification w.r.t. a specific domain instantiation and apply a solution approach

directly to the resulting ground Markov decision process (MDP). Unfortunately, the space and

time complexity of these solution algorithms scale linearly with the domain size in the best case

and exponentially in the worst case. An alternate approach to grounding a relational planning

problem is to lift it to a first-order MDP (FOMDP) specification. This FOMDP can then be

solved directly, resulting in a domain-independent solution whose space and time complexity

either do not scale with domain size or can scale sublinearly in the domain size. However, such

generality does not come without its own set of challenges and the first purpose of this the-

sis is to explore exact and approximate solution techniques for practically solving FOMDPs.

The second purpose of this thesis is to extend the FOMDP specification to succinctly cap-

ture factored actions and additive rewards while extending the exact and approximate solution

techniques to directly exploit this structure. In addition, we provide a proof of correctness of

the first-order symbolic dynamic programming approach w.r.t. its well-studied ground MDP

counterpart.

ii

Dedication

To my parents: for their love, support and encouragement of learning throughout my life;

especially to my Dad for buying me a Commodore 64 (with a whopping 64 kB of memory!)

and a Radio Shack electronics kit and sharing with me his joy of curiousity.

iii

Acknowledgements

I have been quite fortunate to have Craig Boutilier as my PhD advisor; Craig’s ability to clearly

and cleanly formalize problems and intuitions is unsurpassed in my experience. Working with

Craig has fundamentally changed the way that I think about and approach research; I only hope

that I can have a fraction of this impact on my own future students.

I owe a debt of gratitude to Sheila McIlraith for her advice, inspiration, and encouragement

as a committee member, but also as a friend. I first met Sheila while I was working on my

Masters degree and her unselfish goodwill since that first serendipitous meeting has opened

many doors in my life that may have been otherwise closed. The world needs more people like

Sheila.

As my external committee member, Roni Khardon provided a thorough review of my thesis

and I am indebted to him for the time and effort he spent doing this. I also thank my other

committee members, Fahiem Bacchus and Hector Levesque, for their insights and suggestions

over the course of my PhD.

And finally, I am grateful to all of my family and friends for putting up with me throughout

my graduate career. Perhaps no one knows this difficulty more than Sonia — for her uncondi-

tional love and support (and her mom’s cooking), I owe a debt of love that will require many

fur coats to repay. ⌣̈

iv

Contents

1 Introduction 1

1.1 Motivating Examples . 2

1.1.1 Logistics Planning . 3

1.1.2 System Administration . 3

1.2 Exploitation of Structure in Decision-theoretic Planning 4

1.3 Major Contributions . 7

1.4 Distinction from Related Work . 9

1.5 Outline . 9

2 Markov Decision Processes 11

2.1 MDP Representation . 11

2.2 Policy Representation . 13

2.3 Optimal Solution Criteria . 14

2.4 Exact Solution Techniques . 15

2.4.1 Vector and Matrix Notation . 15

2.4.2 Dynamic programming . 15

2.4.3 Forward-search . 19

2.4.4 Real-time dynamic programming . 20

2.4.5 Linear programming . 20

2.5 Approximate Solution Techniques . 21

2.5.1 Linear-value Function Representation 21

2.5.2 Error Bounds on Approximate Value Functions 22

2.5.3 Approximate Dynamic Programming 23

2.5.4 Approximate Linear Programming . 25

2.6 Application to AI Planning Problems . 25

2.6.1 Common AI Planning Paradigms . 25

v

2.6.2 Task- vs. Process-oriented Planning 27

2.7 Summary . 27

3 Factored MDPs 29

3.1 Factored MDP Representations . 30

3.1.1 Factored Transition and Reward Dynamics 30

3.1.2 Context-specific Independence and ADDs 33

3.1.3 Additive Independence . 42

3.1.4 Structured Policy Representation . 43

3.1.5 Putting it all Together . 44

3.2 Exact Solution Methods . 45

3.2.1 Structured Value Iteration . 45

3.2.2 Structured Policy Iteration . 47

3.2.3 Difficulty of Structured Linear Programming 48

3.3 Approximate Solution Methods . 48

3.3.1 Approximate Value Iteration Methods 48

3.3.2 Linear-value Approximation Solution Methods 50

3.4 Exploiting CSI, Additive, and Multiplicative Independence 56

3.4.1 Limitations of ADDs . 56

3.4.2 Affine Algebraic Decision Diagrams (AADDs) 57

3.4.3 Algorithms . 60

3.4.4 Theoretical Results . 70

3.4.5 Empirical Results . 72

3.4.6 Related Work . 77

3.5 Summary and Conclusions . 78

4 First-order MDPs 80

4.1 Motivation . 81

4.1.1 Relational Planning Specifications . 81

4.1.2 Grounded vs. Lifted Solutions . 85

4.2 Situation Calculus Background . 86

4.2.1 Basic Ingredients . 87

4.2.2 From PDDL to a First-order Domain Theory 88

4.2.3 Regression . 91

vi

4.3 FOMDP Representation . 93

4.3.1 Case Representation of Rewards, Values, and Probabilities 93

4.3.2 Case Operations . 95

4.3.3 Stochastic Actions and Transition Probabilities 97

4.4 Symbolic Dynamic Programming (SDP) . 100

4.4.1 First-order Decision-theoretic Regression 100

4.4.2 Symbolic Maximization . 104

4.4.3 First-order Value Iteration . 106

4.4.4 Policy Representation . 107

4.5 Comments on Policy Iteration and Linear Programming 108

4.6 Representation and Solution with First-order (A)ADDs 109

4.6.1 Constructing FO(A)ADDs from a Case Representation 110

4.6.2 Operations on FO(A)ADDs . 113

4.6.3 Practical Considerations . 116

4.6.4 Symbolic Dynamic Programming with FO(A)ADDs 117

4.7 Decomposing Universal Rewards . 120

4.7.1 Offline Generic Goal Solution . 121

4.7.2 Online Policy Evaluation . 122

4.8 Related Work . 123

4.9 Summary . 125

5 Linear-value Approximation for FOMDPs 127

5.1 Linear-value Approximation with Basis Functions 128

5.1.1 First-order Linear-value Representation 129

5.1.2 Backup Operators . 130

5.2 Approximate Solution Methods . 134

5.2.1 First-order Approximate Linear Programming 134

5.2.2 First-order Approximate Policy Iteration 138

5.3 First-order Linear Programs . 142

5.3.1 General Formulation . 143

5.3.2 First-order Cost Network Maximization 143

5.3.3 First-Order Constraint Generation . 145

5.4 Automatic Generation of Basis Functions . 147

5.5 Empirical Results . 149

vii

5.5.1 ICAPS 2004 Probabilistic Planning Problems 150

5.5.2 ICAPS 2006 Probabilistic Planning Problems 153

5.6 Summary . 157

6 Factored First-order MDPs 159

6.1 Factored FOMDP Representation . 162

6.1.1 Sum and Product Aggregators . 162

6.1.2 Operations with Sum and Product Aggregators 164

6.1.3 Factored Stochastic Actions . 164

6.1.4 Formalizing Another Factored FOMDP 174

6.2 Factored Symbolic Dynamic Programming 174

6.2.1 Exploiting Irrelevance . 176

6.2.2 Backup Operators . 177

6.2.3 Symbolic Maximization . 178

6.2.4 Examples . 183

6.3 Linear-value Approximation for (some) Factored FOMDPs 191

6.3.1 Linear-value Representation . 192

6.3.2 Factored First-order Approximate Linear Programming 194

6.3.3 Factored First-order Approximate Policy Iteration 195

6.3.4 Constraint Generation with Indefinite Constraints 196

6.4 Empirical Results . 205

6.5 Concluding Remarks . 207

7 Conclusions 210

7.1 Summary of Contributions . 211

7.2 Future Directions . 214

7.3 Concluding Remarks . 218

A Proof of Correctness of Symbolic Dynamic Programming 219

A.1 General Proof Approach . 219

A.2 Correspondence of Case and Ground Representations 220

A.3 Correspondence of Representations and Operations 221

A.4 Correspondence of a FOMDP and an MDP 224

A.5 Correspondence of FODTR and DTR . 227

A.6 Correspondence of Symbolic and Ground Maximization 230

viii

A.7 Correspondence of Symbolic and Ground Value Iteration 233

B Remaining Proofs 234

B.1 Proofs from Chapter 3 . 234

B.2 Proofs from Chapter 5 . 237

B.3 Proofs from Chapter 6 . 239

Bibliography 242

ix

List of Tables

3.1 Input and output summaries of ComputeResult . If ComputeResult receives

two constant ADD nodes as input, the constant resulting from the direct eval-

uation of any possible binary operation is returned. In other cases where at

least one node is non-terminal, special operand structure and specific operator

properties sometimes permit the computation of the result without further re-

cursion. Some computations rely on the unary min(F) and max(F) operators

that are discussed directly following the Apply algorithm. 39

3.2 Input and output summaries of theComputeResult, GetNormCacheKey , and

ModifyResult routines. 64

3.3 Number of table entries/nodes in the original network and variable elimination

running times using tabular, ADD, and AADD representations for inference in

various Bayes nets. ∗EML denotes that a query exceeded the 1Gb memory limit. 74

5.1 Cumulative reward of 5 planning systems and the FOALP and FOAPI (100 run

avg.) on the BOXWORLD and Blocks World probabilistic planning problems

from the ICAPS 2004 IPPC(– indicates no data). BOXWORLD problems are

indicated by a prefix of bx and followed by the number of cities c and boxes b

used in the domain. BLOCKSWORLD problems are indicated by a prefix of bw

and followed by the number of blocks b used in the domain. 152

6.1 Factored FOMDP formulation of F-BOXWORLD. Predicates TruckIn,BoxIn,BoxOn

have been shortened to fit the table on one page. Variables start with the same letter of

their type (i.e. Box ,Truck ,City) and unused action parameters are omitted from the

second aspects. 175

x

List of Figures

1.1 An example BOXWORLD problem. Trucks may drive along solid lines and

planes may fly along dashed lines. The goal in this instance is to get all boxes

in paris (indicated by the star). 2

1.2 An example SYSADMIN problem with the network topology shown as a di-

rected graph. One computer is up and running and three are not (indicated by

the red circle with slash). A good action to take in this state would be to reboot

c2. 4

2.1 A diagram demonstrating a) forward evaluation of the MDP value function

and b) dynamic programming regression evaluation of the MDP value func-

tion. Both methods return the same value for V 3(s), but the forward evaluation

requires exponential time in the search depth O((|S| · |A|)d) and only calcu-

lates the value for one initial state whereas dynamic programming caches its

results on each backup thus requiring only polynomial time in the search depth

O(|S| · |A| · d) and solving for the value function at every state. 16

3.1 a) A dynamic Bayes network and decision diagram representing a transition

function and a reward function for SYSADMIN with n = 3 and a unidirec-

tional ring network topology. b) An compact encoding of the transition func-

tion CPT for the DBN as an ADD. Note that x′3 sums to one over all possible

previous states. c) An ADD representation of the additive reward function for

SYSADMIN. For all ADDs, the high (true) edge is solid, the low (false) edge

is dotted. 32

xi

3.2 An example application of the Reduce algorithm. The input is the leftmost di-

agram. From left to right, the hollow arrow shows the node F currently being

evaluated by Reduce just after the recursive Reduce calls to the high branch Fh

and low branch Fl but before GetNode(F var , Fh, Fl) is called and the canon-

ical representation of F is returned (see Algorithm 2). The next diagram in

the sequence shows the result after the previous Reduce call. The rightmost

diagram is the final canonical ADD representation of the input. 37

3.3 Two ADD nodes F1 and F2 and a binary operation op with the corresponding

notation used in the presentation of the Apply function. 37

3.4 An example application of the Apply algorithm. The indices (i) in the dia-

gram correspond to successive (recursive) calls to the Apply algorithm: for the

operands the indices denote which node of each operand is passed as a param-

eter to the call to Apply (the op is always ⊕); for the result the indices indicate

the node that is returned by the call to Apply . For example, the initial call

to Apply takes the arguments corresponding to the node marked (1) x2 on the

LHS of the⊕ and the node (1) x1 on the RHS of the⊕ (as well as the operation

⊕ itself) and returns the node marked (1) on the RHS of the equality. 40

3.5 An example application of the unary restriction and marginization operations.

Each ADD has all of its internal nodes annotated with [min,max], which can

be recursively computed from the children of each internal node. 41

3.6 An example of approximating an ADD representation of a value function V (x1, x2)

as Ṽ (x1, x2) by pruning out the decision node for variable x2 and replacing leaf

values with their respective ranges. 49

3.7 Some example ADDs showing a) conjunctive structure (f = if (x1 ∧ x2 ∧
x3) then 1 else 0, b) disjunctive structure (f = if (x1∨x2∨x3) then 1 else 0),

and c) additive (f = 4x3 + 2x2 + x1) and multiplicative (f = γ4x3+2x2+x1)

structure (top and bottom sets of terminal values, respectively). The high (true)

edge is solid, the low (false) edge is dotted. 57

3.8 Portions of the ADDs from Figure 3.7(c) expressed as generalized AADDs.

The edge weights are given as 〈c, b〉. The curly braces on the right indicate the

elements of the AADD grammar that correspond to each portion of the AADD

diagram. 58

xii

3.9 An example application of the Reduce algorithm. The input is the top, leftmost

diagram (all edge weights are assumed to be 〈0, 1〉). The solid arrow shows the

node currently being evaluated by Reduce while the next diagram shows the

result after this evaluation; when the solid arrow is on a branch rather than a

node itself, it indicates that it is completing the evaluation of that branch within

the Reduce call for the parent node. The bottom, leftmost diagram is the final

canonical AADD representation of the input. 61

3.10 Two AADD nodes F1 and F2 and a binary operation op with the corresponding

notation used in the presentation of the Apply algorithm. 63

3.11 A geometric representation of the hashing scheme we use. All points within ǫ

of 〈u1, u2〉 (the shaded circle) lie within the ring having outer and inner radius
√
u1

2 + u2
2 ± ǫ. Thus, a hashing scheme which hashes all points within the

ring to the same bucket guarantees that all points within ǫ of 〈u1, u2〉 also hash

to the same bucket. Note that buckets are discretized according to the distance

from the origin (i.e., the vantage point for comparison). 69

3.12 Comparison of Apply operation running time (top) and table entries/nodes

(bottom) for tables, ADDs and AADDs. Left to Right: (
∑

i 2
ixi)⊕ (

∑

i 2
ixi),

(γ
P

i 2ixi) ⊗ (γ
P

i 2ixi), max(
∑

i 2
ixi,
∑

i 2
ixi). Note the linear time/space for

AADDs. 73

3.13 MDP value iteration running times (top) and number of entries/nodes (bottom)

in the final value function using tabular, ADD, and AADD representations for

various network configurations in the SYSADMIN problem. 75

4.1 A PPDDL-style representation of a simple variant of the BOXWORLD prob-

lem. The deterministic PDDL subset would exclude the probabilistic aspects

assuming that all effects occur with probability 1.0. 82

4.2 One possible ground MDP instantiation of the BOXWORLD FOMDP. 84

4.3 A decision-list representation of the expected discounted reward value for an

exhaustive partitioning of the state space in the BOXWORLD problem. The

optimal action to take is also shown for each start partition where the optimal

bindings of the action variables (denoted by a *) correspond to any binding

satisfying those variable names in the state formula. 86

4.4 An example conversion from a case statement to a compact FOADD represen-

tation demonstrating first-order CSI. 111

xiii

4.5 Here we demonstrate the joint application of the casemax and ∃~x operators to

an example case statement represented as a FOADD. See the text for details. . . 116

4.6 An example FOADD representation of the reward in BOXWORLD and the

FOADD representation of the optimal value function and policy for this do-

main. 118

5.1 An example use of FOMAX to find the maximally violated constraint during

first-order constraint generation. 146

5.2 FOAPI and FOALP solution times for the BOXWORLD and BLOCKSWORLD

problems vs. the iteration of basis function generation. 151

5.3 The performance of five planners on the ICAPS 2006 TIREWORLD planning

competition problem. The domain instantiations become larger as the problem

instance ID increases. 154

5.4 The performance of five planners on the ICAPS 2006 ELEVATORS planning

competition problem. The domain instantiations become larger as the problem

instance ID increases. 155

5.5 The performance of five planners on the ICAPS 2006 BLOCKSWORLD plan-

ning competition problem. The domain instantiations become larger as the

problem instance ID increases. 156

6.1 Diagrams of the example SYSADMIN connection topologies that we focus on

in this document. 188

6.2 An example of linear elimination. 202

6.3 Factored FOALP and ALP solution times (top) and expected discounted re-

ward divided by the maximum possible reward (bottom) averaged over 200 tri-

als of 200 steps vs. domain size for various network configurations (left:line,

middle:unidirectional-ring, right:star) in the SYSADMIN problem. 206

A.1 Proving correspondence between FOMDPs and MDPs. 220

A.2 Given the tabular representation of a case statement caseD, its grounded rep-

resentation as a propositional factor for D = {c1, c2} is given on the RHS. If

our language had included function symbols, we would have included extra

columns in the factor C representing all truth-value of all possible function

equalities. 222

xiv

List of Algorithms

1 GetNode(v, Fh, Fl〉) −→ Fr . 36

2 Reduce(F) −→ Fr . 36

3 Apply(F1, F2, op) −→ Fr . 38

4 GetGNode(v, 〈ch, bh, Fh〉, 〈cl, bl, Fl〉) −→ 〈cr, br, Fr〉 60

5 Reduce(〈c, b, F 〉) −→ 〈cr, br, Fr〉 . 62

6 Apply(〈c1, b1, F1〉, 〈c2, b2, F2〉, op) −→ 〈cr, br, Fr〉 65

7 EvalPolicy({qCaseG(~y∗)(Ai, s)}, {G(~y1), . . . , G(~yn)}, s) −→ Ai(~c) 123

8 FOMax (C, 〈R1 . . . Rn〉) −→ 〈S, v〉 . 144

9 BasisGen(FOMDP,FOALP/FOAPI, τ, n) −→ B 147

xv

Chapter 1

Introduction

Decision-theoretic planning is the task of determining an optimal sequence of actions (or more

generally, an action policy) that optimizes some reward criterion given state information and a

stochastic action model of the environment. It generalizes classical deterministic planning by

allowing for the uncertain specification of action outcomes and a utility-based specification of

reward that permits one to view plan quality in a fully decision-theoretic paradigm rather than

a more limited goal-oriented or cost-to-goal paradigm.

Planning with decision-theoretic notions is ubiquitous throughout the fields of artificial

intelligence, operations research, control theory, and economics:

• Robots must optimize their actions in the face of uncertainty and must tradeoff the dan-

gers of approaching obstacles with the need to accomplish their tasks.

• Factories must maximize production in their daily schedule of activities in consideration

of process delays and potential equipment failures.

• Financial analysts must make long-term investment decisions with different levels of risk

and uncertainty in order to maximize profit.

• Planning in logistics applications requires the minimization of resource usage and the

maximization of goods delivered while taking into account the uncertainties inherent in

various courses of action.

And these are just a few applications. Simply by definition, decision-theoretic planning

is among the most critical components of agent-oriented AI. And if it is generalized to han-

dle partial observability, multiple agents, and sampled model dynamics (i.e., reinforcement

learning), this task subsumes almost any decision or control problem in AI. While we won’t

1

CHAPTER 1. INTRODUCTION 2

Paris

Brussels

Rome

Berlin

Moscow

Figure 1.1: An example BOXWORLD problem. Trucks may drive along solid lines and planes

may fly along dashed lines. The goal in this instance is to get all boxes in paris (indicated by

the star).

consider the most general frameworks for decision-theoretic planning in this thesis, we will

consider the general framework of first-order decision-theoretic planning in structured rela-

tional environments. This framework subsumes many planning problems for which the state is

fully observable, the transition dynamics have a known probability distribution, and the state

and action representation is discrete and relational in nature.

1.1 Motivating Examples

To motivate the decision-theoretic planning framework and to provide a sense of what types

of problems we aim to solve, we provide two examples of problems that demonstrate rich

structural regularities that we will exploit in the solution approaches introduced in the thesis.

And while the simple specification of these problems may seem to suggest commensurate

simplicity in the solutions, we note that good solutions for these problems are often non-trivial

to specify and that the solution methods in this thesis often outperform expert hand-coded

policies and other competing algorithms as we will demonstrate empirically.

CHAPTER 1. INTRODUCTION 3

1.1.1 Logistics Planning

The first problem we introduce is a standard logistics problem commonly referred to as BOX-

WORLD [Veloso, 1992]. Throughout all variants, the goal is to deliver boxes to their destina-

tion city by loading and unloading them from trucks and possibly planes that can move between

cities via respective topologies of roads and air routes. In the basic setup, only one action can

be executed at each time step, each action being to load or unload a box or to drive a truck or

fly a plane to a destination. Each action typically has a pre-specified success probability that

can depend on various state properties and can have an associated cost. A single reward is typ-

ically given for states where all boxes are delivered to their proper destination. Discounting of

future rewards can be used to encourage optimal solutions that achieve this reward state while

minimizing the total number of actions or the cost of actions required to achieve it. We provide

a pictorial representation of one domain instance of this problem in Figure 1.1.

While the BOXWORLD problem specification may appear straightforward, its exact solu-

tion can become very complex as the number of boxes, trucks, planes, and cities grow. Thus, it

is an ideal problem for exploring algorithms that can exploit relational and first-order structure

to avoid scaling directly with the combinatorial aspects of the domain size.

1.1.2 System Administration

The second problem we introduce is motivated by an abstract hypothetical system adminstrator

problem and is commonly referred to as SYSADMIN [Guestrin et al., 2002]. In it, there are

n computers c1, . . . , cn connected via a directed graph topology. In each state, a computer

can be up and running (or not) and on every time step, a computer may be rebooted, thus

causing it to be running in the subsequent state. If a computer is not explicitly rebooted then

its probability of running in the next time step is conditioned on its current status and the

proportion of computers with incoming connections that are also currently running. The reward

is the count of computers that are running at any time step and rewards t time steps into the

future are typically discounted exponentially in t. An optimal policy in this problem will reboot

the computer that has the most impact on the expected future discounted reward over an infinite

time horizon. An example for four computers is given in Figure 1.1.2.

SYSADMIN poses an interesting problem for decision-theoretic planning applications as it

exhibits characteristic structure common to many planning problems. Additive rewards or util-

ities are perhaps one of the most commonly studied reward structures in decision-theory. And

the exogenous effects in SYSADMIN that permit each computer to reboot or crash on each time

CHAPTER 1. INTRODUCTION 4

c1

c2

c4

c3

Figure 1.2: An example SYSADMIN problem with the network topology shown as a directed

graph. One computer is up and running and three are not (indicated by the red circle with

slash). A good action to take in this state would be to reboot c2.

step are representative of a class of realistic world-models that do not require a strong frame as-

sumption — the notion that the only state properties affected by an action directly result from

the action itself. Thus, we focus on SYSADMIN as one of the main examples in this thesis

because it is simple enough to warrant the complete exposition of our solution methods, yet

representative of a much more general class of structured problems. And despite its deceptive

simplicity, we note that the optimal policy may vary widely according to small changes in the

network topology, making it very difficult to manually determine optimal policies.

1.2 Exploitation of Structure in Decision-theoretic Planning

Given the various types of structure that we observe in BOXWORLD and SYSADMIN, our

aim in this thesis is to exploit this structure for efficiency in decision-theoretic planning. The

groundwork for this thesis work follows in a line of extensive research over the years aimed

at exploiting structure in order to compactly represent and efficiently solve decision-theoretic

planning problems in the Markov decision process (MDP) framework [Boutilier et al., 1999].

While traditional approaches to solving MDPs typically used an enumerated state and action

model [Puterman, 1994], this approach has proved impractical for large-scale AI planning

tasks where the number of distinct states in a model can easily exceed the limits of primary and

CHAPTER 1. INTRODUCTION 5

secondary storage on modern computers.

Fortunately, by switching to a factored state model, many MDPs can be compactly de-

scribed by exploiting various independences in the reward and transition functions. For exam-

ple, in the SYSADMIN problem, the state can be naturally represented with one binary variable

per computer indicating whether the computer is up and running. Then the distribution over the

next state of each computer is dependent on only the state variables of computers with direct

incoming connections. Furthermore, while the reward in SYSADMIN is dependent upon all

state variables, it can be expressed compactly in an additive format in terms of a sum of indi-

cator functions for each state variable. And not only can this independence be exploited in the

problem representation, it can often be exploited in exact and approximate solution methods as

well. Such techniques have permitted the practical solution of MDPs that would not have been

possible using an enumerated state and action model [Hoey et al., 1999; St-Aubin et al., 2000;

Guestrin et al., 2002]. And as we will show in this thesis, there is an opportunity to exploit even

more structure in the factored MDP model than could be exploited by previous algorithms.

However, factored representations are only one type of structure that can be exploited in the

representation of MDPs. Many MDPs can be described abstractly in terms of classes of domain

objects (e.g., the BOXWORLD logistics problem refers to object classes such as Box , City ,

Truck , and Plane) and relations between those domain objects that may change over time (e.g.,

BoxIn(Box : b,City : c), TruckIn(Truck : t,City : c), BoxOnTruck(Box : b,Truck : t),

BoxOnPlane(Box : t,Plane : p), PlaneIn(Plane : p,City : c)).1 Often, relational objectives

abstract over objects using quantification as in “get some truck to Paris” or “get all boxes to

their destination”. And relational action templates such as loading or unloading a box from a

truck or plane are likely to apply generically to domain objects and thus can be specified inde-

pendently of any ground domain instantiation. This domain-independent specification allows

very compact MDP specifications when compared to a corresponding grounded propositional

representation. For instance, ten each of boxes, trucks, planes, and cities leads to a combined

500 state variables corresponding to all ground atoms of the above five binary relations.

Unfortunately, while relational specifications permit very compact descriptions of a variety

of MDPs, this efficiency has not traditionally translated to the corresponding solution meth-

ods. Most traditional solution approaches to relational decision-theoretic planning problems

ground the relational specification w.r.t. a specific domain instantiation and then apply a so-

1Throughout the thesis all predicates (including unary predicates denoting domain object classes) are capi-

talized and all variables and constants are lowercased. We use the notation C : v to denote that variable v is

restricted to domain object class C.

CHAPTER 1. INTRODUCTION 6

lution approach directly to the resulting ground Markov decision process (MDP) [Puterman,

1994]. Unfortunately, the resulting solution is domain-specific and the space and time com-

plexity of these grounded solution algorithms scale linearly with the domain size in the best

case and exponentially in the worst case.

An alternate approach to grounding is to lift the relational planning problem to a first-order

MDP (FOMDP) specification [Boutilier et al., 2001]. This FOMDP can then be solved directly,

resulting in a domain-independent solution whose space and time complexity do not scale with

domain size. This approach is particularly attractive given that the FOMDP framework can

be used to model many planning problems stated in PPDDL [Younes and Littman, 2004].2

Furthermore, we can extend the set of FOMDP problems that can be succinctly specified to

include factored FOMDPs with exogenous actions and additive rewards that both scale with

the domain size.

Unfortunately, the expressivity and power that can be gained from converting a decision-

theoretic planning problem to a FOMDP and obtaining a domain-independent solution does

not come without its drawbacks. The introduction of first-order logical languages to describe

FOMDPs introduces the need for logical simplification and theorem proving. Unfortunately,

both of these tasks are difficult by themselves and they introduce significant complications

that have been carefully worked around in the solution approaches covered in this thesis. For

example, while the use of alternating existential and universal quantifiers may complicate the

tasks of simplification and theorem proving, the solution methods used in this thesis exploit

the fact that many practical problems do not make substantial use of this expressivity. As such,

the high degree of regularity and structure inherent in many FOMDPs permits the application

of solution methods that were not possible in purely ground approaches. Thus, along with

the structural expressivity gains of the FOMDP representation comes the ability to efficiently

exploit the structure laid bare by such expressivity in practice. To this end, this thesis contin-

ues the long-standing trends of exploiting structure in decision-theoretic planning tasks in the

MDP framework by succinctly representing and (approximately) optimally solving relational

decision-theoretic planning problems represented as FOMDPs.

2PPDDL is one of the the most popular probabilistic planning specification languages and incorporates ele-

ments of popular deterministic planning languages such as STRIPS [Fikes and Nilsson, 1971] and PDDL [Mc-

Dermott et al., 1998].

CHAPTER 1. INTRODUCTION 7

1.3 Major Contributions

Following are some of the major contributions of the thesis:

1. Affine Algebraic Decision Diagrams: The algebraic decision diagram (ADD) [Bahar

et al., 1993] is a data structure for representing functions from B
n → R and can be

very compact when the underlying function demonstrates context-specific independence

(CSI) [Boutilier et al., 1996]. Furthermore, unary and binary operations on functions

from B
n → R can often be computed efficiently by direct operations on the respective

ADD representations. As such, ADDs provide an attractive alternative to the tabular

representation of functions from B
n → R commonly used to represent factored MDPs

and thus can be used in the solution of factored MDPs. These ADD-based solutions can

be more efficient than direct manipulation of direct tabular representations if the factored

MDP demonstrates CSI in the problem specification, the solution, or both. However,

many MDPs exhibit additive and multiplicative structure as well as CSI. Prior to this

thesis work, no data structure could generally simultaneously exploit all three types of

structure.

To remedy this deficiency, we specify a novel extension to the ADD data structure —

the affine ADD (AADD) — for simultaneously exploiting additive, multiplicative and

context-specific independence in factored MDP representation and solution methods. We

prove that the AADD never performs more than a constant factor worse in time and space

than an ADD and can lead to an exponential-to-linear reduction in time and space over

the ADD. We present a variety of empirical results suggesting that AADDs are often as

good as or better than ADDs or tabular representations in the solution of factored MDPs.

2. First-order Decision Diagrams: We specify a first-order extension of both the ADD

and AADD data structures that can be used to replace the case representation and op-

erations used for FOMDPs. In doing this, we present a first-order extension of CSI

that can be exploited in the solution of FOMDPs. FOADDs and FOAADDS permit the

compact representation of FOMDP value functions and policies and help maintain sim-

plified representations that reduce the theorem proving burden on the solution algorithm.

The use of these first-order decision diagrams combined with techniques for simplifying

first-order formulae permit the fully automated solution of basic FOMDPs.

3. Additive Decomposition of Universal Rewards: Universally quantified rewards are

known to make FOMDPs extremely difficult to solve [Gretton and Thiebaux, 2004]. As

CHAPTER 1. INTRODUCTION 8

a heuristic alternative to the direct solution of a FOMDP with universal reward, we show

how to additively decompose universal reward specifications in a manner that leads to

efficient FOMDP solutions and reasonable performance characteristics on a variety of

test problems.

4. Linear-value Approximation for FOMDPs: We show how to generalize linear-value

approximation techniques for factored MDPs [Guestrin et al., 2002; Schuurmans and

Patrascu, 2001] to the case of FOMDPs, along with generalized loss-bounds on the ap-

proximation. We also define a linear program (LP) with first-order constraints and con-

tribute an efficient constraint generation algorithm that exploits the constraint structure

to efficiently solve the LP.

5. Representation and Solution of Factored FOMDPs: We contribute the factored FOMDP

extension to model FOMDPs with factored actions and additive rewards that scale with

the domain size. We also contribute some extensions to symbolic dynamic program-

ming and linear-value approximation techniques to efficiently solve factored FOMDPs

in special cases. While the linear-value approximation algorithms that we introduce are

specific to a domain-instantiation, we demonstrate an example where a solution equiva-

lent to those obtained by ground methods can be obtained in time and space that scales

sub-linearly in the domain size — a result that is impossible to obtain with grounded

solution techniques.

6. Correctness of Symbolic Dynamic Programming: We provide a formal proof of cor-

rectness of symbolic dynamic programming (SDP) for FOMDPs. The key to this proof is

showing that when an SDP solution to FOMDPs is grounded w.r.t. a domain closure as-

sumption, the result is equivalent to the solution obtained by first grounding the FOMDP

and then applying standard ground MDP solution techniques.

This is a different proof approach from the original given in [Boutilier et al., 2001].

There the emphasis was on proving the correctness of the SDP algorithm at a purely

logical level (including the case of infinite models). In our proof, we focus on making a

domain closure assumption (and thus implicitly, a finite model assumption) and proving

correspondence between the first-order and well-known ground MDP solutions.

CHAPTER 1. INTRODUCTION 9

1.4 Distinction from Related Work

We note there has been a great deal of recent work in relational forms of decision-theoretic

planning [Hölldobler and Skvortsova, 2004; Karabaev and Skvortsova, 2005; Kersting et al.,

2004; Wang et al., 2007; Wang and Khardon, 2007; Fern et al., 2003; Gretton and Thiebaux,

2004; Guestrin et al., 2003]. We will discuss these alternate approaches at the appropriate point

in future chapters, but for now we simply note that all related work demonstrates one or both

of the following limitations in comparison to this thesis work and its foundations [Boutilier et

al., 2001]:

1. No other exact solution algorithm applies to FOMDPs with both universal and existential

quantifiers.

2. Other approximate solution approaches rely on domain instance sampling and must scale

at least linearly with the size of these sampled domain instances. As a consequence, these

algorithms cannot scale to arbitrarily large sampled domain sizes and can only provide

error bounds (if any) that grow proportionally to the domain size.

As such, this thesis work proposes the only exact and approximate solution approaches that can

handle FOMDPs with both existential and universal quantifiers while scaling independently of

the domain size for the case of FOMDPs or potentially sublinearly in the domain size for

factored FOMDPs. Furthermore the approximate solution techniques that we propose permit

the computation of error bounds that apply uniformly to all domain sizes.

1.5 Outline

The thesis proceeds as follows. In Chapter 2, we review the basic MDP model and motivate

the importance and generality of the MDP as a model for decision-theoretic planning. We also

present a variety of standard and approximate solution techniques for MDPs.

In Chapter 3, we introduce background material on factored MDPs relevant to the thesis.

This includes demonstrating how the structure of a factored MDP representation can be ex-

ploited to avoid full state enumeration and how a variety of exact and approximate solution

algorithms can exploit this structure for purposes of space and computational efficiency. Next,

we introduce the first contribution of this thesis, the Affine Algebraic Decision Diagram [San-

ner and McAllester, 2005], which permits the simultaneous exploitation of context-specific,

additive and multiplicative independence in factored MDPs.

CHAPTER 1. INTRODUCTION 10

In Chapter 4 we begin by introducing the first-order MDP (FOMDP) formalism and the

symbolic dynamic programming solution approach as originally defined in [Boutilier et al.,

2001]. We then introduce a simple procedure for generalizing the propositionally-based ADDs

and AADDs to first-order (FO) versions that we respectively denote as FOADDs and FOAADDs.

We then show how these first-order decision diagrams can be used in place of case statements

to exploit structure in the basic FOMDP solution algorithms and provide simple empirical

results for this approach. Faced with the difficulty of solving problems with universally speci-

fied rewards, we conclude the chapter by proposing an additive decomposition solution to this

problem.

Perhaps the greatest difficulty with the value iteration technique proposed in Chapter 4 is

that the value function representations tend to involve extremely complex formulae that can-

not be easily simplified. The inability to simplify often leads to a combinatorial explosion

in the size of the value function or policy. This typically prohibits the exact solution of rel-

atively simple FOMDPs so in Chapter 5 we seek alternate approaches based on linear-value

approximation. In this paradigm, we reduce the task of solving a FOMDP to that of obtain-

ing good weights for a set of basis functions that approximates the optimal value function. In

this chapter, we describe the basic generalization of these techniques from the factored case

to the first-order case and also provide a much-needed technique for automatic basis function

generation based on the work of Gretton and Thiebaux [2004].

In Chapter 6, we extend the symbolic dynamic programming framework for first-order

MDPs (FOMDPs) to handle sum/product aggregators and factored actions required to rep-

resent factored FOMDPs. To motivate the need for each of these extensions, we begin by

describing various scenarios where each new construct is required along with the formal se-

mantics of these constructs. Once we have specified the semantics, we proceed to generalize

symbolic dynamic programming (SDP) to handle FOMDPs with these additional constructs.

Noting that a number of intractability issues arise with SDP, we then introduce appropriately

generalized approximate linear programming and approximate policy iteration algorithms for

efficient linear-value approximation in the presence of sum/product aggregators and factored

actions.

We conclude in Chapter 7 with a summary of the thesis and some interesting directions for

future work.

Chapter 2

Markov Decision Processes

The Markov decision process (MDP) model was first introduced in the field of operations

research [Bellman, 1957] and significantly developed in subsequent years [Howard, 1960]. An

excellent recent text on MDPs is that of Puterman [1994]. The MDP has since been adopted

as a model for decision-theoretic planning with fully observable state in the field of artificial

intelligence [Bertsekas, 1987; Bertsekas and Tsitsiklis, 1996; Boutilier et al., 1999].

In the MDP model we use in this thesis, an agent is allowed to fully observe the current

state and choose an action to execute from that state. Based on that state and action, Nature

then chooses a next state according to some fixed probability distribution and the agent receives

a corresponding reward. This process repeats itself for some horizon of time steps, possibly

infinite. The goal of the agent is to choose its actions so as to maximize the sum of expected

discounted future rewards in this model.1

Given this high-level description of the MDP model, we now proceed to provide a more

detailed mathematical definition of an MDP followed by a description of various algorithmic

approaches for making optimal sequential decisions in this model. Except where otherwise

noted, the following presentation derives from Puterman [1994].

2.1 MDP Representation

Formally, a finite state and action MDP is specified by a tuple 〈S,A, T ,R, h, γ〉. We now

describe each of these components in turn, noting that in practice, each must be specified by a

domain expert or learned from data.

1While an agent may seek to maximize other objectives in a general MDP model, we focus on maximizing the

sum of expected discounted reward in this thesis.

11

CHAPTER 2. MARKOV DECISION PROCESSES 12

State space S

The world is modeled by a set of distinct states S. In the most general MDP models, S can be

infinite or continuous, but throughout the thesis, we assume a discrete (possibly infinite) state

space.

Action space A

An agent in an MDP can effect changes to its state by executing actions from the set A. In

more general MDP models, A can be infinite or continuous, but again, we assume a discrete

(possibly infinite) action space throughout the thesis. Actions are the only way that an agent

can interact with the state and thus the choice of action to take in each state comprises the main

decision-theoretic task of the agent.

Transition function T

In an MDP model, the effects of actions can be uncertain such that for any action a ∈ A
executed, the world has a fixed probability distribution over transitions to any state in S. For

the purpose of this thesis, the transition function T will be modeled as a probability distribution

T (s, a, s′) = P (s′|a, s), which denotes the probability that the world makes a transition from

state s ∈ S to s′ ∈ S given that action awas executed in state s. We note that this representation

of the transition function satisfies the Markovian assumptions of an MDP, which require that

the distribution over states st+1 at time t+1 is independent of any previous state st−i and action

at−i for i ≥ 1 given the state st and the action at taken at time t.

While we typically think of the transition function as dependent only upon the agent’s

action and the state from which it was taken, there can also be exogenous events that are not

directly influenced by the agent. For example, as discussed in the SYSADMIN problem in

Chapter 1, any computer not explicitly rebooted can independently fail according to some

probability distribution. In order to model such exogenous events in this thesis, we will simply

fold these implicit probabilistic effects into the transition distribution for each action.

Reward functionR

The preferences of the agent are encoded in a reward function, which for the purpose of this

thesis will be restricted to a real-valued range, that is R : S × A → R. This form of reward

function is much more flexible than goal-oriented notions in classical planning; for example,

CHAPTER 2. MARKOV DECISION PROCESSES 13

one can easily model multiple objectives and decision-theoretic reward tradeoffs using different

reward values for different states and actions. In a classical planning model, one is typically

restricted to specifying a set of equally preferred goal states with state-independent action costs.

Horizon h and discount factor γ

In an MDP, the objective of the agent will be to maximize expected utility accumulated over

some time horizon h representing the number of decision steps until termination. While we

cover the case for finite h in this chapter, for all subsequent chapters of the thesis, we will

assume h =∞ unless otherwise noted.

In the calculation of accumulated reward, we allow for the discounting of rewards t time

steps into the future by a discount factor γt where γ ∈ [0, 1]. Throughout this thesis, we will

assume that γ < 1 unless specifically noted. The use of γ < 1 allows one to model the notion

that an immediate reward r is worth more than the equivalent reward delayed one or more time

steps in the future. Such a discounting assumption has both an economic justification as well

as an implicit modeling justification for a process that has a 1− γ probability of terminating at

each step.

Practically, γ < 1 is required to ensure that the total expected reward is bounded in the

case of infinite horizon MDPs. However, if we can make the assumption that the only non-zero

reward states in our MDP model are a set of goal states and the system transitions into a zero-

reward absorbing state after reaching a goal state, then we can use γ = 1 in the infinite horizon

setting since the total future reward is guaranteed to be bounded.

2.2 Policy Representation

The goal of an agent is to take the action in each state that maximizes the expected accumulated

discounted reward criterion over a specified time horizon h. A sequence of actions to be taken

can be specified as 〈πh, πh−1, . . . , π1〉 where each πt : S → A is a time-dependent action

policy that specifies an action to take from each state st with t-stages-to-go. An important

result following from the Markovian property of MDPs is that any policy conditioned on the

state or action history from previous decision stages can be represented by an equivalent policy

conditioned on only the current state. This follows from the fact that the fully observed state at

any stage renders the previous history irrelevant.

An optimal policy 〈π∗
h, π

∗
h−1, . . . , π

∗
1〉 is a sequence of action policies to be taken that max-

CHAPTER 2. MARKOV DECISION PROCESSES 14

imize the agent’s total expected discounted reward over horizon h. Conveniently, for the case

of h = ∞, there always exists an optimal stationary policy [Howard, 1960]. Thus, no loss

of expected discounted reward is incurred for infinite horizon MDPs by restricting our policy

representation to a single policy π denoting the action to take from all states at all time stages.

2.3 Optimal Solution Criteria

If the agent’s objective is to find the policy that maximizes the expected sum of discounted

rewards over a specified time horizon, this objective can be formally expressed as

Eπ

[

∞
∑

t=0

γt · rt|s0

]

(2.1)

where rt is a reward obtained at time t, γ is a discount factor as defined above, π is a policy as

defined previously, and s0 is the initial starting state. Based on this reward criterion, we define

the value function for a policy π as the following:

Vπ(s) = Eπ

[

∞
∑

t=0

γt · rt
∣

∣

∣
s0 = s

]

. (2.2)

Intuitively, the value function for a policy π is the expected sum of discounted rewards accu-

mulated while executing that policy when starting from state s.

A greedy policy πV w.r.t. a value function V is simply the action policy that takes an action

in each state that maximizes expected value w.r.t to V defined as follows:

πV (s) = arg max
a∈A

{

R(s, a) + γ
∑

s′∈S

P (s′|s, a)V (s′)

}

(2.3)

Thus, from any value function, we can derive a corresponding greedy policy that represents the

best action choice w.r.t. that value estimation.

An optimal policy π∗ in an infinite horizon MDP maximizes the value function for all states.

An optimal policy π∗ is the greedy policy w.r.t. an optimal value function V ∗ and likewise the

optimal value function is the value under an optimal policy, Vπ∗(s) = V ∗(s). We note that V ∗

CHAPTER 2. MARKOV DECISION PROCESSES 15

satisfies the following fixed-point equality:

V ∗(s) = max
a

{

R(s, a) + γ
∑

s′∈S

T (s, a, s′) · V ∗(s′)

}

. (2.4)

2.4 Exact Solution Techniques

In this section we will discuss exact solution techniques primarily for the case of infinite hori-

zon MDPs. Before we discuss these techniques though, we introduce an alternative matrix

notation for MDPs that will simplify portions of the following presentation.

2.4.1 Vector and Matrix Notation

We sometimes write the MDP in vector and matrix form. For each a ∈ A, we can represent

the reward R(s, a) as a column vector Ra indexed by state s ∈ S. We can represent the value

function V (s) as a column vector V indexed by state s. And we can represent the transition

function T (s, a, s′) for each action a ∈ A as a transition matrix Ta row-indexed by current state

s and column-indexed by next state s′ ∈ S. In this case, equation 2.4 can be restated as the

following:

V ∗ = max
π
{Rπ + γTπV

∗} (2.5)

In some cases, we will refer to the reward vector and the transition matrix with respect to a

policy π as Rπ and Tπ, respectively; here the reward value and transition probability for each

state corresponds to the action choice indicated by π. Or we may refer to the reward vector and

transition matrices restricted to a specific action a ∈ A as Ra and Ta, respectively. If needed,

π itself can be represented as a vector of actions a ∈ A indexed by state and we let Π denote

the set of all possible policy vectors.

2.4.2 Dynamic programming

We begin our discussion of dynamic programming by providing two equations that form the

basis of the stochastic dynamic programming algorithms used to solve MDPs.

We define V 0
π = R(s) and then inductively define the t-stage-to-go value function for a

policy π as follows:

V t
π(s) = R(s, π(s)) + γ

∑

s′∈S

T (s, π(s), s′) · V t−1
π (s′) (2.6)

CHAPTER 2. MARKOV DECISION PROCESSES 16

MAX

2

S
1

S
2

S
1

S
2

S
2

A
1

A
2

A
1

A
2

A
1

A
2

A
1

A
2

A
1

A
2

A
1

A
2

S
2

S
1

A
2

A
1

S
2

S
1

S
1

V (s)
2

S
1

S
2

S
1

S
1

S
2

A
2

A
1

1
V (s)

1

S
2

S
1

S
1

S
2

A
2

A
1

MAX

1 1 1
V (s)

1

1
V (s)

V (s)V (s)
1

V (s)V (s)
2

3

0

0

2
2 2 2

MAX

1

S
1

V (s)

V (s)
3

MAX

1
V (s)

3

2

1
V (s)

0

a) b)Forward−Search Dynamic Programming − Value Iteration

MAX

MAX

MAX

MAX

MAX

S

Figure 2.1: A diagram demonstrating a) forward evaluation of the MDP value function and

b) dynamic programming regression evaluation of the MDP value function. Both methods

return the same value for V 3(s), but the forward evaluation requires exponential time in the

search depth O((|S| · |A|)d) and only calculates the value for one initial state whereas dynamic

programming caches its results on each backup thus requiring only polynomial time in the

search depth O(|S| · |A| · d) and solving for the value function at every state.

Based on this definition, Bellman’s principle of optimality [Bellman, 1957] establishes the

following relationship between the optimal value function at stage t and the optimal value

function at the previous stage t− 1:

V t,∗(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S

T (s, a, s′) · V t−1,∗(s′)

}

(2.7)

Value iteration

We start with an algorithm known as value iteration that directly implements Equation 2.7.

Here, we start with V 0(s) = maxaR(s, a) and perform the Bellman backup given in Equa-

tion 2.7 for each state V 1(s) using the value of V 0(s). We repeat this process for each stage

t, producing the backed up value function for V t(s) from V t−1(s) until we have computed

the intended t-stage-to-go value function. This algorithm is demonstrated graphically in Fig-

ure 2.1(b).

Often, the Bellman backup is rewritten in two steps to separate out the backup of a value

function through a single action and the maximization of this value over all actions. In this

CHAPTER 2. MARKOV DECISION PROCESSES 17

case, we first compute the t-stage-to-go Q-function for every action and state:

Qt(s, a) = R(s, a) + γ ·
∑

s′∈S

T (s, a, s′) · V t−1(s′) (2.8)

Then we maximize over each action to determine the value of the regressed state:

V t(s) = max
a∈A

{

Qt(s, a)
}

(2.9)

This is clearly equivalent to equation 2.7 but is in a form that we will refer to later since it

separates the algorithm into its two conceptual components.

Puterman [1994] shows that terminating once the following condition is met

‖V t − V t−1‖∞ <
ǫ(1− γ)

2γ
(2.10)

guarantees ǫ-optimality, i.e., maxs |V t(s)− V ∗(s)| < ǫ. Thus, the greedy policy derived from

V t iteration loses no more than ǫ in value over the infinite horizon in comparison to the optimal

policy.

We note that the value iteration approach requires time polynomial in the search depth d,

i.e., O(|S| · |A| · d), and solves for the value function at every state. Puterman [1994] provides

a proof that value iteration converges at a linear rate in terms of the number of iterations.

Policy iteration

At each step of the value iteration backup, we are implicitly performing a policy update, deter-

mining the best action to take from every state in order to maximize reward. Another approach

to dynamic programming is known as policy iteration [Howard, 1960] and is summarized in

the following algorithm:

1. Initialization: Pick an arbitrary initial decision policy π0 ∈ Π and set i = 0.

2. Policy Evaluation: Solve for Vπi
(see below).

3. Policy Improvement: Find a new policy πi+1 that is a greedy policy w.r.t. Vπi

(i.e., πi+1 ∈ arg maxπ∈Π {Rπ + γTπVπi
} with ties resolved via a total precedence order

over actions).

4. Termination Check: If πi+1 6= πi then increment i and go to step 2 else return πi+1.

CHAPTER 2. MARKOV DECISION PROCESSES 18

We note that the policy evaluation of a fixed policy π reduces to the solution of a linear sys-

tem since the MDP reduces to a simple Markov chain. Thus, we can solve for Vπ by computing

the right-hand side of the following equation:

Vπ = Rπ(I − γTπ)−1 (2.11)

We note that a unique solution for Vπ always exists since the Markovian properties of Tπ

guarantee that I−γTπ is invertible. We note that solving for Vπ directly using matrix inversion

takes time O(|S|3). Alternately, we can solve for Vπ using successive approximation, which

initializes V 0
π = Rπ and iteratively computes V t

π from V t−1
π using Equation 2.6 until V t

π = V t−1
π

(where Vπ = V t
π).

Once policy iteration has terminated, the final policy returned is the optimal policy π∗

and the value function corresponding to this policy is the optimal value function V ∗. Puter-

man [1994] provides conditions and a proof of a superlinear rate of convergence for policy

iteration.

So far, we have implicitly assumed that the above algorithms perform synchronous updates,

that is, we are updating the value function in value iteration for all states and that we are im-

proving the policy in policy iteration for all states. We additionally note that there are a number

of asynchronous variants of value and policy iteration that do not update the value or improve

the policy at every state on all iterations, yet still retain similar convergence properties. These

algorithm variants are discussed by Puterman [1994] and Bertsekas and Tsitsiklis [1996] and

are extremely useful for proving convergence properties of the reinforcement learning [Barto

and Sutton, 1998] and real-time search [Barto et al., 1993] approaches to solving MDPs. How-

ever, we do not discuss asynchronous methods further as they are not directly relevant to the

methods we employ throughout the rest of the thesis.

Modified policy iteration

A comparison of the two previous algorithms reveals that they occupy two extremes in terms

of policy updates: value iteration performs an implicit policy update in order to compute every

intermediate value function whereas policy iteration performs an update only after solving

directly for Vπ.

If we interpolate between these two approaches, we arrive at an algorithm known as mod-

ified policy iteration [Puterman and Shin, 1978]. In this algorithm, we simply iterate between

policy evaluation and policy improvement phases until our policy is ǫ-optimal using the same

CHAPTER 2. MARKOV DECISION PROCESSES 19

terminating criteria as value iteration. The algorithm is very similar to policy iteration with the

exception of the policy evaluation phase replaced by an approximate version:

1. Initialization: Pick an arbitrary initial decision policy vector π0 ∈ Π and set i = 0.

2. Approximate Policy Evaluation: Solve for Vπi
using some number of steps of successive

approximation.

3. Policy Improvement: Find a new policy πi+1 that is the greedy policy w.r.t. Vπi
.

4. Termination Check: If πi+1 6= πi then increment i and go to step 2 else return πi+1.

Algorithm convergence requires only that the policy approximation phase does not increase the

error of the value estimate from the previous iteration, i.e.,

‖V ∗ − Vπi+1
‖ ≤ ‖V ∗ − Vπi

‖ (2.12)

Such a property holds, for example, by initializing the value estimate with Vπi
and then per-

forming one or more steps of successive approximation under the policy πi+1.

A proof of superlinear convergence rate for modified policy iteration under certain condi-

tions is given by Puterman [1994]. Puterman also notes that modified policy iteration often

empirically requires less computation time than both value and policy iteration.

2.4.3 Forward-search

If we reexamine Equation 2.7, we note that we could compute this recurrence in a forward-

search manner by starting at an initial state and unfolding the recurrence to horizon h and

then computing the expectation and maximization as we return to the initial state. A graphical

representation of the unfolding of this computation is shown in Figure 2.1(a). We note that

determining the value V h(s) for a single state using this method requires time exponential in

the search depth h, that is, O((|S| · |A|)h).

Since we are performing forward search to a fixed a priori search depth, we can de-

termine the minimum horizon h to search if we want an ǫ bound on the maximum error

of our value function, given knowledge of our discount factor γ and our maximum reward

Rmax = maxs,aR(s, a):

h ≥ logγ

(

ǫ(1− γ)
Rmax

)

− 1 (2.13)

CHAPTER 2. MARKOV DECISION PROCESSES 20

2.4.4 Real-time dynamic programming

The real-time dynamic programming (RTDP) framework [Barto et al., 1993] is a hybrid ap-

proach that combines real-time forward search with dynamic programming. This approach

uses limited depth, forward-search backups to update the value function of the set of states vis-

ited during on-line trials, assuming that initial states were generated according to some fixed

distribution. The policy used for the trials is the optimal policy for the current value function.

Since backed-up and cached values from one step are used by other steps, this approach mixes

the forward-search and dynamic programming paradigms. It is provably convergent and has

the advantage that it only derives the value function for the set of states reachable from the

initial state distribution. This can often be more efficient than synchronous dynamic program-

ming approaches when the set of reachable states is small compared to the total number of

states.

2.4.5 Linear programming

An MDP can also be solved by formulating it as the optimization of a linear program (LP).

The fact that such a solution exists follows from the notion that the optimal policy and value

function must satisfy the following inequalities for all states as implied by Equation 2.4:

V ∗(s) ≥ max
a∈A

(

R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)

)

; ∀s ∈ S (2.14)

This equality in turn implies the following conditions:

V ∗(s) ≥ R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′); ∀a ∈ A, s ∈ S (2.15)

While this latter set of inequalities only enforces one side of the optimal value function fixed-

point equality given in Equation 2.4, it turns out that finding the minimal V ∗ under an L1

metric that satisfies these constraints suffices to enforce the other side of the inequality. Thus,

the optimal value function can be computed by the following primal specification of a linear

CHAPTER 2. MARKOV DECISION PROCESSES 21

program [Puterman, 1994]:

Variables: V

Minimize: ‖V ‖1
Subject to: 0 ≥ Ra + γTaV − V, ∀a ∈ A (2.16)

Puterman [1994] provides a proof that this formulation is guaranteed to produce an optimal

value function for an MDP. Puterman also notes that solving the dual LP formulation is often

more efficient than solving the primal LP formulation. However, we do not present the dual

formulation here as we work directly with the primal formulation and its variants throughout

the thesis.

2.5 Approximate Solution Techniques

As the number of states and actions in an MDP grows, it often becomes necessary to ex-

plore approximate solutions in the face of intractability of exact solutions. While approxi-

mation in MDPs can take many forms, it is frequently carried out by considering restricted

representations of the value function. Some methods for restricting the value function repre-

sentation will become relevant once we introduce structured descriptions of our MDP models

and solution algorithms. However, a very general and popular approximate solution technique

for MDPs is that of linear-value function approximation [Schweitzer and Seidmann, 1985;

Tsitsiklis and Van Roy, 1996; Koller and Parr, 1999a; Koller and Parr, 1999b; Schuurmans and

Patrascu, 2001; Guestrin et al., 2002], which we discuss at length in this section.

2.5.1 Linear-value Function Representation

Representing value functions as a linear combination of basis functions has many convenient

computational properties, many of which will become evident as we incorporate factored and

relational structure in our MDP model. However, perhaps one of the most important aspects

for the work we present here is that linear-value function representations lead to MDP solu-

tion formulations using optimization w.r.t. linear objectives and linear constraints — that is,

the well-studied case of linear program (LP) optimization. Since many robust off-the-shelf

LP solvers are available, this makes such approaches attractive for practical implementation

purposes.

CHAPTER 2. MARKOV DECISION PROCESSES 22

If we have n states in our MDP, the exact value function can be specified as a vector in R
n.

This vector can be approximated by a value function Ṽ~w that is a linear combination of k fixed

basis function vectors denoted bi(s) as follows:

Ṽ~w(s) =
k
∑

i=1

wi · bi(s) (2.17)

The linear subspace spanned by the basis set might not include the actual value function, but

one can use projection methods to minimize some error measure between the actual value

function and the linear combination of basis functions.

The basis functions themselves can be specified by domain experts, constructed or learned

in an automated fashion (e.g., [Poupart et al., 2002a; Mahadevan, 2005]). We will consider

more structured forms of automated basis function construction as we introduce structured

MDP representations in subsequent chapters.

On a final note, we mention that there are a variety of other general function approximation

such as nonlinear functions or neural nets [Bertsekas and Tsitsiklis, 1996] but it is generally

difficult to provide useful convergence properties for such approximation architectures so we

do not discuss them further in this thesis.

2.5.2 Error Bounds on Approximate Value Functions

Once a set of basis functions has been specified, the problem of finding an approximate value

function reduces to the problem of finding a good set of weights that closely approximates the

optimal value function. One way of measuring the a posteriori quality of an approximated

value function Ṽ~w is by evaluating the Bellman error β (i.e., the L∞ norm of the Bellman

residual) of the value function under the MDP dynamics:

β = max
s∈S

∣

∣

∣

∣

∣

Ṽ~w(s)−max
a∈A

(

R(s, a) + γ
∑

s′∈S

P (s′|s, a)Ṽ~w(s′)

)∣

∣

∣

∣

∣

(2.18)

Of course we note that when the Bellman error is zero, this equation satisfies the fixed-point

equation for the optimal value function given in Equation 2.4 and thus β = 0 indicates that

Ṽ~w = V ∗.

Let π̃ be the greedy policy w.r.t. the value function approximation Ṽ~w. Once β is known for

Ṽ~w, it is then easy to bound the max-norm (L∞) error of Vπ̃ w.r.t. the optimal value function

CHAPTER 2. MARKOV DECISION PROCESSES 23

using the following inequality [Williams and Baird, 1994]:

‖V ∗ − Vπ̃‖∞ ≤
2γβ

1− γ (2.19)

Thus, in all of the following approximation techniques, we will have some way of determining

a maximum bound on the loss of our approximation.

2.5.3 Approximate Dynamic Programming

Approximate dynamic programming techniques are simply extensions of the previous dynamic

programming algorithms with additional approximation steps. While these approximation

steps do not guarantee convergence, an a posteriori analysis of the Bellman error of a value

function can show that the value function estimate has converged within some error bound.

Approximate Value Iteration

Approximate value iteration (AVI) is precisely the value iteration algorithm previously pre-

sented with the additional step that after each Bellman backup, the value function may be

projected onto a more compact representation. Since we are focusing on linear-value function

approximation in this section, we will cover the case of projecting the one-step Bellman backup

onto a linear-value function representation.

In AVI using linear-value approximation, we begin by initializing the weights ~w0 of our

initial linear-value function representation Ṽ 0
~w in some way — perhaps with ~w0 = ~0 or with ~w0

set so that Ṽ 0
~w = maxaRa (if our linear-value function representation permits this). Then we

perform the standard Bellman backup given in Equation 2.7 to obtain V 1. Since the dynamics

of our MDP do not guarantee that our linear-value function representation spans the space of

V 1, it will be necessary to project V 1 onto the space of Ṽ 1
~w , which we discuss in a moment.

This process can proceed indefinitely in AVI, obtaining V t from Ṽ t−1
~w and projecting V t to

obtain Ṽ t
~w until some predefined stopping criterion such as a maximum limit on iterations or

Bellman error bound has been met.

Perhaps the most obvious choice for projecting V t to obtain Ṽ t
~w in AVI is the following

where ~w∗ represents the weights for the optimal projection and n is the error norm Ln being

minimized in the projection:

~w∗ = arg min
~w

∥

∥

∥V t − Ṽ t
~w

∥

∥

∥

n
(2.20)

CHAPTER 2. MARKOV DECISION PROCESSES 24

Tsitsiklis and Van Roy [1996] show that minimizing the Euclidean-distance (L2) error can di-

verge — even when Ṽ t
~w spans the space of the optimal value function. Likewise, Guestrin,

Koller, and Parr [2001] discuss similar issues with the divergence of AVI for the case of the

max-norm (L∞) error minimizing projection. However, these divergence issues can be miti-

gated in practice if additional basis functions are introduced to minimize the projection error.

Approximate Policy Iteration

Approximate policy iteration (API) with linear-value function approximation is another variant

of dynamic programming that uses a different projection step. The benefit of API is that under

an L∞ projection step, its error can be shown to be bounded for all iterations, thus avoiding the

divergence issues of AVI [Guestrin et al., 2001].

The API algorithm follows the policy iteration algorithm provided previously, except that

the value determination step is now approximate rather than exact. After starting with an

initial arbitrary policy π0, policy iteration iterates between the following two steps where the

projection is in terms of the Ln norm:

~wi = arg min
~w

∥

∥

∥Rπi
+ Tπi

Ṽ~w − Ṽ~w

∥

∥

∥

n
(2.21)

πi+1 = arg max
π∈Π

{

Rπ + γTπṼ~wi

}

(2.22)

Koller and Parr [1999b] provide an API algorithm based on minimizing a weighted L2 norm

in the projection step. In subsequent work, Guestrin, Koller and Parr [2001] presented the

following LP intended to directly minimize the L∞ norm in the projection step:

Variables: ~w

Minimize: β

Subject to: β ≥
∣

∣

∣
Rπi

+ Tπi
Ṽ~w − Ṽ~w

∣

∣

∣
(2.23)

One nice advantage of directly minimizing the L∞ norm in the projection step is that when API

converges (i.e., πi = πi−1 or equivalently ~wi = ~wi−1), the objective β for the final LP solution

of Equation 2.23 is the Bellman error of the approximated value function. Thus a bound on the

error of the approximated value function is immediately available by plugging β directly into

Equation 2.19 [Guestrin et al., 2001].

CHAPTER 2. MARKOV DECISION PROCESSES 25

2.5.4 Approximate Linear Programming

Approximate linear programming (ALP) is simply an extension of the linear programming

solution of MDPs to the case where the value function is approximated. In a linear-value func-

tion representation, the objective and constraints will be linear in the weights being optimized

and thus the linear programming framework can still be used. Consequently, we arrive at the

following variant of the LP in Equation 2.16 that simply takes into account the linear-value

function representation:

Variables: ~w

Minimize: ‖Ṽ~w‖1
Subject to: 0 ≥ Ra + γTaṼ~w − Ṽ~w, ∀a ∈ A (2.24)

2.6 Application to AI Planning Problems

We focus on MDPs as a model for decision-theoretic planning since they generalize many of the

planning paradigms found in the literature. First we review some of these planning paradigms

and then proceed to a discussion of two general classes of MDP problems, one oriented towards

a decision-theoretic extension of classical task-oriented planning and the other oriented towards

a non-terminating process model with a long-tern reward optimization objective, but no clear

definition of a single task or goal.

2.6.1 Common AI Planning Paradigms

As mentioned previously, classical planning can be viewed as a restricted case of decision-

theoretic planning in MDPs where all actions are deterministic and the reward is goal-oriented,

that is, there is only one non-zero reward value that is specified for a set of absorbing goal

states. Typically the initial state is known, thus making observability a moot issue — with a

known initial state and deterministic actions, the state of the world after any action sequence

will be known with certainty.

In classical planning the objective is simply to find a sequence of actions that will lead to a

goal state from the initial state. There may be an emphasis placed on finding shorter plans, or

more generally there may be costs associated with actions and the use of an objective criterion

that minimizes cost-to-goal. Nonetheless, all of these variants can be modeled in the MDP

CHAPTER 2. MARKOV DECISION PROCESSES 26

framework. However, this does not mean that standard MDP solution algorithms are partic-

ularly well-suited for classical planning; while standard exact MDP solution algorithms will

provide an optimal policy in the case of classical planning, this optimal policy is provided for

all states. However due to the known initial state and determinism of action effects, solutions

to classical planning can be specified via straight-line sequences of actions that may touch

on only a very small subset of the total state space. Thus, the full policy provided by exact

MDP solution algorithms will be inefficient compared to deterministic planners in the classi-

cal planning paradigm that can exploit knowledge of the initial state and action constraints to

avoid searching through all states. Weld [1999] provides an excellent overview of many recent

advances in classical deterministic AI planning along these lines.

A related topic is that of optimal deterministic planning, which uses a similar framework

as classical AI planning (i.e., known initial state and deterministic action effects), but relaxes

the goal-oriented notions to a much richer set of preferences over goals and resource con-

straints (see e.g., [Haddawy and Hanks, 1998; Williamson and Hanks, 1994; Brafman and

Chernyavsky, 2005]) and even temporally extended preferences (see e.g., [Bienvenu et al.,

2006; Baier et al., 2007] for some recent work and a discussion of related approaches in this

area). The task here is to find an optimal plan that takes into account the preferences and con-

straints. Since these approaches use a rich notion of preferences and assumptions, there does

not necessarily exist a direct correspondence to the scalar-reward MDP framework discussed

in this chapter. Nonetheless, notions of reward in the MDP framework defined here can capture

some aspects of optimal deterministic planning.

A number of planning problems in AI involve partial observability and thus cannot be

solved in the MDP framework presented here. Two notable problems are variants of confor-

mant planning. In conformant planning [Cimatti and Roveri, 1999] the initial state is restricted,

but strictly unknown and actions have non-deterministic effects with no (or in some variants,

partial) observability. Probabilistic conformant planning is similar except that strict uncertainty

in the initial state and action effects are replaced with known probability distributions [Kushm-

erick et al., 1995]. Nonetheless, the partial observability assumptions of conformant planning

and many other partially observable problems prevent them from being modeled or solved

within the MDP framework presented here.

CHAPTER 2. MARKOV DECISION PROCESSES 27

2.6.2 Task- vs. Process-oriented Planning

Most classical AI planning problems exhibit the characteristic of being goal-oriented, even

when there are multiple goals and relative preferences over those goals. The BOXWORLD

problem from Chapter 1 is a good example of a such a task-oriented problem: there are a

number of boxes that need to be delivered to their destination and once this is achieved, the

problem terminates. While many task-oriented decision-theoretic planning problems can be

modeled as MDPs with some form of absorbing goal state, this is only one possible class of

problems.

There are many problems that are continuous processes without a clearly defined notion

of goal or termination, but rather a continuously accumulating reward over an infinite horizon.

The SYSADMIN problem from Chapter 1 is an exemplar of this class of problems. Recalling

the SYSADMIN description, the objective was to maximize the count of computers running

per time step under an infinite horizon discounted reward criterion. However, given that any

computer can independently fail at any time step if not rebooted due to exogenous events, the

task has no clear criterion for termination since no state can persist indefinitely. Fortunately,

this ongoing process-oriented problem is well-modeled as the optimization and solution of an

infinite-horizon discounted reward MDP.

As mentioned in Boutilier et al. [1999], many real-world problems exhibit both task- and

process-oriented behavior. And the beauty of the MDP framework is that it can accommodate

both forms of MDP models and it can seamlessly combine them, if needed. Thus, we can

not only accurately model decision-theoretic planning problems based on the classical task-

oriented paradigm, but we can encapsulate these task-oriented problems in a more realistic

ongoing optimization process with random exogenous events. These types of combined task-

and process-oriented models more accurately reflect the problems than an agent would likely

have to contend with while acting in a realistic world model.

2.7 Summary

We have motivated the decision-theoretic planning paradigm and cast the framework in an

MDP setting. And we have covered all of the groundwork for the MDP solution techiques that

we develop in this thesis. Among these solutions, there are two important choices to consider.

The first choice is whether to use iterative dynamic programming methods or direct linear

program optimization techniques. The second choice is whether to use exact or approximate

CHAPTER 2. MARKOV DECISION PROCESSES 28

solution methods.

It is not entirely clear when to use dynamic programming algorithms vs. direct linear

program optimization techniques. While Puterman [1994] cites Koehler [1976] in reporting

that dynamic programming based modified policy iteration techniques can outperform direct

linear programming techniques by as much as 10 times, Trick and Zin [1997] report exactly the

opposite case, perhaps owing to their use of the more recently available and highly optimized

ILOG CPLEX LP solver.

The second choice of exact vs. approximate is almost invariably determined by the size of

the state space. If the state space is relatively small then one can easily resort to exact methods.

However, if the state space is sufficiently large, approximate solution techniques are the only

viable option. But this last statement depends critically on how one measures the size of the

state space.

Looking ahead to future chapters, we note that there is only so much computational ad-

vantage that can be gained by using the approximate solution techniques in place of the exact

techniques covered in this chapter. That is, all exact and approximate solution techniques men-

tioned here must represent the value function and policy (if required) as vectors or functions

over an explicitly enumerated state space. As it turns out, there are many representations well

suited to decision-theoretic planning tasks that do not require explicit state enumeration in

the problem representation or in the solution. As such, the use and exploitation of structured

representations is complementary to the choice of exact vs. approximate solution method or

dynamic programming vs. direct linear program optimization. That is, the exploitation of

structure can help all of these methods scale far beyond what is possible with approaches that

rely on explicit state enumeration.

Thus, the modeling and exploitation of decision-theoretic planning structure in the MDP

framework will be the core focus of the remainder of this thesis.

Chapter 3

Factored MDPs

In the MDP representation of the previous chapter we expressed the reward, transition distribu-

tion, policy, and value function all in terms of an explicitly enumerated state space. However,

this is neither the most natural nor the most compact representation one can choose, nor can it

be easily exploited in solution methods.

Intuitively, we often think of states in terms of various state properties. That is, a state

representation can be factored into a number of properties that we will call state variables

where each of these state variables can take assignments from a set of possible values. For

example, a state variable may be the location of an object and it may take assignments from

a small set of locations (e.g., office, hallway, or cafeteria). If there are a number of objects,

we may choose to represent the location of each object with a different state variable. In

this case of multiple state variables, states can be considered to be a joint configuration of

all state variables. As we will show in the first half of this chapter, it is not only natural to

represent MDPs in this factored manner, but state variable factoring can also result in compact

representations that can be exploited by solution methods to avoid explicit state enumeration.

In the second half of this chapter, we will review a number of methods for exploiting

factored MDP structure in extensions of solution algorithms from the previous chapter. We

will also introduce the first contribution of this thesis, which is a compact data structure termed

the affine algebraic decision diagram (AADD) that can compactly and simultaneously exploit

multiple forms of independence in the representation and solution of factored MDPs.

29

CHAPTER 3. FACTORED MDPS 30

3.1 Factored MDP Representations

While the MDP solution techniques from the previous chapter all require time at least poly-

nomial in |S| and |A|, we note that |S| can be very large. To see this, recall the SYSAD-

MIN problem from Chapter 1 where the state can be represented by n binary state variables

x1, . . . , xn where each state variable xi ∈ Xi (with Xi = {true, false}) represents whether

computer i is running or not. In this problem, the total number of states is 2n (i.e., |S| =

|{X1 × X2 × · · · × Xn}|). This is Bellman’s well-known curse of dimensionality [Bellman,

1957] and it unfortunately implies that the enumerated state solution methods discussed in

the last chapter require time exponential in the number of state variables n. Obviously, such

enumerated state solution approaches would be computationally prohibitive for as few as 50

computers.1

Consequently, efficient representations and algorithms are extremely important for the solu-

tion of MDPs for realistic problems. This is especially true for fields such as decision-theoretic

planning where 50 binary state variables would be considered at most an intermediate-sized

problem.2 In the following sections, we describe structured representations and algorithms

that mitigate the problems associated with enumerated state MDP representations and solution

algorithms, thus vastly increasing the size of MDPs that can be practically solved exactly or

approximately.

3.1.1 Factored Transition and Reward Dynamics

One of the major representational bottlenecks in MDPs stems from representing the transition

matrices. For example, with a state in SYSADMIN formed from n = 3 binary variables,

the joint transition distribution would be of the form P (x′1, x
′
2, x

′
3, x1, x2, x3, a) (with the x′i

variables representing the next-state variables and a ∈ A representing the three actions to

reboot each of the three computers). If this probability distribution was represented in an

enumerated manner, it would require |A| = 3 matrices of row and column dimension 23 for

a total of 26 entries per matrix. Clearly, it would become prohibitively difficult to store these

matrices as more variables were added as the number of matrix entries scales exponentially

1For reference, using one byte of storage per enumerated state in an MDP with 50 variables would require

one petabyte of storage, far beyond what could reasonably be stored in primary or secondary storage on a modern

desktop computer.
2For example, in the 2006 ICAPS International Probabilistic Planning Competition, the largest problems in

the ELEVATOR domain had well over 350 binary state variables if a binary variable were instantiated for each

ground relational fluent. This amounts to over 2350 distinct states.

CHAPTER 3. FACTORED MDPS 31

with the number of state variables n.

However, from an intuitive standpoint, most actions affect only a small subset of state vari-

ables, which can be exploited in a factored representation of the transition distribution. A

dynamic Bayes net (DBN) [Dean and Kanazawa, 1989] serves as an appropriate representation

in this case. Using a DBN, we can specify the effects of an action on an individual computer

conditioned on the relevant state variables. Let us assume that our three computers in SYSAD-

MIN are connected in a unidirectional ring3, thus having the network configuration and DBN

transition function representation in Figure 3.1(a). We can then specify the conditional proba-

bility tables (CPTs) in the DBN where the next state of each computer x′i is conditioned on the

computer’s previous state xi, the computer xi−1 to which it has an upstream connection, and

the action (specifically whether xi was rebooted by the action reboot(i)):4

P (x′i = true|~xi, a) =















a = reboot(i) : 1

a 6= reboot(i) ∧ xi = true : .475 · (I[xi−1] + 1)

a 6= reboot(i) ∧ xi = false : .025 · (I[xi−1] + 1)

(3.1)

In words, this states that a computer is running in the next state with probability 1 if it was

rebooted, or otherwise with a probability that is most impacted by the computer’s previous

state and somewhat less by the previous state of its upstream connection. The exact numerical

values chosen here are taken from the SYSADMIN specification in Guestrin et al. [2002].

We can use a factored representation in the spirit of influence diagram [Howard and Mathe-

son, 1984] representations to model the state variables that influence the reward function. This

is also shown in Figure 3.1(a).

For this DBN, we can then write the full conditional joint transition distribution in the

following factored form:

P (x′1, x
′
2, x

′
3|x1, x2, x3, a) = P (x′1|x1, x3, a) · P (x′2|x1, x2, a) · P (x′3|x2, x3, a)

We note that the full conditional joint distribution for a single action would take 192 entries

to represent as a fully enumerated CPT while the factored representation requires tables with

a total number of 72 entries given the conditional independence assumptions. As the number

3Formally, in a unidirectional ring, each computer xi has one incoming connection from xi−1 where subtrac-

tion is modulo n.
4The notation I[·] is an indicator function that takes the value 1 when its argument evaluates to true and 0 when

it evaluates to false.

CHAPTER 3. FACTORED MDPS 32

.475 .025

x3 x2

x1

x3

.95

x1

P(x
2
’| a,x

1
,x

2
)

x2

x1

.05

R(x
1
,x

2
,x

3
)

x1

x2

3 1 0

x2

x3 x3 x3

2

SysAdmin
Network

t t+1

a

x2

r

x2’

x3’

x1
x1’

a) DBN Representation
of Transition Function

b) Transition
CPT as ADD

c) Reward as
ADD

a≠reboot(2)

x2’

1

Figure 3.1: a) A dynamic Bayes network and decision diagram representing a transition func-

tion and a reward function for SYSADMIN with n = 3 and a unidirectional ring network

topology. b) An compact encoding of the transition function CPT for the DBN as an ADD.

Note that x′3 sums to one over all possible previous states. c) An ADD representation of the

additive reward function for SYSADMIN. For all ADDs, the high (true) edge is solid, the low

(false) edge is dotted.

of computers n in this unidirectional network topology increases, the size of the full joint

representation will scale exponentially in n while the size of the DBN representation will scale

only quadratically in n (requiring n CPTs each with 8n entries).

Throughout this exposition, we assume that the DBN representation of the transition func-

tion does not have synchronic arcs that specify dependences between post-action variables.

However, if needed, it is easy to modify our DBN notation to permit such arcs and the forth-

coming algorithms to take such arcs into account during inference. Or alternately, one may

choose to modify the problem description to use joint variables in place of variables connected

via synchronic arcs. This approach incurs a representational blowup exponential in the number

of variables joined, but converts a DBN with synchronic arcs to an equivalent (but larger) DBN

CHAPTER 3. FACTORED MDPS 33

without synchronic arcs.

We also note that there are alternative representations to the DBN transition representation

such as probabilistic generalizations of STRIPS operators [Boutilier et al., 1995a]. However,

Littman [1997] proved that this representation can be converted to a dynamic Bayes net rep-

resentation with only a polynomial blowup in size. This effectively demonstrates that both

formalisms are representationally equivalent.

In the general case, using DBN and influence diagram structures to efficiently represent

transition and reward dependencies often saves a considerable amount of space in these repre-

sentations. Defining the parents of a next-state variable x′i in the DBN representation as the set

of current-state variables {xj} appearing in a CPT with x′i, we note that in the worst case, every

x′i has all {x1, . . . , xn} as parents, thus requiring a number of parameters exponential in n. In

the best case, every state variable x′i has only xi as a parent, requiring a number of parameters

linear in n. However, even in the typical case, if the number of parents of any state variable is

bounded by some constant k < n, this requires O(n · 2k) parameters in the case of binary state

variables — still an exponential reduction over the worst case. While a factored transition and

reward representation can yield substantial savings for the MDP representation, we note that

this factoring cannot often be preserved in the value function due to the correlation of action

effects over sufficiently extended periods of time [Boutilier et al., 1995b]. Nevertheless, rep-

resenting large MDPs is a first step toward solving them and subsequent techniques will take

advantage of this factored structure for efficient computation and approximation.

3.1.2 Context-specific Independence and ADDs

Even if we can represent the joint transition probability as a Bayes net with a conditional

probability table (CPT) for each next-state variable, we can often represent these tables more

efficiently than by enumerating all state configurations of the variables in that table. Quite

often, we find that certain values of variables in a CPT render the other values irrelevant. This

is known as context-specific independence (CSI) [Boutilier et al., 1996].

For the example DBN in Figure 3.1(a), given that the value of x′2 depends on x1,x2 and a

in P (x′2|x1, x2, a) but that in the context of a 6= reboot(2), the value of x′2 depends on no other

variables, we say that in the context of a 6= reboot(2), x′2 is independent of all other variables

and thus P (x′2|x1, x2, a 6= reboot(2)) = P (x′2|a 6= reboot(2)). In order to represent this CSI

compactly, we can use a decision tree or an algebraic decision diagram (ADD) [Bahar et al.,

1993], which is similar to a tree except that it is a canonical directed acyclic graph (DAG) with

CHAPTER 3. FACTORED MDPS 34

all variable decision tests following a strict order from the root to the leaves. An example ADD

for this probability distribution showing the above CSI is given in Figure 3.1(b). Effectively,

CSI performs automatic state aggregation in that all possible state contexts under the condition

a 6= reboot(2) are effectively grouped together and assigned a common value. An example

ADD for the reward is given in Figure 3.1(c), here there is no explicit CSI, but the reconver-

gent DAG structure of the ADD does allow sharing of common substructure that reduces what

would be a tabular representation exponentially sized in n to an ADD representation quadrati-

cally sized in n.

In addition to the representational efficiency of state aggregation in ADDs, we note that

computation with ADDs can also be very efficient. When we perform operations on factors rep-

resented as ADDs, we can just replace these operations with their ADD-based versions [Bahar

et al., 1993], allowing us to exploit CSI and shared substructure not only in the representation

of factored MDPs, but also in the computations required for their solution.

Since the ADD will be a crucial data structure for our subsequent presentation of factored

MDP solution algorithms, we provide a formal definition of ADDs and algorithms to construct

and manipulate them in the following subsections. The following discussion draws on the work

of Bahar et al. [1993], which is itself a slight variant of the original work on ordered binary

decision diagrams (BDDs) of Bryant [1986].

Canonical Reduced ADDs

An ADD is a decision diagram with a fixed variable ordering of all decision tests on paths from

the root to the leaves that is capable of representing functions from B
n → R. We define ADDs

with the following simple BNF grammar:

F ::= C | if (F var) then Fh else Fl (3.2)

Here, C ∈ R is a constant-valued terminal node. Each internal decision node is represented as

if (F var) then Fh else Fl and is associated with a single variable var that indicates the high

branch leading to node Fh should be taken when var = true and the low branch leading to Fl

should be taken when var = false.

Let V al(F, ρ) be the value of ADD F under variable value assignment ρ. Then the valua-

CHAPTER 3. FACTORED MDPS 35

tion of an ADD can be defined recursively by the following equation:

V al(F, ρ) =















F = C : C

F 6= C ∧ ρ(F var) = true : V al(Fh, ρ)

F 6= C ∧ ρ(F var) = false : V al(Fl, ρ)

Formally, we define a variable ordering as a total ordering over all variables such that for all

variable pairs xi, xj (i 6= j) either xi ≻ xj or xj ≻ xi. We say that F satisfies a given variable

ordering if F = C or F is of the form if (F var) then Fh else Fl where (1) F var does not

occur in Fh or Fl, (2) F var is the earliest variable under the given ordering occuring in F and

(3) Fl and Fh satisfy the variable ordering. We discuss choices for variable order later in the

context of variable reordering.

Then we obtain the following lemma where we define a reduced ADD to be the minimally-

sized ordered decision diagram representation a function f(x1, . . . , xn).

Lemma 3.1.1. Fix a variable ordering over x1, . . . , xn. For any function f(x1, . . . , xn)

mapping B
n −→ R, there exists a unique reduced ADD F over variable domain x1, . . . , xn

satisfying the given variable ordering such that for all ρ ∈ B
n we have f(ρ) = V al(F, ρ).

Bryant [1986] provides a proof of this lemma for BDDs, which only have two distinct ter-

minal values. The proof trivially generalizes to ADDs, which can have more than two distinct

terminal values. This lemma shows that there is a unique canonical ADD representation of all

functions from B
n −→ R.

Given that there exists a unique reduced ADD for any function from B
n −→ R, we next

describe how this reduced ADD can be constructed from an arbitrary ordered decision diagram.

All algorithms that we will define rely on the helper function GetNode in Algorithm 1, which

returns a canonical representation of a single internal decision node. Using GetNode, the

Reduce procedure in Algorithm 2 takes any ordered decision diagram and returns its reduced,

canonical ADD representation (necessarily removing any redundant structure in the process).

The control flow of Reduce is very simple in that it uses the GetNode procedure to recursively

build a reduced ADD from the bottom up (i.e., from the terminal leaf nodes all the way up to

the root node). An example application of the Reduce algorithm is given in Figure 3.9.

Binary Operations on ADDs

Given functions B
n −→ R represented as ADDs, we now want to apply operations to these

functions that work directly on the ADD representation. Additionally, we would prefer that

CHAPTER 3. FACTORED MDPS 36

Algorithm 1: GetNode(v, Fh, Fl〉) −→ Fr

input : v, Fh, Fl : Var and node ids for high/low branches

output : Fr : Return values for offset,

multiplier, and canonical node id

begin

// If branches redundant, return child

if (Fl = Fh) then

return Fl;

// Make new node if not in cache

if (〈v, Fh, Fl → id is not in node cache) then

id := currently unallocated id;

insert 〈v, Fh, Fl〉〉 → id in cache;

// Return the cached, canonical node

return id ;

end

Algorithm 2: Reduce(F) −→ Fr

input : F : Node id

output : Fr : Canonical node id for reduced ADD

begin

// Check for terminal node

if (F is terminal node) then

return canonical terminal node for value of F ;

// Check reduce cache

if (F → Fr is not in reduce cache) then

// Not in cache, so recurse

Fh := Reduce(Fh);
Fl := Reduce(Fl);

// Retrieve canonical form

Fr := GetNode(F var, Fh, Fl);

// Put in cache

insert F → Fr in reduce cache;

// Return canonical reduced node

return Fr;

end

these operations avoid enumerating all possible variable assignments whenever possible.

To do this, we first define the Apply function that applies a binary operation to two operands

represented as ADDs and returns the result as an ADD. We let op denote a binary operator

on ADDs with possible operations being addition, substraction, multiplication, division, min,

and max denoted respectively as ⊕, ⊖, ⊗, ⊘, min(·, ·), and max(·, ·). We also define binary

CHAPTER 3. FACTORED MDPS 37

1

x2

x1

1 0

x2

x1

1 0

x2

x1

1 0

x1

1 0

x1

1 0x

Figure 3.2: An example application of the Reduce algorithm. The input is the leftmost di-

agram. From left to right, the hollow arrow shows the node F currently being evaluated by

Reduce just after the recursive Reduce calls to the high branch Fh and low branch Fl but be-

fore GetNode(F var , Fh, Fl) is called and the canonical representation of F is returned (see

Algorithm 2). The next diagram in the sequence shows the result after the previous Reduce

call. The rightmost diagram is the final canonical ADD representation of the input.

op

F
var

1,h
F

var

1,l

F

var

1 F
var

F
var

F
var

2

2,h 2,l

Figure 3.3: Two ADD nodes F1 and F2 and a binary operation op with the corresponding

notation used in the presentation of the Apply function.

comparison functions ≥, >, ≤, < that return an indicator function represented as an ADD that

takes the value 1 when the comparison is satisfied and 0 otherwise.

The high-level control flow of the Apply routine in Algorithm 3 is straightforward: we first

check whether we can compute the result immediately by calling ComputeResult , otherwise

we check if we can reuse the result of a previously cached Apply computation. If we can do

neither of these, we then choose a variable to branch on and recursively call the Apply routine

for each instantiation of the variable. We cover these steps in-depth in the following sections

and note that Figure 3.4 provides an example of the Apply operation.

Terminal computation The function ComputeResult given in Table 3.1, determines if the

result of a computation can be immediately computed without recursion. The first entry in

CHAPTER 3. FACTORED MDPS 38

Algorithm 3: Apply(F1, F2, op) −→ Fr

input : F1, F2, op : ADD nodes and op

output : Fr : ADD result node to return

begin

// Check if result can be immediately computed

if (ComputeResult(F1, F2, op)→ Fr is not null) then

return Fr;

// Check if result already in apply cache

if (〈F1, F2, op〉 → Fr is not in apply cache) then

// Not terminal, so recurse

if (F1 is a non-terminal node) then

if (F2 is a non-terminal node) then

if (F var
1 comes before F var

2) then

var := F var
1 ;

else

var := F var
2 ;

else

var := F var
1 ;

else

var := F var
2 ;

// Set up nodes for recursion

if (F1 is non-terminal ∧ var = F var
1) then

F v1
l := F1,l; F v1

h := F1,h;

else

F v1
l/h := F1;

if (F2 is non-terminal ∧ var = F var
2) then

F v2
l := F2,l; F v2

h := F2,h;

else

F v2
l/h := F2;

// Recurse and get cached result

Fl := Apply(F v1
l , F v2

l , op);
Fh := Apply(F v1

h , F v2
h , op);

Fr := GetNode(var, Fh, Fl);

// Put result in apply cache and return

insert 〈F1, F2, op〉 → Fr into apply cache;

return Fr;

end

this table is required for proper termination of the algorithm as it computes the result of an

operation applied to two terminal constant nodes. However, the other entries denote a number

of pruning optimizations that immediately return a node without recursion. For example, we

know that F1 ⊕ 0 = F1 and F1 ⊗ 1 = F1. If a result cannot be immediately determined in

ComputeResult then we must continue recursing on the substructure of the operands until a

CHAPTER 3. FACTORED MDPS 39

ComputeResult(F1, F2, op) −→ Fr

Operation and Conditions Return Value

F1 op F2; F1 = C1; F2 = C2 C1 op C2

F1 ⊕ F2; F2 = 0 F1

F1 ⊕ F2; F1 = 0 F2

F1 ⊖ F2; F2 = 0 F1

F1 ⊗ F2; F2 = 1 F1

F1 ⊗ F2; F1 = 1 F2

F1 ⊘ F2; F2 = 1 F1

min(F1, F2); max(F1) ≤ min(F2) F1

min(F1, F2); max(F2) ≤ min(F1) F2

similarly for max
F1 ≤ F2; max(F1) ≤ min(F2) 1
F1 ≤ F2; max(F2) ≤ min(F1) 0

similarly for <,≥, >
other null

Table 3.1: Input and output summaries of ComputeResult . If ComputeResult receives two

constant ADD nodes as input, the constant resulting from the direct evaluation of any possible

binary operation is returned. In other cases where at least one node is non-terminal, special

operand structure and specific operator properties sometimes permit the computation of the

result without further recursion. Some computations rely on the unary min(F) and max(F)
operators that are discussed directly following the Apply algorithm.

result can be computed.

Recursive computation If a call to Apply is unable to immediately compute a result or reuse

a previously cached computation, we must recursively compute the result. For this we have two

cases (the third case where both operands are constant terminal nodes having been taken care

of in the previous section). These algorithms assume the notation given in Figure 3.3 for the

structure of the operands.

• F1 or F2 is a constant terminal node, or F var
1 6= F var

2 : For simplicity of exposition,

we assume the operation is commutative and reorder the operands so that F1 is the con-

stant node or the operand whose variable comes later in the variable ordering so that we

know to branch on F var
2 first.5 Thus, we compute the operation applied separately to

5We note that the first case prohibits the use of the non-commutative ⊖ and ⊘ operations. However, a simple

solution would be to recursively descend on either F1 or F2 rather than assuming commutativity and swapping

operands to ensure descent on F2. To accommodate general non-commutative operations, we have used this

alternate approach in our specification of the Apply routine.

CHAPTER 3. FACTORED MDPS 40

F1 and each of F2’s high and low branches. We then build an internal if decision node

conditional on F var
2 and get its canonical representation for the result:

Fh = Apply(F1, F2,h, op)

Fl = Apply(F1, F2,l, op)

Fr = GetNode(F var
2 , Fh, Fl)

• F1 and F2 are constant nodes and F var
1 = F var

2 : Since the variables for each operand

match, we know the result Fr is simply an if statement branching on F var
1 (= F var

2) with

the true case being the operator applied to the high branches of F1 and F2 and likewise

for the false case and the low branches:

Fh = Apply(F1,h, F2,h, op)

Fl = Apply(F1,l, F2,l, op)

Fr = GetNode(F var
1 , Fh, Fl)

(1)

1

x2

1 0

x1

x2

1

x1

0

(5)

x2

1

x1

0 1

(1)

(1)

(2)

(2)

(3)

(3)

(4)

(4)

(5)

(5)

(2)

(3) (4)

x

Figure 3.4: An example application of the Apply algorithm. The indices (i) in the diagram

correspond to successive (recursive) calls to the Apply algorithm: for the operands the indices

denote which node of each operand is passed as a parameter to the call to Apply (the op is

always ⊕); for the result the indices indicate the node that is returned by the call to Apply . For

example, the initial call to Apply takes the arguments corresponding to the node marked (1)

x2 on the LHS of the ⊕ and the node (1) x1 on the RHS of the ⊕ (as well as the operation ⊕
itself) and returns the node marked (1) on the RHS of the equality.

Other Operations Above we covered binary operations on ADDs, but we will also need to

perform a variety of unary operations on ADDs such as determining the min and max value of

CHAPTER 3. FACTORED MDPS 41

[.4,.6]x2

.2.5

x2

.1 .2

x1
F

= true
F

x1= false

x2

x1

.1 .2.5

F
x1

Σ F

x2

.6 .4[.1,.5]

[.1,.5] [.2,.5] [.1,.2]

Figure 3.5: An example application of the unary restriction and marginization operations.

Each ADD has all of its internal nodes annotated with [min,max], which can be recursively

computed from the children of each internal node.

an ADD and marginalization over variables. Here we cover some unary operations that can be

performed (efficiently) on ADDs:

• min and max computation: During the Reduce operation, it is easy to maintain the

minimum and maximum values for each internal decision node. Exploiting the fact that

an ADD is a DAG, minF = min(Fl, Fh) and likewise for max. A simple example of

this annotation and its recursive relationship is shown in Figure 3.5.

• Restriction: The restriction of a variable xi in an ADD F to either true or false (i.e.

F |xi=true/false) can be computed by replacing all decision nodes for variable xi with the

branch corresponding to the variable restriction. Then Reduce can be applied on the

resulting decision diagram to convert it to a canonical ADD. Two examples of restriction

are given in Figure 3.5.

• Sum out/marginalization: A variable xi can be summed (or marginalized) out of a

function F simply by computing the sum of the restricted functions (i.e.
∑

xi
F =

F |xi=T ⊕ F |xi=F). An example of this is given in Figure 3.5.

• Negation/reciprocation: Negation can be performed using the binary Apply operation

on 0 ⊖ F . Likewise, reciprocation (i.e., 1
F

) can be computed using the binary Apply

operation 1⊘ F .

• Variable reordering: Rudell [1993] provides an ADD variable reordering algorithm

that casts a general variable reordering in terms of a sequence of pairwise reorderings

CHAPTER 3. FACTORED MDPS 42

of neighboring variables. Then, the basic idea is that two variables xi and xj can be

reordered locally (i.e., rotated) in the ADD DAG without requiring the modification of

any internal nodes other than those involving xi and xj . Furthermore, Rudell describes

how this can be done without requiring extra storage for backpointers from children to

parents if GetNode’s canonical node cache is allowed to be modified.

As an addendum to this final operation, we note that the MDP solution algorithms based

on ADDs (and their extensions) that we introduce in this chapter could dynamically reorder

variables in an attempt to maintain even more compact representations than possible with a

fixed variable ordering. However, we do not employ such dynamic variable ordering tech-

niques in this thesis as they prevent the reuse of cached computations that underly one of the

major sources of efficiency of ADDs when used in MDP solution algorithms. Furthermore,

searching for compact ADD representations requires search and is computationally expensive.

Such results are reflected in experiments using ADDs to perform value iteration in factored

MDPs [St-Aubin et al., 2000], which demonstrate that dynamic variable reordering does not

pay off and that a natural fixed variable ordering derived from the MDP description tends to be

compact and preserves structure. As a consequence of these observations, all of the algorithms

used in this thesis use a natural fixed variable ordering derived from the order that variables

appear in an MDP problem description, unless otherwise noted.

3.1.3 Additive Independence

Additive independence in reward structure is a common assumption in utility theory and related

fields [Keeney and Raiffa, 1976; Bacchus and Grove, 1995]. In Figure 3.1(c), we note that we

could represent the additive reward structure of SYSADMIN using an ADD whose size scales

quadratically in the number of computers n. But if we can explicitly model additive rewards as

sums of (potentially non-linear) factors, then we trivially note that the SYSADMIN reward can

be expressed compactly in a form whose size scales linearly in n:

R(~x, a) =
n
∑

i=1

I[xi] (3.3)

Furthermore, if we permit the use of similar expressions in the CPTs that we specify for our

transition DBN, we can also exploit additive independence in their representation. For ex-

ample, letting Conn(i, j) denote that there is an incoming network connection to computer j

from computer i, we note that the CPTs for the transition function for any SYSADMIN network

CHAPTER 3. FACTORED MDPS 43

topology can be specified in the following additive manner:

P (x′i = true|~xi, a) =











a = reboot(ci) : 1

a 6= reboot(ci) : (0.05 + 0.9 · I[xi])·
∑

j I[j 6=i∧xj∧Conn(j,i)]

|{xj |j 6=i∧Conn(j,i)}|+1

Here we see that the success probability of a computer running scales proportionally to the

number of it’s incoming connections that are also running. And we also note that the previous

CPT we gave for the unidirectional ring in Figure 3.1(b) is just a special case of this CPT where

computer i is connected only to computer i+ 1 (where addition is modulo n).

In our subsequent discussion of solution methods for factored MDPs, we note that some

recent approaches can exploit additive reward structure while others cannot. In fact, it will

only be in the final part of this chapter when we introduce affine ADDs (AADDs) that we

will be able to fully exploit CSI and additive independence in both the reward and transition

functions, not to mention multiplicative independence as it happens to naturally occur in many

value functions.6

3.1.4 Structured Policy Representation

Just as the reward and transition function may be represented in a factored manner in proposi-

tional MDPs, so can the policy. To do this, we adapt the following definition from Boutilier et

al. [1995b]:

Definition 3.1.2. A structured policy is any set of function-action pairs π = {〈φa, a〉} such that

φa is a structured representation of an indicator function and {φa} partitions the state space.

This induces the explicit policy πa(~x) = a iff φa(~x) = 1.

To ensure that the policy partitions the state space, one must ensure that it is exhaustive and

that all action indicator functions are pairwise disjoint. To ensure that the policy exhausts the

entire state space, one can simply ensure that the sum of all indicator functions is the constant

1 (i.e.,
∑

a∈A φa = 1). To ensure that all action policies are pairwise disjoint, one can ensure

φa · φb = 0 for all action pairs a ∈ A, b ∈ A such that a 6= b.

There are a variety of structured methods for representing the {φa} indicator functions

ranging from decision lists [Koller and Parr, 1999a], to trees [Boutilier et al., 1995b], to ADDs.

Throughout our presentation here, we will use ADDs. Then policy evaluation is simply the task

6Multiplicative independence is just the multiplicative generalization of additive independence.

CHAPTER 3. FACTORED MDPS 44

of evaluating each ADD φa under a given state assignment ~x to see if φa(~x) = 1 (meaning do

action a). This structured policy representation will play an important role in our description

of structured policy iteration.

3.1.5 Putting it all Together

Before we cover exact solution methods in the factored MDP framework, let us quickly re-

capitulate the factored MDP representation. In a factored MDP, states will be represented by

vectors ~x of length n, where for simplicity we assume all state variables x1, . . . , xn are binary-

valued;7 hence the total number of states is N = 2n. We also assume a finite set of actions

A = {a1, . . . , am}. As usual, we assume a discount factor γ, 0 ≤ γ ≤ 1 where appropriate

steps have been taken to ensure bounded reward in the case of γ = 1.

To generalize the MDP model from the previous chapter, we specify a propositionally fac-

tored MDP by the following:

1. Factored Transition Function: A DBN-factored state transition model which specifies

the probability of the next state ~x′ given the current state ~x and action a. The transition

function can be factored as a dynamic Bayes net (DBN) with CPTs P (x′i|~xi, a) where

each next state variable x′i is only dependent upon the action a and its direct parents

~xi in the DBN. Then the transition model can be compactly specified as P (~x′|~x, a) =
∏n

i=1 P (x′i|~xi, a).

2. Factored Reward Function: An additive reward function
∑r

i=1Ri(~xi, a) over r reward

factors Ri(~xi, a) dependent on action a and relevant state ~xi, which specifies the imme-

diate reward obtained by taking action a in state ~x.

The individual factors can be expressed as tabular representations, or as trees and ADDs that

exploit CSI, or even as additive expressions that exploit additive independence. Finally, when

needed, a structured policy π = {〈φa, a〉} uses indicator functions φa to specify the states

where action a should be taken.

7However, all of the methods here can be easily generalized to non-binary variables through known transfor-

mations [Rossi et al., 1990; Stergiou and Walsh, 1999].

CHAPTER 3. FACTORED MDPS 45

3.2 Exact Solution Methods

In our specification of our solution methods, it will be notationally useful to define a backup

operator Ba for action a as follows:8

Ba[V (~x)] = γ
∑

~x′

n
∏

i=1

P (x′i|~xi, a)V (~x′) (3.4)

This is essentially the factored representation of the Q-function computation for action a in

Equation 2.8 from Chapter 2 without adding in the reward. We note that the backup Ba[·]
operator can exploit both additive structure since it is a linear operator as well as efficient

factored computation due to the transition DBN structure.

If π∗ denotes the optimal policy and V ∗ its value function, then we have the following

factored representation of the fixed-point Equation 2.4 from Chapter 2:

V ∗(~x) = max
a∈A

{

r
∑

i=1

Ri(~xi, a) +Ba[V ∗(~x)]

}

. (3.5)

Having done this, we first present the basic factored variants of the relevant MDP equations

from the previous thesis chapter and proceed to show that the previous MDP solution methods

can be easily redefined in terms of these factored equations. This allows us to exploit the

factored structure and any CSI therein during the application of the MDP solution algorithms.

3.2.1 Structured Value Iteration

ADD-based Value Iteration

The value iteration algorithm from Chapter 2 can be easily extended to exploit factored MDP

structure in a structured value iteration setting. Initializing V 0(~x) to some value, we generalize

Equation 2.7 from Chapter 2 to the factored form:

V t+1(~x) = max
a∈A

{

r
∑

i=1

Ri(~xi, a) +Ba[V t(~x)]

}

. (3.6)

It will be extremely important to use a compact data structure such as a tree or ADD to

exploit CSI in the representation of the value function in structured value iteration. If we were

8Technically, this should be written (BaV)(~x), but we abuse notation for readability when V itself is structured

and for consistency with subsequent first-order MDP notation.

CHAPTER 3. FACTORED MDPS 46

to simply use a tabular representation, we would find that in typical MDPs, all variables in the

value function become correlated after some number of backups if the graphical model under-

lying the DBN cannot be decomposed into disjoint components [Boutilier et al., 1995b]. Thus,

a tabular representation will typically need to represent a value function over all state variables

and in the absence of some method for compactly representing value function structure, this

representation will require full state enumeration.

Fortunately, as described previously, ADDs are ideal for exploiting CSI and functions with

shared substructure, both of which may occur in the value functions of highly structured fac-

tored MDPs. As such, representing all factors in Equation 3.6 using ADDs and carrying out its

computation in terms of ADD operations as done in the SPUDD algorithm of Hoey et al. [1999]

has proved to be a promising method in comparison to the enumerated state value iteration ap-

proach of the previous chapter. While SPUDD may scale comparably to enumerated state value

iteration in the worst case (e.g., when all states have distinct values), the authors demonstrate

that there is much potential for computational and space savings using the SPUDD algorithm

to perform value iteration on many factored MDPs.

Decomposition-based Value Iteration

In a different vein of research, there are alternate (but not incompatible) approaches to struc-

tured value iteration that exploit decomposable task structure in MDPs [Meuleau et al., 1998a;

Singh and Cohn, 1998]. If a problem domain consists of many independent subprocesses that

only interact via their dependence on globally shared resources and/or constraints on joint ac-

tion choices, one can often factor these MDPs into tasks represented as independent subMDPs

with global resource and action constraints. We could take the cross-product of all the subMDP

state spaces and solve the resulting joint MDP, but this would discard a lot of the structure in-

herent in the task decomposition of the initial problem. Alternately we can focus on algorithms

that directly exploit the decomposed structure of the MDP directly.

An exact structured value iteration approach for a subclass of MDPs with highly decom-

posable structure is provided by Singh and Cohn [Singh and Cohn, 1998]. In this model, an

MDP must decompose into a set of subMDPs where each subMDP has its own independent

state space but an action set that is globally constrained. The reward objective is to maximize

the sum of rewards for each subMDP. The solution approach they advocate is a value itera-

tion method based on maintaining upper and lower bounds on the value function. The upper

bounds simply come from assuming that actions are unconstrained across subMDPs (which

CHAPTER 3. FACTORED MDPS 47

can be achieved in the best case) and the lower bounds come from taking the maximal re-

ward for an individual subMDP (which could be achieved in the worst case). These upper and

lower bounds allow various actions to be pruned from consideration during value iteration and

with enough iterations will provably converge on an optimal solution. This decomposed value

iteration algorithm is empirically found to be more efficient than value iteration in the joint

cross-product MDP.

3.2.2 Structured Policy Iteration

Structured policy iteration (SPI) in factored MDPs was first defined in Boutilier et al. [1995b]

using trees as a method of state aggregation. Here we describe a similar version using ADDs.9

Recalling the definition of modified policy iteration from the previous chapter, first we initialize

a random policy π0 = {〈φa, a〉} and then we iterate between approximate policy evaluation and

policy improvement steps. For approximate policy evaluation, we can simply use the following

factored extension of the successive approximation update (c.f. Section 2.4.2):

V t+1
πi

(~x) =
∑

a∈A

φa(~x) ·
{

r
∑

j=1

Rj(~xj, a) +Ba[V t
πi

(~x)]

}

. (3.7)

Here, the policy indicator function φa ensures that the value for a state is only updated for

action a if the policy indicates that action a should be taken from that state. We note that this

entire computation can be carried out in terms of efficient operations on ADDs. Correctness

follows from the fact that πi is a partitioning of the state space.

Then, given V πi(~x), we need only produce a new policy πi+1 that is greedy w.r.t. V πi .

In order to break ties for actions having equal value, we require a total preference ordering

(perhaps random) over actions, that is, for all actions a and b such that a 6= b, either a ≻ b or

b ≻ a. Recalling the definition of the ADD “>” and “≥” comparison functions that produce

an ADD taking the value 1 in states where the LHS operand is greater than (or equal to) the

RHS operand and 0 otherwise, we can produce the ADD representation of φa for all a ∈ A in

the following iterative fashion:

1. Initialize φa = 1 (the constant 1 ADD)

2. For each a ∈ A, let Q(~x, a) =
∑r

j=1Rj(~xj, a) +Ba[Vπi
(~x)]

9We will implicitly assume throughout the text that all operations in the following equations such as +,−,×,

etc. are performed on ADDs in terms of their corresponding operations ⊕,⊖,⊗, etc.

CHAPTER 3. FACTORED MDPS 48

3. For each b ∈ A s.t. b 6= a update φa as follows:

φa :=

{

a ≻ b : φa · (Q(~x, a) ≥ Q(~x, b))

b ≻ a : φa · (Q(~x, a) > Q(~x, b))

Thus we have defined a structured version of policy iteration. While our algorithm presentation

here differs from the original presentation [Boutilier et al., 1995b], it is consistent with the

overall structured approach to policy iteration. Furthermore, we will build on this approach

when we extend policy iteration to exploit other types of structure in future chapters.

3.2.3 Difficulty of Structured Linear Programming

We do not present a structured variant of the exact linear programming solution to factored

MDPs as this method requires a priori knowledge of the structure of the value function and

in this case we are talking about the exact value function. Typically, we cannot determine the

structure of an optimal value function from the structure of a factored MDP. Consequently, for

the exact case, we would have no choice but to use a fully enumerated state representation of

the value function, thus preventing the exploitation of factored structure. However, as we will

see shortly, the approximate variant of linear programming is in fact quite useful for solving

factored MDPs and there is much opportunity to exploit factored structure in that case.

3.3 Approximate Solution Methods

While some factored MDPs do exhibit considerable structure in their optimal value functions

or policies, sometimes these representations are still too large for practical representation or

computation as the size of the problem scales. Thus, in this section we focus on approximate

variants of previously described solution algorithms.

3.3.1 Approximate Value Iteration Methods

ADD-based Approximation

One additional benefit of the use of ADDs to specify factored MDPs is that it allows one to

prune internal nodes in an ADD and replace these nodes with the minimum and maximum

value of the ADD rooted at that node [Dearden and Boutilier, 1997]. An example of this is

CHAPTER 3. FACTORED MDPS 49

[9,10] [0,1]

x1

x2Prune

x1

x2

x1

x1 x2 x1 x2

9 0 110

V(,) V(,)
~

Figure 3.6: An example of approximating an ADD representation of a value function V (x1, x2)
as Ṽ (x1, x2) by pruning out the decision node for variable x2 and replacing leaf values with

their respective ranges.

shown in Figure 3.6. One can then perform value iteration maintaining these upper and lower

bounds. Since the Bellman backup is a known contraction operator [Puterman, 1994], this

algorithm will still converge, albeit within some error bound of the optimal value function.

This is the idea behind the APRICODD [St-Aubin et al., 2000] algorithm that is essentially

the SPUDD value iteration algorithm with an extra step for approximation by pruning the

value function ADD. We note that APRICODD represents a completely automated approach

to approximate value iteration that autonomously derives the approximated value function. It

should be noted that this contrasts sharply with the linear-value approximation approach to

approximate value iteration discussed in Section 2.5.3 that relies on the pre-specification of a

fixed set of basis functions.

Decomposition-based Approximation

In the vein of exploiting structure in decomposable MDPs, Mealeau et al. [1998a] describe

an approximate value iteration technique for solving weakly coupled subMDPs having global

resource and action constraints. Their algorithm is referred to as Markov Task Decomposi-

tion (MTD) and is an approximately optimal approach to solving the joint MDP that divides

the solution into local and global optimization steps. MTD first determines the optimal value

function for each subMDP. Following this local optimization, a global optimization phase then

chooses a joint action at each time step that enforces the global resource constraint while trad-

ing off local action choices for each task in order to maximize the expected reward. Since an

CHAPTER 3. FACTORED MDPS 50

optimal sequential solution in this case would be equivalent to solving the full joint MDP, a

heuristic resource allocator is used in this work.

While we don’t exploit the same approximate decomposition ideas in the contributions

of this thesis, we do note that the general framework of additive value decomposition and

approximate solution methods within this framework serves as motivation for our work in

future chapters.

3.3.2 Linear-value Approximation Solution Methods

We next introduce three efficient approximate solution methods for factored MDPs based on

linear-value approximation [Guestrin et al., 2002; Schuurmans and Patrascu, 2001]. These

methods are effectively factored extensions of the approximate policy iteration and approxi-

mate linear programming techniques from the previous chapter. The key to the efficiency of

these approaches over their enumerated state counterparts will be to show how the structure of

the factored representation can be exploited by algorithms such as variable elimination [Zhang

and Poole, 1996] that scale exponentially in the induced tree-width of the representation rather

than exponentially in the total number of state variables. This exploitation of structure will be

most apparent when solving the linear programs for error-minimizing max-norm projections

that are at the heart of these techniques.

In a linear-value function representation, we represent V as a linear combination of k basis

functions bj(~x) where the bj are typically dependent upon small subsets of ~x:

V (~x) =
k
∑

j=1

wjbj(~x) (3.8)

Our goal is to find weights that approximate the optimal value function as closely as possible.

In doing this, all of our solution methods will need to compute the backup of the value function

through an action a. To compute this, we recall that the backup operator Ba[·] previously

defined is a linear operator such that it distributes into a sum:

Ba[V (~x)] = Ba[
k
∑

j=1

wjbj(~x)] (3.9)

=
k
∑

j=1

wjB
a[bj(~x)] (3.10)

CHAPTER 3. FACTORED MDPS 51

Thus, if the basis functions are defined over small sets of variables, and the backup introduces

an additional small set of variables that causally affect this basis function according to the

DBN representation of the transition distribution, this sum will be over factors of small sets of

variables. This factored structure will be exploited in the methods we define in this section.

Next, we explore factored extensions of approximate policy iteration and linear program-

ming. However, we do not cover approximate value iteration approaches due to their possibility

of divergence as noted in the last chapter.

Approximate Policy Iteration

We can generalize policy iteration (API) to the factored linear-value approximation case by

calculating successive iterations of weights w
(i)
j that represent the best approximation of the

fixed point value function for policy π(i) at iteration i. The method we present here is a slight

variant of that given in Guestrin et al. [2002]10 and is an approach that we will generalize in

the next chapter. To apply this approach, we need to introduce the Bπ[·] operator which is just

the backup operator under a fixed policy:

Bπ[V (~x)] = γ
∑

~x′

n
∏

i=1

P (x′i|~xi, π(~x))V (~x′) (3.11)

In the context of the following algorithm, we will discuss howBπ[·] can be efficiently computed

in structured cases.

We perform API by carrying out the following two steps on each iteration i: (1) derive

the greedy policy: π(i+1) ← πgre(
∑k

j=1w
(i)
j bj(s)) using the approach outlined in Section 3.2.2

and (2) use the following LP to determine the weights for the L∞ minimizing projection of the

10Other than the ordering of action comparisons in the greedy policy derivation method of Section 3.2.2, this

presentations of API follows that of Guestrin et al. [2002]. For greedy policy derivation, they use a special

ordering of action comparisons that first compares all actions to a noop action and then to each other, arguing that

this approach is advantageous for domains such as SYSADMIN.

CHAPTER 3. FACTORED MDPS 52

approximate value function for policy π(i+1):

Variables: w
(i+1)
1 , . . . , w

(i+1)
k

Minimize: β(i+1) (3.12)

Subject to: β(i+1) ≥
∣

∣

∣

∣

r
∑

i=1

Ri(~xi, π(~x)) +
k
∑

j=1

(w
(i+1)
j Bπ(i+1)

[bj(~x)])

−
k
∑

j=1

[w
(i+1)
j bj(~x)]

∣

∣

∣

∣

; ∀~x,

We note that this LP is just the factored form of the LP defined for approximate policy it-

eration in Equation 2.23 from the previous chapter where we have exploited linearity of the

backup operator. Consequently, when the policy converges (i.e., π(i+1) = π(i) or equivalently

~w(i+1) = ~w(i)), we can derive an error bound on the approximated value function by plugging

the projection error β of the final LP solution directly into Equation 2.19 since β is the Bellman

error of the approximated value function in this case.

However, we note that in the factored framework, Bπi+1
[·] cannot easily be computed ac-

cording to Equation 3.11 since our structured policy π(~x) takes the form of indicator functions.

However, we need only enforce that an LP constraint for an action a is satisfied in the states

where φi+1
a takes the value 1. To do this, we can ensure that the constraint for action a is triv-

ially satisfied when φa is 0. So we introduce the following policy factor as a summand in our

constraint:

φ̂i+1
a = (φi+1

a − 1) · ∞ (3.13)

Clearly, φ̂i+1
a will take the value 0 in states where a should be taken according to πi+1 and the

value −∞ otherwise.

To see how this allows us to perform the backup under a policy, let us rewrite the constraints

we have expressed above:

β(i+1) ≥ φ̂i+1
a +

∣

∣

∣

∣

∣

r
∑

i=1

Ri(~xi, a) +
k
∑

j=1

(w
(i+1)
j Ba[bj(~x)])−

k
∑

j=1

[w
(i+1)
j bj(~x)]

∣

∣

∣

∣

∣

; ∀~x, a ∈ A

(3.14)

Effectively, the constraint for action a will be trivially satisfied when the policy factor φ̂i+1
a

should not be applied and takes the value −∞. Otherwise, φ̂i+1
a takes the value 0 in states

where the policy should be applied and then the remainder of the constraint must be satisfied.

In a subsequent section, we discuss efficient methods for solving the above form of LP with

CHAPTER 3. FACTORED MDPS 53

a factored max-
∑

form of the constraints.

Approximate Linear Programming

In the extension of approximate linear programming (ALP) to factored models, we simply

replace the enumerated state representation from the previous chapter in Equation 2.24 with the

factored representation introduced in this chapter following Schuurmans and Patrascu [2001]

where we have again exploited linearity of the backup operator:

Variables: w1, . . . , wk

Minimize:
∑

~x

k
∑

j=1

wjbj(~x) (3.15)

Subject to: 0 ≥
r
∑

i=1

Ri(~xi, a) +
k
∑

j=1

(wjB
a[bj(~x)])−

k
∑

j=1

wjbj(~x) ; ∀a, ~x

We can exploit the factored nature of the basis functions to simplify the objective to the

following compact form where we assume each basis function explicitly depends on the subset

of state variables in ~xj:

∑

~x

k
∑

j=1

wjbj(~xj) =
k
∑

j=1

wjyj (3.16)

where yj = 2n−|~xj |
∑

~xj
bj(~xj).

Finally, we note that exploiting linearity of the backup operator again provides us with a

factored max-
∑

form of the ALP LP constraints from Equation 3.15 as it did similarly for the

final form of the API LP constraints in Equation 3.14. We discuss an efficient solution to LPs

with such max-
∑

factored constraints in the next section.

Constraint Generation

In the above LP, both forms for the constraints take on the generic form of a sum of m factors

Fi(~x) over (ideally) small sets of variables:

0 ≥ w1 · F1(~x) + . . .+ wn · Fm(~x) ; ∀~x (3.17)

Not every factor must have a weight wi, but we note that each factor has at most one linear

weight owing to the structure of the original basis functions and the properties of the backup

CHAPTER 3. FACTORED MDPS 54

operators.

To view the constraints in a more concrete form, we note that for every possible instantia-

tion ~x∗ of the state, we could simply instantiate the factor Fi to its constant value ci = Fi(~x
∗)

under that state assignment and come up with a corresponding linear constraint:

0 ≥ w1 · c1 + . . .+ wn · cm (3.18)

We could generate constraints for all possible state assignments ~x∗ and solve our LP in this

manner. However, we would obviously lose the benefits of our factored representation in that

we would have to specify a number of constraints that scales exponentially in the number of

state variables.

However, if we rewrite the constraints from Equation 3.17 in the following equivalent form

where we enforce all constraints simultaneously with one maximization then we can see how

to exploit the factored constraint structure:

0 ≥ max
~x

[w1 · F1(~x) + . . .+ wn · Fm(~x)] (3.19)

This cost network [Dechter, 1999] form of these constraints lends itself to very efficient eval-

uation methods such as variable elimination. The question is how to exploit this property in

our LP solution. Fortunately, as it turns out, there are at least two approaches to exploiting this

structure.

The first solution, due to Guestrin et al. [2002] is to directly simulate variable elimination in

the LP encoding of the constraints of Equation 3.19. This leads to a total number of constraints

O(exp(TW)) where TW is the induced tree-width of the cost-network under the variable

elimination order that was used. This is an attractive method because the structure of the

factored MDP and the basis functions should lead to TW << n when (a) the basis functions

range over small sets of variables with little or no overlap and (b) the backups of each basis

function have similar characteristics due to the property that only small sets of variables affect

each other causally in the Bayes net. Thus, simulating variable elimination in the LP variable

encoding to produce O(exp(TW)) constraints would be a much more efficient solution than

generating O(exp(n)) constraints as would be done in the enumerated state case.

However, a simpler approach and often an empirically faster method in practice11 is the

technique of constraint generation [Schuurmans and Patrascu, 2001; Trick and Zin, 1997]. In

11This is despite the lack of similar guarantees on the maximum number of constraints generated.

CHAPTER 3. FACTORED MDPS 55

this case, we perform the following solution procedure where we have specified some solution

tolerance ǫ:

1. Initialize LP with ~wi = ~0, i = 0, and empty constraint set.

2. For each constraint in the cost-network form of Equation 3.19 instantiated with the cur-

rent solution ~wi, find the maximally violated constraint C (if one exists) using variable

elimination.

3. If C’s constraint violation is larger than ǫ, add C to LP constraint set, otherwise return

~wi as solution.

4. Solve LP for new solution ~wi+1, goto step 2

Using these constraint generation techniques, one can now efficiently apply either API or

ALP with linear-value approximation to factored MDPs. However in comparing API and ALP,

we note that in practice, one cannot always guarantee a compact structure for the policies

generated during API. In addition, API requires one optimization of an LP on each iteration

until convergence or some stopping criterion is reached. In contrast, ALP does not require a

representation of the policy and tends to have a lower tree-width in its constraints. ALP also

solves the problem with one LP optimization. Consequently, ALP tends to be much faster than

API as noted by Schuurmans and Patrascu [2001], but they also note in their experiments that

API produced better policies.

Basis Function Generation

One additional difficulty with linear value function approximation is that of generating a good

set of basis functions. Certainly, a set of basis functions that poorly approximate the optimal

value function can have an adverse impact on decision quality. Consequently, one can take

a number of approaches to generating basis functions such as finding subtasks with additive

reward [Poupart et al., 2002a], performing branch-and-bound search to find Bellman-error

minimizing basis functions [Poupart et al., 2002b], or analyzing the dual of the LP solution

to heuristically generate basis function candidates [Poupart et al., 2002b]. Unfortunately, at

this point in time, generating a good basis function set is still more of an art than a science,

and there are no currently known methods that allow one to attain a priori guarantees on the

decision quality for a given set of basis functions.

CHAPTER 3. FACTORED MDPS 56

3.4 Exploiting CSI, Additive, and Multiplicative Indepen-

dence

Previously we discussed how value iteration could be defined in terms of ADDs — this was

specifically exploited in the SPUDD [Hoey et al., 1999] algorithm. Unfortunately, SPUDD

only exploits CSI and shared substructure in value functions due to its use of ADDs. Although

ADDs can exploit some structure in additive rewards as was shown in Figure 3.1(c), ADDs

were not intended to directly exploit additive structure nor can they compactly represent all

additive functions. What is needed is a decision diagram that can exploit CSI, additive, and

perhaps other forms of structure.

To address this need, we propose an affine extension to ADDs called affine ADDs (AADDs)

capable of compactly representing context-specific, additive, and multiplicative structure. We

show that the AADD has worst-case time and space performance within a multiplicative con-

stant of that of ADDs, but that it can be linear in the number of variables in cases where ADDs

are exponential in the number of variables. We provide an empirical comparison of tabular,

ADD, and AADD representations used in standard Bayes net and MDP inference algorithms

and conclude that the AADD performs at least as well as the other two representations and may

yield an exponential performance improvement over both the ADD and tabular representations

when additive or multiplicative structure can be exploited.

3.4.1 Limitations of ADDs

As shown in Figure 3.7, ADDs often provide an efficient representation of functions with

context-specific independence, such as functions whose structure is conjunctive (3.7a) or dis-

junctive (3.7b) in nature. Thus, as previously mentioned, ADDs can offer exponential space

savings over a fully enumerated tabular representation. However, the compactness of ADDs

does not extend to the case of additive or multiplicative independence, as demonstrated by the

exponentially large representations when this structure is present (3.7c). Unfortunately such

structure may occur in probabilistic and decision-theoretic reasoning domains, potentially lead-

ing to exponential running times and space requirements for inference on these problems.

CHAPTER 3. FACTORED MDPS 57

 ADD Structure

017 6 5 4 3 2

07 6 5 4 3 2 1
1 0 1 0

x2

x1

x3

x2

x1 x1x1x1x1

x2 x2

x3x3

 Structure

c) Additive and Multiplicative

 Structure

a) Conjunctive ADD b) Disjunctive ADD

Figure 3.7: Some example ADDs showing a) conjunctive structure (f = if (x1 ∧ x2 ∧
x3) then 1 else 0, b) disjunctive structure (f = if (x1 ∨ x2 ∨ x3) then 1 else 0), and c)

additive (f = 4x3 + 2x2 + x1) and multiplicative (f = γ4x3+2x2+x1) structure (top and bottom

sets of terminal values, respectively). The high (true) edge is solid, the low (false) edge is

dotted.

3.4.2 Affine Algebraic Decision Diagrams (AADDs)

To address the limitations of ADDs, we introduce an affine extension to the ADD (AADD)

that is capable of canonically and compactly representing context-specific, additive, and mul-

tiplicative structure in functions from B
n → R. However, before we formally define AADDs

we begin with two examples of AADDs that compactly represent additive and multiplicative

structure.

Figure 3.8 shows portions of the exponentially sized ADDs from Figure 3.7c represented

by AADDs of linear size. The evaluation of an AADD is essentially the same as ADDs: given

a variable assignment, one traverses the AADD from the root to the leaf following branches

at each node corresponding to the given variable assignment. However, one will note that the

edges are labelled with two parameters 〈c, b〉 that denote an affine transform of the subnode

it points to. That is, if the subnode evaluates to v, then the affine transform of that subnode

evaluates to c + b · v. This very simple modification to ADDs to specify affine transforms

on edges turns out to be quite powerful in that previously exponentially-sized ADDs can be

represented as linearly-sized ADDs as shown in these examples.

CHAPTER 3. FACTORED MDPS 58

}

2 3

31 −

−
0 ,< >

3

31 − 31 −

− −1, ><

31 − 3 ,< >

x2 x2

x1 x1

a) Additive AADD Structure b) Multiplicative AADD Structure

< 0 , 0 >< 1, 0 >

< 0 , 1/3 >

< 0 , 3 >

< 2/3, 1/3 >

0 0

< 0 , 0 > < 1, 0 >

 f = 2x + x f = < 1;2x x2 112

}
}

F

G

F

0

}

Figure 3.8: Portions of the ADDs from Figure 3.7(c) expressed as generalized AADDs. The

edge weights are given as 〈c, b〉. The curly braces on the right indicate the elements of the

AADD grammar that correspond to each portion of the AADD diagram.

Recalling our definitions from Section 3.1.2 for ADDs, we formally define AADDs with

the following BNF grammar where F represents a normalized AADD that we will subsequently

restrict to have maximum range [0, 1] andG represents a generalized AADD with range [c, c+b]:

G ::= c+ bF

F ::= 0 | if (F var) then ch + bhFh else cl + blFl

F may be the constant 0 terminal node or an internal decision node represented as if (F var)

then ch + bhFh else cl + blFl. Internal decision nodes have essentially the same semantics

as they did for ADDs in the BNF grammar from Equation 3.2 except that there is an affine

transform ch + bh · Fh on the high edge (evaluated when var = true) and an affine transform

cl + bl · Fl on the low edge (evaluated when var = false). Here, ch and cl are real constants in

the closed interval [0, 1], bh and bl are real constants in the half-open interval (0, 1], F var is a

boolean variable associated with F , and Fl and Fh are of grammar F (i.e., normalized AADDs

themselves). We also impose the following constraints to enforce canonicity of the AADD

representation:

1. The variable F var does not appear in Fh or Fl.

2. min(ch, cl) = 0

CHAPTER 3. FACTORED MDPS 59

3. max(ch + bh, cl + bl) = 1

4. If Fh = 0 then bh = 0 and ch > 0. Similarly for Fl.

5. In the grammar for G, we require that if F = 0 then b = 0, otherwise b > 0.

These constraints require that F is normalized to have range [0, 1] (when F 6= 0). Since

normalized AADDs in grammar F are restricted to the range [0, 1], we need the top-level

positive affine transform of generalized AADDs in grammar G to allow for the representation

of functions with arbitrary range. One can verify that these constraints hold for the AADDs in

Figure 3.8 where all variable and terminal nodes are normalized AADD nodes in the grammar

for F and the affine transform for the root node of the AADD is a generalized node in the

grammar for G.

Let V al(F, ρ) be the value of AADD F under variable value assignment ρ. This can be

defined recursively by the following equation:

V al(F, ρ) =















F = 0 : 0

F 6= 0 ∧ ρ(F var) = true : ch + bh · V al(Fh, ρ)

F 6= 0 ∧ ρ(F var) = false : cl + bl · V al(Fl, ρ)

Lemma 3.4.1. For any normalized AADD F over a variable domain x1, . . . , xn and for all

variable assignments ρ to variables in F ’s domain, we have that V al(F, ρ) is in the interval

[0, 1], minρ V al(F, ρ) = 0, and if F 6= 0 then maxρ V al(F, ρ) = 1.

Proof. For the base case of F = 0, the lemma obviously holds. Now, for F 6= 0, we inductively

assume that Fl and Fh satisfy the lemma and are in the interval [0, 1]. Then for F , we obtain

the range [min(ch +min(Fh), cl +min(Fl)),max(ch + bh ·max(Fh), cl + bl ·max(Fl))], which

simplifies to [min(ch, cl),max(ch+bh, cl+bl)] based on our inductive assumption. Our previous

constraints (2) and (3) then imply the range of F is [0, 1], which proves the inductive case.

Recalling our previous definition of variable ordering for ADDs, we say that F satisfies a

given variable ordering if F = 0 or F is of the form if (F var) then ch + bhFh else cl + blFl

where F var does not occur in Fh or Fl and F var is the earliest variable under the given ordering

occuring in F . We say that a generalized AADD of form c+bF satisfies the order if F satisfies

the order.

Lemma 3.4.2. Fix a variable ordering over x1, . . . , xn. For any non-constant function g(x1,

. . . , xn) mapping B
n −→ R, there exists a unique generalized AADD G over variable domain

CHAPTER 3. FACTORED MDPS 60

Algorithm 4: GetGNode(v, 〈ch, bh, Fh〉, 〈cl, bl, Fl〉) −→ 〈cr, br, Fr〉

input : v, 〈ch, bh, Fh〉, 〈cl, bl, Fl〉 : Var, offset, mult, and node id for high/low branches

output : 〈cr, br, Fr〉 : Return values for offset,

multiplier, and canonical node id

begin

// If branches redundant, return child

if (cl = ch ∧ bl = bh ∧ Fl = Fh) then

return 〈cl, bl, Fl〉;

// Non-redundant so compute canonical form

rmin := min(cl, ch);
rmax := max(cl + bl, ch + bh);
rrange := rmax − rmin;

cl := (cl − rmin)/rrange;

ch := (ch − rmin)/rrange;

bl := bl/rrange;

bh := bh/rrange;

// Make new node if not in cache

if (〈v, 〈ch, bh, Fh〉, 〈cl, bl, Fl〉〉 → id is not in node cache) then

id := currently unallocated id;

insert 〈v, 〈ch, bh, Fh〉, 〈cl, bl, Fl〉〉 → id in cache;

// Return the cached, canonical node

return 〈rmin, rrange, id〉 ;

end

x1, . . . , xn satisfying the given variable ordering such that for all ρ ∈ B
n we have g(ρ) =

V al(G, ρ).

Proof. See Section B.1 of Appendix B.

This second lemma shows that under a given variable ordering, generalized AADDs are

canonical, i.e., two identical functions will always have identical AADD representations.

3.4.3 Algorithms

We now define AADD algorithms that are analogs of those previously given for ADDs. As

such, familiarity with the GetNode, Reduce, and Apply algorithms from Section 3.1.2 will

greatly aid in understanding the extensions to these algorithms for AADDs.

Similar to ADDs, we begin by defining a procedure for maintaining a cache of unique

AADD nodes. All algorithms rely on the helper function GetGNode given in Algorithm 4 that

takes an unnormalized AADD node of the form if (v) then ch+bhFh else cl +blFl and returns

CHAPTER 3. FACTORED MDPS 61

3

2

x1

< 0 , 0 >< 1, 0 >

< 0 , 1/3 >

< 0 , 3 >

< 2/3, 1/3 >

0

x2

x1

0

< 3, 0 > < 2 , 0 >

x1 x1

x2
x2

x1

x2

x1

x2

x1x1

0

< 1, 0 > < 0 , 0 >

0

< 0 , 0 >

< 2, 1 >

< 1, 0 >< 0 , 0 >< 1, 0 >

0

< 0 , 1 >< 2, 1 >

0

< 1, 0 > < 0 , 0 >

< 2, 1 >

012

x

Figure 3.9: An example application of the Reduce algorithm. The input is the top, leftmost

diagram (all edge weights are assumed to be 〈0, 1〉). The solid arrow shows the node currently

being evaluated by Reduce while the next diagram shows the result after this evaluation; when

the solid arrow is on a branch rather than a node itself, it indicates that it is completing the

evaluation of that branch within the Reduce call for the parent node. The bottom, leftmost

diagram is the final canonical AADD representation of the input.

the unique cached, generalized12 AADD node of the form 〈cr + brFr〉. As for GetNode with

ADDs, such a procedure is needed to ensure that there is a single unique node representing any

given function.13

Then, given a potentially unnormalized representation of an entire AADD, we define an

AADD generalization of the Reduce algorithm that constructs a corresponding canonical gen-

eralized AADD, removing any redundant structure in the process. Next, we define an AADD

generalization of the Apply algorithm to specify an efficient procedure for performing binary

operations on these AADDs. From these operations, we can then build the remaining op-

erations such as unary min and max and marginalization that we will need for probabilistic

inference.

At an abstract level, one can view the GetNode, Reduce, and Apply algorithms for AADDs

12Thus the “G” in the procedure name for GetGNode .
13Throughout all of the algorithms we use the tuple representation 〈c, b, F 〉, while in the text we often use the

equivalent notation 〈c + bF 〉 to make the node semantics more clear.

CHAPTER 3. FACTORED MDPS 62

Algorithm 5: Reduce(〈c, b, F 〉) −→ 〈cr, br, Fr〉

input : 〈c, b, F 〉 : Offset, multiplier, and node id

output : 〈cr, br, Fr〉 : Return values for offset,

multiplier, and node id

begin

// Check for terminal node

if (F = 0) then

return 〈c, 0, 0〉;

// Check reduce cache

if (F → 〈cr, br, Fr〉 is not in reduce cache) then

// Not in cache, so recurse

〈ch, bh, Fh〉 := Reduce(ch, bh, Fh);
〈cl, bl, Fl〉 := Reduce(cl, bl, Fl);

// Retrieve canonical form

〈cr, br, Fr〉 := GetGNode(F var, 〈ch, bh, Fh〉, 〈cl, bl, Fl〉);

// Put in cache

insert F → 〈cr, br, Fr〉 in reduce cache;

// Return canonical reduced node

return 〈c + b · cr, b · br, Fr〉;
end

as essentially identical to those for ADDs except that they are extended to propagate the affine

transform of the edge weights on recursion and to compute the normalization of the resulting

node on return.

Reduce

The Reduce algorithm given in Algorithm 5 takes an arbitrary ordered AADD, normalizes and

caches the internal nodes, and returns the corresponding generalized AADD. This produces a

unique representation of the AADD that removes any redundant structure in the input repre-

sentation. One will note that the Reduce algorithm precisely follows the constructive proof in

Lemma 3.4.2. This is sufficient to prove correctness of the algorithm. An example application

of the Reduce algorithm is given in Figure 3.9.

One nice property of the Reduce algorithm is that one does not need to prespecify the

structure that the AADD should exploit. If the represented function contains context-specific,

additive, or multiplicative independence, the Reduce algorithm will compactly represent this

structure uniquely and automatically w.r.t. the variable ordering as guaranteed by previous

lemmas.

CHAPTER 3. FACTORED MDPS 63

, b

F
var

1,h
F

var

1,l

< c , b >
2 2

< c , b >
1 1

F

var

1 F
var

F
var

F
var

2

2,h 2,l

op

1,h
>

1,h
>

1,l 1,l >
2,h 2,h

>
2,l 2,l

< c , b < c , b < c , b < c

Figure 3.10: Two AADD nodes F1 and F2 and a binary operation op with the corresponding

notation used in the presentation of the Apply algorithm.

Apply

We let op denote a binary operator on AADDs with possible operations being addition, sub-

straction, multiplication, division, min, and max denoted respectively as ⊕, ⊖, ⊗, ⊘, min(·, ·),
and max(·, ·). We do not explicitly provide binary comparison functions ≥, >, ≤, < for

AADDs as we did for ADDs, but note that they could be easily defined analogously to the

other binary operations, if needed.

The Apply routine given in Algorithm 6 takes two generalized AADD operands and an

operation as given in Figure 3.10 and produces the resulting generalized AADD. The control

flow of the algorithm is straightforward: We first check whether we can compute the result

immediately, otherwise we normalize the operands to a canonical form and check if we can

reuse the result of a previously cached computation. If we can do neither of these, we then

choose a variable to branch on and recursively call the Apply routine for each instantiation of

the variable. We cover these steps in-depth in the following sections.

Terminal computation The function ComputeResult given in the top half of Table 3.2,

determines if the result of a computation can be immediately computed without recursion.

The first entry in this table is required for proper termination of the algorithm as it computes

the result of an operation applied to two terminal 0 nodes. However, the other entries denote

a number of pruning optimizations that immediately return a node without recursion. For

example, given the operation 〈3 + 4F1〉 ⊕ 〈5 + 6F1〉, we can immediately return the result

〈8 + 10F1〉 since F1 is shared by both operands.

C
H

A
P

T
E

R
3

.
F

A
C

T
O

R
E

D
M

D
P

S
6
4

ComputeResult(〈c1, b1, F1〉, 〈c2, b2, F2〉, op) −→ 〈cr, br, Fr〉
Operation and Conditions Return Value

〈c1 + b1F1〉 〈op〉 〈c2 + b2F2〉; F1 = F2 = 0 〈(c1 〈op〉 c2) + 0 · 0〉
max(〈c1 + b1F1〉, 〈c2 + b2F2〉); c1 + b1 ≤ c2 〈c2 + b2F2〉
max(〈c1 + b1F1〉, 〈c2 + b2F2〉); c2 + b2 ≤ c1 〈c1 + b1F1〉
〈c1 + b1F1〉 ⊕ 〈c2 + b2F2〉; F1 = F2 〈(c1 + c2) + (b1 + b2)F1〉
max(〈c1 + b1F1〉, 〈c2 + b2F1〉); F1 = F2,
(c1 ≥ c2 ∧ b1 ≥ b2) ∨ (c2 ≥ c1 ∧ b2 ≥ b1)

c1 ≥ c2∧b1 ≥ b2 : 〈c1+b1F1〉
c2 ≥ c1∧b2 ≥ b1 : 〈c2+b2F1〉

Note: for all max operations above, return opposite for min
〈c1 + b1F1〉 〈op〉 〈c2 + b2F2〉; F2 = 0, op ∈ {⊕,⊖} 〈(c1 〈op〉 c2) + b1F1〉
〈c1 + b1F1〉 〈op〉 〈c2 + b2F2〉; F2 = 0, c2 ≥ 0, op ∈ {⊗,⊘} 〈(c1 〈op〉 c2) + (b1 〈op〉 c2)F1〉

Note: above two operations can be modified to handle F1 = 0 when op ∈ {⊕,⊗}
other null

GetNormCacheKey(〈c1, b1, F1〉, 〈c2, b2, F2〉, op) −→ 〈〈c′1, b′1〉〈c′2, b′2〉〉 and ModifyResult(〈cr, br, Fr〉) −→ 〈c′r, b′r, F ′
r〉

Operation and Conditions Normalized Cache Key and Computation Result Modification

〈c1 + b1F1〉 ⊕ 〈c2 + b2F2〉; F1 6= 0 〈cr + brFr〉 = 〈0 + 1F1〉 ⊕ 〈0 + (b2/b1)F2〉 〈(c1 + c2 + b1cr) + b1brFr〉
〈c1 + b1F1〉 ⊖ 〈c2 + b2F2〉; F1 6= 0 〈cr + brFr〉 = 〈0 + 1F1〉 ⊖ 〈0 + (b2/b1)F2〉 〈(c1 − c2 + b1cr) + b1brFr〉
〈c1 + b1F1〉 ⊗ 〈c2 + b2F2〉; F1 6= 0 〈cr + brFr〉 = 〈(c1/b1) + F1〉 ⊗ 〈(c2/b2) + F2〉 〈b1b2cr + b1b2brFr〉
〈c1 + b1F1〉 ⊘ 〈c2 + b2F2〉; F1 6= 0 〈cr + brFr〉 = 〈(c1/b1) + F1〉 ⊘ 〈(c2/b2) + F2〉 〈(b1/b2)cr + (b1/b2)brFr〉
max(〈c1 + b1F1〉, 〈c2 + b2F2〉);
F1 6= 0, Note: same for min

〈cr + brFr〉 = max(〈0 + 1F1〉, 〈(c2 − c1)/b1 + (b2/b1)F2〉) 〈(c1 + b1cr) + b1brFr〉

any 〈op〉 not matching above:

〈c1 + b1F1〉 〈op〉 〈c2 + b2F2〉
〈cr + brFr〉 = 〈c1 + b1F1〉 〈op〉 〈c2 + b2F2〉 〈cr + brFr〉

Table 3.2: Input and output summaries of the ComputeResult, GetNormCacheKey , and ModifyResult routines.

CHAPTER 3. FACTORED MDPS 65

Algorithm 6: Apply(〈c1, b1, F1〉, 〈c2, b2, F2〉, op) −→ 〈cr, br, Fr〉

input : 〈c1, b1, F1〉, 〈c2, b2, F2〉, op : Nodes and op

output : 〈cr, br, Fr〉 : Generalized node to return

begin

// Check if result can be immediately computed

if (ComputeResult(〈c1, b1, F1〉, 〈c2, b2, F2〉, op)→ 〈cr, br, Fr〉 is not null) then

return 〈cr, br, Fr〉;
// Get normalized key and check apply cache

〈〈c′1, b′1〉, 〈c′2, b′2〉〉 :=
GetNormCacheKey(〈c1, b1, F1〉, 〈c2, b2, F2〉, op);

if (〈〈c′1, b′1, F1〉, 〈c′2, b′2, F2〉, op〉 → 〈cr, br, Fr〉 is not in apply cache) then

// Not terminal, so recurse

if (F1 is a non-terminal node) then

if (F2 is a non-terminal node) then

if (F var
1 comes before F var

2) then

var := F var
1 ;

else

var := F var
2 ;

else

var := F var
1 ;

else

var := F var
2 ;

// Propagate affine transform to branches

if (F1 is non-terminal ∧ var = F var
1) then

F v1
l := F1,l; F v1

h := F1,h;

cv1
l := c′1 + b′1 · c1,l; cv1

h := c′1 + b′1 · c1,h;

bv1
l := b′1 · b1,l; bv1

h := b′1 · b1,h;

else

F v1
l/h := F1; cv1

l/h := c′1; bv1
l/h := b′1;

if (F2 is non-terminal ∧ var = F var
2) then

F v2
l := F2,l; F v2

h := F2,h;

cv2
l := c′2 + b′2 · c2,l; cv2

h := c′2 + b′2 · c2,h;

bv2
l := b′2 · b2,l; bv2

h := b′1 · b2,h;

else

F v2
l/h := F2; cv2

l/h := c′2; bv2
l/h := b′2;

// Recurse and get cached result

〈cl, bl, Fl〉 := Apply(〈cv1
l , bv1

l , F v1
l 〉, 〈cv2

l , bv2
l , F v2

l 〉, op);
〈ch, bh, Fh〉 := Apply(〈cv1

h , bv1
h , F v1

h 〉, 〈cv2
h , bv2

h , F v2
h 〉, op);

〈cr, br, Fr〉 := GetGNode(var, 〈ch, bh, Fh〉, 〈cl, bl, Fl〉);
// Put result in apply cache and return

insert 〈c′1, b′1, F1, c
′
2, b

′
2, F2, op〉 → 〈cr, br, Fr〉 into apply cache;

return ModifyResult(〈cr, br, Fr〉);
end

CHAPTER 3. FACTORED MDPS 66

Recursive computation If a call to Apply is unable to immediately compute a result or reuse

a previously cached computation, we must recursively compute the result. For this we have two

cases (the third case where both operands are 0 terminal nodes having been taken care of in the

previous section):

• F1 or F2 is a 0 terminal node, or F var
1 6= F var

2 : We assume the operation is commu-

tative and reorder the operands so that F1 is the 0 node or the operand whose variable

comes later in the variable ordering so that we know to branch on F var
2 first.14 Then

we propagate the affine transform to each of F2’s branches and compute the operation

applied separately to F1 and each of F2’s high and low branches. We then build an if

statement conditional on F var
2 and normalize it to obtain the generalized AADD node

〈cr, br, Fr〉 for the result:

〈ch, bh, Fh〉 = Apply(〈c1, b1, F1〉, 〈c2 + b2c2,h, b2b2,h, F2,h〉, op)
〈cl, bl, Fl〉 = Apply(〈c1, b1, F1〉, 〈c2 + b2c2,l, b2b2,l, F2,l〉, op)
〈cr, br, Fr〉 = GetGNode(F var

2 , 〈ch, bh, Fh〉, 〈cl, bl, Fl〉)

• F1 and F2 are non-terminal nodes and F var
1 = F var

2 : Since the variables for each

operand match, we know the result 〈cr, br, Fr〉 is simply a generalized if statement

branching on F var
1 (= F var

2) with the true case being the operator applied to the high

branches of F1 and F2 and likewise for the false case and the low branches:

〈ch, bh, Fh〉 = Apply(〈c1 + b1c1,h, b1b1,h, F1,h〉,
〈c2 + b2c2,h, b2b2,h, F2,h〉, op)

〈cl, bl, Fl〉 = Apply(〈c1 + b1c1,l, b1b1,l, F1,l〉
〈c2 + b2c2,l, b2b2,l, F2,l〉, op)

〈cr, br, Fr〉 = GetGNode(F var
1 , 〈ch, bh, Fh〉, 〈cl, bl, Fl〉)

Canonical caching If the AADD Apply algorithm were to compute and cache the results

of applying an operation directly to the operands, the algorithm would provably have the same

14As for ADDs, we note that the first case prohibits the use of the non-commutative ⊖ and ⊘ operations.

However, a simple solution would be to recursively descend on either F1 or F2 rather than assuming commutativity

and swapping operands to ensure descent on F2. To accommodate general non-commutative operations, we have

used this alternate approach in our specification of the Apply routine given in Algorithm 6.

CHAPTER 3. FACTORED MDPS 67

time complexity as the ADD Apply algorithm. Yet, if we were to compute 〈0+1F1〉⊕〈0+2F2〉
and cache the result 〈cr + brFr〉, we could compute 〈5 + 2F1〉 ⊕ 〈4 + 4F2〉 without recursion

as follows:

(a) 〈5 + 2F1〉 ⊕ 〈4 + 4F2〉 = 9 + 2 · (〈0 + F1〉 ⊕ 〈0 + 2F2〉)
(b) = 9 + 2 · 〈cr + brFr〉
(c) = 〈(9 + 2cr) + 2brFr〉

The key observation here is that we can (a) rewrite the second operation in a normalized form

where we subtract off the constants and divide by the first coefficient, (b) substitute in the result

of a previously cached computation, and then (c) modify the result to reverse the previous

normalization.

This suggests a canonical caching scheme that normalizes all cache entries to increase the

chance of a cache hit. The actual result can then be easily computed from the cached result

by reversing the normalization as demonstrated in the example. This ensures optimal reuse of

the Apply operations cache and can lead to an exponential reduction in running time over the

non-canonical caching version.

We introduce two additional functions to perform this caching: GetNormCacheKey to

compute the canonical cache key, and ModifyResult to reverse the normalization in order to

compute the actual result. These algorithms are summarized in the bottom half of Table 3.2.

Other Operations

We summarize some of the remaining operations that can be performed (efficiently) on AADDs:

• min and max computation: The min and max of a generalized AADD node 〈c + bF 〉
are respectively c and c+ b due to [0, 1] normalization of F .

• Restriction: The restriction of a variable xi in a function to either true or false (i.e.

F |xi=T/F) can be computed similarly to ADDs by replacing all decision nodes for vari-

able xi with the branch corresponding to the variable restriction and propagating the

affine transform to the direct subnodes. Then Reduce can be applied on the resulting

decision diagram to convert it to a canonical AADD.

• Sum out/marginalization: A variable xi can be summed (or marginalized) out of a func-

tion F simply by computing the sum of the restricted functions (i.e. F |xi=T ⊕ F |xi=F)

CHAPTER 3. FACTORED MDPS 68

exactly as done for ADDs.

• Negation/reciprocation: While it may seem that negation of a generalized AADD node

〈c+ bF 〉 would be as simple as 〈−c+−bF 〉, we note that this violates our normalization

scheme which requires b > 0. Consequently, negation must be performed explicitly

with the Apply operation as 0⊖ 〈c+ bF 〉. Likewise, reciprocation (i.e., 1
〈c+bF 〉

) must be

performed explicitly with the Apply operation as 1⊘ 〈c+ bF 〉.

• Variable reordering: Rudell’s [1993] ADD variable reordering algorithm previously

summarized for ADDs can be applied to AADDs without loss of efficiency. The only

modification needed is to recompute the normalized affine transforms for pairwise ro-

tations of neighboring nodes involving variables xi and xj , but this is simply a local

application of the Reduce algorithm.

Cache Implementation

If one were to use a naive cache implementation that relied on exact floating-point values

for hashing and equality testing, one would find that many nodes which should be the same

under exact computation often turn out to have offsets or multipliers differing by±1e-15; these

numerical precision errors result from repeated multiplications and divisions during the Reduce

and Apply operations. This can result in an exponential explosion of nodes if not controlled.

Consequently, it is better to use a hashing scheme that considers equality within some range

of numerical precision error ǫ. While it is difficult to guarantee such an exact property for an

efficient hashing scheme, we next outline an approximate approach that we have found to work

both efficiently and nearly optimally in practice.

The node cache used in GetGNode and the operation result cache used in Apply both use

cache keys containing four floating-point values (i.e., the offsets and multipliers for two AADD

nodes). If we consider this 4-tuple of floating-point values to be a point in Euclidean space,

then we can measure the distance between two 4-tuples 〈u1, u2, u3, u4〉 and 〈v1, v2, v3, v4〉 as

the L2 (Euclidean) distance between these points. In an approximate caching scheme that takes

numerical precision error into account, we might consider two 4-tuples corresponding to hash

keys to be equivalent if their L2 distance from each other is smaller than ǫ:

√

(u1 − v1)2 + (u2 − v2)2 + (u3 − v3)2 + (u4 − v4)2 < ǫ (3.20)

Ideally, when probing the cache to see if a key exists within an L2 distance of ǫ, we would

CHAPTER 3. FACTORED MDPS 69

2
d

<u ,u >2

ε
ε

<0,0>

<v ,v >
1 2

1

1
d

ε

Figure 3.11: A geometric representation of the hashing scheme we use. All points within ǫ of

〈u1, u2〉 (the shaded circle) lie within the ring having outer and inner radius
√
u1

2 + u2
2 ± ǫ.

Thus, a hashing scheme which hashes all points within the ring to the same bucket guarantees

that all points within ǫ of 〈u1, u2〉 also hash to the same bucket. Note that buckets are discretized

according to the distance from the origin (i.e., the vantage point for comparison).

prefer to avoid a pairwise comparison of our probe key to all nodes currently in the cache. For-

tunately, we can use the vantage point [Yianilos, 1993] method for efficiently finding nearest

neighbors in a metric space. The basic idea of these methods is that we can exploit the triangle

inequality to obtain the following necessary conditions implied by the previous error between

two 4-tuples:

√

(u1 − v1)2 + (u2 − v2)2 + (u3 − v3)2 + (u4 − v4)2 ≤ ǫ

=⇒ |
√

u1
2 + u2

2 + u3
2 + u4

2 −
√

v1
2 + v2

2 + v3
2 + v4

2| ≤ ǫ

A geometric representation providing intuitions for these necessary conditions is given for

two dimensions in Figure 3.11. The benefit of these necessary conditions is that their compu-

tation only requires the relative distances of each 4-tuple to the origin (thus, we can view the

origin as the vantage point for comparison). While this only gives us a necessary condition

in our search for 4-tuples within some L2 distance of the probe, it gives us a simple test that

allows us to prune out the majority of 4-tuples that we need to consider in a typical case.

Based on these necessary conditions for Equation 3.20, we can use the following approx-

imate hashing scheme that will determine other 4-tuples in the hash table that are candidates

for being within ǫ distance of a probe 〈v1, v2, v3, v4〉: Compute the L2 distance d between

CHAPTER 3. FACTORED MDPS 70

〈v1, v2, v3, v4〉 and the origin. To compute the hash key for 〈v1, v2, v3, v4〉, extract only the bits

of the floating-point representation of d representing a fractional portion greater than ǫ and use

this for an integer representation of the hash key (we are effectively discretizing the distances

into buckets of width ǫ). For equality testing in the hash table, test that the true L2 metric

between a tuple 〈u1, u2, u3, u4〉 and the probe 〈v1, v2, v3, v4〉 is less than ǫ.

While this hashing scheme does not guarantee that all 4-tuples having ǫ distance from

the origin 〈0, 0, 0, 0〉 hash to the same bucket (some 4-tuples within ǫ could fall over bucket

boundaries), we found that with bucket width ǫ = 1e-9 and numerical precision error generally

less than 1e-13, there was only a small chance of two nodes within ǫ distance hashing to

different buckets. For the empirical results we describe, this hashing scheme was sufficient to

prevent any uncontrollable cases of numerical precision error.

An alternate (and exact) hashing scheme would be to explicitly check the neighboring

bucket for matching 4-tuples when the probe comes within ǫ of a bucket boundary.15

3.4.4 Theoretical Results

Here we present two fundamental results for AADDs. The first theorem bounds the worst-case

space and time performance of the Reduce and Apply operations for AADDs in terms of the

corresponding operations on ADDs:

Theorem 3.4.3. For all functions F1 : B
n −→ R and F2 : B

m −→ R (n ≥ 0 and m ≥ 0),

the time and space performance of Reduce(F1) and Apply(F1, F2, op) for AADDs (operands

and results represented as canonical AADDs) is within a multiplicative constant of Reduce(F1)

and Apply(F1, F2, op) for ADDs (operands and results represented as canonical ADDs) in

the worst case assuming any fixed variable ordering.

Proof. See Section B.1 of Appendix B.

While the above results bound the space and time of the AADD operations on arbitrary

functions relative to the ADD operations for the same functions, it is interesting to note that

the worst case space and time bounds for the Apply operation given solely in terms of the

corresponding size of the input operands is very different for ADDs vs. AADDs.

The size of the result of the ADD Apply operation is known to be bounded quadratically

in the size of the largest input operand. Bryant [1986] shows this simply by observing that

the size of the ADD can be bounded in the number of possible distinct Apply calls given two

15Thanks to Roni Khardon for suggesting this modification.

CHAPTER 3. FACTORED MDPS 71

operands (any non-distinct calls will already have been cached), which is at most all possible

pairs of nodes when taking one node each from the first and second operands. The number

of these node pairs is obviously quadratic in the size of the largest input operand. Since each

(recursive) Apply call can contribute a maximum of one node to the ADD resulting from the

Apply operation, the space bound of Apply follows.

On the other hand, we note that the size of the result of the AADD Apply operation can

only be bounded exponentially in the combined size of the operands. To understand this,

note that unlike ADDs, AADDs do allow reconvergent edges when these edges are labelled

with different affine transforms of the same child node. For example, this can be observed

in the linearly structured AADDs of Figure 3.8. Let n be the number of nodes in a linearly

structured AADD; then an Apply call with one of these AADDs as operands may need to

traverse all possible distinct paths from root node to terminal node, which is exp(n) due to

the reconvergent structure. Following the same reasoning as for the ADD, this exponential

number of Apply calls can lead to a result of the Apply operation that has a number of nodes

exponential in the combined size of the operands (in the worst case).

Nonetheless, it is important to reiterate the result of Theorem 3.4.3 that the time and space

complexity of operations on functions represented as AADDs is never more than a constant

times worse than the operations applied to the same functions represented as ADDs.

The second theorem shows that in special cases, the AADD can yield an exponential-to-

linear reduction in the time and space complexity over the ADD:

Theorem 3.4.4. There exist functions F1 and F2 and an operator op such that the running

time and space performance of Apply(F1, F2, op) for AADDs can be linear in the number of

variables when the corresponding ADD operations are exponential in the number of variables.

Proof. See Section B.1 of Appendix B.

Empirically, we note that while the use of AADDs in place of ADDs has always led to

smaller space requirements and faster operations for all of our test cases, the rather extreme

best case of a reduction from exponential to linear complexity noted in Theorem 3.4.4 has

rarely been observed in practice. And perhaps more disappointingly, functions that may appear

to have additive and multiplicative structure that can be exploited extensively by AADDs turn

out to benefit little from the use of AADDs in place of ADDs. For example, the AADD

representation of the function (
∑n

i=1 2ixi)
2 requires precisely 1/4 of the space of the ADD

(for n > 2) even though the additive and multiplicative structure inherent in this function

CHAPTER 3. FACTORED MDPS 72

ostensibly suggest that the AADD might achieve a substantially more compact representation

than the ADD. Nonetheless, a 75% reduction in space obtained by using the AADD in place

of the ADD for this example still justifies the use of the AADD in this case.

3.4.5 Empirical Results

First we explore the running time and space requirements of ADDs and AADDs for simple

operations such as summation, multiplication, and maximization. Then we explore a number

of paradigms for structured probabilistic inference and compare the performance of standard

algorithms implemented using ADDs and tabular representations to those using AADDs.

Basic Operations

Figure 3.12 demonstrates the relative time and space performance of tables, ADDs, and AADDs

for⊕,⊗, and max, each for one example function. These verify the exponential to linear space

and time reductions proved in Theorem 3.4.4. The functions used in these examples are simply

generalizations of the additive and multplicative functions given in Figures 3.7c and 3.8 that

could be represented in exponential space with ADDs and linear space with AADDs.

Bayes Nets

Since dynamic Bayes nets are used in factored MDPs, it is informative to evaluate AADDs on

a variety of Bayes net structures. For Bayes nets, we simply evaluate the variable elimination

algorithm [Zhang and Poole, 1996] under the greedy tree-width minimizing min-fill [Kjaerulff,

1990] variable ordering with the conditional probability tables (CPTs) Pj and corresponding

operations replaced with those for tables, ADDs, and AADDs:

∑

xi /∈Query

∏

P1...Pj

P1(x1|Parents(x1)) · · ·Pj(xj|Parents(xj))

Table 3.3 shows the total number of table entries/nodes required to represent the original net-

work and the total running time of 100 random queries (each consisting of one query vari-

able and one evidence variable) for a number of publicly available Bayes nets16 and a noisy-

or [Pearl, 1986] model P (x1|x2, . . . , xn) = 1 − ∏n
i=2 P (x1|xi) where P (x1|xi) = .1 with

n = 15.

16See the Bayes net repository: http://www.cs.huji.ac.il/labs/compbio/Repository

C
H

A
P

T
E

R
3

.
F

A
C

T
O

R
E

D
M

D
P

S
7
3

6 8 10 12 14 16 18
0

2000

4000

6000

8000

10000

Running Time vs. #Vars for Sum

Variables

R
u

n
n

in
g

 T
im

e
 (

m
s
) Table

ADD
AADD

6 8 10 12 14 16 18
0

1

2

3

4

5

6
x 10

5 #Nodes/Entries vs. #Vars for Sum

Variables

#
N

o
d

e
s
/E

n
tr

ie
s

Table
ADD
AADD

6 8 10 12 14 16 18
0

2000

4000

6000

8000

10000

Running Time vs. #Vars for Product

Variables
R

u
n

n
in

g
 T

im
e

 (
m

s
) Table

ADD
AADD

6 8 10 12 14 16 18
0

1

2

3

4

5

6
x 10

5 #Nodes/Entries vs. #Vars for Product

Variables

#
N

o
d

e
s
/E

n
tr

ie
s

Table
ADD
AADD

6 8 10 12 14 16 18
0

2000

4000

6000

8000

10000

12000

Running Time vs. #Vars for Max

Variables

R
u

n
n

in
g

 T
im

e
 (

m
s
) Table

ADD
AADD

6 8 10 12 14 16 18
0

1

2

3

4

5

6
x 10

5 #Nodes/Entries vs. #Vars for Max

Variables

#
N

o
d

e
s
/E

n
tr

ie
s

Table
ADD
AADD

Figure 3.12: Comparison of Apply operation running time (top) and table entries/nodes (bottom) for tables, ADDs and AADDs. Left to

Right: (
∑

i 2
ixi)⊕ (

∑

i 2
ixi), (γ

P

i 2ixi)⊗ (γ
P

i 2ixi), max(
∑

i 2
ixi,
∑

i 2
ixi). Note the linear time/space for AADDs.

C
H

A
P

T
E

R
3

.
F

A
C

T
O

R
E

D
M

D
P

S
7
4

Bayes Net Table ADD AADD

Table Entries Running Time # ADD Nodes Running Time # AADD Nodes Running Time

Alarm 1,192 2.97 s 689 2.42 s 405 1.26 s

Barley 470,294 EML∗ 139,856 EML∗ 60,809 207 m

Carpo 636 0.58 s 955 0.57 s 360 0.49 s

Hailfinder 9045 26.4 s 4511 9.6 s 2538 2.7 s

Insurance 2104 278 s 1596 116 s 775 37 s

Noisy-Or-15 65566 27.5 s 125356 50.2 s 1066 0.7 s

Table 3.3: Number of table entries/nodes in the original network and variable elimination running times using tabular, ADD, and AADD

representations for inference in various Bayes nets. ∗EML denotes that a query exceeded the 1Gb memory limit.

C
H

A
P

T
E

R
3

.
F

A
C

T
O

R
E

D
M

D
P

S
7
5

6 7 8 9 10 11 12
0

2000

4000

6000

8000

10000

12000

14000

Running Time vs. #Computers for Star Config

Computers

R
u

n
n

in
g

T

im
e

(
s
)

6 7 8 9 10 11 12
0

1000

2000

3000

4000

5000

#Nodes/Entries vs. #Computers for Star Config

Computers

#
N

o
d

e
s
/
E

n
t
r
ie

s

Table
ADD
AADD

Table
ADD
AADD

6 7 8 9 10 11 12
0

1

2

3

4

5

6
x 10

4Running Time vs. #Computers for Bidirectional Ring Config

Computers

R
u

n
n

in
g

T

im
e

(
s
)

6 7 8 9 10 11 12
0

1000

2000

3000

4000

5000

#Nodes/Entries vs. #Computers for Bidirectional Ring Config

Computers

#
N

o
d

e
s
/
E

n
t
r
ie

s

Table
ADD
AADD

Table
ADD
AADD

6 7 8 9 10 11 12 13 14
0

2000

4000

6000

8000

10000

12000

14000

Running Time vs. #Computers for Independent Rings Config

Computers

R
u

n
n

in
g

T

im
e

(
s
)

6 7 8 9 10 11 12 13 14
0

2

4

6

8

10
x 10

4#Nodes/Entries vs. #Computers for Independent Rings Config

Computers

#
N

o
d

e
s
/
E

n
t
r
ie

s

Table
ADD
AADD

Table
ADD
AADD

Figure 3.13: MDP value iteration running times (top) and number of entries/nodes (bottom) in the final value function using tabular,

ADD, and AADD representations for various network configurations in the SYSADMIN problem.

CHAPTER 3. FACTORED MDPS 76

Note that the intermediate probability tables were too large in one instance for the tables

or ADDs, but not the AADDs, indicating that the AADD was able to exploit additive or mul-

tiplicative structure in these cases. Also, the AADD appears to yield an exponential to linear

reduction on the Noisy-Or-15 problem by exploiting the multiplicative structure inherent in

these special CPTs. While other algorithms have been explicitly designed to exploit noisy-or

network structure for efficient inference [Heckerman, 1990], the AADD automatically exploits

this structure in standard variable eliminination without explicit modification.

Markov Decision Processes

For MDPs, we simply evaluate the value iteration algorithm using a tabular representation and

its extension for decision diagrams as previously discussed for the SPUDD algorithm in exact

structured value iteration. We apply these variants of value iteration to factored MDPs from the

SYSADMIN domain introduced in Chapter 1 and formalized as a factored MDP in Section 3.1.1

of this chapter. Here we simply substitute tables, ADDs, and AADDs for the reward function,

value function, and DBN transition model dynamics in the factored MDP value iteration update

of Equation 3.6.

Figure 3.13 shows the relative performance of value iteration until convergence within 0.01

of the optimal value for networks in a star, bidirectional, and independent ring configuration.

While the reward and transition dynamics in the SYSADMIN problem have considerable ad-

ditive structure, we note that the exponential size of the AADD (as for all representations)

indicates that little additive structure survives in the exact value function. Nonetheless, the

AADD-based algorithm still manages to take considerable advantage of the additive structure

during computations and thus performs comparably or exponentially better than ADDs and

tables for exact value iteration.

Having provided a structured value iteration algorithm for factored MDPs, it is a natural

question as to whether we can extend the approximate value iteration ideas to AADDs in the

spirit of the APRICODD algorithm previously discussed. We have preliminarily explored this

and found that it is much more computationally difficult to prune AADDs in a manner that

does not induce unacceptably large approximations. This is because the already compact and

distributed nature of the AADD means that every edge typically impacts more states than in

the ADD. Nonetheless, this is an interesting area for future research.

CHAPTER 3. FACTORED MDPS 77

3.4.6 Related Work

There has been much related work in the formal verification literature that has attempted to

tackle additive and multiplicative structure in representation of functions from B
n → B

m.

These include *BMDs [Bryant and Chen, 1995], K*BMDs [R. Drechsler et al., 1997], EVB-

DDs & FEVBDDs [Tafertshofer and Pedram, 1997], HDDs & *PHDDs [Chen and Bryant,

1997].17

However, without covering each data structure in detail, we note there are a few major

differences between this related work and AADDs:

• These data structures all originated in the verification community, which means that their

terminals are restricted to be vectors of boolean variables, or more generally, integers.

When these diagrams can exploit both additive and multiplicative structure, normaliza-

tion of nodes in these data structures requires prime factorizations of edge weights so

there is no direct correspondence between this normalization and AADD normalization

(obviously, the prime factorization of a value in R is ill-defined).

• One could attempt to perform probabilistic inference with integer terminals, thus re-

quiring a rational or direct floating-point representation of values in R. Unfortunately

rational representations of terminals require large amounts of space to achieve compa-

rable precision to floating-point representations. And when rational representations are

restricted to the same space as floating-point representations, their computation error is

much greater than that of a floating-point representation (these reasons are, in fact, the

motivation behind floating-point representations). Probabilistic inference applications

require manipulating very small values and small numerical approximation errors tend

to multiply uncontrollably during marginalization, requiring very precise numerical rep-

resentations and accurate computations. This can only be reasonably achieved with a

floating-point representation.

• *PHDDs are the only decision diagrams that are intended to directly represent float-

ing point numbers and perform standard operations on them since they were created for

verification of floating-point arithmetic. However the caveat is that computation with

*PHDDs is equivalent to performing all floating-point operations in software. In con-

trast, AADDs using direct machine floating-point representations and highly accelerated

hardware implementations. So, even if *PHDDs could match AADDs in representational

17See [Drechsler and Sieling, 2001] for an excellent general overview of most of these decision diagrams.

CHAPTER 3. FACTORED MDPS 78

efficiency (the correspondence if true, is not at all obvious and is an open question), their

software-based floating-point computation would slow them down by orders of magni-

tude in comparison to AADDs.

3.5 Summary and Conclusions

We began this chapter by presenting a factored representation of MDPs that did not require full

state enumeration. We then proceeded to describe a large body of recent work that has sought

to exploit various forms of factored structure in MDP solution algorithms to likewise avoid

explicit state enumeration in those solutions. This work ranges from the use of data structures

like ADDs to compactly represent context specific independence in a variety of factored infer-

ence algorithms to the use of linear-value function approximation methods to exploit additive

structure (and potentially CSI if using appropriate structures for the factor representation) in

linear-value approximation solutions to MDPs.

Having done this, we noted that no solution could simultaneously exploit CSI and additive

independence in both the reward and transition structure of factored MDPs. To remedy this,

we introduced the AADD as a novel data structure that could be plugged into structured value

iteration algorithms to exploit CSI, additive independence, and multiplicative independence

in exact MDP solutions. We have proved that its worst-case time and space performance are

within a multiplicative constant of that of ADDs, but can be linear in the number of variables

in cases where ADDs are exponential in the number of variables. And we have provided

an empirical comparison of tabular, ADD, and AADD representations used in Bayes net and

MDP inference algorithms, concluding that AADDs perform at least as well as the other two

representations, and can yield an exponential time and space improvement over both when

additive or multiplicative structure can be exploited. However, these results are based on a very

limited analysis and a more comprehensive investigation is needed in the future to determine

in what situations AADDs should be used.

In practice, we note that all of these factored MDP algorithms can be quite efficient in

comparison to their enumerated state versions. Nonetheless, there are a number of negative

results suggesting that factored MDP representations and factored solution algorithms are not

a silver bullet for the curse of dimensionality in decision-theoretic planning problems. As the-

oretical evidence, Littman et al. [1998] note that finding an optimal plan using tree-structured

CPTs is EXP-COMPLETE, and finding an approximately optimal plan using bounded-size,

tree-structured CPTs is PSPACE-COMPLETE. While these results do not directly apply to

CHAPTER 3. FACTORED MDPS 79

other CPT structures, they are nonetheless discouraging.

However, factored MDP structure is just one type of structure that we can exploit in MDPs.

The other type of structure is far more ubiquitous for most of the planning community in

AI — that is relational structure. Dating back to the early days of planning when STRIPS

representations were introduced [Fikes and Nilsson, 1971], planning problem specifications

were inherently relational. And to this day, the predominant planning problem description

languages such as ADL [Pednault, 1989], PDDL [McDermott et al., 1998] and its probabilistic

variant PPDDL [Younes and Littman, 2004] are still relational. Yet if we cast these problems

in a factored MDP framework to solve them, we have to ground our relational representation to

propositional variables. But we don’t necessarily think of the problem in these ground terms.

Clearly there has to be more structure that we can exploit in relational planning problems than

just factored structure; we tackle this in the next chapter.

Chapter 4

First-order MDPs

In the last chapter we covered methods for compactly encoding propositionally factored rep-

resentations of MDPs along with solution algorithms aimed at efficiently exploiting this struc-

ture. We originally motivated this propositionally factored structure with the observation that

in many decision-theoretic planning problems, we can factor the state representation into inde-

pendent variables. However, there is much more structure typical in decision-theoretic planning

problems that we can exploit in the representation of MDPs and we need look no farther than

the STRIPS [Fikes and Nilsson, 1971], ADL [Pednault, 1989], and PDDL family [McDermott

et al., 1998; Fox and Long, 2001; Younes and Littman, 2004] of planning description languages

to see that all of these languages leverage relational structure for compact representations.

Given that relational representations seem natural for planning problems, it makes sense to

attempt to exploit this relational structure at a first-order level without resorting to grounding

methods. This is precisely the idea behind the first-order MDP model and its symbolic dynamic

programming solution [Boutilier et al., 2001] that we motivate and review in the first part of

this chapter.

The second half of this chapter introduces a simple procedure for generalizing the proposi-

tional ADDs and AADDs to first-order (FO) versions that we respectively denote as FOADDs

and FOAADDs, or collectively as FO(A)ADDs. We show how these first-order decision dia-

grams can be used to exploit structure FOMDP solution algorithms in much the same manner

that ADDs and AADDs could exploit structure in MDPs. We conclude with a simple set of

empirical results that demonstrate that FOADDs combined with a few logical simplification

rules prove sufficient to provide an automated solution to basic FOMDPs.

Also in the second half of this chapter, we introduce an additive decomposition approach for

approximately solving FOMDPs with universal reward specifications. These approaches are

80

CHAPTER 4. FIRST-ORDER MDPS 81

motivated in part by previous decomposition methods and enable the application of FOMDP

solution techniques to a reward specification that otherwise renders standard solution approaches

intractable.

4.1 Motivation

Before we introduce FOMDPs and their solution, we begin by introducing the basic notions of

relational planning problem specifications and motivate the need for exploiting this structure at

a lifted first-order level rather than at a ground propositional level.

4.1.1 Relational Planning Specifications

We can view many decision-theoretic planning problems as consisting of classes of domain

objects and the changing relations that hold between those objects at different points in time.

For example, recalling the BOXWORLD problem from Chapter 1 and depicted graphically in

Figure 1.1, we have four classes of domain objects: Box , City , Truck , and Plane . And for the

relations that hold between them, we have BoxIn(Box : b,City : c), TruckIn(Truck : t,City :

c), BoxOnTruck(Box : b,Truck : t), BoxOnPlane(Box : t,Plane : p), PlaneIn(Plane :

p,City : c)).1 In this framework, generic action templates such as loading or unloading a box

from a truck or plane or driving trucks and flying planes between cities are likely to apply

generically to domain objects and thus the planning problem can be specified independently of

any ground domain instantiation.

One recent language for representing relational probabilistic planning problems is PPDDL.

At its core, PPDDL is a probabilistic extension of a subset of PDDL conforming to the deter-

ministic ADL planning language; ADL, in turn, introduced universal and conditional effects

into the STRIPS representation. PPDDL allows for a range of goal-oriented and general re-

ward structure in the spirit of both task and process-oriented planning discussed in the previous

chapter.

To see the compactness of a relational representation, we provide a (P)PDDL2 representa-

1For convenience, we restate our notational conventions from Chapter 1: throughout the thesis all predicates

(including unary predicates denoting domain object classes) are capitalized and all variables and constants are

lowercased. We use the notation C : v to denote that variable v is restricted to domain object class C.
2General PPDDL specifications can be more compact for some problems than the PPDDL subset we refer

to in this thesis. For example, universal and conditional effects and probabilities can be arbitrarily nested, thus

allowing for exponentially more compact representations of probabilistic action effects than can be achieved with

probabilities only at the top-level of aspects as we show here [Rintanen, 2003].

CHAPTER 4. FIRST-ORDER MDPS 82

• Domain Object Types: Box , Truck , City

• Relational (S)tate Descriptors (with parameter sorts):

BoxIn(Box ,City), TruckIn(Truck ,City), BoxOn(Box ,Truck)

• (R)eward: if [∃Box : b.BoxIn(b, paris)] then 10 else 0

• (A)ctions (with parameter sorts) and (T)ransition Function:

– load(Box : b,Truck : t):

∗ Aspect 1 (probability 0.9):

· when [∃City : c.BoxIn(b, c) ∧ TruckIn(t, c)] then [BoxOn(b, t)]

· ∀City : c.when [BoxIn(b, c) ∧ TruckIn(t, c)] then [¬BoxIn(b, c)]}
– unload(Box : b,Truck : t):

∗ Aspect 1 (probability 0.9):

· ∀City : c.when [BoxOn(b, t) ∧ TruckIn(t, c)] then [BoxIn(b, c)]

· when [∃City : c.BoxOn(b, t) ∧ TruckIn(t, c)] then [¬BoxOn(b, t)]

– drive(Truck : t,City : c):

∗ Aspect 1 (probability 1.0)

· when [∃City : c1.TruckIn(t, c1)] then [TruckIn(t, c)]

· ∀City : c1.when [TruckIn(t, c1)] then [¬TruckIn(t, c1)]

– noop

∗ No effects.

Figure 4.1: A PPDDL-style representation of a simple variant of the BOXWORLD problem.

The deterministic PDDL subset would exclude the probabilistic aspects assuming that all ef-

fects occur with probability 1.0.

tion of the BOXWORLD problem in Figure 4.1 where for simplicity, we omit the Plane class of

objects and associated actions and relations and shorten the BoxOnTruck(Box : b,Truck : t)

relation to BoxOn(Box : b,Truck : t).

While the meaning of the PPDDL representation in Figure 4.1 is intended to be relatively

straightforward, there are a few important dimensions of the specification that should be ex-

plained. First, we assume that actions can execute in all states so we do not encode explicit

preconditions.3 When an action executes, it may have a number of different aspects encapsulat-

ing a joint set of effects, where each aspect is realized independently according to the specified

probability. For example, the unload action realizes its first aspect only 90% of the time it is

3While this assumption is not necessary, it does not have any effect on the optimal policy in a domain that

already has a noop action. It also simplifies (1) the amount of notation in our presentation, (2) the translation

from PPDDL to the stochastic situation calculus and (3) the proofs of correctness for FOMDPs.

CHAPTER 4. FIRST-ORDER MDPS 83

executed whereas the drive action deterministically realizes its first aspect on each execution.

Aspects themselves consist of conjunctions of effects. Each individual effect can be univer-

sal and conditional. Universal effects allow the inclusion of universal quantifiers that permit the

effect to apply to an arbitrary number of objects not explicitly named in the action’s parameter

list. If a universal effect applies only to the objects explicitly named in the action’s parameter

list, then we refer to it as a local universal effect. Universal effects are usually combined with

conditional effects denoted by the when/then clause pair that specify that the then effects oc-

cur in the post-action state if the when conditions hold for the pre-action state.4 For example,

when the load(b, t) action is executed, the first aspect is realized with 90% probability. When

this set is realized, then for any city c that satisfies BoxIn(b, c)∧TruckIn(t, c) in the pre-action

state, BoxOn(b, t) ∧ ¬BoxIn(b, c) will be asserted in the post-action state since both aspects

have equivalent when conditions. When this aspect is not realized on 10% of the load(b, t)

executions, no state changes occur and it is equivalent to a noop action.

One can easily see that this relationally specified domain-independent specification al-

lows very compact MDP specifications when compared to a corresponding ground factored

MDP representation. For example, consider instantiating the PPDDL problem in Figure 4.1

to the ground factored MDP representation in Figure 4.2 where we assume a problem in-

stance with a domain instantiation of three boxes, three cities, and two trucks. While this

is a trivially small domain instantiation, we note that its factored MDP representation requires

21 propositional atoms corresponding to over one million distinct states and 18 distinct ac-

tions that can be executed in each state. And the reward, which uses existential quantifi-

cation in the relational PPDDL specification must be grounded to obtain its corresponding

factored MDP representation. Clearly, for n objects, the grounded factor for the formula

∃Box : b.BoxIn(b, paris) will contain |Box | state variables, but if the reward were changed to

∀City : c ∃Box : b.BoxIn(b, c), the ground reward representation would contain |Box | · |City |
state variables — thus implying a combinatorial growth in the number of nested quantifiers.

In general, the number of ground atoms for a factored MDP representation will scale lin-

early in the number of relations, exponentially in the arity of each relation (assuming more than

one domain object), and superlinearly in the number of domain objects that fill each relation

slot (assuming the maximum arity is greater than one). To see this, let us assume for simplicity

that all object class instantations have k instances. Then a single unary relation would be rep-

4We note that each individual effect is only allowed to mention one positive or negative relation in the then

portion of the clause. A conjunction of then effects can be easily specified as multiple effects with the same when

condition. Disjunctive (i.e., non-deterministic) effects are prohibited in PPDDL.

CHAPTER 4. FIRST-ORDER MDPS 84

• Domain Object Instantiation:

– Box = {box 1, box 2, box 3}, Truck = {truck1, truck2}, City = {paris, berlin, rome}

• (S)tate-variable Atoms (i.e., binary state variables):

– BoxIn:

{BoxIn(box 1, paris),BoxIn(box 2, paris),BoxIn(box 3, paris),
BoxIn(box 1, berlin),BoxIn(box 2, berlin),BoxIn(box 3, berlin),
BoxIn(box 1, rome),BoxIn(box 2, rome),BoxIn(box 3, rome)}

– TruckIn:

{TruckIn(truck1, paris),TruckIn(truck1, berlin),TruckIn(truck1, rome),
TruckIn(truck2, paris),TruckIn(truck2, berlin),TruckIn(truck2, rome)}

– BoxOn:

{BoxOn(box 1, truck1),BoxOn(box 2, truck1),BoxOn(box 3, truck1),
BoxOn(box 1, truck2),BoxOn(box 2, truck2),BoxOn(box 3, truck2)}

• (A)ctions:

– load :

{load(box 1, truck1), load(box 2, truck1), load(box 3, truck1)
load(box 1, truck2), load(box 2, truck2)}, load(box 3, truck2)}

– unload :

{unload(box 1, truck1), unload(box 2, truck1), unload(box 3, truck1),
unload(box 1, truck2), unload(box 2, truck2)}, unload(box 3, truck2)}

– drive:

{drive(truck1, paris), drive(truck1, berlin), drive(truck1, rome)
drive(truck2, paris), drive(truck2, berlin), drive(truck2, rome)

• (T)ransition Function:

Follows directly from ground instantion of PPDDL actions in Figure 4.1.

• (R)eward:

if [BoxIn(box 1, paris) ∨ BoxIn(box 2, paris) ∨ BoxIn(box 3, paris)] then 10 else 0

Figure 4.2: One possible ground MDP instantiation of the BOXWORLD FOMDP.

resented by k ground atoms, a binary relation by k2 atoms, and an n-ary relation by kn atoms.

Similarly, the size of the grounding of any quantified formula will scale exponentially in the

number of nested quantifiers, linearly in the number of relations being quantified, and expo-

nentially in the size of the domain object classes being quantified. Assuming k instances for

all object classes and q nested (non-vacuous) quantifiers over formulae containing r relations,

the resulting unsimplified grounded representation would lead to rkq ground atoms. Thus, the

number of state variables and the number (if not the size) of the factors in the factored MDP

CHAPTER 4. FIRST-ORDER MDPS 85

representation will scale polynomially in the domain size with an order determined by the max-

imum arity of relations and the maximum number of nested quantifiers in any formula — at

least linearly in the best case.5

Nonetheless, if we have adequate space to permit the grounding of a relational MDP w.r.t. a

domain instantiation to obtain a factored MDP and we have the time to find an (approximately)

optimal solution to this factored MDP, then grounding gives us one approach to representing

and solving relational MDPs for specific domain instances.

4.1.2 Grounded vs. Lifted Solutions

In contrast to the grounded approach to representing relational MDPs as factored MDPs, it is

important to point out that no matter how many domain objects there may be in an actual prob-

lem instance, the size of the PPDDL relational planning problem specification in Figure 4.1

remains constant. Consequently, this invites the following question: if we can avoid a domain-

instance dependent blowup in the representation of a relational MDP such as in PPDDL, can

we avoid a domain-instance dependent blowup in its solution too?

Although we have yet to discuss the specifics of the first-order MDP representation, in Fig-

ure 4.3 we provide an optimal domain-instance independent value function and its correspond-

ing policy for the relational PPDDL specification of the BOXWORLD problem in Figure 4.1

(using discount factor γ = 0.9).

The key features to note here are the state and action abstraction in the value and policy

representation that are afforded by the first-order specification and solution of the problem.

That is, this solution does not refer to any specific set of domain objects, say just City =

{paris , berlin, rome}, but rather it provides a solution for all possible domain object instanti-

ations. And while the BOXWORLD problem could not be represented as a grounded factored

MDP for sufficiently large domain instantiations, much less solved, a domain-independent so-

lution to this particular problem is quite simple and applies to domain instances of any size due

to the power of state and action abstraction afforded by a first-order logic representation.

Thus, an alternative idea to solving a FOMDP at the ground level — and an idea that is cen-

tral to this chapter and the rest of thesis — is to convert the PPDDL relational specification to

a lifted first-order MDP representation and solve this first-order MDP directly at the first-order

level using purely symbolic methods. This approach obtains a solution that applies universally

5If the domain trivially has one unary relation, then the number of ground atoms would simply be the number

of domain objects filling that relation.

CHAPTER 4. FIRST-ORDER MDPS 86

• if (∃b.BoxIn(b, paris))
then do noop (value = 100.00)

• else if (∃b∗, t∗.TruckIn(t∗, paris) ∧ BoxOn(b∗, t∗))
then do unload(b∗, t∗) (value = 89.0)

• else if (∃b, c, t∗.BoxOn(b, t∗) ∧ TruckIn(t, c))
then do drive(t∗, paris) (value = 80.0)

• else if (∃b∗, c, t∗.BoxIn(b∗, c) ∧ TruckIn(t∗, c))
then do load(b∗, t∗) (value = 72.0)

• else if (∃b, c∗1, t∗, c2.BoxIn(b, c∗1) ∧ TruckIn(t∗, c2))
then do drive(t∗, c∗1) (value = 64.7)

• else do noop (value = 0.0)

Figure 4.3: A decision-list representation of the expected discounted reward value for an ex-

haustive partitioning of the state space in the BOXWORLD problem. The optimal action to

take is also shown for each start partition where the optimal bindings of the action variables

(denoted by a *) correspond to any binding satisfying those variable names in the state formula.

to all possible domain instantiations without scaling in a manner related to any specific domain

instantiation. As we will see, the power of this lifted style of solution is that it exploits the

existence of domain objects, relations over these objects, and the ability to express objectives

and action effects using quantification directly without resorting to grounding.

4.2 Situation Calculus Background

Before we present the first-order MDP (FOMDP) formalism, we must provide the foundations

for the situation calculus that provides the logical foundation for FOMDPs. We assume a basic

knowledge of sorted first-order logic and refer the reader to Reiter [2001] and Brachman and

Levesque [2004] for an overview of first-order logic concepts relevant to the material presented

here.

We do make two additional notes w.r.t. our presentation:

• Previously we have specified the sorts of variables explicitly, for example ∀City : c φ(c).

This notation can be easily converted to standard unsorted first-order logic for use with

many popular theorem provers, for example, ∀City : c φ(c) can be rewritten as ∀City(c)

=⇒ φ(c) and likewise ∃City : c φ(c) can be rewritten as ∃City(c) ∧ φ(c). We omit

explicit sort specifications on quantifiers when they can be inferred from context, for

CHAPTER 4. FIRST-ORDER MDPS 87

example, from the sort specification of relation slots or via transitivity of equality tests.

• Throughout this background review, we note that the situation calculus is deterministic

and thus we will be temporarily assuming a deterministic representation conforming to

the PDDL subset of the PPDDL specification for BOXWORLD in Figure 4.1. As noted

previously, this is equivalent to assuming that all of the action effects in Figure 4.1 occur

with probability 1.0.

We begin by describing the necessary background material from the situation calculus and

Reiter’s default solution to the frame problem [Reiter, 2001] required to understand FOMDPs.

This includes a discussion of the basic ingredients of the situation calculus formulation: ac-

tions, situations, and fluents along with relevant axioms (e.g., unique names for actions and

domain-specific axioms). Next we introduce effect axioms and explain how these can be de-

rived from a PDDL specification. Then we show how effect axioms can be compiled into

successor-state axioms that underly the default solution to the frame problem of the situation

calculus. We conclude by introducing the regression operator Regr that will prove crucial to

our symbolic dynamic programming solution to first-order MDPs.

4.2.1 Basic Ingredients

The situation calculus is a first-order language for axiomatizing dynamic worlds [McCarthy,

1963]. It’s basic language elements consist of actions, situations and fluents:

• Actions: Actions are first-order terms consisting of an action function symbol and argu-

ments. For example, an action for loading box b on truck t in the running BOXWORLD

example would be represented by load(b, t).

• Situations: A situation is a first order term denoting a specific state. The initial situation

is usually denoted as s0 and subsequent situations resulting from action executions are

obtained from the do(a, s) function that represents the situation resulting from the exe-

cution of action a in state s. For example, the situation resulting from loading box b on

truck t in the initial situation s0 and then driving truck t to city c is given by the term

do(drive(t, c), do(load(b, t), s0)).

• Fluents: A fluent is a relation whose truth value varies from situation to situation. A

fluent is simply a relation whose last argument is a situation term. For example, let us

imagine that we are given an initial state s0 such that the fluent BoxOn(b, t, s0) is false,

CHAPTER 4. FIRST-ORDER MDPS 88

but the fluents TruckIn(t, c, s0) and BoxIn(b, c, s0) are true. Then under the seman-

tics of a deterministic version of the load(b, t) action (which we formally define in a

moment), BoxOn(b, t, do(load(b, t), s0)) will hold true. We do not consider functional

fluents in this exposition, but they could be easily added to the language without adverse

computational side effects [Reiter, 2001].

4.2.2 From PDDL to a First-order Domain Theory

Now that we’ve defined the basics of the situation calculus, we need to describe how one

may go about axiomatizing a domain theory. In order to do so, we must first consider how

to describe the effects and non-effects of actions. We can begin by describing positive and

negative effect axioms that characterize how fluents change as a result of actions.6

• Positive Effect Axioms: Following is a set of the positive effect axioms stating which

actions can explicitly make each fluent true:

[∃c. a = load(b, t) ∧ BoxIn(b, c, s) ∧ TruckIn(t, c, s)] ⊃ BoxOn(b, t, do(a, s))

[∃t. a = unload(b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, c, s)] ⊃ BoxIn(b, c, do(a, s))

[∃c1. a = drive(t, c) ∧ TruckIn(t, c1, s)] ⊃ TruckIn(t, c, do(a, s))

• Negative Effect Axioms: Following is a set of the negative effect axioms stating which

actions can explicitly make each fluent false:

[∃c. a = unload(b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, c, s)] ⊃ ¬BoxOn(b, t, do(a, s))]

[∃t. a = load(b, t) ∧ BoxIn(b, c, s) ∧ TruckIn(t, c, s)] ⊃ ¬BoxIn(b, c, do(a, s))]

[∃c. a = drive(t, c) ∧ TruckIn(t, c1, s)] ⊃ ¬TruckIn(t, c1, do(a, s))

In general, positive and negative effect axioms can be specified by considering all of the

ways in which each action can affect each fluent. Fortunately, these axioms are easy to de-

rive directly from the PDDL representation given in Figure 4.1. In fact, one can verify that

these effect axioms are simply syntactic rewrites of the PDDL effects where we have made the

following transformations:

6All relations that can change between states in PPDDL have been rewritten as fluents with an extra situation

term. In addition, we assume all axioms are implicitly universally quantified.

CHAPTER 4. FIRST-ORDER MDPS 89

1. The action name from the PDDL effect is placed in an equality on the LHS of the ⊃.

2. All universal quantifiers for universal effects are dropped as all unquantified variables

are assumed to be universally quantified in the effect axioms.

3. The when conditions of the PDDL effect are conjoined on the LHS of the ⊃ with all

fluents specified in terms of the situation s.

4. The then portion of the effect (which should be a single literal) is placed on the RHS of

the ⊃ and is parameterized by the post-action situation do(a, s). Whether the literal is

negated or non-negated respectively determines whether the resulting axiom should be

negative or positive.

5. Any free variables appearing only on the LHS of the ⊃ and not appearing free in the

action term are explicitly existentially quantified in the LHS.

This takes care of specifying what changes, however we have not provided any axioms for

specifying what does not change, i.e., the so-called Frame Axioms. Obviously, if we want to

prove anything useful in our theory, we have to specify Frame Axioms. Otherwise, we would

never be able to infer the properties of a successor or predecessor state for an action as simple

as a noop. However, specifying exactly what does not change in a compact manner has been an

extremely difficult problem to solve for the situation calculus — this is, of course, the infamous

Frame Problem.

Without covering the various proposals for solutions to the Frame Problem, we jump di-

rectly to Reiter’s [Reiter, 1991] default solution. In this solution, one must specify all positive

and negative effects for a fluent, which conveniently, we have just done in our translation from

PDDL to the positive and negative effect axioms.

We use the following normal form for positive effect axioms:

γ+
F (~x, a, s) ⊃ F (~x, do(a, s)) (4.1)

And we use the following normal form for negative effect axioms:

γ−F (~x, a, s) ⊃ ¬F (~x, do(a, s)) (4.2)

We note here that the potential difference between are previous presentation of positive and

negative effect axioms and this normal form is there is exactly one positive effect axiom for

CHAPTER 4. FIRST-ORDER MDPS 90

each positive fluent and one negative effect axiom for each negative fluent. This just happens to

be the case in our example, but if it were otherwise, we could use the simple logical equivalence

[(C1 ⊃ F) ∧ (C2 ⊃ F)] ≡ [(C1 ∨ C2) ⊃ F] , (4.3)

to rewrite any set of effect axioms derived from the PDDL subset of PPDDL into this normal

form.

Finally, we need to add in unique name axioms for actions that specify for distinct action

names A and B:

A(~x) 6= B(~y) (4.4)

and also that identical actions have identical arguments:

A(x1, . . . , xk) = A(y1, . . . , yk) ⊃ x1 = y1 ∧ . . . ∧ xk = yk (4.5)

From this normal form, unique names axioms, and additional explanation closure axioms

that state that these are the only effects that hold in our world model, Reiter showed that we can

build successor state axioms (SSAs) that compactly encode both the effect and frame axioms

for a fluent. The format of the successor state axiom for a fluent F is as follows:

F (~x, do(a, s)) ≡ ΦF (~x, a, s)

≡ γ+
F (~x, a, s) ∨ F (~x, s) ∧ ¬γ−F (~x, a, s) (4.6)

For our running BOXWORLD example, we obtain the following SSAs:

BoxOn(b, t, do(a, s)) ≡ ΦBoxOn(b, t, a, s)

≡ [∃c. a = load(b, t) ∧ BoxIn(b, c, s) ∧ TruckIn(t, c, s)]

∨ BoxOn(b, t, s) ∧ ¬ [∃c. a = unload(b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, c, s)]

CHAPTER 4. FIRST-ORDER MDPS 91

BoxIn(b, c, do(a, s)) ≡ ΦBoxIn(b, c, a, s)

≡ [∃t. a = unload(b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, c, s)]

∨ BoxIn(b, c, s) ∧ ¬ [∃t. a = load(b, t) ∧ BoxIn(b, c, s) ∧ TruckIn(t, c, s)]

TruckIn(t, c, do(a, s)) ≡ ΦTruckIn(t, c, a, s)

≡ [∃c1. a = drive(t, c) ∧ TruckIn(t, c1, s)]

∨ TruckIn(t, c, s) ∧ ¬ [∃c1. a = drive(t, c) ∧ TruckIn(t, c1, s)]

While the notation might seem a bit cumbersome, the meaning of the axioms is quite intuitive.

For example, the successor state axiom for BoxOn(b, t, ·) states that a box b is on a truck t after

an action iff the action loaded box b on truck t or box b was already on truck t to begin with

and the action did not unload it.

4.2.3 Regression

An important tool in the development of first-order MDPs will be the ability to take a first-order

state description ψ and backproject it through a deterministic action to see what conditions

must have held prior to executing the action if ψ holds after executing the action. This is

precisely the definition of regression. Fortunately, the SSAs lend themselves to a very natural

definition of regression; specifically, if we want to regress a fluent F (~x, do(a, s)) through an

action a, we need only replace the fluent with its equivalent pre-action formula ΦF (~x, a, s). In

general, we can inductively define a regression operator Regr(·) for all first-order formulae as

follows [Reiter, 2001]:

• Regr(F (~x, do(a, s))) = ΦF (~x, a, s)

• Regr(¬ψ) = ¬Regr(ψ)

• Regr(ψ1 ∧ ψ2) = Regr(ψ1) ∧Regr(ψ2)

• Regr((∃x)ψ) = (∃x)Regr(ψ)

CHAPTER 4. FIRST-ORDER MDPS 92

Using the unique names assumption for actions and these regression rules, we can now

perform regression on any first-order logic formula. For example, if we know the formula

∃b.BoxIn(b, paris, do(unload(b∗, t∗), s))

holds then we can use the regression operator to determine what must have held in the pre-

action situation s. Following is a step-by-step derivation using the above rules:

Regr(∃b.BoxIn(b, paris , do(unload(b∗, t∗), s)))

=∃b.Regr(BoxIn(b, paris, do(unload(b∗, t∗), s)))

=∃b.ΦBoxIn(b, paris, unload(b∗, t∗), s)

=∃b. [∃t. unload(b∗, t∗) = unload(b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, paris , s)]

∨ BoxIn(b, paris, s)

∧ ¬ [∃t. unload(b∗, t∗) = load(b, t) ∧ BoxIn(b, paris, s) ∧ TruckIn(t, paris, s)]

At this point, we can use the unique names axioms for actions to simplify and we can addition-

ally exploit rules for distributing quantifiers and renaming variables w.r.t. equality to obtain the

following equivalent representation:

= [∃b, t. b = b∗ ∧ t = t∗ ∧ BoxOn(b, t, s) ∧ TruckIn(t, paris , s)]

∨ ∃b.BoxIn(b, paris, s)

= [(∃b.b = b∗) ∧ (∃t.t = t∗) ∧ BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris , s)]

∨ ∃b.BoxIn(b, paris, s)

We now make the assumption that all object domains are non-empty, which is an assumption

we will make throughout the thesis.7 Thus we can obtain the following fully simplified form

of the regression:

Regr(∃b.BoxIn(b, paris, do(unload(b∗, t∗), s)))

= [BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris, s)] ∨ ∃b.BoxIn(b, paris , s) (4.7)

7Specifically, we need a background theory for every object class Class that states ∃o. Class(o) in order to

use the simplification (∃Class : o. o = o∗) −→ ⊤.

CHAPTER 4. FIRST-ORDER MDPS 93

And this final result is very intuitive. Effectively it states that if there exists a box b in paris

after unloading some box b∗ from some truck t∗, then either the truck t∗ was in paris , or a box

was in paris to begin with.

4.3 FOMDP Representation

A first-order MDP (FOMDP) [Boutilier et al., 2001] can be thought of as a universal MDP

that abstractly defines the state, action, transition, and reward tuple 〈S,A, T,R〉 for all possible

domain instantiations (i.e., an infinite number of ground MDPs). In this section we formalize

the building blocks of FOMDPs. We begin by introducing the case notation and operations

and discuss the representation of the reward and value function as case statements. Then we

describe how stochastic actions are represented by building on our previous situation calculus

formalization. Once all of these components are defined, we will have everything needed to

generalize the dynamic programming solution from the ground case in previous chapters to the

lifted case of symbolic dynamic programming for FOMDPs.

4.3.1 Case Representation of Rewards, Values, and Probabilities

We introduce two useful variants of a case notation along with its logical definition to allow

first-order specifications of the rewards, probabilities, and values required for FOMDPs:

(t = case[φ1, t1; · · · ;φn, tn]) ≡









t =

φ1 : t1

: : :

φn : tn









≡
(

∨

i≤n

{φi ∧ t = ti}
)

(4.8)

Here the φi are state formulae where fluents in these formulae do not contain the term do8 and

the ti are terms. Often the ti will be numerical constants and the φi will partition state space.

We emphasize that the case notation for a logical formula (whether in the syntactic form

t = case[φ1, t1; · · · ;φn, tn] or in the tabular form above) is simply a meta-logical notation used

as a compact representation of the logical formula itself. In the meta-logical notation of cases,

8In contrast to states, situations reflect the entire history of action occurrences. However, the specification of

our FOMDP dynamics is Markovian and allows recovery of state properties from situation terms.

CHAPTER 4. FIRST-ORDER MDPS 94

all formulae φi, terms ti and parameters of the case statement such as the situation term s refer

to symbols of the underlying logical language. At a meta-logical level, a case statement may

be viewed as a pseudo-function (not necessarily assigning a distinct value to all elements of its

domain) and thus cases may be compared with inequalities and manipulated with arithmetic

operations to produce other case statements (all at a meta-logical level). In this sense, we often

omit the t = prefix from the case syntax and manipulate case[·] or its tabular representation

as if it were a function; we note that without the t = prefix, a case statement is not a logical

formula, but rather a protological statement.

We use case1[·] = case2[·] to mean two things. When we say R(s) = rCase(s), it is

a metalogical notation for R(s) = “some specific case statement” (sometimes rCase(s) is

used, sometimes a tabular representation, and sometimes an explicit logical formula is used).

The same follows for value functions V (s) = vCase(s), Q-functions Q(s, a) = qCase(s, a),

transition functions P (·, ·, s) = pCase(·, ·, s), basis functions bi(s) = bCase i(s), and policies

that we will define later. At many other points in the text, we will use case1[·] = case2[·]
in sequences of equational rewrites. The formal definition of such equality rewrites is t =

case1[·] ≡ t = case2[·] (for a new variable t).

In the forthcoming text, we will define first-order decision-theoretic regression FODTR[·]
and backup operators BA[·] as algorithmic/mathematical operations on case statements that

produce a new case statement. These operations can be interpreted as applying to real functions

(like value functions) to produce new functions, or their logical/protological representations.

We abuse notation and occasionally use both representations.

To provide an example of the first usage of equality discussed above, we represent our

BOXWORLD FOMDP reward function R(s) from our PPDDL representation in Figure 4.1 as

the following rCase(s) statement that reflects the immediate reward obtained in situation s:9

rCase(s) =
∃b.BoxIn(b, paris, s) : 10

¬∃b.BoxIn(b, paris, s) : 0
(4.9)

Throughout the text, R(s) will be used to represent a generic FOMDP reward case statement

and rCase(s) will refer to the specific reward. Thus, for BOXWORLD, we write R(s) =

rCase(s) and wherever R(s) occurs, we can syntactically substitute the specific tabular case

statement on the RHS of Equation 4.9 above.

9For simplicity of presentation, we will assume the reward is not action dependent, but such dependences can

be introduced without difficulty, if needed.

CHAPTER 4. FIRST-ORDER MDPS 95

Here we see that the first-order formulae in the case statement divide all possible ground

states into two regions of constant-value: when there exists a box in Paris, a reward of 10

is achieved, otherwise a reward of 0 is achieved. Likewise the value function V (s) that we

derive through symbolic dynamic programming can be represented in exactly the same manner.

Indeed, V 0(s) = R(s) in the first-order version of value iteration.

The case representation can also be used to define probabilities. We will see an instance of

such a usage when we define the transition function for stochastic actions. Before we do this,

however, let us first discuss the operations that can be performed on case statements.

4.3.2 Case Operations

In this section we introduce various unary, binary, n-ary operations that can applied to case

statements. We begin by introducing a formal logical definition that can be used in proofs and

then proceed to give a graphical example that intuitively demonstrates the case operation being

applied.

We begin by formally introducing the following binary ⊗, ⊕, and ⊖ operators on case

statements [Boutilier et al., 2001]:

case[φi, ti : i ≤ n]⊗ case[φj, vj : j ≤ m] = case[φi ∧ ψj, ti · vj : i ≤ n, j ≤ m] (4.10)

case[φi, ti : i ≤ n]⊕ case[φj, vj : j ≤ m] = case[φi ∧ ψj, ti + vj : i ≤ n, j ≤ m] (4.11)

case[φi, ti : i ≤ n]⊖ case[φj, vj : j ≤ m] = case[φi ∧ ψj, ti − vj : i ≤ n, j ≤ m] (4.12)

Intuitively, to perform an operation on case statements, we simply perform the corresponding

operation on the intersection of all case partitions of the operands. Letting each φi and ψj

denote generic first-order formulae, we can perform the “cross-sum” ⊕ of case statements in

the following manner:

φ1 : 10

φ2 : 20
⊕ ψ1 : 1

ψ2 : 2
=

φ1 ∧ ψ1 : 11

φ1 ∧ ψ2 : 12

φ2 ∧ ψ1 : 21

φ2 ∧ ψ2 : 22

Likewise, we can perform⊖,⊗, and max operations by, respectively, subtracting, multiplying,

or taking the max of partition values (as opposed to adding them) to obtain the result. Some

partitions resulting from the application of the ⊕, ⊖, and ⊗ operators may be inconsistent; we

simply discard such partitions (since they can obviously never correspond to any world state).

CHAPTER 4. FIRST-ORDER MDPS 96

We use the
⊕

and
⊗

operators to respectively denote summations and products of multiple

case operands.

We define a few additional operations on case statements, the first is the binary ∪ operation

for which we provide a formal definition:

case[φi, ti : i ≤ n] ∪ case[ψj, vj : j ≤ m] = case[φ1, t1; · · · ;φn, tn;ψ1, v1; · · · ;ψm, vm]

(4.13)

In this operation we simply union together the partitions from each of the case statements.

Following is an example:

φ1 : 10

φ2 : 20
∪ ψ1 : 1

ψ2 : 2
=

φ1 : 10

φ2 : 20

ψ1 : 1

ψ2 : 2

Next we define two unary operations. The ∃~x. case(~x) operation simply existentially quan-

tifies the case(~x) statement. Since case(~x) is defined logically with a disjunction, we can push

the existential quantifier through to each individual case partition:

∃~x.
φ1(~x) : t1

: : :

φn(~x) : tn

= ∃~x.
∨

i≤n

{φi(~x) ∧ t = ti}

=
∨

i≤n

{∃~x. φi(~x) ∧ t = ti}

=

∃~x. φ1(~x) : t1

: : :

∃~x. φn(~x) : tn

(4.14)

The second unary operation is a unary maximization that we denote “casemax” since it

produces a case statement as opposed to a single numerical value. The result of casemax is

a case statement where the maximal possible value of its case argument is assigned to each

region of state space in the resulting case statement. Assuming that the case partitions are pre-

sorted such that ti > ti+1 and all partitions of equal value have been disjunctively merged we

CHAPTER 4. FIRST-ORDER MDPS 97

can formally define this operation as follows:

casemax case[φ1, t1; · · · ;φn, tn] = case[φi ∧
∧

j≤i

¬φj, vi : i ≤ n] (4.15)

Following is a more intuitive graphical exposition of the same casemax operation:

casemax

ψ1 : t1

ψ2 : t2
... :

...

ψn : tn

=

ψ1 : t1

ψ2 ∧ ¬ψ1 : t2
... :

...

ψn ∧ ¬ψ1 ∧ ¬ψ2 ∧ · · · ∧ ¬ψn−1 : tn

One can easily verify that if assuming sorting of partitions in order of highest (top) to lowest

(bottom) value then the highest value is assigned to each partition by rendering lower value

partitions disjoint from their higher-value antecedents.

It is important to point out that all of the case operators are purely symbolic in that the

ti case partition values are not necessarily restricted to constant numerical values, but can

be arbitrary symbolic (possibly state-dependent) terms [Boutilier et al., 2001]. However, the

casemax operator (as defined here) implicitly requires a comparison function. Consequently,

we will assume for the rest of this chapter that the case values are numeric rather than symbolic

in order to use the casemax operator. However, we will relax this assumption to accommodate

general symbolic value representations in Chapter 6.

4.3.3 Stochastic Actions and Transition Probabilities

To state the FOMDP transition function for an action, stochastic “agent” actions are decom-

posed into a collection of deterministic actions, each corresponding to a possible outcome of

the stochastic action. We then use a case statement to specify a distribution according to which

“Nature” may choose a deterministic action from this set whenever the stochastic action is

executed. As a consequence we need only formulate SSAs using the deterministic Nature’s

choices [Bacchus et al., 1995; Poole, 1997; Boutilier et al., 2000; Reiter, 2001], thus obviating

the need for a special treatment of stochastic actions in SSAs.

Letting A(~x) be a stochastic action with Nature’s choice deterministic actions n1(~x), · · · ,
nk(~x), we represent the distribution over ni(~x) given A(~x) by P (nj(~x), A(~x), s). Continuing

with the translation of our simple PPDDL example, we note that the load(b, t) action has one

set of effects that occurs with probability 0.9. We use the deterministic action loadS (b, t) to

CHAPTER 4. FIRST-ORDER MDPS 98

denote the successful occurrence of this aspect, and we let the deterministic action loadF (b, t)

denote the failure of these effects to execute. In order to do this, we must redefine our SSAs

from the previous PDDL case, where now load(b, t) will be a stochastic action executed by the

agent with loadS (b, t) and loadF (b, t) being possible deterministic outcomes of selecting this

action. In fact, we will do similarly for the other two actions using unloadS (b, t)/unloadF (b, t)

as the two deterministic outcomes for unload(b, t), and driveS (t, c)/driveF (t, c) as the two de-

terministic outcomes for drive(t, c). For completeness and correctness, we redefine our SSAs

for BOXWORLD in terms of these new deterministic actions for the BOXWORLD FOMDP:

BoxOn(b, t, do(a, s)) ≡ ΦBoxOn(b, t, a, s)

≡ [∃c. a = loadS (b, t) ∧ BoxIn(b, c, s) ∧ TruckIn(t, c, s)]

∨ BoxOn(b, t, s) ∧ ¬ [∃c. a = unloadS (b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, c, s)]

BoxIn(b, c, do(a, s)) ≡ ΦBoxIn(b, c, a, s)

≡ [∃t. a = unloadS (b, t) ∧ BoxOn(b, t, s) ∧ TruckIn(t, c, s)]

∨ BoxIn(b, c, s) ∧ ¬ [∃t. a = loadS (b, t) ∧ BoxIn(b, c, s) ∧ TruckIn(t, c, s)]

TruckIn(t, c, do(a, s)) ≡ ΦTruckIn(t, c, a, s)

≡ [∃c1. a = driveS (t, c) ∧ TruckIn(t, c1, s)]

∨ TruckIn(t, c, s) ∧ ¬ [∃c1. a = driveS (t, c) ∧ TruckIn(t, c1, s)]

Here, we have simply replaced our previous deterministic action names from the PDDL ver-

sion with the deterministic success versions of Nature’s choice actions that we will use in our

FOMDP.10

We can now specify a distribution over Nature’s choice deterministic outcome for each

stochastic action where we denote a specific instance of P (nj(~x), A(~x), s) with the case state-

10Since we intend the failure versions of the actions to represent the “no effects” case, they obviously do not

play any role in the SSAs. The frame assumption implicit in the SSAs will ensure that what was not explicitly

changed will remain the same.

CHAPTER 4. FIRST-ORDER MDPS 99

ment pCase(nj(~x), A(~x), s):

pCase(loadS (b, t), load(b, t), s) = ⊤ : 0.9 (4.16)

pCase(loadF (b, t), load(b, t), s) = ⊤ : 0.1 (4.17)

pCase(unloadS (b, t), unload(b, t), s) = ⊤ : 0.9 (4.18)

pCase(unloadF (b, t), unload(b, t), s) = ⊤ : 0.1 (4.19)

pCase(driveS (b, t), drive(b, t), s) = ⊤ : 1.0 (4.20)

pCase(driveF (b, t), drive(b, t), s) = ⊤ : 0.0 (4.21)

Since the above axiomatization does not fully illustrate the power of the FOMDP representa-

tion in that the probabilities are not state dependent, we digress for a moment to demonstrate

a slightly more interesting variant. Suppose that the success of driving a truck to a city de-

pends on whether the truck contains a box b with volatile material denoted by the predicate

Volatile(b). Then we can specify a distribution over Nature’s choice deterministic outcome for

this stochastic action:

pCase(driveS (t, c), drive(t, c), s) =
∃b.BoxOn(b, t, s) ∧ Volatile(b) : 0.9

¬(∃b.BoxOn(b, t, s) ∧ Volatile(b)) : 1.0

pCase(driveF (t, c), drive(t, c), s) =
∃b.BoxOn(b, t, s) ∧ Volatile(b) : 0.1

¬(∃b.BoxOn(b, t, s) ∧ Volatile(b)) : 0.0

Here we see the transition probability of drive(t, c) can be easily conditioned on state proper-

ties and action parameters.

It is important to note that the probabilities over all deterministic Nature’s choices for a

stochastic action sum to one:

k
⊕

j=1

P (nj(~x), A(~x), s) = ⊤ : 1

In addition, each P (nj(~x), A(~x), s) should be a disjoint partitioning of state space such that

no two case partitions ambiguously assign multiple probabilities to the same state. These

two properties are crucial to having a well-defined probability distribution over all possible

deterministic action outcomes for every possible state.

For this last example, the second property can be verified easily and we verify that the first

CHAPTER 4. FIRST-ORDER MDPS 100

property holds as follows:

pCase(driveS (t, c), drive(t, c), s)⊕ pCase(driveF (t, c), drive(t, c), s)

=
∃b.BoxOn(b, t, s) ∧ Volatile(b) : 0.9

¬(∃b.BoxOn(b, t, s) ∧ Volatile(b)) : 1.0
⊕ ∃b.BoxOn(b, t, s) ∧ Volatile(b) : 0.1

¬(∃b.BoxOn(b, t, s) ∧ Volatile(b)) : 0.0

= ⊤ : 1 .

4.4 Symbolic Dynamic Programming (SDP)

Symbolic dynamic programming (SDP) [Boutilier et al., 2001] is a dynamic programming

solution to FOMDPs that produces a logical case description of the optimal value function.

This is achieved through the symbolic operations of first-order decision-theoretic regression

and maximization that perform the traditional dynamic programming Bellman backup at an

abstract level without explicit enumeration of either the state or action spaces of the FOMDP.

Among many possible applications, the use of of SDP leads directly to a domain-independent

value iteration solution to FOMDPs.

Although we will assume a constant numerical representation of values in order to explicitly

perform the casemax during SDP in this chapter (see the previous discussion), an appropriate

generalization of casemax allows the definitions covered here to apply to general symbolic

value representations, hence the original use of “symbolic” in the name of the SDP algorithm.

We will demonstrate SDP applied to some symbolic value extensions in Chapter 6.

4.4.1 First-order Decision-theoretic Regression

Suppose we are given a value function V (s). The first-order decision-theoretic regression

(FODTR) [Boutilier et al., 2001] of this value function through an action A(~x) yields a case

statement containing the logical description of states and values that would give rise to V (s)

after doing action A(~x). This is analogous to classical goal regression, the key difference

being that action A(~x) is stochastic. In MDP terms, the result of FODTR is a case statement

representing a Q-function.

We define the first-order decision theoretic regression (FODTR) operator in the following

CHAPTER 4. FIRST-ORDER MDPS 101

manner:11

FODTR[V (s), A(~x)] =R(s)⊕

γ

[

k
⊕

j=1

{P (nj(~x), A(~x), s)⊗ Regr(V (do(nj(~x), s)))}
]

(4.22)

This is a meta-logical notation where FODTR takes as arguments V (s) representing the case

statement for a value function with situation variable s and a parameterized stochastic action

term A(~x) with free variables ~x. Because the meta-logical notation of V (s) refers to vari-

able s in the underlying logical language, we can make a logical substitution of terms such

as do(nj(~x), s) for s (standardizing apart usage of the variable s before substitution) to ob-

tain V (do(nj(~x), s)) where we apply this same substitution directly to the (proto)logical case

representation of V (s). The result of applying FODTR is a case statement. All subsequently

defined operations on case statements in this thesis will be defined analogously.

As opposed to the deterministic regression operator for first-order formulae, FODTR takes

into account a decision-theoretic expectation over the regression of Nature’s choice determin-

istic actions w.r.t. the utilities of the possible post-action formulae as specified by V (s). From

here out, we will denote an instance of the value function V (s) by the case statement vCase(s).

And as defined previously, we also assume that instances of Nature’s choice action probabilities

P (nj(~x), A(~x), s) and reward functionR(s) are denoted respectively by pCase(nj(~x), A(~x), s)

and rCase(s).

As an example, let us compute the FODTR for vCase(s) = rCase(s) through the stochastic

actionA(~x) = unload(b∗, t∗) where rCase(s) is the BOXWORLD reward as previously defined

in Equation 4.9. Since vCase(s) is logically defined, we can push the Regr operator into the

individual vCase(s) partitions as follows:

FODTR[vCase(s), unload(b∗, t∗)] = rCase(s) ⊕

γ

[

k
⊕

j=1

{

pCase(nj(~x), unload(b∗, t∗), s)

⊗ Regr(∃b.BoxIn(b, paris, do(nj(~x), s))) : 10

Regr(¬∃b.BoxIn(b, paris, do(nj(~x), s))) : 0

}]

Now, since the stochastic action A(~x) = unload(b∗, t∗), we know that Nature’s determin-

11If the reward were action dependent here, then we would simply replace R(s) with R(s,A(~x)).

CHAPTER 4. FIRST-ORDER MDPS 102

istic action choices nj(~x) range over unloadS (b∗, t∗) and unloadF (b∗, t∗). We now substitute

the pCase definitions for the deterministic actions unloadS (b∗, t∗) and unloadF (b∗, t∗) from

Eqs. 4.18 and 4.19, respectively.

FODTR[vCase(s), unload(b∗, t∗)] = rCase(s) ⊕

γ

[{

⊤ : 0.9 ⊗ Regr(∃b.BoxIn(b, paris, do(unloadS (b∗, t∗), s))) : 10

Regr(¬∃b.BoxIn(b, paris, do(unloadS (b∗, t∗), s))) : 0

}

⊕
{

⊤ : 0.1 ⊗ Regr(∃b.BoxIn(b, paris, do(unloadF (b∗, t∗)))) : 10

Regr(¬∃b.BoxIn(b, paris, do(unloadF (b∗, t∗)))) : 0

}]

We note that we have already computed Regr(∃b.BoxIn(b, paris, do(unloadS (b∗, t∗)))) from

Equation 4.7 where the deterministic unload(b∗, t∗) from the PDDL case has been renamed to

unloadS (b∗, t∗). And by the properties of Regr , we know that Regr(¬φ) = ¬Regr(φ) so we

can easily negate Equation 4.7 to obtain Regr(¬∃b.BoxIn(b, paris, do(unloadS (b∗, t∗)))). It is

important to note that just as rCase(s) partitioned the state space, the Regr operator preserves

this partitioning in Regr(rCase(·)). This result follows directly from the properties of Regr

and can be easily verified for the two partition case of φ and ¬φ. We note that

Regr(φ(~x, do(unloadF (b∗, t∗)))) = φ(~x, s)

since unloadF (b∗, t∗) has no effects and this is equivalent to a noop action. Making these

substitutions, explicitly multiplying in the action probabilities and γ = 0.9, and explicitly

writing out rCase(s), we obtain the following where for readability, we use ¬“ to denote the

conjunction of the negation of all partitions above the given partition in the case statement:

FODTR[vCase(s), unload(b∗, t∗)]

=

[∃c.BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris, s)]

∨∃b.BoxIn(b, paris, s) : 8.1

¬“ : 0

⊕ ∃b.BoxIn(b, paris, s) : 0.9

¬“ : 0
⊕ ∃b.BoxIn(b, paris , s) : 10

¬“ : 0

CHAPTER 4. FIRST-ORDER MDPS 103

Finally, explicitly carrying out the ⊕’s and simplifying yields the final result:

FODTR[vCase(s), unload(b∗, t∗)] = (4.23)

=

∃b.BoxIn(b, paris, s) : 19.0

¬“ ∧ [∃c.BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris, s)] : 8.1

¬“ : 0

(4.24)

This result is intuitive, it states that if a box was already in paris then we get reward 19 (10

for the current reward and 9 for the discounted 1-step reward). Otherwise, if a box is not in

paris in the current state, but box b∗ was on truck t∗ in paris and the action was specifically

unload(b∗, t∗), then we get an expected future reward of 8.1 taking into account the success

probability of unloading the box and the discount factor. Finally, if no box is in paris in the

current state and we do not unload a box then we get 0 reward total.

It is important to note that the case statement resulting from FODTR contains free variables

for the action parameters ~x in A(~x). In this case, the action A(~x) = unload(b∗, t∗) so the

parameters were b∗ and t∗ and we note that these do, in fact, occur in the final result.

This case statement represents the value of taking a specific stochastic action unload(b∗, t∗)

and acting so as to obtain the value given by rCase(s) thereafter. However, what we really need

for symbolic dynamic programming is a logical description of a Q-function 12 that tells us the

possible values that can be achieved for any action instantiation of b∗ and t∗. This leads us to

the following definition Q(A, s) of a first-order Q-function that makes use of the previously

defined ∃~x unary case operator:

Qt(A, s) = ∃~x.FODTR[V t−1(s), A(~x)] (4.25)

We denote a specific instance of Qt(A, s) by the case statement qCaset(s, A). We can think of

qCaset(s, A) as a logical description of the Q-function for action A(~x) indicating the values

that could be achieved by any instantiation of A(~x). And by using the first-order case rep-

resentation of states as well as action quantification via the ∃~x operation, FODTR effectively

achieves both action and state abstraction.

Letting vCase0(s) = rCase(s), we can continue our running example to obtain the follow-

12Recall Equation 2.8 from Chapter 2 for the enumerated state version of the Q-function.

CHAPTER 4. FIRST-ORDER MDPS 104

ing Q-function description for action unload where we have removed vacuous quantifiers:

qCase1(unload , s) = ∃b∗, t∗.FODTR[vCase0(s), unload(b∗, t∗)]

=

∃b.BoxIn(b, paris, s) : 19.0

∃b∗, t∗. [¬“ ∧ ∃c.BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris , s)] : 8.1

¬“ : 0

This gives us a very intuitive result that states if the box was already in paris then we get a

discounted reward of 19. Otherwise, if a box is not in paris in the current state, but there exists

some box on a truck in paris , then we could unload it to get an expected discounted reward

of 8.1. Finally, if there is no box on a truck to unload in paris and there is no box already in

paris then we get 0 expected discounted reward. It is instructive to compare this description

to the prior description of FODTR without existential action quantification — the difference is

subtle, but important for action abstraction.

Technically, qCase1(unload , s) would not be an exhaustive partitioning of the state space

in that the 0 value partition from Equation 4.25 is not the same one implied here from the

¬“ because the partition formulae above it have been quantified. However, throughout this

thesis, we can exploit our assumption that all FOMDPs have a noop action to assume that

the minimum value for any state is 0. Thus we will always show the final 0 partition as ¬“

(thus forcing the partitioning to be exhaustive by filling in any state space not covered by other

partitions with a 0 value) even when this does not directly follow from the logical operation

being applied.

We additionally remark that qCase1(unload , s) may no longer have mutually exclusive

partitions due to the existential quantification: the formulae pairA(x) and ¬A(x)) are mutually

exclusive, but the formulae pair ∃x, y.A(x, y) and ∃x, y.¬A(x, y) are not mutually exclusive.

The resulting ambiguity of value assignments occurring after existential quantification will be

resolved by assigning every state its maximal value as discussed next.

4.4.2 Symbolic Maximization

At this point, we can decision-theoretically regress the value function through a single stochas-

tic action to obtain a representation of its Q-function, but to complete the dynamic program-

ming step in the spirit of Equation 2.9 from Chapter 2, we need to know the maximum value

that can be achieved by any action. For example, in the BOXWORLD FOMDP, our possible ac-

CHAPTER 4. FIRST-ORDER MDPS 105

tion choices are unload(b, t), load(b, t), and drive(t, c) and our Q-function computations using

Equation 4.25 give us qCase1(unload , s), qCase1(load , s), and qCase1(drive, s). In general,

we will assume that we have m stochastic actions {A1(~x1), . . . , Am(~xm)} and a corresponding

set of Q-functions {qCaset(A1, s), . . . , qCaset(Am, s)} derived from a common value function

vCaset−1(s).

One way to obtain a case description of the value function vCaset(s) would simply be to

apply the case ∪ operator to merge all partitions of the Q-functions, i.e., qCaset(s, A1)∪ . . .∪
qCaset(s, Am). While this does, in fact, give us a description of the value function vCaset(s),

the caveat is that the state spaces of each Q-function overlap with each other and thus the

union of case partitions from each Q-function typically assigns multiple values to overlapping

regions of state space. What we really want instead is to assign the highest possible value to

each portion of state space. Fortunately, this is quite easy with the casemax operator. Thus we

get the following equation for the symbolic maximization of Q-functions:

V t(s) = casemax
[

Qt(A1, s) ∪ . . . ∪Qt(Am, s)
]

(4.26)

Recalling the way in which the casemax operation is computed from Equation 4.15, every

resulting instance vCaset(s) of the value function V t(s) will have the following case statement

format where value case partition ψj corresponds to value vj and vi > vi+1:

vCaset(s) =

ψ1 : v1

ψ2 ∧ ¬ψ1 : v2

... :
...

ψn ∧ ¬ψ1 ∧ ¬ψ2 ∧ · · · ∧ ¬ψn−1 : vn

This approach effectively gives us a decision-list representation of our value function13 — to

determine the value for a state, we can simply traverse the list from highest to lowest value and

take the value for the first case partition that is satisfied. The casemax operation guarantees that

this value function will be a disjoint partitioning of the state space and our previous assumption

that all actions are executable in all states ensures that this value function exhaustively assigns

a value to all possible states (assuming vCaset−1 was exhaustive).

13Recall the optimal value function representation from Figure 4.3.

CHAPTER 4. FIRST-ORDER MDPS 106

4.4.3 First-order Value Iteration

One should note that the SDP equations given here are exactly the lifted versions of the clas-

sical dynamic programming solution to MDPs given previously in Equations 2.8 and 2.9 from

Chapter 2. Since those equations were used in part to define a value iteration algorithm, we

can use the lifted versions to define a first-order value iteration algorithm where ǫ is our error

tolerance:

1. Initialize V 0(s) = R(s), t = 1.

2. Compute the V t(s) from V t−1(s) using Eqs. 4.25 and 4.26.

3. If the following is not true

‖V t(s)⊖ V t−1(s)‖∞ ≤
ǫ(1− γ)

2γ
, (4.27)

then go to step 2, otherwise terminate.

For example, applying first-order value iteration to the 0-stage-to-go value function (i.e.,

vCase0(s) = rCase(s), given previously) yields the following simplified 1- and 2-stage-to-go

value functions in the BOXWORLD domain:

vCase1(s) =

∃b.BoxIn(b, paris, s) : 19.0

¬“ ∧ ∃b, t.TruckIn(t, paris, s) ∧ BoxOn(b, t, s) : 8.1

¬“ : 0.0

vCase2(s) =

∃b.BoxIn(b, paris, s) : 26.1

¬“ ∧ ∃b, t.TruckIn(t, paris, s) ∧ BoxOn(b, t, s) : 15.4

¬“ ∧ ∃b, c, t.BoxOn(b, t, s) ∧ TruckIn(t, c, s) : 7.3

¬“ : 0.0

After sufficient iterations of first-order value iteration, the t-stage-to-go value function con-

verges, giving the optimal value function (and corresponding policy) from Fig. 4.3.

Having presented the value iteration algorithm, we may now wish to prove some properties

of it. Boutilier et al. [2001] provide a proof that SDP and thus every step of value iteration

produces a correct logical description of the value function. However, they do not provide an

explicit correspondence between FOMDPs formalized with the deterministic situation calculus

and MDPs as formalized in Chapter 2 with explicit stochastic actions. While the correspon-

dence is not difficult to show, it is nonetheless useful to make this explicit. Thus, we provide a

CHAPTER 4. FIRST-ORDER MDPS 107

direct correspondence between FOMDPs and MDPs in Appendix A.7.1 and provide an alter-

nate proof of correctness of first-order value iteration based on this correspondence:

Theorem 4.4.1. Given a correspondence between a FOMDP and a ground MDP obtained

from the FOMDP for any domain instantiation, the value function vCaset(s) computed by

first-order value iteration corresponds to the value function V t(s) computed by enumerated

state value iteration.

Proof. Follows directly from Theorem A.7.1. Refer to Appendix A for complete definitions

and a proof of Theorem A.7.1.

From this theorem, we get the following corollary:

Corollary 4.4.2. Terminating according to the criteria given in Step 3 of first-order value

iteration guarantees that vCaset(s) is an ǫ-optimal value function for any domain instantation.

Proof. The proof of this corollary follows directly from the correspondence given in Theo-

rem 4.4.1. That is, we know from Puterman [1994] that this property holds for all ground

MDPs, and this theorem tells us there is a direct correspondence between a FOMDP and all pos-

sible ground MDP instantiations of that FOMDP. Therefore the corollary trivially follows.

4.4.4 Policy Representation

Given a value function, it is important to be able to derive a first-order greedy policy represen-

tation from it, just as we did in the ground case in Chapter 2 and the factored case in Chapter 3.

This policy can then be used to directly determine actions to apply when acting in a ground

instantiation of the FOMDP, or it can be used to define first-order versions of (approximate)

policy iteration.

Fortunately, given a value function V (s), it is easy to derive a greedy policy from it. As-

suming we have m parameterized actions {A1(~x), . . . , Am(~x)}, we can formally derive the

policy π(s)[·] using the [·] to denote the value representation · from which the policy is derived

as follows (taking into account a few modifications to the case operators that we discuss in a

moment):

π(s)[V (s)] = casemax(
⋃

i=1...m

∃~x.FODTR[V (s), Ai(~x)]) (4.28)

We denote a specific instance of π(s) by a modified case statement representation πCase(s)

that we describe here. For bookkeeping purposes, we require that each partition 〈φ, t〉 in

CHAPTER 4. FIRST-ORDER MDPS 108

∃~x FODTR[V (s), Ai(~x)] maintain a mapping to the action Ai that generated it, which we

denote as 〈φ, t〉 → Ai. Then, given a particular world state s, we can evaluate πCase(s) to

determine which maximal policy partition 〈φ, t〉 → Ai is satisfied by s and thus, which action

Ai should be applied. If we retrieve the bindings of the existentially quantified action variables

∃~x in that satisfying policy partition, we can easily determine the parameterization of action

Ai that should apply according to the policy.

To make this concrete, we derive a simple greedy policy for the BOXWORLD FOMDP as-

suming the value function V (s) = rCase(s) and that we only have two actions unload(b∗, t∗)

and noop. Noting that we have already computed FODTR[rCase(s), unload(b∗, t∗)] in Equa-

tion 4.24 and that FODTR[rCase(s), noop] will just be rCase(s) with 10 replaced by 19, we

easily obtain the following policy:14

πCase[rCase(s)]

= casemax({∃b∗, t∗.FODTR[rCase(s), unload(b∗, t∗)]}
∪ {FODTR[rCase(s), noop]})

=

∃b.BoxIn(b, paris, do(a, s)) : 19.0 −→ noop

¬“ ∧ [∃b∗, t∗, c.BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris , s)] : 8.1 −→ unload(b∗, t∗)

¬“ : 0 −→ noop

We note that the there are technically an infinite number of actions that can be applied since

there are an infinite number of ground instantiations of unload(b∗, t∗) for arbitrary domain

instantiations. Thus, this policy representation manages to compactly represent the selection of

an optimal action amongst an infinite set.

For a more interesting policy, we refer the reader back to the optimal value function and

policy for BOXWORLD given in Figure 4.3.

4.5 Comments on Policy Iteration and Linear Programming

We do not provide first-order policy iteration or linear programming algorithms for FOMDPs,

although it is possible to define a first-order modified policy iteration algorithm as we discuss

shortly. As a non-trivial consequence of the extension of MDPs to first-order MDPs, the num-

14This is in fact the optimal policy for BOXWORLD using vCase(s) = rCase(s), but one has to grind through

all the FODTR applications for load(b, t) and drive(t, c) and simplifications to show this. Here, we restrict the

action space to demonstrate a more obvious result.

CHAPTER 4. FIRST-ORDER MDPS 109

ber of distinct values in the exact value function can be infinite. This is problematic because

our current piecewise-constant case representation of the value function can only make a finite

number of value distinctions given finite space. Since representing an infinitely sized value

function would be impossible in the current case representation this precludes two computa-

tions under our current representation: (1) the exact computation of the value for a first-order

policy in a FOMDP using a linear system in the spirit of Equation 2.11 from Chapter 2; and

(2) the exact linear programming solution of a FOMDP in the spirit of Equation 2.24 from

Chapter 2.

In the case of first-order policy iteration, it is possible to define a first-order modified policy

iteration algorithm by generalizing successive approximation methods for value determination

under a policy to the first-order case. This is straightforward as we need only replace the sym-

bolic maximization over all actions in SDP with the actual policy being executed analogously

to that done for successive approximation in the factored MDP case (c.f., Equation 3.6 of Chap-

ter 3). We present a method for computing SDP under policy restrictions in the next chapter

that could be used in a modified policy iteration algorithm. This would effectively be the first-

order generalization of the structure policy iteration (SPI) algorithm from Chapter 3. For the

restricted case of a first-order logic with only existential quantifiers, Wang et al. [2007] provide

a modified policy iteration algorithm with special data structures to handle this restricted logic.

Generalizing the exact linear programming approach is a bit more difficult in that it requires

the exact value function structure beforehand and there is no obvious workaround for this in

the exact case. Since the value function can be infinite in our piecewise-linear case represen-

tation, this precludes the possibility of exact linear programming as a general solution to all

FOMDPs using our current representation. On the other hand, if we have some clue as to what

an approximate value function structure may look like then we can relax our requirements to

an approximate solution and leverage first-order generalizations of the approximate linear pro-

gramming approaches that we used in Chapters 2 and 3. We will present just such an approach

in the next chapter.

4.6 Representation and Solution with First-order (A)ADDs

Just as we previously exploited CSI in the factored propositional representation of MDPs, we

can easily generalize this technique to exploit CSI in the case representation of first-order

MDPs. In the first-order framework, we can define methods for breaking down first-order case

partition formula into their propositional components and create a first-order ADD (FOADD) or

CHAPTER 4. FIRST-ORDER MDPS 110

first-order AADD (FOAADD) representation of the case statement. Then we can apply standard

ADD or AADD operations to perform the ⊗, ⊕, and ⊖ case operations. We can also define

extensions of the casemax, ∃~x, and Regr operators capable of exploiting FO(A)ADD structure.

After discussing each of these topics in turn, we end with a discussion of the practical use of

FO(A)ADDs, a small example of a FOADD application to SDP and a discussion of related

approaches.

4.6.1 Constructing FO(A)ADDs from a Case Representation

The first aspect of FO(A)ADDs concerns how to construct them automatically from a log-

ical case representation. The key to our approach to FOADDs is that their decision tests are

propositional in nature so we need some method of finding propositional structure in first-order

formulae. We can do this by distributing quantifiers as deeply into case formulae as possible us-

ing the following rewrite rule templates where ⋄ indicates variables other than those explicitly

quantified:

• [∃x, y. φ] −→ [∃y, x φ]

• [∀x, y. φ] −→ [∀y, x φ]

• [∃x.A(x, ⋄) ∨B(x, ⋄)] −→ [(∃x.A(x, ⋄)) ∨ (∃x.B(x, ⋄))]

• [∀x.A(x, ⋄) ∧B(x, ⋄)] −→ [(∀x.A(x, ⋄)) ∧ (∀x.B(x, ⋄))]

• [∃x.A(x, ⋄) ∧B(y, ⋄)] −→ [(∃x.A(x, ⋄)) ∧ (B(y, ⋄))]

• [∀x.A(x, ⋄) ∨B(y, ⋄)] −→ [(∀x.A(x, ⋄)) ∨ (B(y, ⋄))]

One can see an example application of these rewrite rules in Figure 4.4(a,b) where the

formula

∃x.[A(x) ∨ ∀y.A(x) ∧B(x) ∧ ¬A(y) (4.29)

has been rewritten to the equivalent form

[∃x.A(x)] ∨ ([∃x.A(x) ∧B(x)] ∧ [∀y.¬A(y)]) (4.30)

where quantifiers have been distributed into the nested formula structure as far as possible.

Once we have pushed quantifiers as far down as possible, we now want to extract the

propositional structure of the formula by considering propositional connectives over quantified

CHAPTER 4. FIRST-ORDER MDPS 111

bb

aa

1 0

case =

(a) Given case statement:

0

1

case =

¬ ”

Var ⇔⇔⇔⇔ FOL Formula Var

b

a

∃x.[A(x) ∨ ∀y.A(x) ∧ B(x) ∧ ¬A(y)]

[∃x.A(x)] ∨ ([∃x.A(x) ∧ B(x)] ∧ [∀y.¬A(y)])

≡ [∃x.A(x)]

≡ [∃x.A(x) ∧ B(x)]

1

aa

0

=First-order CSI!

(b) Push down quantifiers, expose propositional structure:

(c) Convert to first-order (A)ADD:

[∃x.A(x)] ∨ [∃x.A(x) ∧ B(x) ∧ ∀y.¬A(y)]

a ∨ (b ∧ ¬a)

0

1
case =

¬ ”

Figure 4.4: An example conversion from a case statement to a compact FOADD representation

demonstrating first-order CSI.

formula as follows:

∃x.A(x) ∨
(

[∃x.A(x) ∧B(x)] ∧ ∀y.¬A(y)
)

(4.31)

Each of these boxes represents formula that we cannot further decompose into propositional

components. Consequently, we rename each of these boxes with propositions. To do this,

we maintain a table of mappings from propositional variables p to first-order formulae ψ:

{p → ψ}. When we want to convert a formula φ to a propositional variable, we examine

each formula-to-proposition mapping in our table. If φ ≡ ψ, we return p as the proposition,

otherwise if φ ≡ ¬ψ, we return ¬p as the proposition. If no proposition in the table matches

then we create a new proposition q and add the mapping q → φ to our table and return q.

Having built the table shown in Figure 4.4(b), we can proceed to convert the above formula to

CHAPTER 4. FIRST-ORDER MDPS 112

its propositional version:

a ∨ (b ∧ ¬a) (4.32)

At this point, we can build an ADD or AADD from a case statement whose formulae are

purely propositional. What makes this (A)ADD first-order is the additional proposition to first-

order formula mapping that gives each proposition a first-order definition. While the traditional

(A)ADD can exploit CSI, we note there is now an additional form of CSI that we can exploit in

FO(A)ADDs — first-order CSI. This first-order CSI follows from the structured and potentially

overlapping nature of the propositional variables. For instance, in our example, ¬a ⊃ ¬b so as

we traverse the FO(A)ADD representation of this case formula we can force the decision node

for b in the context of a. This is shown in Figure 4.4(c).

We note that there are a range of options for detecting first-order CSI ranging over the

following:

1. Do not perform any first-order CSI detection at all.

2. Maintain information about all pairwise implications in the propositional mapping ta-

ble and detect just this pairwise first-order CSI during the application of FO(A)ADD

operations.

3. Perform full simplification for all decision nodes in the context of the conjunction of all

decisions made for parent nodes during all operations on the FO(A)ADD.

Obviously option (1) requires no additional computation at the expense of FO(A)ADDs with

potentially dead paths whereas option (3) requires substantial computation in return for full

simplication of the decision diagram. We note that if variable reordering is permitted in the

FO(A)ADD then one must resort to option (1) since the prunings may not be sound for other

reorderings. On the other hand, when we know that variables will not be reordered in the

FO(A)ADD, we find option (2) to be a reasonable tradeoff between computation and simplifi-

cation.

It is straightforward to extend the ADD and AADD algorithms to do consistency checking

in the presence of parent decisions when performing the standard (A)ADD Apply and Reduce

operations. In doing this, it is important to note that although there may be multiple paths to

reach a node in the FO(A)ADD, each distinct path to a node is mutually exclusive and thus

other parents need not be considered when pruning along that path. It is simply crucial that

pruning along one path does not accidentally prune along another path, but this can be avoided

CHAPTER 4. FIRST-ORDER MDPS 113

in the following manner: a parent node should check its child node for implied branches and if

one is found, the parent node’s pointer should be changed to refer to the child’s implied branch.

In this way, the child itself is not changed and any other links pointing into the child are not

erroneously modified.

We note that replacing case statements with FO(A)ADDs in the representation and solution

of FOMDPs has the potential to exploit a great deal of structure that naturally occurs in these

representations. First, the disjunctive nature of positive effects in the Regr of FOMDP formu-

lae introduces a number of disjunctions during the application of algorithms such as SDP. Sec-

ond, the existential quantification of the action variables in these formulae introduce existential

quantifiers that can be distributed through the disjunctions introduced by Regr . Consequently

every SDP step introduces structure that can be directly exploited by the previously described

methods for exposing propositional structure of first-order formulae. Consequently, our ap-

proach to representing FO(A)ADDs is well-suited to FOMDPs as we will soon demonstrate

with a small example.

4.6.2 Operations on FO(A)ADDs

Recalling the case of propositionally factored MDPs from Chapter 3, once we had represented

factors as (A)ADDs, we could directly apply the standard binary operations of addition, mul-

tiplication, and subtraction directly to these data structures. The same basic idea holds for

FO(A)ADDs. Once we convert the case representation to these data structures, we can apply

the ⊗, ⊕, and ⊖ case operations directly to FO(A)ADDs by making using of the analagous

(A)ADD operations. Note that we do not need to consult the proposition to first-order formula

mapping table to compute these operations; in general, we only need to do this in three cases:

1. We consult this table when constructing a FO(A)ADD.

2. We consult this table when converting a FO(A)ADD back to a case representation or

evaluating a ground state.

3. If we are exploiting first-order CSI, then we may consult this table during the (A)ADD

Reduce and Apply procedures.

SDP algorithms for FOMDPs also require special unary operations such as Regr , casemax,

and ∃~x that we define now. First, we discuss each FO(A)ADD unary operator at a general level

as their use in practice has certain limitations that we discuss momentarily:

CHAPTER 4. FIRST-ORDER MDPS 114

• Regr : We can apply the Regr operator directly to each decision node in a FO(A)ADD.

This property is obvious since an (A)ADD can be represented as a propositional expres-

sion over propositional variables (with additional affine transforms in the AADD case).

Exploiting the previously defined properties of the Regr operator, we can simply push

the Regr into these individual propositional nodes. To regress a propositional formu-

lae p at a node, we simply apply Regr directly to the first-order formula φ represented

by the node (looking up p −→ φ in our variable mapping table), and replace it with a

new variable q where q −→ Regr(φ). We do not attempt to further decompose q at this

point. We note that this new formula has free variables (but there is nothing prohibiting

this in FO(A)ADDs). However, the one problem that can occur is that the replacement

of decision node variables with other variables may introduce conflicts with the global

FO(A)ADD ordering. In this case, decision nodes can be internally rotated to correct

the (A)ADD variable ordering (see [Rudell, 1993] for ADDs and the Other Operations

discussion in Section 3.4.2 of Chapter 3 for AADDs).

• ∃~x: The ∃~x unary case operation can also be applied directly to FO(A)ADDs. In this case

we assume that the variables being quantified are present in at least one decision node

of the FO(A)ADD (otherwise the quantifiers are vacuous and can be removed). Since

an ADD decision node if (a) then φh else φl
15 can be written as the logical expression

(a ∧ φh) ∨ (¬a ∧ φl)
16, we note that when the decision test a does not contain the free

variables being quantified then we can perform the following rewrite:

∃~x. [(a ∧ φh) ∨ (¬a ∧ φl)]

≡ [(a ∧ ∃~x. φh) ∨ (¬a ∧ ∃~x. φl)]

This allows us to recursively push the existential quantifiers down through each FO(A)ADD

decision node until we encounter a decision node that does contain the variables being

quantified. At this point, we cannot push the quantifiers down any further. Consequently,

the key to an efficient ∃x. operation is to (1) rotate all of the decision nodes with free

variables to the bottom of the FO(A)ADD, (2) push the quantifiers down to that level,

(3) explicitly convert the FO(A)ADD structure from that level down to a logical or arith-

metic representation of the formula, (4) perform the existential quantification, (5) rebuild

15Recall our (A)ADD notation from Chapter 3 where we use h to denote the high/true branch of a decision

node, and l to denote the low/false branch of a decision node.
16A similar property holds for AADDs except that it is an arithmetic expression.

CHAPTER 4. FIRST-ORDER MDPS 115

a FO(A)ADD from that logical representation and insert it in place of the old quanti-

fied structure, and (6) rotate nodes to maintain variable ordering. We make two impor-

tant notes: (a) because nodes are being reordered in this approach, we cannot perform

pruning, and (b) since nodes may overlap due to existential quantification we perform a

casemax (discussed next) simultaneously with this operation to render overlapping nodes

disjoint. Overall, this is a non-trivial algorithm to implement and we discuss it further

in a moment. An example of this along with the casemax operator discussed next is

provided in Figure 4.5.

• casemax: Because this can be an expensive operation, it is important to apply casemax

opportunistically directly where it is needed. That is, the only operation that can trans-

form an exhaustive and disjoint case partitioning into one that does not satisfy these

properties is the ∃~x operator. As a consequence, our approach is to apply the casemax

jointly with the ∃~x operator, when needed. Since the ∃~x requires breaking the quanti-

fied part of a FO(A)ADD down into its case representation, we can easily apply both

casemax and ∃~x to this representation. A concrete example which illustrates this is given

in Figure 4.5 and an explanation follows.

Here we provide a step-by-step explanation of the joint application of the casemax and ∃~x
operators to a specific FOADD instance in Figure 4.5:

(a) First, we show the case statement represented as a FOADD before the casemax and ∃~x
operators are applied. We have already rotated nodes with free variables to the leaves

where we assume the sub-diagrams on the high branches of a and b do not contain the

free variables ~x.

(b) Assuming that case(x) is a disjoint partitioning of state space, we can push the casemax

and ∃~x operators down until a node is reached where a decision variable referencing a

quantified variable is encountered.

(c) We convert the sub-diagram below the casemax∃x to a case statement and explicitly

perform the casemax∃x operations (not shown). We convert this result back to a FOADD

and insert the FOADD in place of the original sub-diagram while inserting any new

variables into our propositional mapping table.

CHAPTER 4. FIRST-ORDER MDPS 116

0

Var ⇔⇔⇔⇔ FOLVar

10

a

b

c

d

φ1

φ2

φ3(�x)

φ4(�x)

a

b

c

d

010

=

casemax ∃�x case(�x)

a

b

c

d

casemax ∃�x

10

=

casemax ∃�x case(�x)

a

e

0

b

f5

5

5

case(�x) =

Var ⇔⇔⇔⇔ FOLVar

φ1

φ2

∃�x.¬φ3(�x) ∧ φ4(�x)

∃�x φ3(�x)

a

b

e

f

(a) (b) (c)

Figure 4.5: Here we demonstrate the joint application of the casemax and ∃~x operators to an

example case statement represented as a FOADD. See the text for details.

4.6.3 Practical Considerations

We did not give explicit algorithms for the FO(A)ADD operations and the reasoning for this is

that they are not only quite complex to implement in practice, but their computational overhead

does not give them significant advantages over the case representation. The reason for this is

that the internal node rotations required to maintain canonicity of the FO(A)ADDs are quite

expensive.

However, this is not to say that FO(A)ADDs have not been useful in the application of

SDP, we simply need to modify the way in which they are used. In SDP, the FO(A)ADDs are

best for performing efficient binary operations and formula simplification through the break-

down of propositional structure and the elimination of redundancy that occurs during their

construction. In doing these simplifications, the FO(A)ADDs remove a lot of burden from the

theorem prover, which must otherwise detect inconsistency with highly redundant representa-

tions. Thus, in our SDP algorithms, we use FO(A)ADDs for the purposes that they are useful

CHAPTER 4. FIRST-ORDER MDPS 117

and efficient for — binary operations and logical simplification — and we convert back to the

case representation to perform most of the unary operations that can be expensive due to the

need for internal node rotations. As we will see, this approach has led to a successful SDP

algorithm that we discuss next.

4.6.4 Symbolic Dynamic Programming with FO(A)ADDs

The use of FO(A)ADDs in the somewhat hybrid manner discussed previously has led to an

automated SDP algorithm. In this approach, we use FO(A)ADDs to perform the binary op-

erations of FODTR and convert to the case representation to perform regression, existential

quantification and symbolic maximization. As mentioned previously, the primary benefit of

using FO(A)ADDs in this manner is in their ability to compactly represent and simplify the

first-order case representation while permitting the efficient computation of binary operations

during FODTR. In addition to FO(A)ADDs, we do perform some additional simplification of

equality, relying on the non-empty assumption for object domains, the quantifier rewrite rules

described previously, and the following two additional rewrite rules:

• [∃x. x = y ∧ A(x, ⋄)] −→ A(y, ⋄)

• [∀x. x 6= y ∨ A(x, ⋄)] −→ A(y, ⋄)

The first rule is fairly straightforward while the second rule follows simply from the negation of

the first rule with renaming. We provide the following example application of these previously

described rewrite and simplification rules to demonstrate their power in simplifying formulae

with equality:

∃x, z. [x = y ∧ A(x, ⋄) ∧B(y, z)]

≡ ∃x. [x = y ∧ A(x, ⋄) ∧ (∃z. B(y, z))]

≡ (∃x. x = y ∧ A(x, ⋄)) ∧ (∃z. B(y, z))

≡ A(y, ⋄) ∧ (∃z. B(y, z))

Together using FOADDs and equality simplification, we have managed to provide an auto-

mated first-order value iteration solution to our running BOXWORLD FOMDP example. The

FOADDs for the reward, optimal value function and policy are given in Figure 4.6. For the

variable ordering, we simply maintained the order of formulae as they were added to the vari-

able mapping table in the FOADD during the SDP algorithm. We used the Vampire theorem

CHAPTER 4. FIRST-ORDER MDPS 118

�✁ ✂ ✄ ☎ ✆✄ ✝ ✞ ✟✠ ✠✡ ✁✂ ✄ ☎ ✆✄ ✝ ✞
☛ ☞ ✌ ✍ ✎ ✏✑✒ ✓ ✔✕ ✖ ✗ ✘✙✚ ✚ ✛ ✜ ✢✢✣• BoxWorld FOADD optimal value function and policy:

✤✥ ✦ ✧ ★ ✩ ✪✫ ✬ ✭ ✮✥ ✦ ✯ ✰✱ ✲✳ ✦ ✴ ✵
✶ ✷ ✸ ✹ ✺✻ ✼ ✽ ✾✷ ✿ ❀ ❁❂ ❃❄ ✿ ❅ ❆❇ ❈ ❉ ❊ ❋ ●❍■ ❏❑▲ ▼ ◆❊ ❉ ❖ P ❍ ◗❘ ❉ ❙ ❚ ❯ ❱ ❲❳ ❨▼ ◆❈ ❉ ❊ ❉ ❙ ❚

❩ ❬ ❭ ❪ ❫ ❴❵ ❛ ❜❝ ❞ ❡ ❢ ❫ ❴❣ ❤✐ ❥ ❦ ❧ ❦ ♠ ♥ ♦ ♣q rs t❥ ❦ ♠ ❦ ✉ ✈ ✇ ①②③ ④⑤ ⑥ s t♠ ❦ ❧ ❦ ✉ ✈
⑦ ⑧ ⑨ ⑩❶❷ ❸ ❹❺ ❻ ❼ ❽ ❾ ❿ ➀ ➁ ➀ ➂ ➃ ➄ ➅➆ ➇ ➈ ➉❿ ➀ ➁ ➀ ➊ ➋ ➌ ➍➎➏ ➐➑➇ ➈ ➉➂ ➀ ➁ ➀ ➊ ➋

• BoxWorld FOADD reward representation:

➒ ➓ ➔ → ➣ ↔ ↕ ➙ ➛➜ ➝ ➞ ➟ ➠➡ ➢ ➤ ➥ ➦ ➤ ➧ ➤ ➥ ➨ ➩➫ ➭➯ ➲ ➳ ➵➢ ➤ ➥ ➦ ➸ ➺ ➻➼➽ ➾➚➲ ➳ ➵➧ ➤ ➥ ➨ ➸➪ ➶ ➹ ➘➘➴

➷
π➬ ➮ ➱ ✃ ➷➱ ❐ ❐

Figure 4.6: An example FOADD representation of the reward in BOXWORLD and the FOADD

representation of the optimal value function and policy for this domain.

prover [Riazanov and Voronkov, 2002] as the theorem proving component for detecting equiv-

alence and inconsistency. The total running time for this solution was 15.7s on a 2Ghz Pentium

with 2Gb of RAM. Unsurprisingly, the final FOADD for this problem gives exactly the decision

list structure that we would expect for the BOXWORLD problem.

We have also used our FOADD approach to solve other variants of the BOXWORLD prob-

lem including the version given in Boutilier et al. [2001] with an extra fluent for Rain(s) and

action probabilities conditioned on this fluent. We also used a BOXWORLD reward of the

following structure:

R(s) =

∃b.BoxIn(b, paris, s) ∧ TypeA(b) : 10

¬“ ∧ ∃b.BoxIn(b, paris, s) ∧ ¬TypeA(b) : 5

¬“ : 0

(4.33)

CHAPTER 4. FIRST-ORDER MDPS 119

Here in addition to the Rain(s) fluent, we have also added a non-fluent predicate TypeA(b) to

distinguish types of boxes and varying rewards for each type of box. The FOADDs for these

solutions are too large to display, but we note that after a finite number of steps of value iter-

ation, the value function FOADD stopped growing indicating that all relevant state partitions

had been identified. Value iteration continued with this quiesced FOADD until all values at the

leaves converged. The maximum solution times for these more complex problems was 489s

on a 2Ghz Pentium with 2Gb of RAM. The use of FOAADDs led to slightly slower runtimes

due to the fact that these test problems did not have any additive or multiplicative structure to

exploit.

Our experience indicates that there seem to be two general criteria for problem domains

to demonstrate a finitely sized optimal value function: (1) the only non-zero rewards must be

existentially quantified and (2) the FOMDP dynamics must not introduce transitive structure

that cannot be finitely bounded by domain axioms. This last requirement is somewhat vague, so

let us provide an example. In the BOXWORLD problem covered in this chapter, we implicitly

assume that all cities are accessible from each other via the drive action. If instead we had some

underlying road topology indicated by Conn(City : c1,City : c2) that restricted the drive

action and we did not know this topology in terms of prior knowledge specified as domain

axioms, then the SDP algorithm would likely need to generate representations for all possible

topologies, thus likely leading to an infinite value function. Another case of an infinite value

function comes when (1) is violated as we discuss in the next section which concerns rewards

with universal quantifiers. While both of these problems elucidate limitations of the current

SDP algorithm, it is possible that with modifications to the SDP algorithm and the case (or

FOADD) representation, these difficulties could be overcome.

Unfortunately, the FOADD solution approach with the current SDP algorithm has failed

to scale to more complex problems used in the planning community (particularly problems

from the ICAPS International Planning Competitions) since they typically use more complex

rewards, including those with universal quantifiers. Whereas problems with existentially quan-

tified rewards may exhibit a finite-size optimal value function, this is rarely the case with uni-

versal rewards. Thus we are in need of additional solution techniques to handle this problem

as we discuss in the next section.

CHAPTER 4. FIRST-ORDER MDPS 120

4.7 Decomposing Universal Rewards

In first-order domains, we are often faced with universal reward expressions that assign some

positive value to the world states satisfying a formula of the general form ∀y φ(y, s), and 0

otherwise. For instance, in our BOXWORLD problem, we may define a reward as having all

boxes b at their assigned destination city c given by Dst(b, c):

R(s) =
∀b, c.Dst(b, c)→ BoxIn(b, c, s) : 1

¬“ : 0
(4.34)

One difficulty with such rewards is that our case statements provide a piecewise-constant rep-

resentation of the value function. However, the value function for problems with universal

rewards typically depends (often in a linear or exponential way) on the number of domain ob-

jects of interest. For instance, in our example, value at a state depends on the number of boxes

not at their proper destination (since this can impact the minimum number of steps it will take

to obtain the reward). So for example, a t-stage-to-go value function in this case would have

the following characteristic structure (where we use English in place of first-order logic for

readability):

V t(s) = =

∀b, c.Dst(b, c)→ BoxIn(b, c, s) : 1

One box not at destination : γ

Two boxes not at destination : γ2

... :
...

t− 1 boxes not at destination : γt−1

Obviously, since there are t distinct values in an optimal t-stage-to-go value function, the

piecewise-constant case representation requires a minimum of t case partitions to represent

this value function. And when we combine these counting dynamics with other interacting

processes in the FOMDP, we often see an uncontrollable combinatorial blowup in the number

of case partitions of value functions for FOMDPs with universally defined rewards. As noted

by Gretton and Thiebaux [2004], effectively handling universally quantified rewards is one of

the most pressing issues in the practical solution of FOMDPs.

To address this problem we adopt a decompositional approach, motivated in part by tech-

niques for additive rewards in MDPs [Boutilier et al., 1997; Singh and Cohn, 1998; Meuleau

et al., 1998b; Poupart et al., 2002a]. We divide our solution into off-line and on-line compo-

CHAPTER 4. FIRST-ORDER MDPS 121

nents where the on-line component requires a finite domain assumption in order to execute the

policy.

4.7.1 Offline Generic Goal Solution

Intuitively, given a goal-oriented reward that assigns positive reward if ∀~y G(~y, s) is satisfied,

and zero otherwise, we can decompose it into a set of ground goals {G(~y1), . . . , G(~yn)} for all

possible ~yj in a ground domain of interest. If we reach a state where all ground goals are true,

then we have satisfied ∀y G(y, s).

Of course, our methods solve FOMDPs without knowledge of the specific domain, so the

set of ground goals that will be faced at run-time is unknown. So in the offline solution of the

MDP we assume a a generic ground goal G(~y∗) for a “generic” object vector ~y∗. Assuming

that our universal reward takes an implicative form as it does in our example, the conditions in

the antecedent indicate the goal objects of interest and the head of the implication indicates the

specific goal G(~y, s). In our running BOXWORLD example the conditions Dst(b, c) indicate

that we will have goals for all pairs 〈b, c〉 where Dst(b, c) holds and the goal that must be

achieved for these object pairs is BoxIn(b, c, s).

It is easy to construct a generic instance of a reward function rCaseG(~y∗)(s) given a single

goal. In our BOXWORLD example we would introduce the distinguished constants b∗ and c∗

to denote our goal objects of interest G(b∗, c∗):

rCaseG(b∗,c∗)(s) =
BoxIn(b∗, c∗, s) : 1

¬BoxIn(b∗, c∗, s) : 0
(4.35)

Given this simple reward, it is then easy to solve the resulting FOMDP using first-order value

iteration or the approximate FOMDP solution algorithms that we will introduce in the next

chapters. This produces a value function vCaseG(~y∗)(s) and policy that assumes that ~y∗ is the

only object vector of interest satisfying relevant sort constraints and goal preconditions in the

domain. In our running BOXWORLD example, the optimal vCaseG(b∗,c∗)(s) would look very

similar to Figure 4.3 with some differences owing to the fact that our reward is defined in terms

of constants b∗ and c∗ rather than existentially quantified variables b and c.

We next derive Q-function instances for each actionAi(~x) from the value function vCaseG(~y∗)(s)

for the simplified “generic” domain:

qCaseG(~y∗)(Ai, s) = ∃~x.FODTR[vCaseG(~y∗)(s), Ai(~x)] (4.36)

CHAPTER 4. FIRST-ORDER MDPS 122

Given a ground state s, the optimal action for this generic goal can be determined by finding

the ground action instantiation Ai(~c) for this s with maximal Q-value.

4.7.2 Online Policy Evaluation

With the offline solution (i.e., Q-function for each action) of a generic goal FOMDP in hand,

we address the online problem of action selection for a specific domain instantiation given

at run-time. We assume a set of ground goals {G(~y1), . . . , G(~yn)} corresponding to a specific

finite domain given at run-time. If we assume that (typed) domain objects are treated uniformly

in the uninstantiated FOMDP, as is the case in many logistics and planning problems, then we

obtain the Q-function for any goal G(~yj) by replacing all ground terms ~y∗ in qCaseG(~y∗)(Ai, s)

with the respective terms ~yj to obtain qCaseG(~yj)
(Ai, s).

Returning to our running example, from the value function vCaseG(b∗,c∗)(s) we would ob-

tain a Q-function qCaseG(~y∗)(Ai, s) for each action Ai. If at run-time, we are given the three

goals Dst(b1, paris), Dst(b2, berlin), and Dst(b3, rome), then we would substitute these goals

into our Q-functions to obtain three goal-specific Q-functions for each action Ai:

{qCaseG(b1,paris)(Ai, s), qCaseG(b2,berlin)(Ai, s), qCaseG(b3,rome)(Ai, s)} (4.37)

Action selection requires finding an action that maximizes value w.r.t. the original universal

reward. Following [Boutilier et al., 1997; Meuleau et al., 1998b], we do this by treating the

sum of the Q-values of any action in the subgoal MDPs as a measure of its Q-value in the joint

(original) MDP. Specifically, we assume that each goal contributes uniformly and additively to

the reward, so the Q-function for an entire set of ground goals {G(~y1), . . . , G(~yn)} determined

by our domain instantiation is just
∑n

j=1
1
n
qCaseG(~yj)

(Ai, s). Action selection (at run-time)

in any ground state is realized by choosing the action with maximum additive Q-value. Nat-

urally, we do not want to explicitly create the joint Q-function, but instead use an efficient

scoring technique that evaluates potentially useful actions by iterating through the individual

Q-functions as described in Algorithm 7.

While this additive and uniform decomposition may not be appropriate for all domains

with goal-oriented universal rewards, we have found it to be highly effective for domains such

as BOXWORLD as we demonstrate empirically in the next chapter. And while this approach

can only currently handle rewards with universal quantifiers, this reflects the form of many

planning problems. Nonetheless, there are potential extensions of this technique for more

CHAPTER 4. FIRST-ORDER MDPS 123

Algorithm 7: EvalPolicy({qCaseG(~y∗)(Ai, s)}, {G(~y1), . . . , G(~yn)}, s) −→ Ai(~c)

input : (1) For each action template A1(~x), . . . , Am(~x), a set of Q-functions qCaseG(~y∗)(Ai, s) for

a specific ground instantiation ~y∗ of a goal G.

(2) A set of n unsatisfied goals {G(~y1), . . . , G(~yn)} to achieve.

(3) A ground state s to find the best action for.

output : The optimal ground action Ai(~c) to execute w.r.t. to the given state and additive decomposi-

tion of unsatisfied goals: Ai(~c) = arg maxi,~c

∑n
j=1 qCaseG(~yj)(Ai(~c), s)

begin

// In hash table h, entries map ground actions to corresponding value: A(~x)→ v.

Initialize empty hash table h;

// Now, compute additive values for all matching ground actions

foreach (action Ai) do

foreach (goal G(~yj)) do

Replace all occurrences of ~y∗ in qCaseG(~y∗)(Ai, s) with ~yj ;

foreach (case partition 〈∃~x φ(~x), t〉 ∈ qCaseG(~yj)(Ai, s)) do

foreach (ground binding ~x = ~c satisfying ∃~x φ(~x)) do

if (Ai(~c)→ v is already in h for some v) then

Update h to contain Ai(~c)→
(

v + t
n

)

;

else

Update h to contain Ai(~c)→ t
n ;

// Assume h tracks its maximal entry: Ai(~c)→ v.

Return the maximal Ai(~c) from h;

end

complex universal rewards, the general open question being how to assign credit among the

constituents of such a reward.

4.8 Related Work

A variety of exact algorithms have been introduced to solve MDPs with relational (RMDP)

and first-order (FOMDP) structure.17 Symbolic dynamic programming (SDP) [Boutilier et

al., 2001] is the original first-order value iteration algorithm for solving FOMDPs introduced

here. First-order value iteration (FOVIA) [Hölldobler and Skvortsova, 2004; Karabaev and

Skvortsova, 2005] and the relational Bellman algorithm (ReBel) [Kersting et al., 2004] are

value iteration algorithms for solving RMDPs. First-order decision diagrams (FODDs) have

been introduced to compactly represent case statements and to permit efficient application of

17We use the term relational MDP to refer to models that allow implicit existential quantification, and first-

order MDP for those with explicit existential and universal quantification.

CHAPTER 4. FIRST-ORDER MDPS 124

symbolic dynamic programming operations to solve RMDPs via value iteration [Wang et al.,

2007] and policy iteration [Wang and Khardon, 2007]; we elaborate on the differences between

FOADDs and FODDs in a moment. All of these algorithms have some form of guarantee on

convergence to the (ǫ-)optimal value function or policy. However, aside from the SDP algo-

rithm discussed at length in this chapter, all of these other methods are restricted to RMDPs

and thus do not permit the explicit specification of universally quantified formulae in their rep-

resentation. As for approximate and heuristic FOMDP solution algorithms, we discuss these

approaches at the end of the next chapter in the context of our own approximate FOMDP

solution algorithms.

Since FODDs are very similar in spirit to the FO(A)DDs we defined in this chapter, we

enumerate some of the major differences between these two formalisms:

1. FODDs disallow explicit universal quantification in rewards and to some extent in their

SSA representation when variables in both the precondition and the post-action fluent do

not occur as action parameters. This prohibits ADL extensions of STRIPS planning such

as non-local universal effects.

2. FODDs rely on a range of simplification rules to maintain compact representations.

However, rather than having a well-defined simplification algorithm, simplification in

FODDs is somewhat open-ended and heuristic.

3. Rather than perform explicit ∃x. and casemax operations, FODDs assume an implicit

semantics where the maximal value is assumed for all instantiations of the free variables.

This can lead to very compact representations during value iteration, but this semantics

requires more complex computation during policy evaluation and may interfere with

extensions of FODDs to handle universally quantified formulae.

Consequently, FODDs represent an interesting alternative in the design space of data structures

for the compact representation of case statements. Nonetheless, the major limitation w.r.t. the

work we present in this thesis is that the expressiveness of FODD-based FOMDPs is limited to

probabilistic extensions of STRIPS and minor variants. Ideally the best approach would be to

combine the advantages of FO(A)ADDs with those of FODDs. This is a non-trivial problem,

however, and is not addressed in the current research literature.

In concluding the discussion of related work, we summarize by noting that the SDP algo-

rithms covered in this chapter are the only methods capable of exactly solving FOMDPs with

CHAPTER 4. FIRST-ORDER MDPS 125

both explicit existential and universal quantifiers in their specification. Thus, SDP and the ex-

tensions that we will define in future chapters are the only FOMDP solution algorithms that can

generally handle the important planning construct of non-local universal effects from PPDDL

(c.f., the PPDDL/ADL discussion at the beginning of this chapter).

4.9 Summary

In concluding this section on FOMDPs, we note that this framework offers many attractive

properties from an MDP perspective. First, it allows one to draw on relational probabilistic

planning problem specifications like PPDDL to specify FOMDP dynamics directly. Further-

more, FOMDP solution algorithms such as first-order value iteration are completely domain-

independent and do not require explicit state and action enumeration. Therefore these tech-

niques can solve for very concise representations of optimal value functions and policies when

they exist, even when the underlying domain may be infinitely sized as in BOXWORLD.

On the other hand, the expressivity of FOMDPs comes with a few drawbacks. First, theo-

rem proving and and a range of first-order logic simplification methods are required to maintain

compact case representations. While techniques such as FOADDs and FOAADDs substan-

tially reduce the simplification and theorem proving burden by exploiting propositional struc-

ture common to many FOMDPs, these approaches merely delay the inevitable fact that current

simplification and theorem proving technologies can only scale so far. Second, although our

case, FOADD, and FOAADD representations are attempts at compactly representing structure

common to many FOMDPs, even these structures are inadequate for problems with difficult

reward structure such as universal rewards. In this case we had to suffice with an approximate

decomposition-based solution technique, albeit an ad-hoc one with no general performance

guarantees. But the need for approximation in order to obtain tractable solutions is a general

lesson that we should take to heart. Ideally though, we would also desire to have some form

of error bounds on approximate solutions, something possible with APRICODD-style exten-

sions [St-Aubin et al., 2000] of SDP that have not been explored to date.

In general, even though we can now exploit structure that was not possible with ground

MDPs or factored MDPs, the fact that we are now domain-independently representing and

solving FOMDPs adds a new dimension of complexity that is not easily overcome in exact

solution approaches. Given that approximate solution approaches such as linear-value approx-

imation [Guestrin et al., 2002; Schuurmans and Patrascu, 2001; de Farias and Van Roy, 2003]

have allowed MDP solution algorithms to scale far beyond the limits of exact algorithms while

CHAPTER 4. FIRST-ORDER MDPS 126

offering reasonable loss-bounds on performance, this suggests that we might be able to achieve

similar results by generalizing linear-value solution techniques to FOMDPs, which we do next.

Chapter 5

Linear-value Approximation for FOMDPs

Perhaps the greatest difficulty with the previously described exact and approximate value it-

eration solutions for FOMDPs is that the size of the value function case representation can

grow according to a high-order polynominal on each iteration1 and thus exponentially in terms

of the number of iterations. Similar growth properties can occur for the first-order formulae

representing the state partitions of the value function. Once these formulae become too large

to detect equivalence or inconsistency, all hope of obtaining a compact representation of the

value function is lost as the number of partitions in the case representation grow unboundedly

with no practical means for simplification or pruning. Unfortunately, current research has not

identified an alternate representation nor a set of logical simplification rules that can maintain

relatively compact case statements across a variety of planning problems.

Thus, faced with the difficulty of exact and approximate value iteration-based MDP so-

lution methods, we seek alternate approaches based on linear-value approximation. In this

paradigm, we reduce the task of solving a FOMDP to that of obtaining good weights for a

set of basis functions that approximates the optimal value function. We have already defined

such techniques for ground (factored) MDPs and in this chapter, our goal is to generalize these

frameworks to the first-order case. This is a non-trivial task as it requires the generalization

of linear programs to the case with first-order constraints and efficient extensions of solution

methods such as constraint generation and variable elimination in cost networks to exploit the

first-order structure of these constraints.

In the process of developing a completely automated linear-value approximation solution

approach to FOMDPs and in an effort to answer the question “where do basis functions come

1Note that in the worst case, just a single case operation can yield a quadratic blowup in the number of case

partitions in terms of the maximum number of case partitions in its operands.

127

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 128

from?”, we adapt techniques proposed by Gretton and Thiebaux [2004] for the automatic gen-

eration of basis functions. With appropropriate domain axioms defining legal states, these

techniques give us a practical automated approach to decision-theoretic planning in PPDDL-

derived representations; we demonstrate the efficacy of these techniques on probabilistic plan-

ning problems from the ICAPS 2004 and ICAPS 2006 International Probabilistic Planning

Competitions [Littman and Younes, 2004b; Gerevini et al., 2006].

Parts of the work described in this chapter appeared in [Sanner and Boutilier, 2005; Sanner

and Boutilier, 2006].

5.1 Linear-value Approximation with Basis Functions

Linear-value approximation solutions to FOMDPs are attractive for a number of reasons:

• Given that much of the computation in linear-value approximation solutions reduces to

linear program optimization, this reduces the algorithm design space to the setup and

solution of linear programs.

• Since the size of linear-value approximations is fixed, the size of the linear-value ap-

proximation can be used to moderate the complexity of the resulting solution algorithm.

This leads to a flexible solution approach that trades off approximation accuracy and

computation.

• For algorithms like approximate policy iteration, we can obtain error bounds on the re-

sulting value approximation if the algorithm converges, thus providing us with a domain-

independent bound on approximate solution quality.

• Linear-value approximation solutions do not require logical simplification, just weight

projections that make use of a theorem prover. This is a huge advantage over exact

techniques that require simplification in order to maintain a compact representation.

• Linear-value approximation solutions have yielded reasonable empirical performance for

ground and factored MDPs, which is an encouraging indication that these results may

extend to FOMDPs.

Motivated by the potential advantages of linear-value approximation, we now proceed to gen-

eralize our representation from the propositional case to the first-order case.

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 129

5.1.1 First-order Linear-value Representation

We represent a value function as a weighted sum of k first-order basis functions, denoted bi(s),

each ideally containing a small number of formulae that provide a first-order abstraction of

state space:

V (s) =
k
⊕

i=1

wi · bi(s) (5.1)

Throughout this chapter, we will assume that each individual basis function bi(s) is represented

by a case statement that is an exhaustive and disjoint partitioning of state space. This property

will be useful when we define the backup operators next.

Using this linear-value function representation, we can often achieve a reasonable approx-

imation of the exact value function by exploiting the additive structure inherent in many real-

world problems. For example, as argued in previous chapters, many planning problems have

additive reward functions or multiple goals to be achieved, both of which lend themselves to

approximation via linearly additive basis functions. Unlike exact solution methods where value

functions can grow exponentially in size during the solution process and must be logically sim-

plified, here we maintain the value function in a compact form that requires no simplification,

just discovery of good weights.

As an example, we may wish to approximate the value function for our BOXWORLD

FOMDP from the last chapter as follows where we refer to specific instances of bi(s) as

bCase i(s):

bCase1(s) =
∃b.BoxIn(b, paris, s) : 1

¬“ : 0

(5.2)

bCase2(s) =
∃b, t.BoxOn(b, t, s) : 1

¬“ : 0
(5.3)

(5.4)

bCase3(s) =
∃b, t.TruckIn(t, paris, s) ∧ BoxOn(b, t, s) : 1

¬“ : 0

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 130

and a specific instance of V (s) as vCase(s):

vCase(s) =w1 · bCase1(s)⊕ w2 · bCase2(s)⊕ w3 · bCase3(s) (5.5)

Here we note that each basis function is relatively small and represents a portion of state space

to which we would expect to assign some positive value in order to approximate the BOX-

WORLD value function.

5.1.2 Backup Operators

Just as we defined an action backup operator for MDP value functions as a useful notation in

Chapter 3, we can do the same for FOMDP case representations. Suppose we are given a value

function in the form V (s). Backing up this value function through an action A(~x) yields a case

statement containing the logical description of states that would give rise to V (s) after doing

action A(~x), as well as the values thus obtained.

However, due to the free variables in actionA(~x), there are in fact two types of backups that

we can perform. The first, BA(~x)[·], regresses a value function through an action and produces

a case statement with free variables for the action parameters. The second, BA[·], existentially

quantifies over the free variables ~x in BA(~x)[·]. Thus, the application of BA[·] results in a case

description of the regressed value function indicating the values that could be achieved by any

instantiation of A(~x) in the pre-action state.

The definition of BA(~x)[·] is almost the same as the first-order decision theoretic regression

(FODTR) operator from Equation 4.22 in Chapter 4, except that we do not explicitly add in

the reward. Slightly modifying our definitions from Section 4.3.3, we let n1(~x), . . . , nq(~x) be

the set of Nature’s deterministic action outcomes for stochastic action A(~x).2 Then we define

BA(~x)[·] as follows:

BA(~x)[V (s)]

= γ [

q
⊕

j=1

{P (nj(~x), A(~x), s)⊗ Regr(V (do(nj(~x), s)))}] (5.6)

Defining BA(~x)[·] in this way makes it a linear operator with properties similar to the linear

operators we defined for factored MDPs in Chapter 3, Equation 3.10. Thus, if we apply this

2In general, the set of Nature’s choice actions n1(~x), . . . , nq(~x) are associated with a stochastic action A(~x)
and A(~x) will always be clear from context.

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 131

operator to our linear-value function representation, we see that it distributes to each first-order

basis function:

BA(~x)[V (s)] = BA(~x)

[

k
⊕

i=1

wi · bi(s)
]

=
k
⊕

i=1

wi ·BA(~x) [bi(s)] (5.7)

Having defined BA(~x)[·], we now use it to define BA[·]:3

BA[V (s)] = ∃~x.
{

BA(~x)[V (s)]
}

(5.8)

Unfortunately, if we apply BA[·] to our linear-value function representation in the following

manner

BA[V (s)] = BA

[

k
⊕

i=1

wi · bi(s)
]

= ∃~x.
{

k
⊕

i=1

wi ·BA(~x) [bi(s)]

}

(5.9)

we see that BA[·] is not necessarily a linear operator. The difficulty in this case is that the ex-

istential quantification of BA[·] jointly constrains the backup of all basis functions that contain

the existentially quantified variable as a free variable.

However, all is not lost. To show how these problems can be mitigated, we begin with a

few definitions.

Definition 5.1.1. We say that a deterministic Nature’s choice action nj(~x) affects a fluent F if

there is a positive or negative effect axiom that contains a = nj(~x) in the body of the axiom and

F in the head (c.f., Section 4.2.2). We say that a stochastic action A(~x) affects a fluent F if at

least one of Nature’s choice deterministic outcomes nj(~x) of A(~x) affects F . And we say that a

formula φ is affected by a stochastic A(~x) action iff φ contains a fluent affected by A(~x); since

a case statement is defined as a logical formula, this definition extends to case statements.

Next, we note the following property:

3For simplicity, we assume that the reward is independent of the arguments ~x for any action A(~x) and thus

omit such reward dependencies here. However, if this was not the case, we could easily insert it in this equation

and make appropriate adjustments to our later equations.

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 132

Property 5.1.2. When a basis function case statement bi(s) is affected by a stochastic ac-

tion A(~x), BA(~x)[bi(s)] will contain the action arguments ~x as free variables. The inverse

of this property is also true: if a stochastic action A(~x) does not affect a basis function bi(s),

BA(~x)[bi(s)] will not contain the action arguments as free variables.

To exploit this property, we let I+
A denote the set of indices i for basis functions bi(s) that

are affected by an action A(~x) (so that for all i ∈ I+
A , BA(~x)[bi(s)] contains the free variables

~x). Likewise, we let I−A denote the set of indices of basis functions bi(s) not affected by an

action (so that for all i ∈ I−A , BA(~x)[bi(s)] does not contain the free variables ~x). Then, we

exploit the fact that the ∃~x is vacuous for case statements not containing free variables ~x and

remove these terms from the scope of the ∃~x quantification. This yields the following result

for BA applied to a linear-value function representation:

BA

[

⊕

i

wibi(s)

]

(5.10)

=





⊕

i∈I−
A

wiB
A(~x) [bi(s)]



⊕ ∃~x.





⊕

i∈I+
A

wiB
A(~x) [bi(s)]





Consequently, if no fluent occurs in more than a few basis functions and few fluents are affected

by an action then we can reasonably expect the result of applying BA to retain some additive

structure.

As a concrete example to demonstrate the backup operators and the exploitation of addi-

tive structure, let us compute Bdrive [·] for our previously specified linear-value function from

Equation 5.5:

Bdrive [vCase(s)] = ∃t∗, c∗ Bdrive(t∗,c∗)[vCase(s)] (5.11)

= ∃t∗, c∗ Bdrive(t∗,c∗)[w1 · bCase1(s)⊕ w2 · bCase2(s)⊕ w3 · bCase3(s)]

= ∃t∗, c∗
{

w1 ·Bdrive(t∗,c∗)[bCase1(s)]⊕ w2 ·Bdrive(t∗,c∗)[bCase2(s)]

⊕w3 ·Bdrive(t∗,c∗)[bCase3(s)]
}

= ∃t∗, c∗
{

w1 ·
∃b.BoxIn(b, paris, s) : 0.9

¬“ : 0
⊕ w2 ·

∃b, t.BoxOn(b, t, s) : 0.9

¬“ : 0

⊕w3 ·
∃b, t. [t = t∗ ∧ c∗ = paris ∧ ∃c1TruckIn(t, c1, s)]

∨TruckIn(t, paris, s)] ∧ BoxOn(b, t, s) : 0.9

¬“ : 0















CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 133

Here, we note that the first and second basis functions were not affected by the drive(t∗, c∗)

action and thus their backup through this action is equivalent to a backup through a noop.

Since the third basis function is affected by the action drive(t∗, c∗) and this introduces the

action parameters t∗ and c∗ into the result of its backup, we can push the quantifiers in to just

this third case statement:

Bdrive [vCase(s)] = ∃t∗, c∗. Bdrive(t∗,c∗)[vCase(s)]

=w1 ·
∃b.BoxIn(b, paris, s) : 0.9

¬“ : 0
⊕ w2 ·

∃b, t.BoxOn(b, t, s) : 0.9

¬“ : 0

⊕ w3 · ∃t∗, c∗















∃b, t. [t = t∗ ∧ c∗ = paris ∧ ∃c1TruckIn(t, c1, s)]

∨TruckIn(t, paris, s)] ∧ BoxOn(b, t, s) : 0.9

¬“ : 0















Finally, we carry out the explicit ∃t∗, c∗ operation on the third case statement where we dis-

tribute the quantifiers inside the case partitions and simplify as described in Section 4.2.3 of

Chapter 4. This allows us to remove the ∃t∗, c∗ by rewriting equalities and exploiting the

non-empty domain assumption:

Bdrive [vCase(s)] = ∃t∗, c∗. Bdrive(t∗,c∗)[vCase(s)] (5.12)

=w1 ·
∃b.BoxIn(b, paris, s) : 0.9

¬“ : 0
⊕ w2 ·

∃b, t.BoxOn(b, t, s) : 0.9

¬“ : 0

⊕ w3 ·
∃b, t. [(∃c1.TruckIn(t, c1, s)) ∨ TruckIn(t, paris, s)] ∧ BoxOn(b, t, s) : 0.9

¬“ : 0

This example demonstrates the best case for BA[·] where an action only affects one basis func-

tion thus allowing the other basis functions to be removed from the scope of the ∃~x operator.

Then the ∃~x operator can be easily applied to a single case statement without incurring a repre-

sentational blowup that would otherwise occur if the ∃~x ranged over a sum of case statements

and the explicit “cross-sum” ⊕ was required.

Unfortunately in many cases, more than one basis function will be affected by an action.

For example, if we had computed Bunload [vCase(s)], all three basis functions would have been

affected by the action and we would have had to explicitly compute the “cross-sum” ⊕ of the

backups of all three basis functions. While this worst case effectively cancels many of the

benefits of linear-value approximation since additive structure can no longer be exploited, we

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 134

will see that by generating our basis functions in a restricted manner, we can often manage to

avoid computing the explicit ⊕, even when all basis functions are affected by an action. We

will discuss this aspect during basis function generation.

5.2 Approximate Solution Methods

In this section, we describe two useful linear-value approximation methods: first-order approx-

imate linear programming (FOALP), and first-order approximate policy iteration (FOAPI).

Both of these methods are generalized from the propositional MDP case outlined in Chap-

ter 3, Section 3.3.2 to the first-order case. We do not cover first-order approximate value

iteration due to its issues with divergence in the ground case [Tsitsiklis and Van Roy, 1996;

Guestrin et al., 2001] that trivially extend to the first-order case. Indeed, our own experi-

mentation with first-order approximate value iteration approaches has proved fruitless due to

divergence issues.

5.2.1 First-order Approximate Linear Programming

We now generalize the approximate linear programming (ALP) approach for propositional

factored MDPs from Equation 3.15 in Chapter 3 to first-order MDPs. If we simply substitute

appropriate notation, we arrive at the following formulation of the first-order ALP (FOALP)

approach:

Variables: wi ; ∀i ≤ k

Minimize:
∑

s

k
⊕

i=1

wi · bi(s)

Subject to: 0 ≥ R(s)⊕BA

[

k
⊕

i=1

wi · bi(s)
]

⊖
k
⊕

i=1

wi · bi(s) ; ∀ A, s (5.13)

As for ALP, our variables are the weights of our basis functions and our objective is to mini-

mize the sum of values over all states s. We have one constraint for each stochastic action A

(e.g., in BOXWORLD, A ∈ {unload , load , drive}) and each state s. Unfortunately, while the

objective and constraints in ALP for a factored MDP range over a finite number of states s, this

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 135

direct generalization to the FOALP approach for FOMDPs requires dealing with infinitely (or

indefinitely) many situations s.

Since we are summing over infinitely many situations in the FOALP objective, it is ill-

defined. Thus, we redefine the FOALP objective in a manner that preserves the intention of the

original approximate linear programming solution for MDPs. In the ALP approach of Equa-

tion 3.15, the objective equally weights each state and minimizes the sum of the value function

over all states. However, if we look at the case partitions 〈φi(s), ti〉 of each basis function

bi(s) case statement (recall the case statement representation from Equation 4.8), we note that

each case partition serves as an aggregate representation of ground states assigned equal value.

Consequently, rather than count ground states in our FOALP objective—of which there would

be an infinite number per partition—we suppose that each basis function partition is chosen

because it represented a potentially useful partitioning of state space, and thus weight each

case partition equally. Consequently, we rewrite the above FOALP objective as the following:

∑

s

k
⊕

i=1

wi · bi(s) =
k
⊕

i=1

wi

∑

s

bi(s) (5.14)

∼
k
⊕

i=1

wi

∑

〈φj ,tj〉∈bi

tj
|bi|

Here we use |bi| to indicate the number of partitions in the ith basis function. Thus, we see

that this approach can be seen as aggregating states within a basis function partition into one

abstract state and then weighting this abstract state uniformly in importance w.r.t. the other

abstract states. When the bi are simply indicator functions for some conditions as we will often

assume in this chapter, we note the objective further simplifies to
∑

iwi — every basis function

and its associated weight is equally important. Of course, this solution requires approximat-

ing the original objective and thus FOALP does not represent an exact generalization of the

ground ALP approach to the first-order case. We discuss the strengths of weaknesses of such

an approach in our concluding remarks for this chapter.

With the issue of the infinite objective resolved, this leaves us with one final problem — the

infinite number of constraints (i.e., one for every situation s). Fortunately, we can work around

this since case statements are finite. Since the value ti for each case partition 〈φi(s), ti〉 is con-

stant over all situations satisfying the φi(s), we can explicitly sum over the case i(s) statements

in each constraint to yield a single case statement representation of the constraints. The key ob-

servation here is that the finite number of constraints represented in the single “flattened” case

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 136

statement (for which we provide an upcoming example in Equation 5.17) hold iff the original

infinite set of constraints in Equation 5.13 hold.

To understand this, let us provide an example of the constraints for the drive action for

FOALP substituting our previously defined basis functions bCase i(s) from Equation 5.4 for

bi(s), the results of the Bdrive operator for these basis functions from Equation 5.12, and the

reward definition for BOXWORLD given by rCase(s) in Equation 4.9 for R(s). We substitute

all of these directly into the constraint form of Equation 5.13 above:

0 ≥ ∃b.BoxIn(b, paris , s) : 10

¬“ : 0
⊕ w1 ·

∃b.BoxIn(b, paris, s) : 0.9

¬“ : 0

⊕ w2 ·
∃b, t.BoxOn(b, t, s) : 0.9

¬“ : 0

⊕ w3 ·
∃b, t. [(∃c1.TruckIn(t, c1, s)) ∨ TruckIn(t, paris, s)] ∧ BoxOn(b, t, s) : 0.9

¬“ : 0

⊖ w1 ·
∃b.BoxIn(b, paris, s) : 1

¬“ : 0
⊖ w2 ·

∃b, t.BoxOn(b, t, s) : 1

¬“ : 0

⊖ w3 ·
∃b, t.TruckIn(t, paris, s) ∧ BoxOn(b, t, s) : 1

¬“ : 0
; ∀ s (5.15)

Next we perform an explicit ⊕ and ⊖ for some of the case statements, simplify the resulting

partitions, and distribute the weights into the partition values:

0 ≥ ∃b.BoxIn(b, paris, s) : 10− 0.1 · w1

¬“ : 0
⊕ ∃b, t.BoxOn(b, t, s) : −0.1 · w2

¬“ : 0
(5.16)

⊕
∃b, t.TruckIn(t, paris, s) ∧ BoxOn(b, t, s) : −0.1 · w3

¬“ ∧ ∃b, t, c1.TruckIn(t, c1, s) ∧ BoxOn(b, t, s) : 0.9 · w3

¬“ : 0

; ∀ s

To maintain our representation in a compact and perspicuous form, we define the following

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 137

propositional renamings for the first-order formulae in these case statements:4

φ1(s) ≡ ∃b.BoxIn(b, paris, s)

φ2(s) ≡ ∃b, t.BoxOn(b, t, s)

φ3(s) ≡ ∃b, t.TruckIn(t, paris, s) ∧ BoxOn(b, t, s)

φ4(s) ≡ ∃b, t, c1.TruckIn(t, c1, s) ∧ BoxOn(b, t, s)

And finally, we can fully expand the ⊕ to obtain an explicit representation of all FOALP

constraints for the drive action in our BOXWORLD example:

φ1(s) ∧ φ2(s) ∧ φ3(s) : 0 ≥ 10− 0.1 · w1 +−0.1 · w2 +−0.1 · w3

φ1(s) ∧ φ2(s) ∧ ¬φ3(s) ∧ φ4(s) : 0 ≥ 10− 0.1 · w1 +−0.1 · w2 + 0.9 · w3

φ1(s) ∧ φ2(s) ∧ ¬φ3(s) ∧ ¬φ4(s) : 0 ≥ 10− 0.1 · w1 +−0.1 · w2

φ1(s) ∧ ¬φ2(s) ∧ φ3(s) : 0 ≥ 10− 0.1 · w1 +−0.1 · w3

φ1(s) ∧ ¬φ2(s) ∧ ¬φ3(s) ∧ φ4(s) : 0 ≥ 10− 0.1 · w1 + 0.9 · w3

φ1(s) ∧ ¬φ2(s) ∧ ¬φ3(s) ∧ ¬φ4(s) : 0 ≥ 10− 0.1 · w1 +−0.1 · w2

¬φ1(s) ∧ φ2(s) ∧ φ3(s) : 0 ≥ −0.1 · w2 +−0.1 · w3

¬φ1(s) ∧ φ2(s) ∧ ¬φ3(s) ∧ φ4(s) : 0 ≥ −0.1 · w2 + 0.9 · w3

¬φ1(s) ∧ φ2(s) ∧ ¬φ3(s) ∧ ¬φ4(s) : 0 ≥ −0.1 · w2

¬φ1(s) ∧ ¬φ2(s) ∧ φ3(s) : 0 ≥ −0.1 · w3

¬φ1(s) ∧ ¬φ2(s) ∧ ¬φ3(s) ∧ φ4(s) : 0 ≥ 0.9 · w3

¬φ1(s) ∧ ¬φ2(s) ∧ ¬φ3(s) ∧ ¬φ4(s) : 0 ≥ 0

; ∀ s

(5.17)

Here, if any case partition formula had been inconsistent, we would have removed it and the

corresponding constraint.

While we note that technically there are an infinite number of constraints (one for every

possible situation s), there are only a finite number of distinct constraints. In fact, the case

representation conveniently partitions the state space into regions with the same constraint.

Thus, one approach to the FOALP solution would enumerate all consistent constraints for every

action and then directly solve the resulting LP. In addition to the above constraints for the drive

4One will note that the renaming of first-order formulae with “propositional” variables is in the same spirit as

FOADDs. Consequently, we note that FOADDs prove to be an efficient method for representing and performing

operations on the constraints that occur in FOALP and FOAPI.

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 138

action in BOXWORLD, this approach would require us to carry out a similar procedure for the

unload , load , and noop actions; however, once we did this, we would have all of the constraints

necessary for solving the FOALP first-order linear program specification.

However, as the number of basis functions increases in size, the number of constraints can

clearly grow exponentially in the number of case statements in the constraint, just as in the

propositional version where the number of constraints was exponential in the number of state

variables. We reviewed various techniques in Section 3.3.2 for working around this problem

in the propositional case, including the constraint generation techniques of Schuurmans and

Patrascu [2001] used to efficiently generate a subset of the constraints required to solve the LP.

This suggests we might benefit by generalizing constraint generation to solve first-order LPs.

But before we attack this problem specifically for FOALP, we introduce first-order approximate

policy iteration that happens to define a first-order LP similar to FOALP.

5.2.2 First-order Approximate Policy Iteration

We now generalize approximate policy iteration from the propositional case to the case of

first-order approximate policy iteration (FOAPI).

To start off, FOAPI requires that we derive a suitable first-order policy representation from

a value function V (s). For this, we can use the policy representation that we introduced in

Equation 4.28 of Chapter 4 updated to use the BA[·] operator with our implicit linear-value

function representation of V (s) from Equation 5.1 where we assume m stochastic actions of

the form Ai(~x):

π(s)[V (s)] = casemax [R(s)⊕
⋃

i=1...m

BAi [V (s)] (5.18)

At this point, we know that the the result of BAi [·] may retain linear structure, however we

have not given a definition of the ∪ operator that can exploit additive structure. We return to

this issue in a moment, but for now assume that the explicit “cross-sum”⊕ is applied to (1) any

additive structure remaining in the result of the BAi [·] operator and (2) the sum of R(s) and the

result of the ∪ operator.

We will assume that this policy derivation method makes the additional policy annotations

that were made for Equation 4.28. To provide an example, we recall vCase(s) from Equa-

tion 5.5 and assume that we have the weight assignment {w1 = 10, w2 = 0, w3 = 0} for this

linear-value function representation. This weight assignment essentially reduces vCase(s) to

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 139

a representation of rCase(s), so we let V (s) = rCase(s) and recall the result of our previous

policy instance πCase(s)[rCase(s)] derived in this instance:

πCase(s)[rCase(s)] (5.19)

=

∃b.BoxIn(b, paris, do(a, s)) : 19.0 −→ noop

¬“ ∧ [∃b∗, t∗, c.BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris , s)] : 8.1 −→ unload(b∗, t∗)

¬“ : 0 −→ noop

We note that the weights we chose for vCase(s) made the derivation of the policy quite

trivial (by zeroing out the second and third basis functions), so let us briefly digress to consider

a more complex case and its implications. If {w1 = 1, w2 = 1, w3 = 1}, the first issue one

might notice when attempting to derive a greedy policy is that the ∪ operator forces us to

perform an explicit “cross-sum” ⊕ over its operands (assuming they retained some additive

structure after BA[·] was applied). However, performing an explicit sum of the operands forces

policy derivation to require time and space that is exponential in the number of basis functions,

effectively cancelling out the representational benefits of a linear-value function representation.

However, there are a number of ways to avoid this exponential blowup:

1. We could attempt to exploit additivity in the policy representation with additional repre-

sentational machinery.

2. We could use the method of comparing each action Q-function to a noop policy in the

spirit of Guestrin et al. [2001; 2002], in an attempt to extract a compact policy represen-

tation.

3. We could exploit assumptions in the specification of the basis functions that allow us to

achieve a compact policy representation.

While all of these options are viable, the simplest and most straightforward method for our

purposes comes from the third choice. However, since we have not yet covered basis func-

tion generation, we postpone this discussion until later and assume for now that πCase(s) is

compact and can be derived efficiently (i.e., without considering policy representations that are

exponential in the number of basis functions).

For FOAPI approach, we will need to define a set of case statements for each action Ai

that is satisfied only in the world states where Ai should be applied according to π(s). Conse-

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 140

quently, we define an action restricted policy πAi
(s) as follows:

πAi
(s) = {〈φ, t〉|〈φ, t〉 ∈ π(s) and 〈φ, t〉 → Ai}

Our previous policy example from Equation 5.19 allows us to derive two example instantiations

πCaseunload(s) and πCasenoop(s) of action restricted policies:

πCaseunload(s)

=
¬[∃b.BoxIn(b, paris, do(a, s))]

∧[∃b∗, t∗, c.BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris, s)] : 8.1 −→ unload(b∗, t∗)

πCasenoop(s)

=
∃b.BoxIn(b, paris, do(a, s)) : 19.0 −→ noop

¬“ ∧ ¬[∃b∗, t∗, c.BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris, s)] : 0 −→ noop

Now, we make two additional modifications to πAi
. Given that we know that every partition

of πAi
contains one non-negated formula of the form ∃~x∗.φ(~x∗) (meaning if this formula can

be satisfied, execute Ai(~x
∗)), we briefly “unquantify” the formula and re-express it in terms

of free variables — essentially, we remove the ∃~x∗. We refer to the result as πAi(~x∗) since the

action variables are again free. Also, following the example of our policy indicator functions

from Equation 3.13 in Chapter 3, we convert the value of the case statement to be 0.5 To make

this concrete, let us modify πCaseunload(s) as described to yield πCaseunload(b∗,t∗)(s):

πCaseunload(b∗,t∗)(s) (5.20)

=
¬[∃b.BoxIn(b, paris, do(a, s))]

∧[∃c.BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris, s)] : 0 −→ unload(b∗, t∗)

Of course the only differences between πCaseunload(s) and πCaseunload(b∗,t∗)(s) are that the

action variables b∗ and t∗ are now free variables and the value of 8.1 has been converted to 0.

The reason for doing this will become apparent now that we can define the first-order LP for

5In Equation 3.13 we set all policy “partitions” where the corresponding action should be applied to 0 and

all other partitions to −∞ so that the constraint would be trivially satisfied. In the first-order case, the case

representation affords us the ability to simply not represent any partitions where the policy would not be applied

as this will prevent any constraint from being applied for these situations.

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 141

FOAPI.

We can generalize approximate policy iteration to the first-order case by calculating suc-

cessive iterations of weights w
(i)
j that represent the best approximation of the fixed-point value

function for policy π(i)(s) at iteration i. We do this by performing the following two steps at

every iteration i after initializing ~w(0) = ~0 and i = 1:

1. Obtain the policy π(i)(s) from the current value weights ~w(i−1) using Equation 5.18.

2. Solve the following first-order LP that determines the weights ~w(i) for theL∞ minimizing

projection of the approximate value function for policy π(i)(s):

Variables: w
(i)
1 , . . . , w

(i)
k

Minimize: β(i) (5.21)

Subject to: β(i) ≥
∣

∣

∣

∣

∣

R(s)⊕ ∃~x∗
(

π
(i)
A(~x∗)(s)⊕BA(~x∗)

[

k
⊕

j=1

w
(i)
j · bj(s)

])

⊖
k
⊕

j=1

w
(i)
j · bj(s)

∣

∣

∣

∣

∣

; ∀A, s

3. If π(i)(s) = π(i−1)(s) (equivalently ~w(i) = ~w(i−1)) or β(i) is less than a prespecified

tolerance then exit, else increment i and goto step (1).

Here we note that this first-order LP is an exact analogue of Equation 3.12 from Chapter 3.

We use π
(i)
A(~x∗)(s) for two purposes: (1) as an indicator function to restrict the validity of the

constraint for action A only to those regions of state space where A should apply according to

the policy, and (2) as a constraint to enforce action selection in the free BA(~x∗) variable backup

operator to be consistent with one of the policy partitions.6

We’ve reached convergence if π(i)(s) = π(i−1)(s) (or equivalently ~w(i) = ~w(i−1)). And if

convergence is reached, the following theorem holds given the projection error β(i) obtained

from the final LP solution of Equation 5.21:

Theorem 5.2.1. Let V (s) be the approximated value function obtained by the weights ~w(i) of

the final LP solution of Equation 5.21 for FOAPI applied to a given FOMDP where FOAPI

has converged. Let β(i) be the objective value of this final LP solution. Then the error bounds

on Vπ̃(s) (the value function obtained by acting according to the greedy policy π̃ w.r.t. V (s))

6As an aside, we also remark that the constraints represent a symbolic dynamic programming step under policy

restrictions, thus also enabling a form of successive approximation in first-order MDPs.

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 142

derived from plugging β(i) in for β in Equation 2.19 hold for all possible finite ground domain

instantiations of this FOMDP.

Proof. See Section B.2 of Appendix B.

Thus, FOAPI provides us with an approximate solution method that provides error bounds

that hold for all possible domain instantiations when convergence is obtained. But what do

we do if FOAPI does not converge? Although we don’t provide a formal proof, loss bounds

should still be possible to guarantee for a policy derived from FOAPI if the algorithm did not

converge. In the case of a (ground) MDP, such a loss bound can be computed from the sum of

discounted projection errors resulting from each iteration of approximate policy iteration. For

an explanation and derivation of this result, we refer the reader to Section 3.2.4 of Guestrin et

al. [2002].

The final question remaining for FOAPI is how to solve the first-order LP given in Equa-

tion 5.21. First, we note that it is simply a mechanical process to write out the exact form of

the constraints of Equation 5.21 on every iteration. To achieve a useful constraint form, it is

important to explicitly compute the ∃~x∗ operator in each constraint in a similar manner to that

done for the BA[·] operator. Once this is done, we will have an additive form of the constraints

similar to those observed for FOALP in Equation 5.15. The question again is how to solve this

first-order LP without enumerating all of the constraints as shown previously for FOALP. We

tackle this problem next.

5.3 First-order Linear Programs

All linear-value approximation methods require the specification and solution of a first-order

linear program (FOLP). A FOLP is nothing more than a standard linear program where the

constraints are written in terms of a sum of case statements whose case partition values may

be specified as linear combinations of the weights. However, efficiently solving FOLPs poses

a number of difficulties and we work through efficient solutions to these difficulties in this

section.

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 143

5.3.1 General Formulation

A first-order linear program is specified as follows:

Variables: w1, . . . , wk ;

Minimize: f(w1, . . . , wk)

Subject to: 0 ≥ case1,1(~w, s)⊕ . . .⊕ case1,n(~w, s) ; ∀ s (5.22)

:

0 ≥ casem,1(~w, s)⊕ . . .⊕ casem,n(~w, s) ; ∀ s

The variables and objective are as defined in a typical LP, the main difference being the form of

the constraints. We allow the ti in each partition 〈φi, ti〉 of case(~w, s) to be linearly dependent

on the weights ~w (e.g., ti = 3w1+2w2). We note that the first-order LPs for FOALP and FOAPI

can be cast in this general form. As previously discussed in our FOALP example, we could

simply compute the explicit “cross-sum” ⊕ to flatten out all sums into a single case statement

that enumerated all constraints as in Equation 5.17. However, this could be inefficient as it

scales exponentially in the number of summed case statements. Fortunately, we can extend

constraint generation methods used in factored MDPs [Schuurmans and Patrascu, 2001] to the

first-order case as we show next.

5.3.2 First-order Cost Network Maximization

Recalling our discussion of constraint generation for the ground case from Chapter 3, there

were two important components that enabled an efficient solution. First, we must be able to

rewrite the first-order LP constraints in the following format where the RHS of the constraint

assumes the form of a cost network:7

0 ≥ max
s

[case1(~w, s)⊕ . . .⊕ casen(~w, s)] (5.23)

Second, we need to show that we can efficiently generate the maximizing value within this

first-order cost network without enumerating all combinations of assignments to each case

statement (which grows exponentially in n).

7While we have previously used casemax for maximization over cases, we note that here we are just interested

in the maximum value that is possible via a consistent joint selection of case partitions from each case statement

in the constraint.

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 144

Algorithm 8: FOMax (C, 〈R1 . . . Rn〉) −→ 〈S, v〉

input : (1) A set C = {case1, . . . , casen}.
(2) An ordering 〈R1 . . . Rn〉 of all relations in C.

output : (1) The maximum value v achievable.

(2) A set S of partitions {〈φi, ti〉 ∈ casei} for i = 1 . . . n s.t. v = t1 + . . . + tn.

begin

// Convert C into CNF

for (i = 1 . . . n) do

foreach (〈φi, ti〉 ∈ casei(s)) do

Convert φi to a set of CNF formulae.

foreach (relation R ∈ 〈R1 . . . Rn〉 (in order)) do

// Divide C into two sets of cases based on whether they contain R
C−

R := {casei|∀j.(〈φj , tj〉 ∈ casei) ∧ φj does not contain relation R}
C+

R := {casei|∃j.(〈φj , tj〉 ∈ casei) ∧ φj contains relation R}
Remove all case statements in C+

R with their explicit “cross-sum” ⊕.

// C+
R is now a single case statement and φj is a set of CNF formulae for all 〈φj , tj〉 ∈ C+

R

foreach (〈φj , tj〉 ∈ C+
R in order from highest to lowest value) do

Resolve all clauses in φj (including new resolvents) on relation R.

Remove all clauses in φj containing R.

if (∅ ∈ φj) then

Discard 〈φj , tj〉 and continue with next 〈φj , tj〉.
foreach (〈φi, ti〉 ∈ C+

R where ti > tj) do

if (φj ⊇ φi (modulo variable renaming)) then

Discard 〈φj , tj〉 and continue with next 〈φj , tj〉.

C := {C+
R} ∪ C−

R

v := 0; S := ∅
foreach (maximal value partition 〈φj , tj〉 of each case ∈ C) do

v := v + tj ; S := S ∪ all partitions from input C contributing to 〈φj , tj〉
Return v, S.

end

To determine the maxs in this form of the constraints, we provide the FOMax algorithm

in Algorithm 8 that efficiently carries out this computation. It is similar to variable elimi-

nation [Zhang and Poole, 1994], except that we use first-order ordered resolution in place of

propositional ordered resolution. Thus, we term this generalized variable elimination technique

used by FOMax to be relation elimination. We provide a concrete example of the application

of FOMax in Figure 5.1 in the context of the first-order constraint generation algorithm intro-

duced in the next section.

We note that the ordered resolution strategy we are using here is not refutation-complete

in that it may loop indefinitely at an intermediate relation elimination step before finding a

latter relation with which to resolve a contradiction. This is an unavoidable consequence of the

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 145

fact that refutation resolution for general first-order theories is semidecidable. Nonetheless, we

note that when the resolution procedure does finitely terminate, then the conjunction of case

partition formulae returned by FOMax is guaranteed to be satisfiable as a consequence of the

completeness of refutation resolution.

From a practical implementation standpoint, it is necessary to bound the number of reso-

lutions performed at each relation elimination step to prevent non-termination of FOMax due

to an infinite number of resolutions. This renders the algorithm refutation-incomplete and thus

may generate unnecessary constraints corresponding to unsatisfiable regions of state space.

While these constraints serve to overconstrain the set of feasible solutions, this has not led to

infeasibility problems in practice.

5.3.3 First-Order Constraint Generation

We can use the FOMax algorithm to efficiently find the maximal constraint violation when we

have constraints of the form in Equation 5.23. This allows us to define the following first-order

constraint generation algorithm where we have specified some solution tolerance ǫ:

1. Initialize LP with ~wi = ~0, i = 0, and empty constraint set.

2. For each constraint in the cost-network form of Equation 5.23, find the maximally vio-

lated constraint C (if one exists) using the FOMax algorithm applied to the constraint

instantiated with ~wi.

3. IfC’s constraint violation is larger than ǫ, addC to the LP constraint set, otherwise return

~wi as solution.

4. Solve LP with new constraints to obtain ~wi+1, goto step 2

In first-order constraint generation, we initialize our LP with an initial setting of weights,

but no constraints. Then we alternate between generating constraints based on maximal con-

straint violations at the current solution and re-solving the LP with these additional constraints.

This process repeats until no constraints are violated and we have found the optimal solution.

In practice, this approach typically generates far fewer constraints than the full set, which

would be exponential in the number of case statements in the constraint. To demonstrate this,

we provide a simple example of finding the most violated constraint in Figure 5.1.

Using first-order constraint generation, we can now efficiently solve the first-order LP from

Equation 5.22, which forms a subroutine of both the FOALP and FOAPI algorithms.

C
H

A
P

T
E

R
5

.
L

IN
E

A
R

-
V

A
L

U
E

A
P

P
R

O
X

IM
A

T
IO

N
F

O
R

F
O

M
D

P
S

1
4
6

Suppose we are given the following hypothetical constraint specification for a first-order linear program:

0 ≥ max
s

(

∀b, c. Dst(b, c) ⊃ BoxIn(b, c, s) : 10

¬“ : 0
⊕ ∃b, c. Dst(b, c) ∧ ¬BoxIn(b, c, s) : w1

¬“ : −w1
⊕ ∃t, c.TruckIn(t, c, s) : w2

¬“ : 0

)

Suppose our last LP solution yielded weights w1 = 2 and w2 = 1. We can efficiently compute the most violated constraint (if one exists) by

evaluating the weights in the constraint and applying the FOMax algorithm. We begin by converting all first-order formulae to CNF where

c1, . . . , c6 are Skolemized constants:

0 ≥ max
s

(

{¬Dst(b, c) ∨ BoxIn(b, c, s)} : 10

{Dst(c1, c2),¬BoxIn(c1, c2, s)} : 0
⊕ {Dst(c3, c4),¬BoxIn(c3, c4, s)} : 2

{¬Dst(b, c) ∨ BoxIn(b, c, s)} : −2
⊕ {TruckIn(c5, c6, s)} : 1

{¬TruckIn(t, c, s)} : 0

)

Assume the relation elimination order is BoxIn,Dst ,TruckIn. We enter the main loop of FOMax and begin by eliminating the BoxIn relation:

we take the cross-sum ⊕ of case statements containing BoxIn , resolve all clauses in each partition (including all new resolvents), and remove all

clauses containing BoxIn (indicated by struck-out text):

0 ≥ max
s

(

{¬Dst(b, c) ∨ BoxIn(b, c, s),Dst(c3, c4), ¬BoxIn(c3, c4, s),¬Dst(c3, c4), ∅ } : 12

{ ¬Dst(b, c) ∨ BoxIn(b, c, s)} : 8

{Dst(c1, c2),Dst(c3, c4), ¬BoxIn(c1, c2, s), ¬BoxIn(c3, c4, s) } : 2

{¬Dst(b, c) ∨ BoxIn(b, c, s),Dst(c1, c2), ¬BoxIn(c1, c2, s),¬Dst(c1, c2), ∅ } : −2

⊕ {TruckIn(c5, c6, s)} : 1

{¬TruckIn(t, c, s)} : 0

)

Because the partitions valued 12 and−2 contain the empty clause ∅ (i.e., they are inconsistent), we can remove them. And because the partition of

value 8 dominates the partition of value 2 (i.e., 2 < 8 and the clauses of the value 2 partition are a superset of the clauses of the value 8 partition),

we can remove it as well. This yields the following simplified result:

0 ≥ max
s

(

{ } : 8 ⊕ {TruckIn(c5, c6, s)} : 1

{¬TruckIn(t, c, s)} : 0

)

From here it is obvious that the Dst elimination step will have no effect and the TruckIn elimination step will yield a maximal consistent

partition with value 9. Since this is a positive value and thus a violation of the original constraint, we can generate the new linear constraint

0 ≥ 10 +−w1 + w2 based on the original constituent partitions that led to this maximal constraint violation.

Figure 5.1: An example use of FOMAX to find the maximally violated constraint during first-order constraint generation.

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 147

Algorithm 9: BasisGen(FOMDP,FOALP/FOAPI, τ, n) −→ B

input : (1) A FOMDP specification.

(2) A solution method (FOALP or FOAPI)

(3) a value threshold τ
(4) an iteration limit n

output : A set B of basis functions bCasei(s) and corresponding weights wi.

begin

// Note: rCase(s) may be a sum of cases, so we can start with many basis functions.

B := {rCase(s)}
for (i = 1 . . . n) do

foreach (bCasei(s) ∈ B) do

foreach (〈φi(s), ti〉 ∈ bCasei(s)) do

foreach (deterministic action Ai(~x)) do

B := B ∪ ¬φi ∧ ∃~x Regr(φi(do(Ai(~x), s))) : 1
¬“ : 0

Solve for the weights ~w using FOALP or FOAPI.

foreach (bCasei(s) ∈ B) do

if (wi < τ) then

Discard bCasei(s) from B and ensure it is not regenerated.

if (no new basis functions generated on this iteration) then

Return B, ~w.

Return B, ~w.

end

5.4 Automatic Generation of Basis Functions

The use of linear approximations requires a good set of basis functions that span a space

that includes a good approximation to the value function. While some work has addressed

the issue of basis function generation [Poupart et al., 2002a; Mahadevan, 2005], no methods

have been specifically targeted to generate basis functions exploiting first-order structure for

FOMDPs. We consider a basis function generation method that draws on the work of Gretton

and Thiebaux [2004], who use inductive logic programming (ILP) techniques to construct a

value function from sampled experience. Specifically, they use regressions of the reward as

candidate building blocks for ILP-based construction of the value function. This technique has

allowed them to generate fully or t-stage-to-go optimal policies for a range of Blocks World

problems.

We leverage a similar approach for generating candidate basis functions for use in the

FOALP and FOAPI solution techniques. Algorithm 9 provides an overview of our basis func-

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 148

tion generation algorithm. The motivation for this approach is as follows: if some portion of

state space φ has value v > τ in an existing approximate value function for some nontrivial

threshold τ , then this suggests that states that can reach this region (i.e., found by Regr(φ)

through some deterministic action) should also have reasonable value. However, since we have

already assigned value to φ, we want the new basis function to focus on the area of state space

not covered by φ so we negate it and conjoin it with Regr(φ).

As a small example, given the initial weighted basis function bCase1(s) = rCase(s) from

BOXWORLD,

bCase1(s) =w1 ·
∃b.BoxIn(b, paris, s) : 10

¬“ : 0
, (5.24)

we would derive the following weighted basis function from bCase1(s) when considering de-

terministic action Ai = unloadS (b∗, t∗) during basis function generation:

bCase2(s) = (5.25)

w2 ·
¬[∃b.BoxIn(b, paris, s)] ∧ [∃c.BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris , s)] : 1

¬“ : 0

If one examines the form of these two basis functions, the “orthogonality” inherent between

the new basis functions and the ones from which they were derived allows for significant com-

putational optimizations. For example, we note that since the top partition of bCase1(s) takes

the form φ1 and the top partition of bCase2(s) takes the form ¬φ1∧φ2, these two partitions are

mutually exclusive and could never jointly contribute to the value of a state. Thus, when two

basis functions are orthogonal in this manner, we can efficiently perform an explicit “cross-

sum” ⊕ on them to obtain a single compact case statement representing both basis functions:

bCase1,2(s) =bCase1(s)⊕ bCase2(s) (5.26)

=

∃b.BoxIn(b, paris, s) : w1 · 10

¬[∃b.BoxIn(b, paris, s)] ∧ [∃c.BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris , s)] : w2

¬“ : 0

This style of basis function generation also has many computational advantages for FOALP

and FOAPI. To see this, we return to our original discussion concerning the fact that the BA[·]
operator as defined in Equation 5.10 will not be able to preserve additive structure when all

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 149

basis functions in the linear-value function representation are affected by the stochastic action

A. Recalling Property 5.1.2, if all basis functions are affected by A, then the backup BA(~x)[·]
of each basis function will contain free variables ~x requiring their explicit “cross-sum” to be

computed when the ∃~x operator of BA[·] is applied. However, in the best case, if the explicit

“cross-sum” was already pre-computed for n orthogonal basis functions by merging them into

a single case statement of n+1 partitions then there will be no explicit “cross-sum” to perform

during BA(~x)[·] and the ∃~x operator can be directly applied without a representational blowup.

Of course, since different actions generate different non-orthogonal basis functions from

the same “parent” basis function, it will not generally hold that all basis functions are pairwise

orthogonal to each other. Nonetheless, if we can exploit the mutual orthogonality of subsets of

the basis functions to efficiently carry-out their explicit “cross-sum”, then we can still achieve

an exponential time speedup relative to the worst-case of theBA[·] operator that requires the ex-

plicit computation of the “cross-sum”. To see how subsets of basis functions can be efficiently

summed, we refer back to Equation 5.26 that provides an example sum of two orthogonal basis

functions. In general, any mutually orthogonal subset of basis functions can be merged in this

way.

The policy derivation of FOAPI can be similarly efficient since it relies on the application

of theBA[·] operator. And the exploitation of orthogonal basis functions in the partial computa-

tion of the “cross-sum” in the linear-value representation also facilitates the FOMax algorithm

since it lowers the worst-case complexity of FOMax where all case statements must be explic-

itly summed. Thus, for both FOALP and FOAPI, we note that we can exploit orthogonal basis

function generation to mitigate exponential space and time scaling in the number of basis func-

tions, where worst-case exponential scaling arises at various points in both solution algorithms

due to the need to explicitly compute the “cross-sum” of the linear-value representation.

On a final note, while we do not claim that this method of basis function generation will be

appropriate for all domains, we will next demonstrate that it works reasonably well for many

stochastic planning problems and that it is relatively efficient in this case.

5.5 Empirical Results

We discuss a number of empirical results on PPDDL planning problems from the ICAPS

2004 [Littman and Younes, 2004b] and ICAPS 2006 [Gerevini et al., 2006] International Prob-

abilistic Planning Competitions (IPPC). We divide the discussion of results according to each

competition in order to reflect the differences in the competition setup, the data collected, and

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 150

the specific planners that entered each competition.

5.5.1 ICAPS 2004 Probabilistic Planning Problems

We applied FOALP and FOAPI to the BOXWORLD logistics and BLOCKSWORLD proba-

bilistic planning problems from the ICAPS 2004 IPPC [Littman and Younes, 2004a]. In the

BOXWORLD logistics problem, the domain objects consist of trucks, planes, boxes, and cities.

The number of boxes and cities varied in each problem instance, but there were always 5 trucks

and 5 planes. Trucks and planes are restricted to particular routes between cities in a problem

instance-specific manner. The goal in BOXWORLD was to deliver all boxes to their destina-

tion cities and there were costs associated with each action. The transition functions allowed

for trucks and planes to stochastically end up in destinations other than that intended by the

execution of their respective drive and fly actions. BLOCKSWORLD is just a stochastic version

of the standard domain where blocks are moved between the table and other stacks of blocks

to form a goal configuration. In this version, a block may be dropped while picking it up or

placing it on a stack according to some probability.

We used the Vampire [Riazanov and Voronkov, 2002] theorem prover and the CPLEX 9.0

LP solver in our FOALP and FOAPI implementations and applied the basis function generation

algorithm given in Algorithm 9 to a FOMDP version of these PPDDL domains. It is important

to note that we generate our solution to the BOXWORLD and BLOCKSWORLD domains offline.

Since each of these domains has a universally quanitified reward, our offline solution is for a

generic instantiation of this reward following Section 4.7 of Chapter 4. Then at evaluation time

when we are given an actual problem instance (i.e., a set of domain objects and initial state

configuration), we decompose the value function for each ground instantiation of the reward

and execute a policy using the additive decomposition approach also outlined in Section 4.7

of Chapter 4. We do use additional axioms to restrict certain fluent slots to have functional

characteristics, e.g. in BOXWORLD, we restrict trucks to only be in one city. Unfortunately,

this information restricting legal states is not encoded in PPDDL, but required for our solution

(otherwise additional constraints for illegal states are generated and these adversely influence

the basis function weights). We do not enhance or otherwise modify our offline solution once

given actual domain information although this would be an avenue for future research.

We set an iteration limit of 7 in our offline basis function generation algorithm and recorded

the running times per iteration of FOALP and FOAPI; these are shown in Figure 5.2. There ap-

pears to be exponential growth in the running time as the number of basis functions increases.

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 151

1 2 3 4 5 6 7
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Offline Solution Time for Each FOALP/FOAPI Basis Gen. Iteration

Iteration # of Basis Fn Generation Algorithm

R
u

n
n

in
g

 T
im

e
 (

s
)

FOAPI BlocksWorld
FOALP BlocksWorld
FOALP BoxWorld
FOAPI BoxWorld

Figure 5.2: FOAPI and FOALP solution times for the BOXWORLD and BLOCKSWORLD

problems vs. the iteration of basis function generation.

However, we note that if we were not using the “orthogonal” basis function generation, we

would not get past iteration 2 of basis function generation due to the prohibitive amount of

time required by FOALP and FOAPI in this case (> 10 hours). Consequently, we can conclude

that our basis function generation algorithm and optimizations have substantially increased the

number of basis functions for which FOALP and FOAPI remain viable solution options. In

terms of a comparison of the running times of FOALP and FOAPI, it is apparent that each per-

forms better in different settings. In BOXWORLD, FOAPI takes fewer iterations of constraint

generation than FOALP and thus is slightly faster. In BLOCKSWORLD, the policies tend to

grow more quickly in size because the Vampire theorem prover has difficulty refuting incon-

sistent partitions on account of the heavy use of equality in this FOMDP domain. This impacts

not only the solution time of FOAPI, but also its performance as we will see next.

We applied the policies generated by the FOALP and FOAPI versions of our basis func-

tion function generation algorithm to three BOXWORLD and five BLOCKSWORLD problem

instances from the ICAPS 2004 IPC. We compared our planning system to the three other top-

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 152

Problem Competing Probabilistic Planners

NMRDPP mGPT Humans Classy FF-Replan FOALP FOAPI

bx c10 b5 438 184 419 376 425 433 433

bx c10 b10 376 0 317 0 346 366 366

bx c10 b15 0 – 129 0 279 0 0

bw b5 495 494 494 495 494 494 490

bw b11 479 466 480 480 481 480 0

bw b15 468 397 469 468 0 470 0

bw b18 352 – 462 0 0 464 0

bw b21 286 – 456 455 459 456 0

Table 5.1: Cumulative reward of 5 planning systems and the FOALP and FOAPI (100 run avg.)

on the BOXWORLD and Blocks World probabilistic planning problems from the ICAPS 2004

IPPC(– indicates no data). BOXWORLD problems are indicated by a prefix of bx and followed

by the number of cities c and boxes b used in the domain. BLOCKSWORLD problems are

indicated by a prefix of bw and followed by the number of blocks b used in the domain.

performing planners on these domains:8 NMRDPP is a temporal logic planner with human-

coded control knowledge [Gretton et al., 2004]; mGPT is an RTDP-based planner [Bonet and

Geffner, 2004]; (Purdue-)Humans is a human-coded planner, Classy is an inductive policy

iteration planner, and FF-Replan [Yoon et al., 2004] (2004 version) is a deterministic replan-

ner based on FF [Hoffmann and Nebel, 2001]. Results for all of these planners are given in

Table 5.1.

We make four overall observations w.r.t. these results:

1. FOALP and FOAPI produce the same basis function weights and therefore the same

policies for the BOXWORLD domain.

2. We only used 7 iterations of basis function generation and this effectively limits the

lookahead horizon of our basis functions to 7 steps. A lookahead of 8 would be required

to properly plan in the final BOXWORLD problem instance and thus both FOALP and

FOAPI failed on this instance.9

3. Due to aforementioned problems with the inability of FOAPI to detect inconsistency of

policy partitions in the BLOCKSWORLD domain, its performance is severely degraded

on these problem instances in comparison to FOALP. FOALP does not use a policy

representation and thus does not encounter these same problems.

8The names we use for the planners are intended to intuitively denote their approach are not necessarily their

given names. See the associated references for details.
9We could not increase the number of iterations to 8 due to memory constraints.

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 153

4. It is important to note that in comparing FOALP and FOAPI to the other planners, NM-

RDPP and Humans used hand-coded control knowledge. FF-Replan was a very efficient

search-based deterministic planner that had a significant advantage because near-optimal

policies in these specific goal-oriented problems can be obtained by assuming that the

highest probability action effects occur deterministically and making use of classical

search-based planning techniques. The only fully autonomous stochastic planners were

mGPT and Classy, and FOALP performs comparably to both of these planners and out-

performs them by a considerable margin on a number of problem instances.

5.5.2 ICAPS 2006 Probabilistic Planning Problems

We now present results for FOALP on the ICAPS 2006 probabilistic planning competition. For

these problems, we do not present results for FOAPI. As with the ICAPS 2004 competition

problems, the difficulty with FOAPI is that its policy representations tend to grow combina-

torically as more basis functions are added during basis function generation until the policy

size outstrips the ability of the theorem prover to identify inconsistent policy partitions. This

severely degrades performance and prevents scaling to a number of basis functions required to

obtain reasonable performance on these planning problems.

Consequently, we present results for FOALP applied to three domains from the compe-

tition: BLOCKSWORLD, TIREWORLD, and ELEVATORS. We’ve already covered the basic

description of BLOCKSWORLD, one of the main differences in this competition being that the

table was not considered to be a block and thus there were additional actions for picking up

and putting blocks down on the table. TIREWORLD is a relatively simple problem where the

goal is to drive from a goal city to a destination city, while being able to pick up a spare tire in

some cities. One stochastic outcome of driving between cities is that a tire may go flat and can

only be fixed when a spare tire is present. Thus, routes with cities that contain spare tires are

preferred to other routes that do not. Finally, ELEVATORS is a problem with a grid-like state

space. The horizontal dimension of the grid corresponds to positions on a floor and the vertical

dimension corresponds to different floors. There may be elevators at each position that can

move vertically between floors. An agent can occupy one position on one floor and can move

left or right between positions or can move into or out of an elevator if it exists at the given

floor or position. Any elevator can be moved up or down independently of whether the agent

resides in it. There can be gates at certain positions, which probabilistically teleport the agent

back to the start position of floor 1, position 1. Finally there are a number of coins at different

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 154

2 4 6 8 10 12 14

20

40

60

80

100

Problem Instance ID

P
e
rc

e
n
ta

g
e
 R

u
n
s
 S

o
lv

e
d

Percentage Runs Solved vs. Problem Instance

FOALP

FPG

Paragraph

FF−Replan

2 4 6 8 10 12 14

10
2

10
4

Problem Instance ID

A
v
e
ra

g
e
 R

u
n
n
in

g
 T

im
e
 (

m
s
)

Average Running Time (ms) vs. Problem Instance

FOALP

FPG

Paragraph

FF−Replan

2 4 6 8 10 12 14

2

4

6

8

10

12

Problem Instance ID

A
v
e
ra

g
e
 #

 A
c
ti
o
n
s
 t
o
 G

o
a
l

Average # Actions to Goal vs. Problem Instance

FOALP

FPG

Paragraph

FF−Replan

Figure 5.3: The performance of five planners on the ICAPS 2006 TIREWORLD planning com-

petition problem. The domain instantiations become larger as the problem instance ID in-

creases.

known positions and the goal is to retrieve them all.

Our solution approach is identical to that used for the ICAPS 2004 problems. To recap, we

used the Vampire theorem prover and the CPLEX 9.0 LP solver in our FOALP implementation

and applied the basis function generation algorithm given in Figure 9 to a FOMDP version

of these PPDDL domains. For the BOXWORLD and ELEVATORS problems that had universal

rewards, we additively decompose their solution according to Section 4.7 of Chapter 4. As done

before, we specified additional background theory axioms describing constraints on functional

slots of fluents that were required to obtain reasonable solutions (e.g., only one block could be

directly stacked on another block in BLOCKSWORLD). Without these domain axioms, FOALP

erroneously generates constraints for illegal states and these extra constraints adversely affect

the solutions obtained.

In Figures 5.3, 5.4, and 5.5, we provide data for FOALP and competing planners that spec-

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 155

2 4 6 8 10 12 14

50

60

70

80

90

100

Problem Instance ID

P
e
rc

e
n
ta

g
e
 R

u
n
s
 S

o
lv

e
d

Percentage Runs Solved vs. Problem Instance

FOALP

FPG

FF−Replan

2 4 6 8 10 12 14

10
2

10
3

10
4

Problem Instance ID

A
v
e
ra

g
e
 R

u
n
n
in

g
 T

im
e
 (

m
s
)

Average Running Time (ms) vs. Problem Instance

FOALP

FPG

FF−Replan

2 4 6 8 10 12 14

50

100

150

200

Problem Instance ID

A
v
e
ra

g
e
 #

 A
c
ti
o
n
s
 t
o
 G

o
a
l

Average # Actions to Goal vs. Problem Instance

FOALP

FPG

FF−Replan

Figure 5.4: The performance of five planners on the ICAPS 2006 ELEVATORS planning compe-

tition problem. The domain instantiations become larger as the problem instance ID increases.

ifies the number of problem instances solved, the online solution generation time10, and the

average number of actions required to reach the goal in each successful problem. We compare

to the following planners that entered the competition: (1) FPG [Buffet and Aberdeen, 2006],

which uses policy gradient search in a factored representation of the Q-functions; (2) sfDP [Te-

ichteil and Fabiani, 2006], which uses SPUDD-style ADD-based dynamic programming [Hoey

et al., 1999] with reachability constraints based on initial state knowledge; (3) Paragraph [Lit-

tle, 2006], which uses an extension of Graphplan [Blum and Furst, 1995] for probabilistic

planning; (4) FF-Replan [Yoon et al., 2007] (2006 version) is a deterministic replanner based

on FF [Hoffmann and Nebel, 2001]. We note that all of the planners in this competition aside

from FOALP are ground planners in that they use a propositional representation of a PPDDL

problem for a specific domain instantiation.

10Offline solutions were permitted 4 hours per problem to remain within the overall competition time limit of 24

hours. However, since the offline solution time can be amortized over an indefinite number of domain instances,

we do not report this in the online time.

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 156

2 4 6 8 10 12 14

20

40

60

80

100

Problem Instance ID

P
e
rc

e
n
ta

g
e
 R

u
n
s
 S

o
lv

e
d

Percentage Runs Solved vs. Problem Instance

2 4 6 8 10 12 14

10
2

10
4

Problem Instance ID

A
v
e
ra

g
e
 R

u
n
n
in

g
 T

im
e
 (

m
s
)

Average Running Time (ms) vs. Problem Instance

2 4 6 8 10 12 14

50

100

150

200

Problem Instance ID

A
v
e
ra

g
e
 #

 A
c
ti
o
n
s
 t
o
 G

o
a
l

Average # Actions to Goal vs. Problem Instance

FOALP

sfDP

FPG

FF−Replan

FOALP

sfDP

FPG

FF−Replan

FOALP

sfDP

FPG

FF−Replan

Figure 5.5: The performance of five planners on the ICAPS 2006 BLOCKSWORLD planning

competition problem. The domain instantiations become larger as the problem instance ID

increases.

The results vary by problem, so we explain each in turn. In TIREWORLD, FOALP’s policy

allowed it to solve most problems although we note that according to the average number of

actions to the goal, its policy was suboptimal in comparison to other planners. In this case, it

appears that the approximation inherent in the FOALP approach fared poorly in comparison to

a deterministic replanner like FF-Replan that could perform nearly optimally on this problem.

We note that FOALP’s slow policy evaluation on this problem is due to the transitive nature of

the road connection topology and the lack of optimization in FOALP’s logical policy evaluator.

In ELEVATORS, the top three planners including FOALP all performed comparably with the

deterministic replanner performing slightly faster than the others, again due to the suitability

of this domain for deterministic replanning and the relative speed of that approach. The goals

in this domain are highly decomposable and FOALP thus benefited substantially from its addi-

tive goal decomposition approach. In BLOCKSWORLD, FOALP shows the best performance,

solving more problems, taking less time on the hard instances, and reaching the goal with the

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 157

fewest actions. In this case, FOALP’s performance owes to two advantages: (1) first-order ab-

straction in BLOCKSWORLD considerably helps the system avoid much of the combinatorial

complexity that the ground planners face, and (2) the additive goal decomposition, although not

optimal for all BLOCKSWORLD problems, performed very well on these problem instances.

5.6 Summary

In this chapter, we introduced a first-order generalization of linear-value approximation using

a linear combination of first-order basis functions. Then we introduced generalizations of the

backup operators used to exploit linearity in the dynamic programming backup of this linear-

value representation. We next introduced the linear-value approximation techniques of FOALP

and FOAPI for FOMDPs and cast them as the setup and solution of specialized first-order

linear programs. We introduced the general first-order linear program (FOLP) formulation

that captures both the FOALP and FOAPI solutions along with the solution to a FOLP via

constraint generation methods. Constraint generation methods required the efficient solution

of a first-order cost network and we introduced the FOMax algorithm for this purpose. FOMax

essentially performs a lifted version of variable elimination that we term relation elimination.

Finally, we introduced a technique for basis function generation that can be exploited efficiently

in the linear-value function representation, the backup operators, the FOMax algorithm, and

the policy representation used by FOAPI.

Having solved all of these problems, we applied our techniques to problems from the

ICAPS 2004 and ICAPS 2006 International Probabilistic Planning Competitions, comparing

to a number of other planners in the process. While FOAPI tended to perform poorly due to

a blowup in its policy representation and inability to scale to a reasonable number of basis

functions on most problems, FOALP fared comparatively well when using the additive goal

decomposition technique for universal rewards from Chapter 4, Section 4.7. In some cases,

FOALP was able to exploit first-order structure in the domain and in terms of success rate

and the number of actions to the goal, it could often perform on par or better than hand-coded

policies, learning-based approaches, constraint-based approaches, and deterministic replanning

approaches. The key to FOALP’s success in these cases is that it was the only first-order plan-

ner and thus could exploit relational structure that the other ground planners could not. And

perhaps the key to extending its success is to combine it with traditional online techniques used

by the other planners in order to enhance its performance.

In addition, it would also be useful to revisit the computation of the objective in the first-

CHAPTER 5. LINEAR-VALUE APPROXIMATION FOR FOMDPS 158

order LP for FOALP since it was an approximated version of the uniform state-relevance

weighting assumption of the ground ALP objective. There are two reasons to revisit this com-

putation: (1) as suggested by de Farias and Van Roy [2003], there may be better alternatives

to uniform state relevance weighting, and (2) there may be better FOALP approximations of

the objective than the approach we have taken here. While the current objective allows for effi-

cient computation and appears to yield reasonable performance in practice, even better results

may be attainable if we adapt the importance of each weight in the FOALP objective. For

example, we might attempt to give more importance to weights representing more frequently

visited case partitions of basis functions by computing the expected occupany probability of

each basis function partition [de Farias and Van Roy, 2003].

Notwithstanding additional enhancements, our present linear-value function approximation

results are very encouraging in general for the lifted first-order approach to planning that we

motivated in Chapter 4. However, in addition to further practical research to enhance the results

of FOALP and related methods, there are still entire classes of problems that our first-order ap-

proach presented so far can neither represent domain-independently, nor solve efficiently. For

example, when we introduced factored MDPs in Chapter 4, we touted their ability to rep-

resent factored action spaces and additive rewards. Unfortunately, in the case of FOMDPs,

when these factored actions and additive rewards scale with the domain size, we do not have

the representational machinery to specify such a problem without resorting to domain-specific

representations. The SYSADMIN problem is an ideal example of this — every computer could

independently fail or reboot on each time step and the reward scaled additively with the total

number of computers that were running. FOMDPs do not currently have the ability to rep-

resent this indefinite factored structure and thus in the next chapter, we turn to representing

these problems in a domain-independent manner and extending the solution techniques from

this chapter to efficiently solve them.

Chapter 6

Factored First-order MDPs

So far we have defined the factored MDP model in Chapter 3 and the FOMDP model in Chap-

ter 4. However, it is interesting to note that many factored MDPs cannot be compactly specified

in the FOMDP formalism previously defined where we use the term compact throughout this

chapter to mean “the size of the representation is independent of the size of any particular do-

main instantiation”. For example, we formalized SYSADMIN as a factored MDP in Chapter 3,

but we have not yet defined it as a FOMDP. There are two difficulties in doing this: First,

SYSADMIN has an additive reward that scales with the number of computers, yet the FOMDP

formalism does not have the means for compactly specifying a sum that scales with the do-

main size. Second, SYSADMIN has a factored action space that does not make a strong frame

assumption — every computer can independently reboot or crash as a result of the action exe-

cuted. To model this compactly, we need to factor action effects into a number of independent

aspects1 that scales with the domain size and specify a factored joint probability distribution

over aspects that exploits the (probabilistic) independence inherent in their definition. In the

current FOMDP formalism, the representation of this joint distribution cannot be specified

compactly.

In general, SYSADMIN is just a motivating example for a much larger class of relationally

structured MDPs that we refer to as factored FOMDPs. As another example of a factored

FOMDP, we can easily imagine a simple factored variant of BOXWORLD that we call F-

BOXWORLD, where a box loaded on a truck may independently “drop” off the truck at each

time step with some small probability if it is not otherwise explicitly loaded or unloaded, and

where the “drop” of each box is probabilistically independent. While we will still assume the

1Roughly defined, an aspect is an independent outcome of an action as used previously in Chapter 4.

159

CHAPTER 6. FACTORED FIRST-ORDER MDPS 160

same existentially quantified reward as in the original BOXWORLD (c.f., Equation 4.9), the

need to model the additional “drop” aspects for each box when a stochastic action is executed

forces us to consider a transition distribution whose outcome/event space scales exponentially

with the domain size, hence whose representation using deterministic Nature’s choice actions

scales exponentially with domain size. In general, modeling exogenous events in FOMDPs

using a number of action aspects that scales linearly in the domain size will have a Nature’s

choice deterministic action representation that scales exponentially in the number of aspects

and thus exponentially in the domain size.

The factored FOMDP formalism that we will introduce allows us to compactly represent

some FOMDPs such as SYSADMIN and F-BOXWORLD that cannot be compactly represented

as FOMDPs. To define the class of FOMDPs that may be compactly represented as factored

FOMDPs, we say that a FOMDP representation scales with domain size if the space of its

representation as a FOMDP from Chapter 4 is proportional to the size of a domain instantiation.

Then in general, a FOMDP is a candidate for compact representation as a factored FOMDP if

it has at least one of the following two properties:

(a) An indefinite additive reward whose number of additive components scales with the do-

main size; OR

(b) An indefinite number of independent action aspects that scales with the domain size.

In order to generalize the FOMDP representation of Chapter 4 to factored FOMDPs, we

introduce the following two representational extensions to the FOMDP:

1. We introduce sum and product aggregators to specify additive rewards and joint tran-

sition distributions over aspects of stochastic actions that scale with domain size. The

sum aggregator can often compactly represent property (a) while the product aggregator

partially addresses property (b).

2. We define a factored model of action effects that allows a stochastic action executed by

the agent to decompose into independent aspects. We then specify a joint distribution

over deterministic sub-actions for each of these aspects and we introduce modifications

to the situation calculus to efficiently handle (decision-theoretic) regression with these

sub-actions. Together with the product aggregator, this is often sufficient to compactly

represent property (b).

CHAPTER 6. FACTORED FIRST-ORDER MDPS 161

We will discuss the impact of both of these representational enhancements on various solution

methods at length in this chapter. In general, we could always obtain a universal solution al-

gorithm for factored FOMDPs by compiling them into a FOMDP2 representation for a specific

domain size, thus allowing the direct application of the FOMDP solution methods of Chap-

ters 4 and 5. However, converting from the compact representation of a factored FOMDP

satisfying properties (a) or (b) to a FOMDP representation for a specific domain size would

incur a representational blowup at least linear in the domain size if only (a) held (due to the

linear number of additive reward components) and at least exponential in the domain size if

property (b) held (due to the exponential number of Nature’s choice deterministic actions as

previously discussed). But this blowup just refers to the size of the FOMDP representation and

we have not even begun to consider the computational impact of the representation size on the

time complexity of its solution. At the very least we can compute a simple lower bound on the

time and space complexity of solution methods that convert a factored FOMDP to a FOMDP

for a specific domain size since the FOMDP representation must be provided as input to these

algorithms; thus, this lower bound is at least linear in the domain size if only property (a) holds

and exponential in the domain size if property (b) holds.

Given these unencouraging lower bounds on the time and space complexity of solving a fac-

tored FOMDP by converting it to a FOMDP and using the previously defined solution methods

of Chapters 4 and 5, one objective in the specification of factored FOMDP algorithms would

be to demonstrate potential cases where the time and space complexity of a factored FOMDP

solution is sub-linear in the domain size when only property (a) holds, sub-exponential in the

domain size when property (b) holds, or potentially independent of domain size in special

cases of (a) or (b) — results that are all impossible to obtain for methods that solve a factored

FOMDP by converting it to a FOMDP. In general, when we say that a factored FOMDP solu-

tion algorithm is efficient for a given problem, we imply that it meets one of these three criteria.

With this goal of efficiency in mind, we define (approximate) solutions for factored FOMDPs

that generalize the symbolic dynamic programming and linear-value approximation techniques

described in Chapters 4 and 5. To demonstrate the solution techniques that will be needed to

efficiently handle specific types of problem structure, we will work through various steps of

our solution algorithms for the SYSADMIN and F-BOXWORLD problems; the example rep-

resentation and factored FOALP solution of SYSADMIN appeared previously in Sanner and

Boutilier [2007].

2Throughout this chapter, we will use the unqualified use of the term “FOMDP” to mean the FOMDP repre-

sentation of Chapter 4 and the term “factored FOMDP” to refer to the formalism provided in this chapter.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 162

However, in generalizing the symbolic dynamic programming and linear-value approxi-

mation solutions from FOMDPs to factored FOMDPS, we remark that our investigation into

these solution methods is only in its initial stages and our results w.r.t. SYSADMIN and F-

BOXWORLD are anecdotal at best in reference to a general solution for factored FOMDPs.

However, it is important to note that an efficient, exact solution algorithm for all factored

FOMDPs is impossible. A negative result of Jaeger [2000] implies that there is no algorithm

that can perform exact inference in the DBN representation underlying the factored FOMDP

that can avoid exponential time complexity in the domain size in the worst case. We discuss

this result in our concluding remarks along with general suggestions for how we might cope

with this worst case in practice.

6.1 Factored FOMDP Representation

In order to specify indefinitely scaling additive rewards and transition distributions, we begin

by introducing the sum and product aggregators. Then we proceed to formalize stochastic

actions with multiple independent aspects and deterministic sub-action outcomes as well as a

factored transition distribution based on this action model. Following this, we introduce the

situation calculus machinery and assumptions required to efficiently handle sub-actions in the

situation calculus. Throughout this discussion, we motivate each construct using the SYSAD-

MIN problem. Finally, we conclude by applying the same modeling formalism to specify a

factored FOMDP model for F-BOXWORLD.

6.1.1 Sum and Product Aggregators

We introduce sum aggregators that are similar in purpose and motivated by the count aggre-

gators of Guestrin et al. [2003] that permit the specification of indefinite-length sums over

all instantiations of a case statement for a given object class. Likewise, we introduce the novel

product aggregator that performs a similar role to the sum aggregator, except for products rather

than sums. We can easily motivate the sum aggregator by attempting to represent the reward in

the SYSADMIN problem. Given a domain object class Comp of n computers {c1, . . . , cn}, we

know that the SYSADMIN reward scales with the number of computers that are up and running:

rCase(s) =
Up(c1, s) : 1

¬Up(c1, s) : 0
⊕ Up(c2, s) : 1

¬Up(c2, s) : 0
⊕ · · · ⊕ Up(cn, s) : 1

¬Up(cn, s) : 0
(6.1)

CHAPTER 6. FACTORED FIRST-ORDER MDPS 163

However, we note two problems with representing the SYSADMIN reward in this manner. First,

the number of case statements in the reward scales with the domain size and thus will not be an

efficient representation for large domains, not to mention the impact of this representation on

the time and space complexity of the solution algorithms. Second, this reward specification is

domain-specific in that it refers to exactly n computers; ideally, we would prefer to have both

a compact and domain-independent specification of reward for SYSADMIN. This would then

directly facilitate the solution of factored FOMDPs for indefinitely large domains, something

that is otherwise impossible with a domain-specific representation.

To permit the specification of indefinite length sums and products, we introduce sum and

product aggregators that are defined in terms of the ⊕ and ⊗ operators where we use a meta-

logical notation that can only be expanded given a concrete domain instantiation:3

∑

c∈C

case(c, s) = case(c1, s)⊕ · · · ⊕ case(cn, s) (6.2)

∏

c∈C

case(c, s) = case(c1, s)⊗ · · · ⊗ case(cn, s) (6.3)

While the sum and product aggregator can easily be expanded for small domain instantiations,

there is generally no finite representation for indefinitely large n due to the piecewise constant

nature of the case representation. That is, even if the ⊕/⊗ is explicitly computed, there may be

an indefinite number of distinct constant values to represent in the resulting case.

Using the sum aggregator, we can now easily define the SYSADMIN reward in a domain-

independent manner:

rCase(s) =
∑

c∈Comp

(

Up(c, s) : 1

¬Up(c, s) : 0

)

(6.4)

Later we will see how we can define the transition probability in SYSADMIN using the product

aggregator.

3Here we assume a generic object class C = {c1, . . . , cn}, not necessarily computers.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 164

6.1.2 Operations with Sum and Product Aggregators

Following are various properties of the
∑

c and
∏

c aggregators that we can use during the

solution of our FOMDP. Since we know that

Regr(case1(do(a, s))⊕ case2(do(a, s))) = Regr(case1(do(a, s)))⊕ Regr(case2(do(a, s)))

and likewise for ⊗ owing to the logical definition of the case statement and the properties of

Regr , we can easily infer the following:

Regr
(

∑

c

case(c, do(a, s))
)

=
∑

c

Regr
(

case(c, do(a, s))
)

(6.5)

Regr
(

∏

c

case(c, do(a, s))
)

=
∏

c

Regr
(

case(c, do(a, s))
)

(6.6)

Since the sum aggregator is defined in terms of⊕, the standard properties of commutativity,

associativity, and distributivity of ⊗ over ⊕ hold. Likewise, since the product aggregator is

defined in terms of ⊗, the standard properties of commutativity and associativity hold. In this

chapter, we will make use of the following equivalences that can be easily derived as corollaries

of these properties:

∑

c∈C

case1(c, s)⊕
∑

d∈C

case2(d, s) =
∑

c∈C

[case1(c, s)⊕ case2(c, s)] (6.7)

case1(s)⊗
∑

c∈C

case2(c, s) =
∑

c∈C

[case1(s)⊗ case2(c, s)] (6.8)

[case1(s)⊕ case2(s)]⊗
∏

c∈C

case3(c, s) = case1(s)⊗
∏

c∈C

case3(c, s)⊕

case2(s)⊗
∏

d∈C

case3(d, s) (6.9)

6.1.3 Factored Stochastic Actions

Recalling our original FOMDP stochastic action representation from Chapter 4, Section 4.3.3,

we decomposed stochastic “agent” actions A(~x) into a collection of deterministic Nature’s

choice actions n1(~x), · · · , nk(~x), each corresponding to a possible outcome of the stochastic

action. We then used a case statement to specify a distribution P (nj(~x), A(~x)) according to

which Nature may choose a deterministic action from this set whenever the stochastic action is

executed.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 165

This approach assumes that once Nature chooses a deterministic action, it must commit to

all effects incurred by that deterministic action. Let us consider modeling SYSADMIN in this

FOMDP framework assuming some fixed number of computers n. When the agent reboots a

computer in SYSADMIN, the status of each computer may evolve independently of the other

computers. Thus, given n computers, each with 2 possible status configurations (up or not),

this leads to 2n deterministic actions since each distinct joint outcome must be specified with

a separate deterministic action. While we cannot avoid the fact that SYSADMIN has 2n deter-

ministic actions, we can potentially avoid explicitly enumerating all of these joint deterministic

actions by exploiting the fact that the stochastic reboot action decomposes into a number of

independent aspects corresponding to direct and exogenous effects that act individually and

independently (in a probabilistic sense) on each computer.

In this section, we introduce a factored approach to representing stochastic actions and

their associated transition distributions as well as the necessary situation calculus machinery to

integrate them into our FOMDP framework.

Aspects and Deterministic Sub-actions

When an action has multiple independent effects, a more compact representation than a direct

joint enumeration of these effects would be to specify independent aspects of a stochastic action

in a generalization of the factored PSTRIPS operators of Dearden and Boutilier [1997].4 In this

framework, we can independently specify local probability distributions over each aspect and

combine them into a joint factored distribution using a DBN-like representation — albeit a

DBN over an indefinite number of aspects that generally scale as a function of the domain size.

To justify the slightly cumbersome notation that we introduce in this section, we first begin

with a motivating example. In SYSADMIN, if there are n computers then the reboot(Comp : x)

action that reboots computer xwill have n aspects that we denote generically as reboot1(Comp :

x,Comp : y) where y refers to the other computers that could be affected as a result of this ac-

tion. Specifically, the aspects reboot1(x, c1), . . . , reboot1(x, cn) each represent the local effects

of stochastic action reboot(Comp : x) on each individual computer ci. We could imagine a

second class of aspects reboot2(Comp : x,Comp : z) specifying whether a computer z spon-

taneously catches fire when computer x is rebooted (as may be appropriate in a realistic model

of Dell laptops).

4Motivated by this earlier work and in anticipation of factored FOMDPs, we intentionally used the term aspect

to identify probabilistically independent sets of action effects in the PPDDL representation of Chapter 4.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 166

In a general framework, we consider that each stochastic action A(~x) may have indepen-

dent aspects that we denote by A1(~x, ~y), . . . , Ap(~x, ~y) where ~x represents the stochastic action

parameters, ~y is optional and represents additional domain objects that are individually affected

by each aspect, and the action subscripts 1 . . . p denote that we have p different classes of as-

pects. Altogether, if ~y is non-empty, then we will have a total of p · |~y| aspects for stochastic

action A(~x) where |~y| indicates the total number of distinct assignments to the object domains

of variables in ~y.

We refer to Nature’s deterministic choices for aspects to be sub-actions. In a general frame-

work, for each aspect Ai(~x, ~y) we can specify a set Ni(~x, ~y) of deterministic Nature’s choice

sub-actions as Ni(~x, ~y) = {ni,1(~x, ~y), . . . , ni,q(~x, ~y)} where q ≥ 2. Often, we use a random

variable notation for Nature’s choice where ni(~x, ~y) ∈ Ni(~x, ~y). Then we can represent a

distribution over Nature’s choice deterministic sub-actions for each aspect as a case statement

P (ni(~x, ~y)|Ai(~x, ~y), s) expression in a manner similar to Section 4.3.3.

For example, in SYSADMIN, we can specify two possible deterministic Nature’s choice

sub-actions for each aspect reboot1(x, ci): n1(x, ci) ∈= {rebootS (x, ci), rebootF (x, ci)}where

rebootS (x, ci) causes ci to be running and rebootF (x, ci) causes ci to be crashed. Following our

notation from Section 4.3.3, we can specify an instance of P (ni(~x, ~y)|Ai(~x, ~y), s) for aspect

reboot1(x, ci) and its deterministic sub-action outcomes as pCase(n1(x, ci)|reboot1(x, ci), s):
5

pCase(rebootS (ci)|reboot1(x, ci) ∧ x = ci, s) = ⊤ : 1 (6.10)

pCase(rebootS (ci)|reboot1(x, ci) ∧ x 6= ci, s) = (6.11)

Up(ci, s) : 0.95

¬Up(ci, s) : 0.05
⊗

1 +
∑

d

(

Conn(d, ci) ∧ Up(d, s) : 1

¬Conn(d, ci) ∨ ¬Up(d, s) : 0

)

1 +
∑

d

(

Conn(d, ci) : 1

¬Conn(d, ci) : 0

)

Here we see that the probability that a computer will be running if it was explicitly rebooted is

1. Otherwise, the probability that a computer is running depends on its previous status and the

proportion of computers with incoming connections that are running. The probability of the

5We use the predicate Conn(cj , ci) to indicate that there is a directed connection from computer cj to ci.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 167

failure outcome rebootF (ci) is just the complement of the success case:

pCase(rebootF (ci)|reboot1(x, ci), s) = ⊤ : 1 ⊖ pCase(rebootS (ci)|U(ci)) (6.12)

At this point, the reader familiar with the factored PSTRIPS operators of Dearden and

Boutilier [1997] may note the absence of discriminants in the framework presented here. In

fact, we do have discriminants, but for consistency with the FOMDP framework we model them

with the case representation of transition probabilities. In the factored PSTRIPS framework,

probabilities were restricted to be constants and thus discriminants were needed to distinguish

between the different effect probabilities that would arise for different states and actions. How-

ever, in our specification above, these state- and action-dependent probabilities are specified

directly in the representation of P (ni(~x, ~y)|Ai(~x, ~y), s). Thus, for a correct probability speci-

fication, we will require that the same properties that held for the discriminants in the factored

PSTRIPS discriminant representation also hold for our general P (ni(~x, ~y)|Ai(~x, ~y), s) repre-

sentation, namely that the probability distribution over all q sub-action outcomes of an aspect

sum to 1:

∀i, ~y
[

q
⊕

j=1

P (ni,j(~x, ~y)|Ai(~x, ~y), s) = ⊤ : 1

]

(6.13)

In addition, each P (ni(~x, ~y)|Ai(~x, ~y), s) should be a disjoint partitioning of state space such

that no two case partitions ambiguously assign multiple probabilities to the same state.

Joint Actions and Transition Probabilities

Now that we have specified the distribution over deterministic sub-action outcomes for in-

dividual aspects, we need to specify how these sub-actions come together to specify a joint

deterministic action. This is actually quite simple. Since we will define the effects of a joint

deterministic action to be the union of effects for each of its sub-actions in the next section, we

can specify a deterministic joint action a ∈ NA(~x) as the associative-commutative composition

◦ of Nature’s choice deterministic sub-action outcomes for all aspects Ai(~x) of a stochastic ac-

tion A(~x). Following previous notation, we can write NA(~x) as the following where ~̇y stands

for a specific constant substitution for ~y and ~̇yj stands specifically for the jth possible variable

substitution:

NA(~x) = {N1(~x, ~̇y1)× · · · ×N1(~x, ~̇y|~y|)× · · · ×Np(~x, ~̇y1)× · · · ×Np(~x, ~̇y|~y|)} (6.14)

CHAPTER 6. FACTORED FIRST-ORDER MDPS 168

Now, assuming a notational equivalence between a set of terms and their associative-commutative

composition using ◦, then for all a ∈ NA(~x), a is a composition of one sub-action from each

ground aspect of stochastic action A(~x).

For example, in the SYSADMIN domain, if n = 4 and we have 4 aspects for reboot(x),

namely reboot1(x, c1), . . . , reboot1(x, c4), then one deterministic joint action a could be the

following:

a = rebootS (x, c1) ◦ rebootF (x, c2) ◦ rebootF (x, c3) ◦ rebootS (x, c4) (6.15)

At this point one might ask whether different sub-actions within a joint deterministic action

could interfere with each other. Once we have defined the effects for sub-actions in the next

section, this will be equivalent to the question of whether sub-actions can have inconsistent

effects. This is an important issue and one that we will address once we formalize the semantics

of deterministic joint actions within the situation calculus framework. However, we must first

specify the probability distribution over joint actions as this will be an important component in

our guarantee of consistency.

Our example for a in Equation 6.15 was just one of many possible joint deterministic

actions for one domain instantiation of SYSADMIN, and in a general (indefinitely) factored

FOMDP, we will need to specify a joint distribution over all possible joint deterministic out-

comes of a stochastic action. Fortunately, we can exploit knowledge of the independence of

aspects to define the probability of any joint deterministic action a in terms of its constituent

sub-actions ni(~x, ~̇y), where we assume for simplicity that each aspect depends on the same ~y:

P (a|A(~x), s) =
∏

~y∈{~̇y1,...,~̇y|~y|}

p
∏

i=1

P (ni(~x, ~y)|Ai(~x, ~y), s) (6.16)

As long as the properties specified in Equation 6.13 hold for each P (ni(~x, ~y)|Ai(~x, ~y), s), then

we can obtain the following proposition:

Proposition 6.1.1. P (a|A(~x), s) defines a proper probability distribution over a, i.e.,

∑

a∈NA(~x)

P (a|A(~x), s) = ⊤ : 1 . (6.17)

Proof. See Section B.3 of Appendix B.

Thus, for SYSADMIN, we can now easily specify a compact joint distribution over all

CHAPTER 6. FACTORED FIRST-ORDER MDPS 169

possible deterministic action outcomes of reboot(x). For a concrete example of the probability

of the joint deterministic action a specified in Equation 6.15, we would obtain the following

probability specification where the actual numerical probabilities follow from the evaluation of

Equations 6.10, 6.11, and 6.12 for the particular state properties of s:

pCase(a|reboot(x), s) =

pCase(rebootS (c1)|reboot1(c1), s)⊗ pCase(rebootF (c2)|reboot1(c2), s)

⊗pCase(rebootF (c3)|reboot1(c3), s)⊗ pCase(rebootS (c4)|reboot1(c4), s)

Joint Actions and the Situation Calculus

Up to this point we have ignored the actual semantics of Nature’s choice deterministic sub-

actions and joint actions, but we now address these issues. To begin, we can directly define the

semantics of deterministic joint actions with effect axioms as we did in Section 4.2.2, except

that we must take care to define effect axioms for all possible joint actions and effects. For

example, in SYSADMIN with n = 2 computers, we would obtain the following complete set

of 4 effect axioms (which can be easily converted to the normalized effect axiom form of

Equations 4.1 and 4.2):

a = rebootS (c1) ◦ rebootS (c2) ⊃ Up(c1, do(a, s)) ∧ Up(c2, do(a, s))

a = rebootS (c1) ◦ rebootF (c2) ⊃ Up(c1, do(a, s)) ∧ ¬Up(c2, do(a, s))

a = rebootF (c1) ◦ rebootS (c2) ⊃ ¬Up(c1, do(a, s)) ∧ Up(c2, do(a, s))

a = rebootF (c1) ◦ rebootF (c2) ⊃ ¬Up(c1, do(a, s)) ∧ ¬Up(c2, do(a, s)) (6.18)

While this representation of the effect axioms correctly defines the action semantics for SYSAD-

MIN, it is not compact since the number of distinct joint actions scales exponentially with the

domain size. In general, for a SYSADMIN domain with n computers, we would have 2n joint

actions, not to mention the conjunction of n effects we would have to specify for each joint

action. Clearly, a solution approach based on the explicit enumeration of all effect axioms for

all joint actions in a factored FOMDP such as SYSADMIN would lead to an algorithm whose

complexity scales exponentially in the domain size.

To avoid explicit enumeration of the effects for all joint actions, we exploit the factored

structure inherent in the joint action representation and assume that effects for joint actions can

be specified as a union of effects of their sub-actions. To see that such an assumption can be

CHAPTER 6. FACTORED FIRST-ORDER MDPS 170

reasonable, we note that for the effect axioms given for SYSADMIN in Equation 6.18, each of

the effect conjuncts in the consequence of the axiom arises due to exactly one of the sub-actions

in the antecedent. We now proceed to formally define compact representation of effect axioms

in this manner where we omit a discussion of preconditions for now, but later show how we

can reintroduce them.

In this section, we represent the effect of an action to be a consistent (potentially empty)

conjunction of positive and negative fluents in a post-action state (i.e., elements of this con-

junction may be of the form F (~x, do(a, s)) or ¬F (~x, do(a, s))). We use the notation Eni(~x,~y)

to specify the effects of Nature’s choice sub-action ni(~x, ~y). For example, in SYSADMIN

ErebootS(x,ci) ≡ Up(ci, do(a, s)) and ErebootF (x,ci) ≡ ¬Up(ci, do(a, s)). We assume that an ef-

fect set Ea for joint actions a can be specified as a union of effects for each Nature’s choice

sub-action ni(~x, ~y) from which a is composed:

Ea =
⋃

~̇y, i=1...p

Eni(~x,~̇y) (6.19)

Based on this relationship, we can easily write out the unnormalized effect axioms for joint

actions in the following manner where we use © to specify a composition ◦ over multiple

terms:
[

a =©~̇y, i=1...pni(~x, ~̇y)
]

⊃
∧

~̇y, i=1...p

Eni(~x,~̇y) (6.20)

From this definition and the previous specification of effect sets ErebootS(x,ci) and ErebootF (x,ci)

for SYSADMIN, we can easily derive all of the effect axioms for all joint actions in SYSADMIN

including the example for n = 2 computers in Equation 6.18.

Now, rather than explicitly construct effect axioms for each joint action a, we can exploit

the fact that the effects for a joint action are just the union of effects for each of its sub-actions.

Technically, this should allow us to specify effect axioms directly in terms of sub-actions if

we could simply test whether a joint action contains a sub-action. But this is easy, we simply

define the ⊒ predicate that tests whether the joint-action on the LHS is composed from the

RHS term. For example, given a as specified in Equation 6.15, we know that a ⊒ rebootS (c1)

is true, but a ⊒ rebootF (c4) is false. And we can now express unnormalized factored effect

axioms directly in terms of sub-actions in the following general manner:

∀i, ~̇y. a ⊒ ni(~x, ~̇y) ⊃ Eni(~x,~̇y) (6.21)

CHAPTER 6. FACTORED FIRST-ORDER MDPS 171

For example, in SYSADMIN, we can now specify the following positive and negative effect

axioms for the joint action a directly in terms of sub-actions:

∀ci. a ⊒ rebootS (ci) ⊃ Up(ci, do(a, s)) (6.22)

∀ci. a ⊒ rebootF (ci) ⊃ ¬Up(ci, do(a, s)) (6.23)

And it is easy to see that this compact (in fact, constant-sized) specification of effect axioms

suffices to specify all of the effects for any arbitrary SYSADMIN domain size, including the

example for n = 2 computers in Equation 6.18.

Now we tackle preconditions for effects. As done for effects, we assume that preconditions

are associated with sub-actions. We could easily integrate preconditions into our factored effect

axioms; however, we will instead find it advantageous to embed the preconditions directly into

the probability distribution governing Nature’s choice sub-action outcomes since this lays bare

important probabilistic structure that we can exploit in our solution methods.We formalize this

in the following assumption:

Assumption 6.1.2. If ϕ(~x, ~y, s) is a precondition for the successful execution of sub-action

ni(~x, ~y) of an aspect Ai(~x, ~y) in situation s, then we assume that the case statement repre-

senting P (ni(~x, ~y)|Ai(~x, ~y), s) contains the case partition 〈¬ϕ(~x, ~y, s), 0〉 (c.f. Equation 4.8).

Furthermore, letting the noopi(~x, ~y) sub-action represent an outcome of Ai(~x, ~y) with no ef-

fects, we assume P (noopi(~x, ~y)|Ai(~x, ~y), s) contains the case partition 〈¬ϕ(~x, ~y, s), 1〉.

As a consequence, if two sub-actions had mutually exclusive preconditions then this as-

sumption would ensure that any joint action composed from them would have probability 0.

Our SYSADMIN examples does not require preconditions on sub-actions, however, in the F-

BOXWORLD problem that we formally define in Section 6.1.4 and present in Table 6.1, we do

make use of preconditions defined in this way.

Our factored representation of effect axioms now permits us to convert them to the normal

form representation of Equations 4.1 and 4.2 and convert them to SSAs as done in Section 4.3.3.

This in turn directly facilitates the efficient computation of the regression operator. As an

example, since the two axioms above are the only effect axioms for SYSADMIN and are already

in normalized form, we can use these to directly compile the SSA for SYSADMIN’s only fluent

Up(c, s):

Up(ci,do(a, s)) ≡ a ⊒ rebootS (x, ci) ∨ Up(ci, s) ∧ ¬a ⊒ rebootF (x, ci)

CHAPTER 6. FACTORED FIRST-ORDER MDPS 172

And regression follows directly from the SSAs and the definitions given in Chapter 4, Sec-

tion 4.2.3. In SYSADMIN we obtain the following example of regression using SSAs compiled

from our factored effect axioms:

∀a. a ⊒ rebootS (ci) ⊃ Regr [Up(ci, do(a, s))] ≡ ⊤ (6.24)

∀a. a ⊒ rebootF (ci) ⊃ Regr [Up(ci, do(a, s))] ≡ ⊥ (6.25)

Joint Actions and Consistency

Having defined the probabilistic and logical machinery for joint actions, the question arises

as to what happens if a joint action a is composed of inconsistent effects, for example, a ⊒
rebootS (x, ci) and a ⊒ rebootF (x, ci). Clearly for SYSADMIN, this could never occur because

only one deterministic action, rebootS (x, ci) or rebootF (x, ci), is chosen per ci (we prove this

formally below). But for the sake of argument, let us assume that a conflict is possible, as it

will be for more general factored FOMDPs like the F-BOXWORLD problem that we formalize

next. If we evaluated Regr [φ(do(a, s))] where a is a joint deterministic action with inconsistent

effects, we would obtain⊥ by definition. This is fine, but then we simply need to ensure that if a

joint deterministic outcome a of a stochastic actionA(~x) is inconsistent then P (a|A(~x), s) = 0,

otherwise we could assign a non-zero probability to being in an inconsistent state.

To satisfy this condition, we make the following formal assumption regarding the consis-

tency of action effects in a factored FOMDP definition where in this context, we assume a case

statement case(s) satisfies case(s) > 0 if one its case partitions 〈φi(s), ti〉 has ti > 0:

Assumption 6.1.3. For all joint deterministic outcomes a =©~̇y, i=1...pni(~x, ~̇y) of all stochastic

actions A(~x), if P (a|A(~x), s) > 0 then we assume





∧

~̇y, i=1...p

Eni(~x,~̇y)



 is consistent.

Effectively, we see here that the onus is on the specifier of the factored FOMDP to cor-

rectly formalize the problem in order to ensure that all non-zero probability joint actions are

consistent. Fortunately, this is often easy to verify without explicitly enumerating all possible

joint actions as we did above for SYSADMIN. The following sufficient conditions show that

Assumption 6.1.3 can be verified by a pairwise analysis of aspects of all stochastic actions in

the following manner:

CHAPTER 6. FACTORED FIRST-ORDER MDPS 173

Proposition 6.1.4. Let Ai(~x, ~̇yj) and Ah(~x, ~̇yk) be two distinct aspects of stochastic action

A(~x) (i.e., either i 6= h or ~̇yj 6= ~̇yk) and recall that Ni(~x, ~̇yj) and Nh(~x, ~̇yk) are the respective

sets of Nature’s deterministic sub-action outcomes for each of these aspects. Then for all A(~x)

and i 6= h and ~̇yj 6= ~̇yk where ni(~x, ~̇yj) ∈ Ni(~x, ~̇yj) and nh(~x, ~̇yk) ∈ Nh(~x, ~̇yk), if the following

condition holds:

∀~x. [P (ni(~x, ~̇yj)|A(~x), s) > 0 ∧ P (nh(~x, ~̇yk)|A(~x), s) > 0

⊃ (Eni(~x,~̇yj)
∧ Enh(~x,~̇yk)) is consistent] (6.26)

then Assumption 6.1.3 must hold for the given factored FOMDP.

Proof. See Section B.3 of Appendix B.

Now we demonstrate how this proposition can be used to verify the correctness of SYSAD-

MIN. First we note that, as the SYSADMIN factored FOMDP has been defined, there is

only one stochastic action reboot(x) that we need to analyze. For reboot(x), we must look

at all aspects reboot1(x, cj) and reboot1(x, ck) where cj 6= ck. We note that n1(x, cj) ∈
{rebootS (x, cj), rebootF (x, cj)} and likewise n1(x, ck) ∈ {rebootS (x, ck), rebootF (x, ck)}.
For all assignments of n1(x, cj) and n1(x, ck), we note

∀x. [pCase(n1(x, cj)|reboot(x), s) > 0 ∧ pCase(n1(x, ck)|reboot(x), s) > 0]

according to Equations 6.10, 6.11, and 6.12 so we must likewise show that for all x and ef-

fects En1(x,cj) and En1(x,ck) that their conjunction is consistent. Consequently, we enumerate

all possible conjunctions of these effects as defined previously and check consistency (which

holds trivially by inspection since cj 6= ck and thus each ground fluent can take on any truth

assignment while maintaining consistency):

∀x. [ErebootS(x,cj) ∧ ErebootS(x,ck) −→ (Up(x, cj) ∧ Up(x, ck)) is consistent]

∀x. [ErebootS(x,cj) ∧ ErebootF (x,ck) −→ (Up(x, cj) ∧ ¬Up(x, ck)) is consistent]

∀x. [ErebootF (x,cj) ∧ ErebootS(x,ck) −→ (¬Up(x, cj) ∧ Up(x, ck)) is consistent]

∀x. [ErebootF (x,cj) ∧ ErebootF (x,ck) −→ (¬Up(x, cj) ∧ ¬Up(x, ck)) is consistent]

This formally proves the consistency of the SYSADMIN factored FOMDP.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 174

6.1.4 Formalizing Another Factored FOMDP

Having introduced the factored FOMDP formalization as motivated by SYSADMIN, we now

demonstrate the flexibility of this formalism for modeling the F-BOXWORLD problem. We

begin with the specification of BOXWORLD as made in Figure 4.1 of Chapter 4, except that

we now modify two parts of the representation: (1) we reparameterize actions and transition

probabilities for unload , load , drive to satisfy the representation of action preconditions made

in the factored FOMDP representation; (2) on each time step, any box that is on a truck can

independently fall off the truck if it was not explicitly loaded or unloaded, which is modeled

with additional exogenous aspects that indefinitely scale with domain size.

Our first task is to specify all stochastic actions, their aspects, sub-action outcomes for

these aspects and their respective probabilities. These are given in Table 6.1. For the first as-

pects — unload1(b, t, c), load1(b, t, c), and drive1(t, c) — the deterministic action outcomes,

probabilities, and corresponding effect axioms are semantically identical to thr original BOX-

WORLD although some preconditions in the effect axioms are now represented in the transition

probabilities, thus requiring the additional shared variables in the action parameterization. We

note that the second aspect of each stochastic action ranges over all boxes, trucks, and cities and

permits each box to be dropped off a truck according to some independent fixed probability dis-

tribution; it is important to note that these second aspect probabilities for dropS (· · · , b′, t′, c′)
ensure that this sub-action outcome can only occur with non-zero probability when (a) it does

not interfere with the first aspect and (b) when box b′ is actually loaded on a truck t′ in city c′.

Thus, we see that F-BOXWORLD is exactly the variant as previously described — the

action dynamics are exactly that of BOXWORLD with the additional aspects that each box may

independently fall off a truck with 0.1 probability when they are not being explicitly loaded

or unloaded. Furthermore, this specification guarantees that all pairs of non-zero probability

sub-actions that can co-occur in a joint action have consistent effects.6 Having now specified

factored FOMDPs for both SYSADMIN and F-BOXWORLD, we proceed to generalize solution

techniques from Chapters 4 and 5 to find (approximately) optimal solutions for them.

6.2 Factored Symbolic Dynamic Programming

We now proceed with an extension of symbolic dynamic programming for the factored FOMDP

representation. Recalling Chapter 4, we note that symbolic dynamic programming (SDP) con-

6This verification is straightforward, but tedious.

C
H

A
P

T
E

R
6

.
F

A
C

T
O

R
E

D
F

IR
S

T
-
O

R
D

E
R

M
D

P
S

1
7
5

Action Aspects Sub-actions Probability Effect Axioms

unload(b, t, c) unload1(b, t, c) unloadS (b, t, c)
On(b, t, s) ∧ TIn(t, c, s) : .9

¬(On(b, t, s) ∧ TIn(t, c, s)) : 0

a ⊒ unloadS (b, t, c) ⊃ ¬On(b, t, do(a, s))

a ⊒ unloadS (b, t, c) ⊃ BIn(b, c, do(a, s))

unloadF (b, t, c)
On(b, t, s) ∧ TIn(t, c, s) : .1

¬(On(b, t, s) ∧ TIn(t, c, s)) : 1
(note: unloadF (b, t, c) equivalent to noop)

unload2(b, b
′, t′, c′) dropS (b, b′, t′, c′)

b 6= b′ ∧On(b′, t′, s) ∧ TIn(t′, c′, s) : .1

¬(b 6= b′ ∧On(b′, t′, s) ∧ TIn(t′, c′, s)) : 0

a ⊒ dropS (b, b′, t′, c′) ⊃ ¬On(b′, t′, do(a, s))

a ⊒ dropS (b, b′, t′, c′) ⊃ BIn(b′, c′, do(a, s))

∀b′, t′, c′ dropF (b, b′, t′, c′)
b 6= b′ ∧On(b′, t′, s) ∧ TIn(t′, c′, s) : .9

¬(b 6= b′ ∧On(b′, t′, s) ∧ TIn(t′, c′, s)) : 1
(note: dropF (b, t, c) equivalent to noop)

load(b, t, c) load1(b, t, c) loadS (b, t, c)
On(b, t, s) ∧ TIn(t, c, s) : .9

¬(On(b, t, s) ∧ TIn(t, c, s)) : 0

a ⊒ loadS (b, t, c) ⊃ On(b, t, do(a, s))

a ⊒ loadS (b, t, c) ⊃ ¬BIn(b, c, do(a, s))

loadF (b, t, c)
On(b′, t′, s) ∧ TIn(t′, c′, s) : .1

¬(On(b′, t′, s) ∧ TIn(t′, c′, s)) : 1
(note: loadF (b, t, c) equivalent to noop)

load2(b, b
′, t′, c′) dropS (b, b′, t′, c′) (note: same probabilities and effects as dropS (b, b′, t′, c′) for unload2)

∀b′, t′, c′ dropF (b, b′, t′, c′) (note: same probabilities and effects as dropF (b, b′, t′, c′) for unload2)

drive(t, c1, c) drive1(t, c1, c) driveS (t, c1, c)
TIn(t, c1, s) : 1

¬TIn(t, c1, s) : 0

a ⊒ driveS (t, c1, c) ⊃ TIn(t, c, s)

a ⊒ driveS (t, c1, c) ⊃ ¬TIn(t, c1, s)

driveF (t, c1, c)
TIn(t, c1, s) : 0

¬TIn(t, c1, s) : 1
(note: driveF (t, c) equivalent to noop)

drive2(b
′, c′, t′) dropS (b′, c′, t′)

BIn(b′, c′, s) ∧ TIn(t′, c′, s) : .1

¬(BIn(b′, c′, s) ∧ TIn(t′, c′, s)) : 0

a ⊒ dropS (b′, c′, t′) ⊃ ¬On(b′, t′, do(a, s))

a ⊒ dropS (b′, c′, t′) ⊃ BIn(b′, c′, do(a, s))

∀b′, t′, c′ dropF (b′, c′, t′)
BIn(b′, c′, s) ∧ TIn(t′, c′, s) : .9

¬(BIn(b′, c′, s) ∧ TIn(t′, c′, s)) : 1
(note: dropF (b′, c′, t′) equivalent to noop)

Table 6.1: Factored FOMDP formulation of F-BOXWORLD. Predicates TruckIn,BoxIn,BoxOn have been shortened to fit the table on one page.

Variables start with the same letter of their type (i.e. Box ,Truck ,City) and unused action parameters are omitted from the second aspects.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 176

sisted of two steps: (1) first-order decision-theoretic regression and (2) symbolic maximization.

As we will see, it is easy to symbolically define these steps for factored FOMDPs, but it often

requires some ingenuity to derive a compact and simplified result for SDP.

6.2.1 Exploiting Irrelevance

As we discussed in Chapter 3, an important aspect of efficiency in the dynamic programming

solution of propositionally factored MDPs is exploiting probabilistic independence in the DBN

representation of the transition distribution. The same will be true for factored FOMDPs except

that now we must provide a novel first-order generalization of probabilistic independence:

Definition 6.2.1. An aspectAi(~x, ~y) having a set of deterministic sub-action outcomesNi(~x, ~y)

is irrelevant to a formula φ(s) (abbreviated Irr[φ(s), Ai(~x, ~y)]) iff

∀ ni(~x, ~y) ∈ Ni(~x, ~y). [Regr(φ(do(ni(~x, ~y), s))) ≡ φ(s)] . (6.27)

This definition simply states that an aspect is irrelevant to a formula φ(s) if all deterministic

sub-action outcomes of that aspect cannot affect the regression of a formula. In general, we can

prove the case equivalence needed to show irrelevance by converting the case representation

to its logical equivalent and querying an off-the-shelf theorem prover. Most often though, a

simple analysis of the effect axioms and the removal of superficial inconsistencies such as

equality tests of distinct terms will allow us to show equivalence by syntactic comparison

without the need for theorem proving.

For example, in F-BOXWORLD, we can say that the aspect drive1(t, c) that governs whether

a truck t is successfully driven to city c (c.f., Table 6.1) is relevant to TruckIn(t, c, s), but irrel-

evant to BoxIn(b, c, s). This follows from an analysis of the effect axioms for the driveS (t, c)

and driveF (t, c) sub-action outcomes of drive1(t, c) where we see that driveS (t, c) clearly af-

fects TruckIn(t, c, s), but neither sub-action affects BoxIn(b, c, s). Furthermore, the more con-

stant substitutions we have in a formula or action, the more irrelevance we can detect. Assum-

ing we have unique constants ṫ1, ṫ2, ċ1, ċ2 and a ground aspect drive1(ṫ1, ċ1), then drive1(ṫ1, ċ1)

is relevant to ∃t, c. TruckIn(t, c, s), but irrelevant to TruckIn(ṫ2, ċ2). A simple analysis of the

effect axioms and the removal of inconsistent equalities and conjunctions easily allows us to

show this.

Once we have detected irrelevant action aspects w.r.t. a formula φ(s), we can drop any irrel-

evant sub-actions for these aspects from a joint action a when performing Regr(φ(do(a, s))).

CHAPTER 6. FACTORED FIRST-ORDER MDPS 177

More formally we can state this with the following proposition where we note that the domain

of c is restricted by the condition a = ni(~x, ~y) ◦ c:

Proposition 6.2.2 (Removal of Irrelevant Aspects).

Irr[φ(s), Ai(~x, ~y)] ⊃
{

∀ ni(~x, ~y) ∈ Ni(~x, ~y), ∀a ∈ NA(~x), ∀c. (a = ni(~x, ~y) ◦ c) ⊃
Regr [φ(s), ni(~x, ~y) ◦ c] ≡ Regr [φ(s), c]

}

Proof. See Section B.3 of Appendix B.

6.2.2 Backup Operators

Now that we have specified a compact representation of Nature’s probability distribution over

deterministic actions, we will exploit this structure in the backup operators that perform the

first-order decision-theoretic regression step of symbolic dynamic programming.

Following our definitions of the BA(~x)[·] and BA[·] operators from Chapter 5, Section 5.1.2,

we extend these definitions to incorporate factored transition models that are now possible

in factored FOMDPs. We start with the BA(~x)[·] operator with updated notation for factored

FOMDPs:

BA(~x)[V (s)] = γ
⊕

a∈NA(~x)

[

P (a|A(~x))⊗Regr(V (do(a, s)))
]

(6.28)

Of course, P (a|A(~x)) is implicitly factored according to Equation 6.16 and the factored action

representation, so we can expand this out using previous notation where (1) we substitute

a =©~̇y, i=1...pni(~x, ~̇y), (2) we express the marginalization over all a ∈ NA(~x) as an equivalent

sum over all factored sub-actions ni(~x, ~̇y), and (3) we substitute P (a|A(~x)) with its factored

CHAPTER 6. FACTORED FIRST-ORDER MDPS 178

representation from Equation 6.16:

BA(~x)[V (s)] = γ
⊕

n1(~x,~̇y1)∈N1(~x,~̇y1),...,np(~x,~̇y|~y|)∈Np(~x,~̇y|~y|),...,n1(~x,~̇y1)∈N1(~x,~̇y1),...,np(~x,~̇y|~y|)∈Np(~x,~̇y|~y|)
[

∏

~y∈{~̇y1,...,~̇y|~y|}

∏

i=1...p

P (ni(~x, ~y)|Ai(~x, ~y), s)

⊗ Regr(V (do(n1(~x, ~y1) ◦ · · · ◦ np(~x, ~y|~y|) ◦ · · · ◦ n1(~x, ~y1) ◦ · · · ◦ np(~x, ~y|~y|), s)))

]

(6.29)

Fortunately, we will often find that many sub-actions can be deemed irrelevant to a value func-

tion or aggregated in some compact manner that will prevent the need for regression through

the fully specified joint action. We will see this borne out in two very different ways in the

SYSADMIN and F-BOXWORLD examples.

First, however, let us recall the BA[·] operator from Equation 5.8 in Chapter 5:7

BA[V (s)] = ∃~x.
{

BA(~x)[V (s)]
}

(6.30)

If the result of BA(~x)[·] can be represented as an expression using ⊕, ⊗, ⊖ over standard case

statements as defined in Equation 4.8 without product or sum aggregators then we can apply ∃~x
directly, taking care to exploit (linear) structure in our value function if it exists as discussed

in Section 5.1.2 of Chapter 5. However, if the result of BA(~x)[·] contains indefinite sum or

product aggregator structure, the application of ∃~x is less straightforward and we must leave

this operator in purely symbolic form; in some cases, we will be able to directly evaluate ∃~x in

conjunction with symbolic maximization that we describe next.

6.2.3 Symbolic Maximization

We note that the result of the BA[V (s)] operator is close to our definition of a Q-function from

Equation 4.25 except that we have omitted the reward. So let us add in the reward now to

obtain a proper Q-function representation for a factored FOMDP. Assuming we are given a

(t-1)-stage-go-to value function, we can compute a t-stage-to-go Q-function for action A as

7As done previously, we assume that the reward is not dependent on the action and thus omit it here. However,

if this was not the case, we could easily insert it in this equation and make appropriate adjustments to our later

equations.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 179

follows:

Qt(s, A) = R(s)⊕BA[V t−1(s)] (6.31)

As before, this Qt(s, A) represents a logical description of the Q-function for action A indi-

cating the values that could be achieved by any instantiation of A(~x) if acting so as to obtain

V t−1(s) after the action is performed.

And now, given the Q-functions, we want to maximize over them to compute V t(s) just as

we did in the original definition of symbolic dynamic programming from Chapter 4. Notwith-

standing computational difficulties owing to the structure of the Qt(s, A), we recall Equa-

tion 4.26 and represent this computation symbolically assuming we have actions A1, . . . , Am:8

V t(s) = casemax
[

Qt(s, A1) ∪ . . . ∪Qt(s, Am)
]

(6.32)

In the case where we are fortunate enough to represent Qt(s, A) as a standard case state-

ment from Equation 4.8 where the case partition values are numerical constants, we can com-

pute ∪ and casemax as defined previously and this completes one step of symbolic dynamic

programming. However, we note that R(s) may contain indefinite sum aggregator structure as

in Equation 6.4 and V t−1(s) may also contain indefinite sum or product aggregator structure.

Furthermore as mentioned previously and as we will show for F-BOXWORLD, V t−1(s) or its

backup may be specified as case statements with case partition values that are a function of

domain properties rather than simple numerical constants (see further discussion below). Both

the indefinite and parameterized case structure that may arise in these case statements will al-

most always propagate to the representation of Qt(s, A), thus preventing the direct application

of the ∪ and casemax case operators as previously defined in Chapter 4. We provide remedies

to exploit some of this additional structure in the following sections.

Parameterized Case Structure

In some cases, the result of BA(~x)[·] may be parameterized by properties of the domain such

as the sizes of individual object classes, or more generally, counts of the number of satisfying

instances of some domain property. Thus, the result of BA(~x)[·] may have the following generic

8We superscript the indices for different action templates in this chapter to avoid confusion with the action

subscripts that can be used to denote aspect indices for a particular action.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 180

parameterized case format:

(t = case[φ1, t1; · · · ;φn, tn]) ≡









t =

φ1 : f1(·)
: : :

φn : fn(·)









(6.33)

Here fi(·) may be any arithmetic function and its argument may range over a variety of domain

and state properties. For example, we will see precisely such a structure when we provide

an example backup computation for F-BOXWORLD in Section 6.2.4 where some of the case

partition values of Bunload(b∗,t∗)[·] will be a function of the count of boxes on trucks in Paris in

situation s. We note that such a parameterized case format does not pose any complications for

the computation of BA[·] as previously noted (the ∃~x can still be pushed directly into the par-

titions of the case representation), but it will pose a few moderate complications for symbolic

maximization that we discuss now.

If Qt(s, A) = BA(~x)[V t−1(s)] takes on the parameterized structure of Equation 6.33 then

we can still perform a ∪ as usual in Equation 6.32, but we need to modify casemax to explicitly

check that a value is greater than all other values. To avoid cumbersome notation, we simply

provide a small example:

casemax
ψ1 : f1(·)
ψ2 : f2(·)

=

ψ1 ∧ ψ2 ∧ [f1(·) ≥ f2(·)] : f1(·)
ψ1 ∧ ψ2 ∧ [f2(·) ≥ f1(·)] : f2(·)
ψ1 ∧ ¬ψ2 : f1(·)
¬ψ1 ∧ ψ2 : f2(·)

(6.34)

In general, to perform the casemax of n parameterized case partitions, we need to look at the

powerset of the configurations {φi,¬φi} of each case partition 〈φi, ti〉 in the operand. Then

within each element of that powerset, we need to assign the functional value that is maximal for

that region of state space. While such a parameterized casemax does produce a case statement

with n · 2n case partitions in the worst case, we note that often the functional form of fi(·) is

such that many inequalities can actually be determined without knowing the exact values of the

function arguments. For example, if fi(·) takes a value that is a linear function of its arguments

then it is easy to determine that f1(x, y) = 2x + 3y strictly dominates f2(x, y) = x + y for

x > 0 and y > 0. If these conditions held, we could then remove the second case partition of

the casemax result in Equation 6.34 since it would be inconsistent.

As such, we now can perform the full symbolic dynamic programming update on parame-

CHAPTER 6. FACTORED FIRST-ORDER MDPS 181

terized case statements using the above modification to casemax. Unfortunately, the task will

not be as simple for indefinite case structure as we will see next.

Indefinite Case Structure

If Qt(s, A) contains indefinite sum aggregator structure9, then we can neither perform the ∪
nor the casemax directly as specified in Equation 6.32. Both these problems arise from the fact

that the indefinite sum aggregator structure leads to an indefinite number of cases to analyze

for each of these operations. When does such structure occur in our Qt(s, A) representation?

If the reward was additively defined with a sum aggregator, then by the linearity of the BA(~x)[·]
operator, its result will retain this sum aggregator structure.

In this case, we indirectly maximize overQt(s, A1)∪. . .∪Qt(s, Am) by deriving an explicit

policy and using this to restrict the value function, much the same as we did in FOAPI. To do

this, we must first define the ≥ case operator10, which produces an indicator function for states

where the inequality holds:11

case[φi, ti : i ≤ n] ≥ case[φj, vj : j ≤ m]

= case[φi ∧ ψj, I[ti ≥ vj] : i ≤ n, j ≤ m] (6.35)

Intuitively, to perform a ≥ operation on case statements, we simply perform the corresponding

operation on the intersection of all case partitions of the operands:

φ1 : 10

φ2 : 5
≥ ψ1 : 5

ψ2 : 10
=

φ1 ∧ ψ1 : 1

φ1 ∧ ψ2 : 1

φ2 ∧ ψ1 : 1

φ2 ∧ ψ2 : 0

Second, following the policy construction of Guestrin et al [2002], we can assume that

our default policy is to apply noop, and that we only want to execute action A(~x) in a state

for instantiations of ~x that offer maximum advantage over the noop. Thus we can write an

advantage function ADV t
A≻noop(s) as the following difference computation:

ADV t
A≻noop(s) = casemax∃~x

(

R(s)⊕BA(~x)[V t−1(s)]⊖Qt(s, noop)
)

(6.36)

9We do not discuss symbolic maximization when Qt(s,A) contains indefinite product aggregator structure.
10Based on the ≥ definition, we can easily define similar procedures holding for >,<, and ≤ case operators.
11As in previous chapters, I is an indicator function taking the value 1 when its argument is true and 0 otherwise.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 182

Here we see that ADV A≻noop(s) represents the maximal Q-value advantage that can be had

by taking some instantiation of action A over a noop. This may seem like a small step, but

this step is crucial for obtaining a finite representation of a policy even in circumstances where

the Q-functions retain indefinite sum aggregator structure. The key insight is that an action

will typically only have (finite) local effects and thus the rest of the state will evolve according

to it’s default distribution, presumably the same as the noop distribution. Thus, by looking

at the advantage function, most of the indefinite structure should be identical and thus cancel

out in the ⊖. While we are not claiming this will occur for all factored FOMDPs with sum

aggregators in their Q-functions, such structure is not uncommon and we will see an example

in Section 6.2.4 of how it can be exploited for the SYSADMIN domain.

Now, from advantage functions, we need to derive a policy indicator function indicating in

which states each action should be applied. We can compute this using a first-order generaliza-

tion of the policy generation technique used for factored MDPs in Section 3.2.2 of Chapter 3.

We assume we are given actions A1, . . . , Am, and for the purpose of breaking ties, a total

preference ordering (perhaps random) over actions, that is, for all actions Ai and Aj such that

Ai 6= Aj , we have either Ai ≻ Aj or Aj ≻ Ai. From this, we can then compute πt
Ai as follows:

1. Initialize πt
Ai = ⊤ : 1

2. For each Aj s.t. Ai 6= Aj update πt
Ai:

πt
Ai :=

{

Ai ≻ Aj : πt
Ai ⊗

(

ADV t
Ai≻noop(s) ≥ ADV t

Aj≻noop(s)
)

Aj ≻ Ai : πt
Ai ⊗

(

ADV t
Ai≻noop(s) > ADV t

Aj≻noop(s)
)

To calculate the noop policy, we simply perform the following calculation:

πt
noop = ⊤ : 1 ⊖ πt

A1 ⊖ · · · ⊖ πt
Am (6.37)

Finally, following the methodology used to extract a free variable policy as done in Equa-

tion 5.20 of Chapter 5, we can do likewise to obtain πt
A(~x) from πt

A. Note that we previously

stated that we could not explicitly compute BA[V (s)] for indefinitely structured V (s). How-

ever, we can now compute Bπt

[V (s)] if we have a collection of policies πt
A1(~x), . . . , π

t
Am(~x) as

follows:

Bπt

[V (s)] =
m
⊕

i=1

∃~x.
[

πt
Ai(~x) ⊗ BA(~x)[V (s)]

]

(6.38)

CHAPTER 6. FACTORED FIRST-ORDER MDPS 183

And in turn, we can finally note that this gives us an indirect method for computing V t(s)

via the policy for V t−1(s):

V t(s) = rCase(s)⊕Bπt

[V t−1(s)] (6.39)

Also as a side benefit of specifying Bπt

[V (s)], we also have a method for computing the value

of a policy under successive approximation. This provides us with a method for performing

modified policy iteration, or as we will see in a future section, a factored extension of first-order

approximate policy iteration.

6.2.4 Examples

Up to this point, our discussion has been quite abstract so we pause for a moment to provide

a few insightful examples of the previously defined operations applied to the F-BOXWORLD

and SYSADMIN problems.

Backups and Parameterized Structure

To demonstrate a situation where this parameterized case stucture occurs, we demonstrate

an application of the BA[·] operator for the F-BOXWORLD problem. Specifically, we com-

pute Bunload(b∗,t∗,c∗)[vCase0(s)] where vCase0(s) = rCase(s) as defined in Equation 4.9 from

Chapter 4.

To compute Bunload(b∗,t∗,c∗)[vCase0(s)], we begin by writing out the full backup using the

template from Equation 6.40 and the F-BOXWORLD definition from Table 6.1 where we as-

sume Box = {b1, . . . , b|B|}, Truck = {t1, . . . , t|T |}, and City = {c1, . . . , c|C|} cities in our

problem domain leading to a joint action composed of |B| · |C| · |T | + 1 sub-actions that we

need to marginalize over:

Bunload(b∗,t∗,c∗)[vCase0(s)] = γ ·
⊕

n1(b∗,t∗,c∗)∈{unloadS(b∗,t∗,c∗),unloadF(b∗,t∗,c∗)}

(6.40)

⊕

n2(b∗,b1,t1,c1)∈{dropS(b∗,b1,t1,c1),dropF(b∗,b1,t1,c1)}

· · ·
⊕

n2(b∗,b|B|,t|T |,c|C|)∈{dropS(b∗,b|B|,t|T |,c|C|),dropF(b∗,b|B|,t|T |,c|C|)}
{

pCase(n1(b
∗, t∗, c∗)|unload(b∗, t∗, c∗))⊗

∏

bi∈Box

∏

cj∈City

∏

tk∈Truck

[pCase(n2(b
∗, bi, tj , ck)|unload(b∗, t∗, c∗))]

⊗ Regr

[

∃b.BoxIn(b, paris, do(n1(b
∗, t∗, c∗) ◦ n2(b

∗, b1, t1, c1) ◦ · · · ◦ n2(b
∗, b|B|, t|T |, c|C|), s)) : 10

¬“ : 0

]}

For completeness, we note the pCase definitions that follow from Table 6.1 with appropriate

CHAPTER 6. FACTORED FIRST-ORDER MDPS 184

variable renamings:

pCase(unloadS (b∗, t∗, c∗)|unload(b∗, t∗, c∗)

=
BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, c∗, s) : .9

¬(BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, c∗, s)) : 0

pCase(unloadF (b∗, t∗, c∗)|unload(b∗, t,c∗∗)

=
BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, c∗, s) : .1

¬(BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, c∗, s)) : 1

pCase(dropS (b∗, bi, tj, ck)|unload(b∗, t∗, c∗)

=
b∗ 6= bi ∧ BoxOn(bi, tj, s) ∧ TruckIn(tj, ck, s) : .1

6= (b∗ 6= bi ∧ BoxOn(bi, tj, s) ∧ TruckIn(tj, ck, s)) : 0

pCase(dropF (b∗, bi, tj, ck)|unload(b∗, t∗, c∗)

=
b∗ 6= bi ∧ BoxOn(b, tj, s) ∧ TruckIn(tj, ck, s) : .9

¬(b∗ 6= bi ∧ BoxOn(b, tj, s) ∧ TruckIn(tj, ck, s)) : 1

Now, our first task to simplify this computation is to identify irrelevant structure. Unfor-

tunately, given the existentially quantified BoxIn(b, paris, ·) fluent, we note that many actions

are relevant — we could unload a box that makes BoxIn(b, paris, ·) true, or any box b1, . . . , b|B|

could drop off a truck to make this fluent true. However, an analysis of irrelevance does show

that all n2(b
∗, bi, tj, ck) for ck 6= paris are irrelevant to ∃b.BoxIn(b, paris , do(a, s)), so we can

remove these aspects from the joint action and aspect marginalization.

Nonetheless, we still have an indefinite number of actions that are not irrelevant. How-

ever, we can make one powerful observation. For all possible combinations of sub-actions

n2(b1, c1, t1) ◦ · · · ◦ n2(b|B|, c|C|, t|T |) from which a can be composed, only one aspect of the

form n2(b
∗, bi, tj, paris) = dropS (b∗, bi, tj, paris) for any bi and tj (i.e., only one arbitrary box

falling off some truck) is required to make ∃b.BoxIn(b, paris, do(a, s)) true since it is easy to

verify the following:

∀bi, tj. a ⊒ dropS (b∗, bi, tj, paris) ⊃ Regr [∃b.BoxIn(b, paris , do(a, s))] ≡ ⊤ .

Likewise if all n2(b
∗, bi, tj, paris) = dropF (b∗, bi, tj, paris), then the regression is equivalent

to a noop.

Based on this analysis, we can aggregate all relevant aspects n2(b
∗, bi, tj, paris) into two

CHAPTER 6. FACTORED FIRST-ORDER MDPS 185

sets: set (a) where all n2(b
∗, bi, tj, paris) = dropF (b∗, bi, tj, paris) and set (b) where at least

one n2(b
∗, bi, tj, paris) = dropS (b∗, bi, tj, paris). Now, it is easy to compute the probability

of set (a), it is just the product of probabilities of the dropF sub-action for all of these aspects

which is p = 0.9|{〈bi,tj〉|bi∈Box∧bi 6=b∗.BoxOn(bi,tj ,s)∧TruckIn(tj ,paris,s)}|, or in words, 0.9 to the power

of the number of boxes on trucks in Paris excluding the box being unloaded. And the proba-

bility of set (b) is obviously 1− p. Since all joint actions in sets (a) and (b) regress uniformly,

we can obtain the following (somewhat ad-hoc) simplified representation of the backup:

Bunload(b∗,t∗,c∗)[vCase0(s)] = γ· (6.41)
⊕

n1(b∗,t∗,c∗)∈{unloadS(b∗,t∗,c∗),unloadF (b∗,t∗,c∗)}

⊕

n2∈{set(a),set(b)}
[

pCase(n1(b
∗, t∗, c∗)|unload(b∗, t∗, c∗))⊗ pCase(n2|unload(b∗, t∗, c∗))

⊗ Regr
∃b.BoxIn(b, paris, do(n1(b

∗, t∗, c∗) ◦ n2, s)) : 10

¬“ : 0

]

Given that we know all of the probabilities for the pCase and the results of regression

through the four possible joint actions, we can explicitly perform the regressions (simplifying

equalities where possible in the process), and write out the sum over these four cases:

Bunload(b∗,t∗,c∗)[vCase0(s)] = γ· (6.42)

⊕ .9 · p · ∃b. [(t = t∗ ∧ BoxOn(b, t∗, s) ∧ TruckIn(t∗, paris , s)) ∨ BoxIn(b, paris , s)] : 10

¬“ : 0

⊕ .1 · (1− p) · ∃b. [(∃t.BoxOn(b, t, s) ∧ TruckIn(t, paris, s)) ∨ BoxIn(b, paris , s)] : 10

¬“ : 0

⊕ .9 · (1− p) ·
∃b. [(t = t∗ ∧ BoxOn(b, t∗, s) ∧ TruckIn(t∗, paris , s))

∨(∃t.BoxOn(b, t, s) ∧ TruckIn(t, paris, s)) ∨ BoxIn(b, paris , s)] : 10

¬“ : 0

⊕ .1 · p · ∃b.BoxIn(b, paris, s) : 10

¬“ : 0

Of course to determine the joint action that led to each case, one need only examine the proba-

bilities that led to them. Here .9 is for unloadS (b∗, t∗, c∗), .1 is for unloadF (b∗, t∗, c∗), p is for

set (a) of actions, and (1− p) is for set (b).

CHAPTER 6. FACTORED FIRST-ORDER MDPS 186

Finally, we perform the explicit sum to obtain the following simplified representation of

the backup:

Bunload(b∗,t∗,c∗)[vCase0(s)] = γ· (6.43)

∃b.BoxIn(b, paris , s) : 10

¬“ ∧ {∃b. [(t = t∗ ∧ BoxOn(b, t∗, s) ∧ TruckIn(t∗, paris, s))

∨(∃t.BoxOn(b, t, s) ∧ TruckIn(t, paris, s)) ∨ TruckIn(t, paris , s)]} : 10− p
¬“ ∧ ∃b. [t = t∗ ∧ BoxOn(b, t∗, s) ∧ TruckIn(t∗, paris, s)] : 9

¬“ ∧ ∃b. [∃t.BoxOn(b, t, s) ∧ TruckIn(t, paris, s)] : 10− 10p

¬“ : 0

This is a fascinating result that symbolically represents the relevant information for this backup

for any domain size. That is, as defined previously (1 − p) represents the chance that a box

falls off a truck in Paris and by definition approaches 1 as the number of boxes on trucks in

Paris approaches ∞. This exactly reflects the fact that the more boxes there are on trucks in

Paris, the higher the chance that any one of them can independently fall off the truck. This

result is in the original spirit of symbolic dynamic programming, which intended to compute

and represent such information symbolically. In addition, we note that due to the dependence

on p, whose value is domain-instance dependent, we must treat this as a parameterized case

statement as defined previously.

In concluding this example, we note that most of the reasoning to obtain this result was

ad-hoc in the sense that we have not provided formal algorithms for automating it. However,

we remark at this early stage of investigation into factored FOMDPs that our goal is simply to

demonstrate various types of structure that can be exploited.

Example of Backup with Indefinite Structure

In the case of SYSADMIN, we have a reward defined with a sum aggregator, which gives us

an entirely different kind of structure than we had in the case of F-BOXWORLD. We illustrate

this notion with an example of the backup Breboot(x)[vCase0(s)] for the SYSADMIN problem.

Recall that vCase0(s) = rCase(s) from Equation 6.4. Then we can write the backup as follows

CHAPTER 6. FACTORED FIRST-ORDER MDPS 187

where n is the number of computers in the domain:12

Breboot(x)[vCase0(s)] = γ
⊕

a1∈{rebootS(c1),rebootF (c1)},...,an∈{rebootS(cn),rebootF (cn)}
[

(

n
∏

i=1

pCase(ai|reboot(x))
)

⊗
∑

ci∈Comp

Regr [Up(ci, s), a1 ◦ · · · ◦ an] : 1

Regr [¬Up(ci, s), a1 ◦ · · · ◦ an] : 0

]

Now we distribute
∏

through
∑

and reorder
∑

with
⊕

:

Breboot(x)[vCase0(s)] = γ
∑

ci∈Comp





⊕

a1∈{rebootS(c1),rebootF (c1)},...,an∈{rebootS(cn),rebootF (cn)}

(

n
∏

i=1

pCase(ai|reboot(x))
)

⊗ Regr [Up(ci, s), a1 ◦ · · · ◦ an] : 1

Regr [¬Up(ci, s), a1 ◦ · · · ◦ an] : 0

]

This last step is extremely important because it captures the factored probability distribution
∏

inside a specific ci being summed over. Thus, for all SYSADMIN problems, we now exploit

the fact that we can prove Irr[Up(ci, s), reboot1(cj)] for all i 6= j. This gives substantial

simplification via Axiom 6.2.2:

Breboot(x)[vCase0(s)] =

γ
∑

ci∈Comp





⊕

a∈{rebootS(ci),rebootF (ci)}

pCase(a|reboot(x))⊗ Regr [Up(ci, s), a] : 1

Regr [¬Up(ci, s), a] : 0





Now we explicitly perform the
⊕

over the sub-actions:

Breboot(x)[vCase0(s)] =

γ
∑

ci∈Comp

[

pCase(rebootS (ci)|reboot(x)))⊗
Regr [Up(ci, s), rebootS (ci)] : 1

Regr [¬Up(ci, s), rebootS (ci)] : 0

⊕ pCase(rebootF (ci)|reboot(x))⊗
Regr [Up(ci, s), rebootF (ci)] : 1

Regr [¬Up(ci, s), rebootF (ci)] : 0

]

Recalling the results of regression from Eqs. 6.24 and 6.25, we see that the regressed top prod-

uct simplifies to 1 and the regressed bottom product simplifies to 0. Now, recalling the defi-

12Here, we write Nature’s choice sub-actions with a since for this problem we have previously assumed the

number of computers is n.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 188

..
.

C1

C2

C3

C i

Cm

..
.

(a) Line

...
3

Cn C2

C1

C

(b) Uni-Ring

...

1

C3

Cn C2

C

(c) Bi-Ring

m

C
3
2

C1
3

C1
2

C
2
2

C0 C1
1

C
1
2

...

...
...

C
3

C
2

1

m

m

C

(d) Star

Figure 6.1: Diagrams of the example SYSADMIN connection topologies that we focus on in

this document.

nition of pCase(rebootS (c)|reboot(x)) from Eqs. 6.10 and 6.11, we obtain the final pleasing

result:

Breboot(x)[vCase(s)] =γ
∑

ci∈Comp

pCase(rebootS (ci)|reboot(x)) (6.44)

= γ
∑

ci∈Comp







































x = ci ⊤ : 1

x 6= ci
Up(ci, s) : 0.95

¬Up(ci, s) : 0.05
⊗

1+
P

d

(

Conn(d, ci) ∧ Up(d, s) : 1

¬Conn(d, ci) ∨ ¬Up(d, s) : 0

)

1+
P

d

(

Conn(d, ci) : 1

¬Conn(d, ci) : 0

)

Example of Symbolic Maximization with Indefinite Structure

To complete the factored symbolic dynamic programming (SDP) step we would first seek to

compute Breboot [vCase0(s)]. However, noting our previous discussion, this is difficult to do

in a simplified closed form since the result of Breboot(x)[vCase0(s)] contains indefinite additive

structure. Consequently, we need to take the indirect route of determining Breboot [vCase0(s)]

via a policy as previously described.

To simplify the example, we make additional domain constraints that restrict our network

configuration to the simple unidirectional ring topology from Figure 6.1(b) where each com-

puter ci−1 is connected to ci (where subtraction is modulo n).

CHAPTER 6. FACTORED FIRST-ORDER MDPS 189

In this case, we can then simplify Equation 6.44 down to the following representation:

Breboot(x)[vCase0(s)] = γ
∑

ci∈Comp

x = ci : 1.0

Up(ci, s) ∧ Up(ci−1, s) : 0.95

Up(ci, s) ∧ ¬Up(ci−1, s) : 0.475

¬Up(ci, s) ∧ Up(ci−1, s) : 0.05

¬Up(ci, s) ∧ ¬Up(ci−1, s) : 0.025

(6.45)

And assuming we have a noop action, which takes the same transition distribution as reboot(x)

minus the case of Equation 6.10 (since noop has no parameter), we can computeBnoop [vCase0(s)]:

Bnoop [vCase0(s)] = γ
∑

ci∈Comp

Up(ci, s) ∧ Up(ci−1, s) : 0.95

Up(ci, s) ∧ ¬Up(ci−1, s) : 0.475

¬Up(ci, s) ∧ Up(ci−1, s) : 0.05

¬Up(ci, s) ∧ ¬Up(ci−1, s) : 0.025

(6.46)

Thus, we seek to compute an aCase(s) instance of an advantage function ADV (s) as

defined previously. For reboot(x), we can do this as follows:

aCaset
reboot(x)≻noop(s) = casemax∃~x

(

BA(~x)[vCaset−1(s)]⊖ qCaset(s, noop)
)

= ∃x.
∑

ci∈Comp

x = ci ∧ ¬Up(ci, s) ∧ ¬Up(ci−1, s) : 0.975

x = ci ∧ ¬Up(ci, s) ∧ Up(ci−1, s) : 0.95

x = ci ∧ Up(ci, s) ∧ ¬Up(ci−1, s) : 0.525

x = ci ∧ Up(ci, s) ∧ Up(ci−1, s) : 0.05

x 6= ci ∧ Up(ci, s) ∧ Up(ci−1, s) : 0

x 6= ci ∧ Up(ci, s) ∧ ¬Up(ci−1, s) : 0

x 6= ci ∧ ¬Up(ci, s) ∧ Up(ci−1, s) : 0

x 6= ci ∧ ¬Up(ci, s) ∧ ¬Up(ci−1, s) : 0

=

(∃x. x = ci) ∧ ¬Up(ci, s) ∧ ¬Up(ci−1, s) : 0.975

¬“ ∧ (∃x. x = ci) ∧ ¬Up(ci, s) ∧ Up(ci−1, s) : 0.95

¬“ ∧ (∃x. x = ci) ∧ Up(ci, s) ∧ ¬Up(ci−1, s) : 0.525

¬“ ∧ (∃x. x = ci) ∧ Up(ci, s) ∧ Up(ci−1, s) : 0.05

While initially we had the ∃x. on the outside of the
∑

c, we noted that only one of the cases

CHAPTER 6. FACTORED FIRST-ORDER MDPS 190

could have x = ci, with the rest where x 6= ci contributing 0 and therefore removable from

the
∑

c. This leaves us with one remaining case (when x = ci), which we then existentially

quantified. And as a reality check, we note that this advantage functions makes sense — the

more computers that are down in a single unidirectional connection, the more advantageous it

is to reboot one of those computers.

Since we only have a reboot(x) and a noop action in SYSADMIN, we note that by the

previous discussion, the policy for reboot(x) can then be represented in the following manner

using the action precedence noop ≻ reboot :

πCase1(s)reboot = aCaset
reboot(x)≻noop(s) > aCaset

noop≻noop(s) (6.47)

= aCaset
reboot(x)≻noop(s) > ⊤ : 0 (6.48)

=

(∃x. x = ci) ∧ ¬Up(ci, s) ∧ ¬Up(ci−1, s) : 1

¬“ ∧ (∃x. x = ci) ∧ ¬Up(ci, s) ∧ Up(ci−1, s) : 1

¬“ ∧ (∃x. x = ci) ∧ Up(ci, s) ∧ ¬Up(ci−1, s) : 1

¬“ ∧ (∃x. x = ci) ∧ Up(ci, s) ∧ Up(ci−1, s) : 1

(6.49)

This policy is essentially a decision list that prioritizes rebooting computers based on their

status and the status of their upstream neighbor.

We note that in computing the noop policy as previously described, we will get the follow-

ing result

πCase1(s)noop = ⊤ : 1 ⊖ πCase1(s)reboot (6.50)

= ⊤ : 1 ⊖ ⊤ : 0 (6.51)

= ⊤ : 0 (6.52)

since πCase1(s)reboot exhaustively partitions the entire state space.

Now, we need to extract a free variable policy for πCase1(s)reboot(x) as described previ-

CHAPTER 6. FACTORED FIRST-ORDER MDPS 191

ously, which gives us the following representation:

πCase1(s)reboot(x) =

(x = ci) ∧ ¬Up(ci, s) ∧ ¬Up(ci−1, s) : 1

¬[(∃x. x = ci) ∧ ¬Up(ci, s) ∧ ¬Up(ci−1, s)]

(x = ci) ∧ ¬Up(ci, s) ∧ Up(ci−1, s) : 1

¬[(∃x. x = ci) ∧ ¬Up(ci, s) ∧ ¬Up(ci−1, s)]

¬[(∃x. x = ci) ∧ ¬Up(ci, s) ∧ Up(ci−1, s)]

(x = ci) ∧ Up(ci, s) ∧ ¬Up(ci−1, s) : 1

¬[(∃x. x = ci) ∧ ¬Up(ci, s) ∧ ¬Up(ci−1, s)]

¬[(∃x. x = ci) ∧ ¬Up(ci, s) ∧ Up(ci−1, s)]

¬[(∃x. x = ci) ∧ Up(ci, s) ∧ ¬Up(ci−1, s)]

(x = ci) ∧ Up(ci, s) ∧ Up(ci−1, s) : 1

(6.53)

And finally, based on Equation 6.39, we arrive at the following representation for vCase1(s)

for SYSADMIN under the unidirectional ring constraints:

vCase1(s) = rCase(s)⊕BπCase1

[vCase0(s)]

= rCase(s)⊕ ∃~x.
[

πCase1
reboot(x) ⊗ Breboot(x)[vCase(s)]

]

=
∑

c∈Comp

Up(c, s) : 1

¬Up(c, s) : 0
⊕ ∃x.





















γ
∑

c∈Comp

x = ci : 1.0

Up(ci, s) ∧ Up(ci−1, s) : 0.95

Up(ci, s) ∧ ¬Up(ci−1, s) : 0.475

¬Up(ci, s) ∧ Up(ci−1, s) : 0.05

¬Up(ci, s) ∧ ¬Up(ci−1, s) : 0.025





















Note that we cannot get rid of the sum aggregator structure as this inherently defines the value

function structure of SYSADMIN. Nonetheless, this is a purely symbolic representation of the

maximum value achievable for vCase1(s) that has explicitly computed the casemax and thus

is amenable to further factored symbolic dynamic programming steps.

6.3 Linear-value Approximation for (some) Factored FOMDPs

We note that in factored SDP, the value function representation often blows up uncontrollably

in only a few steps. This is especially true when the results of factored SDP iterations intro-

duce parameterized or sum/product aggregator structure since simplifying this structure and

CHAPTER 6. FACTORED FIRST-ORDER MDPS 192

maintaining a compact representation is difficult under these circumstances. Furthermore, it

is not always clear how to explicitly compute the result of factored SDP without leaving the

casemax and possibly the ∃~x operators in symbolic form, which can complicate subsequent

factored SDP iterations.

Given this representational blowup and inability to simplify, this suggests that we might

want to use linear-value function approximation methods. Perhaps the most important advan-

tage of such an approach w.r.t. factored FOMDPs as previously noted in Chapter 5 is that it

does not require simplification, just the estimation of good weights. And as we will see, even

when we can’t explicitly compute the casemax or ∃~x and must leave these operators in their

original symbolic form, we may still be able to efficiently evaluate the linear programs at the

heart of linear-value approximation methods.

While we will consider indefinite structure in our discussion of linear-value approximation,

we note that the linear-value approximation approaches that we consider here currently prohibit

the solution of problems such as F-BOXWORLD that introduce parameterized case structure in

their backups. A linear-value approximation solution for such problems would require solving

parameterized (first-order) linear programs that specify LPs in terms of free parameters such

as domain and state properties (e.g., the number of boxes on trucks in Paris in a given state).

In general the solution to parameterized LPs appears to be an open problem in the literature

and we do not attempt to address this issue in this thesis. Consequently, from this point on, we

only consider factored FOMDPs with indefinite sum and product aggregator structure that do

not induce parameterized case structure. And for this reason, we exclude F-BOXWORLD from

future examples and focus solely on SYSADMIN.

6.3.1 Linear-value Representation

In this section, we demonstrate how we can represent a compact approximation of a value

function for a factored FOMDP defined with rewards using sum aggregators. We represent

each first-order basis function as a sum of k basis functions much as we have done for factored

MDPs and FOMDPs. However, using the sum aggregator, we can tie parameters across k

classes of basis functions given by a parameterized bi(c, s) statement:

V (s) =
k
⊕

i=1

wi

∑

c

bi(c, s) (6.54)

For example, we can use the following vCase(s) instance of V (s) to represent the value

CHAPTER 6. FACTORED FIRST-ORDER MDPS 193

function

vCase(s) =w1

∑

c

bCase1(c, s)⊕ w2

∑

c

bCase2(c, s), (6.55)

which accounts for the single (unary) and pair (binary) basis functions commonly used in the

SYSADMIN literature [Guestrin et al., 2002; Schuurmans and Patrascu, 2001] where bCase i(c, s)

are instances of bi(c, s) and parameters are tied for each of the unary and pair basis function

classes:

bCase1(c, s) =
Up(c, s) : 1

¬Up(c, s) : 0
(6.56)

bCase2(c, s) =
Up(c, s) ∧ ∃c2Conn(c, c2) ∧ Up(c2) : 1

¬(Up(c, s) ∧ ∃c2Conn(c, c2) ∧ Up(c2)) : 0
(6.57)

There are a few motivations for this value representation:

• Expressivity: Our approximate value function should be able to exactly represent the

reward. Clearly the sum over the first basis function above allows us to exactly represent

the reward in SYSADMIN, while if it were defined with an ∃c as opposed to a
∑

c, it

would be impossible for a fixed-weight value function to scale proportionally to the

reward as the domain size increased.

• Efficiency: The use of basis function classes and parameter tying considerably reduces

the complexity of the value approximation problem by compactly representing an indef-

inite number of ground basis function instances. While current ALP solutions scale with

the number of basis functions, we will demonstrate that our solutions scale instead with

the number of basis function classes.

As far as automatically constructing these basis functions is concerned, we note that we

can attempt to generalize regression-based techniques from Section 5.4 of Chapter 5. In this

case, however, the selection of which deterministic (joint) actions to regress through is a bit

more challenging. In Chapter 5, we typically had a few deterministic outcomes per stochastic

action whereas here we can have an indefinite number of deterministic joint actions. If we

do not know which subset of joint actions to consider for basis function generation, we may

just choose to use the BA[·] backup operator to derive potential basis functions (when it can

be computed). Since the most difficult and combinatorically explosive part of factored SDP

CHAPTER 6. FACTORED FIRST-ORDER MDPS 194

is computing the symbolic maximization over multiple actions, generating our basis functions

using the backup operators in this way would still save us from performing this task.

For example, we note that the previous two basis functions we specified for SYSADMIN

were (1) the reward rCase(s) and (2) the result of computing Bnoop [rCase(s)]. In general, the

single, pairwise, triple, etc. basis functions used in the SYSADMIN literature can be derived by

the Bnoop [·] operator in this way. While this approach seems effective for SYSADMIN, it is not

clear to what extent such a simple approach will generalize to other problems.

6.3.2 Factored First-order Approximate Linear Programming

Now, we generalize the first-order approximate linear programming (FOALP) approach from

Chapter 5 to the case of factored FOMDPs. Simply substituting appropriate factored FOMDP

structure into Equation 5.13 we can specify the following factored FOALP (fFOALP) solution

for factored FOMDPs in terms of a first-order linear program where R(s) is our case represen-

tation of reward:

Variables: wi ; ∀i ≤ k

Minimize:
∑

s

k
⊕

i=1

wi ·
∑

~c

bi(~c, s)

Subject to: 0 ≥ R(s)⊕BA

[

k
⊕

i=1

·
∑

~c

bi(~c, s)

]

⊖
k
⊕

i=1

·
∑

~c

bi(~c, s) ; ∀ A, s (6.58)

As before we note that our objective is an indefinite summation (over all situations s) and we

have an indefinite number of constraints (one for each situation s). However, in the factored

FOMDP formalism, we can now also have indefinite sum and product aggregator structure in

the objective and constraints owing to the possibility of such structure in the reward and value

representations. For example, for SYSADMIN, we are using a reward R(s) = rCase(s) from

Equation 6.4 defined with a sum aggregator and we are using a linear-value approximation of

vCase(s) from Equation 6.55 also based on the sum aggregator.

If the objective has no sum or product aggregator structure then we can simply use the same

approximation as used for FOALP in Chapter 5. We note that if our linear-value representation

does not contain product aggregators (i.e., we do not use them in the basis functions bi(s) that

CHAPTER 6. FACTORED FIRST-ORDER MDPS 195

we have chosen), we need not consider such structure in the objective. We can handle the

remaining problem of indefinite sum aggregator structure in the objective fairly easily with

an approximation. We compute an approximation of the objective in fFOALP following the

approach for FOALP given in Chapter 5, Section 5.2.1. Exploiting commutativity of ⊕ with
∑

, we approximate the above fFOALP objective as follows:

∑

s

k
⊕

i=1

wi ·
∑

~c

bi(~c, s) =
k
⊕

i=1

wi ·
∑

s

∑

~c

bi(~c, s)

∼
k
∑

i=1

wi · |~c| ·
∑

〈φj ,tj〉∈bi

tj
|bi|

(6.59)

In the last step, we made an additional assumption that each of the ~c in the
∑

~c bi(~c, s) should

be weighted uniformly and thus remove the
∑

~c and replace it with a constant multiplier |~c|,
which represents the number of ground basis functions for the basis function class bi. If all

basis functions use the same
∑

~c, then ~c becomes a constant multiplier that we can factor out

of the objective. Otherwise, to determine |~c|, we need to know the actual size of domain object

classes.13 Here, |bi| represents the number of partitions in bi and for each basis function, we sum

over the value tj of each partition 〈φj, tj〉 ∈ bi normalized by |bi|. This gives an approximation

of the importance of each weight wi in proportion to the overall value function.

Before we tackle the problem of solving an LP with indefinitely sized constraints, we in-

troduce the factored generalization of first-order approximate policy iteration that will specify

a constraint form similar to fFOALP.

6.3.3 Factored First-order Approximate Policy Iteration

Defining factored first-order approximate policy iteration (fFOAPI) turns out to be trivial given

that we previously had to define the Bπ[·] operator in our efforts to define symbolic maximiza-

tion for factored FOMDPs with indefinite structure. The policy manipulation procedures to

perform Bπ[·] in Equation 6.38 exactly reflect what we need to do for fFOAPI and thus, we can

immediately generalize the procedure given in Section 5.2.2 of Chapter 5.

As for API and FOAPI, in fFOAPI we calculate successive iterations of weights w
(i)
j that

represent the best approximation of the fixed-point value function for policy π(i)(s) at iteration

i. We do this by performing the following two steps at every iteration i after initializing ~w(0) =

13As we will discuss later when we evaluate the constraints, we will actually have this information since we

make domain size assumptions in our fFOALP solution.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 196

~0 and i = 1:

1. Obtain the policy π(i)(s) from the weights ~w(i−1) using the procedure outlined in Sec-

tion 6.2.3. From this, we can easily derive π
(i)
A(~x∗)(s) for all actions A. We replace the 1

values in the π
(i)
A(~x∗)(s) case partition values with 0 and discard the 0 value case partitions

(as for FOAPI as discussed in Section 5.2.2, we need not generate and test constraints

where the policy does not apply).

2. Solve the following first-order LP that determines the weights ~w(i) for theL∞ minimizing

projection of the approximate value function for policy π(i)(s):

Variables: w
(i)
1 , . . . , w

(i)
k

Minimize: β(i) (6.60)

Subject to: β(i) ≥
∣

∣

∣

∣

∣

R(s)⊕ ∃~x∗
(

π
(i)
A(~x∗)(s)⊕BA(~x∗)

[

k
⊕

j=1

w
(i)
j ·

∑

~c

bj(~c, s)

])

⊖
k
⊕

j=1

w
(i)
j ·

∑

~c

bj(~c, s)

∣

∣

∣

∣

∣

; ∀A, s

3. If π(i)(s) = π(i)(s) or β(i) is less than a prespecified tolerance then exit, else increment i

and goto step (1).

We’ve reached convergence if π(i)(s) = π(i−1)(s) (or equivalently ~w(i) = ~w(i−1)). And if

convergence is reached, we conjecture that the loss bounds for API (Equation 2.19) generalize

to this case through a generalization of Theorem 5.2.1.

On a final note, we observe that our constraints could contain both indefinite sum and

product aggregator structure just as for fFOALP. As such, we need some method for solving

an LP with such constraints, which we tackle next.

6.3.4 Constraint Generation with Indefinite Constraints

Now we turn to solving for maximally violated constraints in a constraint generation solution

to the first-order LPs given in Eqs. 6.58 and 6.60. We make two assumptions here: (a) each

basis function takes the form
∑

~c bi(~c, s) and (b) the reward takes the form
∑

~cR(~c, s) where

the
∑

~c in (a) and (b) refer to the same object domain ~c.14

14While we are not necessarily restricted to have such symmetrical structure in our reward and linear-value

approximations, we note that the constraint generation methods outlined in this section can only generally be

CHAPTER 6. FACTORED FIRST-ORDER MDPS 197

Under these assumptions, we will often find that the resulting constraint structure of fFOALP

(6.58) and fFOAPI (6.60) for each action A has the following generalized format where we

have replaced the ∀s with maxs:

0 ≥max
s
∃~x
{

case1(~x, s)⊕ . . .⊕ casep(~x, s)⊕
∑

~c

[

casep+1(~c, ~x, s)⊕ . . .⊕ caseq(~c, ~x, s)
]

}

(6.61)

We cannot guarantee that this structure holds for a given problem as (c) we may not be able to

fully reduce the indefinite product aggregator structure in the transition distribution to a finite

product (by exploiting irrelevance or other properties) when computing the backup operators,

(d) the backups may induce parameterized case structure, or (e) the policy may take the form

of a single case statement with indefinite sum or product aggregator structure or parameterized

structure. However, if (a) and (b) hold and none of (c), (d), or (e) occurs then we note that the

above general constraint structure arises in the following way:

1. Recall that the case statement and the result of all operators applied to case statements can

be written as a first-order formula (albeit a potentially indefinitely long formula if sum

or product aggregator structure are present). Thus, we can “Prenex” the ∃~x quantifier

(implicit from the backup operations in fFOALP or explicitly stated in the constraint for

fFOAPI) from each constraint to the front of our constraint representation.

2. Any non-sum aggregator structure in the constraints such as the policy in fFOAPI can be

represented by case i(~x, s) for 1 ≤ i ≤ p.

3. Under our assumptions, the backup can be distributed through the
∑

~c into each basis

function and any residual finite product structure ⊗ from the transition function can be

explicitly computed, thus yielding sum aggregator structure that can be represented in

the form
∑

c casej(~c, ~x, s) for (p + 1) ≤ j ≤ q. Then we can exploit commutativity

of ⊕ to rewrite
∑

~c casep+1(~c, ~x, s) ⊕ . . . ⊕∑~c caseq(~c, ~x, s) in the representation of

Equation 6.61.

We note that such a constraint structure holds for fFOALP applied to problems like SYSADMIN

for which we provide a concrete example at the end of this section.

This constraint form is very similar to that solved for the first-order linear programs in

Chapter 5 (c.f., Equation 5.22) with one important exception—here we have the addition of the

made to work under such assumptions.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 198

sum aggregator which prevents us from achieving a finite representation of the constraints in

all cases (recall that
∑

~c is an indefinitely large sum).

While we could conceive of trying to find a finite number of constraints that closely ap-

proximate the form in Equation 6.61, it is not clear how to ensure a good approximation for all

domain sizes. In fact, it is very easy to construct examples that have very different solutions for,

say, even vs. odd sized domains so it is not clear that a generic domain-size independent solu-

tion should always be desired.15 On the other hand, grounding these constraints for a specific

domain instantiation is clearly not a good idea since this approach would scale proportionally

to the domain size.

Fortunately, there is a middle ground that has received a lot of research attention very

recently—first-order probabilistic inference (FOPI) [Poole, 2003; de Salvo Braz et al., 2005].

In this approach, rather than making a domain closure assumption and grounding, a much

less restrictive domain size assumption is made. This allows the solution to be carried out in

a lifted manner and the solutions to be parameterized by the domain size. Recent work [de

Salvo Braz et al., 2006] has explicitly examined a “first-order” max-
∑

cost network similar to

Equation 6.61 that we would need to evaluate during constraint generation.16

Inversion Elimination

Braz et al. [de Salvo Braz et al., 2005; de Salvo Braz et al., 2006] introduce the FOPI tech-

niques of (partial) inversion elimination and counting elimination. We do not use counting

elimination here and thus do not cover it. However, we do use inversion elimination for con-

straint simplification, which we describe next.

Assuming that caseP (c, s) only mentions relations or fluents in set P and caseR(c, s) only

mentions relations or fluents in set R s.t. P ∩ R = ∅, we can perform the following inversion

15Imagine a logistics domain where a truck and a plane can deliver an item between cities connected in a

straight line with the truck and plane at one end and the goal at the other. The truck, for some reason, can only

move forward exactly two cities at a time (i.e., no odd-length moves) and the plane although having a very high

cost, can move freely between any two cities. In the optimal solution, the truck is used for domains with an even

number of cities and the plane used for an odd number of cities leading to very different values.
16It turns out that our max-

∑

formalism is actually more general than FOPI in that we can represent not

only parameterized factors over propositional variables, but also general first-order formulae within our case

statements. Nonetheless, these FOPI techniques can be made to generalize to our framework.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 199

elimination transform:

0 ≥max
s

∑

c

[caseP (c, s)⊕ caseR(c, s)] (6.62)

=

[

max
s

∑

c

caseP (c, s)

]

⊕
[

max
s

∑

c

caseR(c, s)

]

(6.63)

This result follows simply from the fact that caseP (c, s) and caseR(c, s) can be maximized

independently as they have no common structure which may constrain the joint evaluation of

their maximal values.

Now we introduce two additional elimination techniques in order to demonstrate an effi-

cient solution to SYSADMIN.

Existential Elimination

We introduce existential elimination in order to exploit a powerful transformation for rewriting

an ∃~x operator in a concise
∑

~c case(~c) format. In what follows, we handle the case for a single

∃x since it can be applied sequentially for each quantified variable in the case of ∃~x.

We assume that we are given a constraint of the following form

0 ≥ max
s

{

∃x.
∑

ci∈C

case(ci, x, s)

}

(6.64)

where each case(ci, x, s) is restricted to reference x in its case partition formulae using only

the test x = ci (or by negation x 6= ci). For example, case(ci, x, s) could have the following

structure:

case(ci, x, s) =

x = ci ∧ φ1(s) : t1

: : :

x = ci ∧ φi(s) : ti

x 6= ci ∧ φi+1(s) : ti+1

: : :

x 6= ci ∧ φn(s) : tn

(6.65)

Our ultimate goal is to be able to rewrite the constraint in Equation 6.64 in an equivalent form

that does not contain the ∃x operator. We describe how to do this in the following discussion by

introducing additional variables and case summands into the constraint structure and making

CHAPTER 6. FACTORED FIRST-ORDER MDPS 200

substitutions in our original case(ci, x, s) representation.

To solve this problem, we will assume that we have a transitive ordering ≻ (with equality:

�) on all of the elements in the domain of C ∪ {cn+1} where |C| = {c1, . . . , cn} such that

c1 ≻ c2 ≻ · · · ≻ cn ≻ cn+1. We define a function next(·) that specifies the next element in the

order such that next(ci) = ci+1 ; 1 ≤ i ≤ n. And we introduce a new variable b(ci) whose

definition is the following:

∀c ∈ C. b(ci) ≡ x = c ∧ c ≻ ci

In words, b(ci) is defined as equivalent to the statement “x = c for some c coming before ci

in the ordering.” The beauty of this definition is that we can use it to redefine x = ci in the

following manner:

∀c ∈ C. [x = c] ≡ [¬b(c) ∧ b(next(c))]

This equivalence is most obvious in words: “x = c is the same as c being chosen before

next(c), but not before c in the ordering.” Now we can rewrite case(ci, x, s) as case′(ci, ci+1, s)

where we substitute every occurrence of x = c and x 6= c with this equivalent definition

(that does not contain the variable x, thus allowing us to remove the vacuous quantifier ∃x).

Rewriting the case(c, x, s) statement from Equation 6.65, we would obtain the following:

case ′(ci, ci+1, s) =

¬b(ci) ∧ b(next(ci)) ∧ φ1(s) : t1

: : :

¬b(ci) ∧ b(next(ci)) ∧ φi(s) : ti

¬(¬b(ci) ∧ b(next(ci))) ∧ φi+1(s) : ti+1

: : :

¬(¬b(ci) ∧ b(next(ci))) ∧ φn(s) : tn

(6.66)

Now, if only we could enforce the definition of b(ci) while ensuring that at least one x = ci

was chosen for c1 � ci ≻ cn+1 (to enforce the semantics of ∃x), then we would have an

equivalent rewrite of our constraint without the variable x. To do this, we begin by defining the

CHAPTER 6. FACTORED FIRST-ORDER MDPS 201

following two axioms:

∀c ∈ C. (b(c) ⊃ b(next(c)))

¬b(c1) ∧ b(cn+1)

The first axiom states in words that if x = c for some c that occurs before ci then c also occurs

before next(ci). If this axiom is satisfied for all c ∈ C, it ensures that the definition of b(ci) is

satisfied. The second axiom states in words that x = ci for some ci where c1 � ci ≻ cn+1, thus

enforcing that x = ci holds true for at least one ci.

Now we introduce an expression that encodes the above two axioms and takes the value 0

when both of these axioms are satisfied:

¬b(c1) ∧ b(cn+1) : 0

b(c1) ∨ ¬b(cn+1) : −∞
⊕
∑

ci∈C

b(ci) ⊃ b(next(ci) : 0

¬(b(ci) ⊃ b(next(ci)) : −∞

Having done this, we achieve our goal by rewriting the original constraint without ∃x where by

construction, if its maximal value is greater than −∞, then the original form of the constraint

with the ∃x is satisfied:

0 ≥ max
s

{(

∑

ci∈C

case ′(ci, ci+1, s) ⊕
∑

ci∈C

b(ci) ⊃ b(next(ci)) : 0

¬(b(ci) ⊃ b(next(ci))) : −∞

)

⊕ ¬b(c1) ∧ b(cn+1) : 0

b(c1) ∨ ¬b(cn+1) : −∞

}

Linear Elimination

We next introduce an elimination technique intended to exploit symmetry in special cases of

the max-
∑

problem. In Figure 6.2, we are given a sum over ci of case statements of the form

case(ci, ci+1) (where ci and ci+1 are consecutive w.r.t. some total order). We generally refer to

this summation form as linearly connected since each ci co-occurs with ci−1 in case(ci−1, ci)

and ci+1 in case(ci, ci+1) (except for the first and last variables which each only occur in one

case(ci, ci+1) summand). Our goal is to compute the max over all variables except the first

and last, each previous solution can be used to double the size of the next solution due to the

symmetry inherent in the elimination. As shown, r(2) = maxx2

∑2
i=1 case i and is structurally

identical to maxx4

∑4
i=3 case i modulo variable renaming, thus leaving x3 to be eliminated from

the sum to obtain r(4). Applying the same elimination again to r(4) yields r(8) and so on. In

CHAPTER 6. FACTORED FIRST-ORDER MDPS 202

• Compute: r(n) = maxc2…cn Σi=1…n case(ci,ci+1)

where case(c
i
,c

i+1
,s) =

ci ci+1

⊥ ⊥ 1

⊥ ⊤ -5

⊤ ⊥ -5

⊤ ⊤ 0

=

– r(2) = max c
2 =+

+

c1 c5

⊥ ⊥ 4

⊥ ⊤ -2

⊤ ⊥ -2

⊤ ⊤ 0

c1 c2

⊥ ⊥ 1

⊥ ⊤ -5

⊤ ⊥ -5

⊤ ⊤ 0

c2 c3

⊥ ⊥ 1

⊥ ⊤ -5

⊤ ⊥ -5

⊤ ⊤ 0

c1 c3

⊥ ⊥ 2

⊥ ⊤ -4

⊤ ⊥ -4

⊤ ⊤ 0

c1 c3

⊥ ⊥ 2

⊥ ⊤ -4

⊤ ⊥ -4

⊤ ⊤ 0

c3 c5

⊥ ⊥ 2

⊥ ⊤ -4

⊤ ⊥ -4

⊤ ⊤ 0

=
– r(8) = max c

5 +

c1 c9

⊥ ⊥ 8

⊥ ⊤ 2

⊤ ⊥ 2

⊤ ⊤ 0

c1 c5

⊥ ⊥ 4

⊥ ⊤ -2

⊤ ⊥ -2

⊤ ⊤ 0

c5 c9

⊥ ⊥ 4

⊥ ⊤ -2

⊤ ⊥ -2

⊤ ⊤ 0

– r(4) = max c
3

Figure 6.2: An example of linear elimination.

general, r(2n) can be computed directly from r(2n−1) in this manner. Thus, the elimination

can be done in O(log n) space and time and the maximizing instantiations can be represented

in O(log n) space also due to the inherent symmetry of the variable assignments.

Example of Linear and Existential Elimination

Having described a generic constraint structure and various elimination techniques intended

to efficiently find the maximally violated constraint under domain size assumptions, we now

provide an example of this applied to SYSADMIN. To simplify our exposition, we use the uni-

directional ring topology constraints of Figure 6.1(b) and we use just the unary basis function

class bCase1(c, s) from Equation 6.56.

We note that the following techniques efficiently generalize to the pairwise, triple, etc. basis

functions discussed previously since they all make a linearly connected assumption that leads

to symmetry that can be exploited by both linear and existential elimination. And for more

complex network topologies that include lines (or rings) as a fundamental building block, these

CHAPTER 6. FACTORED FIRST-ORDER MDPS 203

networks can be decomposed and linear and existential elimination applied to each line with

the results easily pieced together.

With the prior assumptions, we now examine the fFOALP constraint structure that we

would get for the reboot(x) action for SYSADMIN:

0 ≥ rCase(s)⊕Breboot

[

k
⊕

i=1

wi · bCase i(s)

]

⊖
k
⊕

i=1

wi · bCase i(s) ; ∀s

Now we expand out each of the case statements into their actual representation and substitute

our single basis linear value function representation. We also rewrite our constraints in terms

of maxs to get rid of the ∀s:

0 ≥ max
s

{

∑

ci∈Comp

Up(ci, s) : 1

¬Up(ci, s) : 0
⊕Breboot

[

w1

∑

ci∈Comp

Up(ci, s) : 1

¬Up(ci, s) : 0

]

⊕w1

∑

ci∈Comp

Up(ci, s) : 1

¬Up(ci, s) : 0

}

Noting that the result of Breboot(x) for this particular case was given in Equation 6.45, we can

easily derive Breboot by existentially quantifying it, so we substitute it in to obtain:

0 ≥ max
s







































∑

ci∈Comp

Up(ci, s) : 1

¬Up(ci, s) : 0
⊕ wi · γ ∃x.

∑

ci∈Comp

x = ci : 1.0

Up(ci, s) ∧ Up(ci−1, s) : 0.95

Up(ci, s) ∧ ¬Up(ci−1, s) : 0.475

¬Up(ci, s) ∧ Up(ci−1, s) : 0.05

¬Up(ci, s) ∧ ¬Up(ci−1, s) : 0.025

⊕w1

∑

ci∈Comp

Up(ci, s) : 1

¬Up(ci, s) : 0

}

Next we apply existential elimination to get rid of the ∃x assuming that we have defined

CHAPTER 6. FACTORED FIRST-ORDER MDPS 204

next(ci) = ci−1 and exploit commutativity of ⊕ to reorganize the
∑

ci∈Comp:

0 ≥ max
s







































∑

ci∈Comp





















Up(ci, s) : 1

¬Up(ci, s) : 0
⊕ wi · γ

¬b(ci) ∧ b(ci−1) : 1.0

Up(ci, s) ∧ Up(ci−1, s) : 0.95

Up(ci, s) ∧ ¬Up(ci−1, s) : 0.475

¬Up(ci, s) ∧ Up(ci−1, s) : 0.05

¬Up(ci, s) ∧ ¬Up(ci−1, s) : 0.025

⊕w1

Up(ci, s) : 1

¬Up(ci, s) : 0
⊕ b(c) ⊃ b(ci−1) : 0

b(c) ∧ ¬b(ci−1) : −∞

)

⊕ ¬b(cn) ∧ b(c1) : 0

b(cn) ∨ ¬b(c1) : −∞

}

From this point, we have a representation that is directly amenable to the application of linear

elimination. To see this, we explicitly compute the “cross-sum” of the four case statements

inside the parens (·). Then we merge each b(ci) and Up(ci, s) into a single 4-valued variable vi

with domain as follows

vi ∈ {〈b(ci) = ⊤,Up(ci, s) = ⊤〉, 〈b(ci) = ⊤,Up(ci, s) = ⊥〉,
〈b(ci) = ⊥,Up(ci, s) = ⊤〉, 〈b(ci) = ⊥,Up(ci, s) = ⊥〉}

and rewrite this sum as case2(vi, vi+1). For uniformity, we can easily rewrite the last non-
∑

c

term over b(cn), b(c1) in the form case1(v1, vn). Thus, we obtain the following rewrites of the

above constraint culminating in the final constraint form where we push the max in using the

principles of variable elimination:

0 ≥max
v1,vn

{

case1(vn, v1)⊕
(

max
v2,...,vn−1

n
∑

i=1

case2(vi, vi−1)

)}

≥max
v1,vn

{

case1(vn, v1)⊕ case2(v1, vn)⊕
(

max
v2,...,vn−1

n
∑

i=2

case2(vi, vi−1)

)}

≥max
v1,vn

{

case1(vn, v1)⊕ case2(v1, vn)⊕
(

max
v2,...,vn−1

n−1
∑

i=1

case2(vi+1, vi)

)}

Now, we can determine the inner maxv2,...,vn−1

∑n−1
i=1 case2(vi+1, vi) by linear elimination in

O(log n) time since this is essentially the form we evaluated in Figure 6.2 except that the

variables vi are quaternary rather than binary (which can be easily accommodated). The final

and outer maxv1,vn
is only over 2 variables and can be computed in constant time.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 205

Therefore, once we have a weight instantiation during constraint generation, we can linearly

evaluate the maximizing variable assignment for this constraint in O(log n) time. This gives

us the maximizing value for the constraint and if it is a violation, we can easily extract the

structure of this constraint to add it to our LP. Thus, we see that for fFOALP on this particular

SYSADMIN problem, constraint generation takes O(log n) time per iteration.

As noted at the beginning of this subsection, these techniques generalize to larger sets of

basis functions (pairs, triples, etc...) since these all exhibit the symmetry that can be exploited

by linear and existential elimination. Furthermore, these techniques can also be applied to more

complex network topologies that can be decomposed into lines by solving each decomposed

piece separately and then piecing the solutions together.

6.4 Empirical Results

All of the solution techniques that we have described so far are targeted to very specific types of

problem structure and we note that the collection of techniques we have presented is far from a

universal solution. Our goal in our solution approaches was to scale sub-linearly in the FOMDP

representation size, however, as we will discuss in the conclusion, the results of Jaeger [2000]

imply this is generally impossible. As a consequence, our current implementation of linear-

value approximation methods is geared specifically towards the types of problem structure that

we have exploited above, i.e., SYSADMIN problems with network topologies consisting of

linearly connected structure.

Given the general difficulty of automatically finding a compact policy representation in the

policy-driven approaches of factored SDP and fFOAPI for SYSADMIN, the only practical first-

order approach to solving this problem was fFOALP. We applied ALP and fFOALP solutions

to the SYSADMIN problem configurations from Figure 6.1(a,b,d) using unary basis functions;

each of these network configurations represents a distinct class of MDP problems with its own

optimal policy. Solution times and empirical performance are shown in Figure 6.3. We did not

tie parameters for ALP in order to let it exploit the properties of individual computers; had we

done so, ALP would have generated the same solution as fFOALP.

The most striking feature of the solution times is the scalability of fFOALP over ALP.

ALP’s time complexity is Ω(n2) since each constraint generation iteration must evaluate n

ground constraints (i.e., n ground actions), each of length n (i.e., n basis functions). fFOALP

avoids this complexity by using one backup to handle all possible action instantiations at once

and exploiting the symmetric relational structure of the constraints by using existential and lin-

C
H

A
P

T
E

R
6

.
F

A
C

T
O

R
E

D
F

IR
S

T
-
O

R
D

E
R

M
D

P
S

2
0
6

10
2

10
4

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Domain Size (# of Computers)

S
o
lu

ti
o
n
 T

im
e

Line Configuration

ALP

fFOALP

10
2

10
4

1

2

3

4

5

x 10
4

Domain Size (# of Computers)

S
o
lu

ti
o
n
 T

im
e

Uni−Ring Configuration

ALP

fFOALP

10
2

10
4

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Domain Size (# of Computers)

S
o
lu

ti
o
n
 T

im
e

Star Configuration

ALP

fFOALP

10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

Domain Size (# of Computers)

A
v
e

ra
g

e
 N

o
rm

a
li
z
e

d
 D

is
c
o

u
n

te
d

 R
e

w
a

rd

ALP

fFOALP

10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

Domain Size (# of Computers)

A
v
e

ra
g

e
 N

o
rm

a
li
z
e

d
 D

is
c
o

u
n

te
d

 R
e

w
a

rd

ALP

fFOALP

10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

Domain Size (# of Computers)

A
v
e

ra
g

e
 N

o
rm

a
li
z
e

d
 D

is
c
o

u
n

te
d

 R
e

w
a

rd

ALP

fFOALP

Figure 6.3: Factored FOALP and ALP solution times (top) and expected discounted reward divided by the maximum possible reward

(bottom) averaged over 200 trials of 200 steps vs. domain size for various network configurations (left:line, middle:unidirectional-ring,

right:star) in the SYSADMIN problem.

CHAPTER 6. FACTORED FIRST-ORDER MDPS 207

ear elimination (plus inversion elimination for the star network) to evaluate them in O(log n)

time. Empirically, the fFOALP solutions to these SYSADMIN problems generate a constant

number of constraints and since LPs are polynomial-time solvable, the complexity is thus poly-

nomial in log n.

In terms of performance, as the number of computers in the network increases, it becomes

difficult to obtain a high reward since on average, more than one computer will fail on a given

time step (for sufficiently large problems), yet only one computer can be rebooted at each time

step. This leads to a necessary degradation of even the optimal policy value as the domain

size increases. Comparatively though, the implicit parameter tying of fFOALP’s basis function

classes does not hurt it considerably in comparison to ALP; certainly, the difference becomes

negligible for the networks as the domain size grows. This indicates that tying parameters

across basis function classes may be a reasonable approach for large domains. Secondly, for

completely symmetric cases like the unidirectional ring, we see that ALP and fFOALP produce

exactly the same policy—albeit with fFOALP having produced this policy using much less

computational effort.

We note that the FOMDP formalism from Chapter 4 (originally appearing in Boutilier et

al. [2001]), the extensions for linear-value representation in Chapter 5, and all other FOMDP

formalisms [Hölldobler and Skvortsova, 2004; Kersting et al., 2004; Wang et al., 2007] cannot

compactly represent factored structure in FOMDPs. Other non-first-order approaches [Fern et

al., 2003; Gretton and Thiebaux, 2004; Guestrin et al., 2003] require sampling where in the

best case these approaches could never achieve sub-linear complexity in the sampled domain

size.

6.5 Concluding Remarks

We have contributed the sum and product aggregator language extension for the specification

of factored FOMDPs that were previously impossible to represent in a domain-independent

manner as FOMDPs. And we have generalized symbolic dynamic programming to exploit

novel definitions of first-order independence and sum/product aggregator structure. We have

also shown how parameterized structure can arise in the solution of factored FOMDPs as it did

for the F-BOXWORLD problem.

In addition to exact solution methods, we have generalized linear-value approximation solu-

tion techniques to handle factored FOMDPs. In many cases, the presence of sum and product

aggregator structure in our factored FOMDP definition prevents us from obtaining a finite-

CHAPTER 6. FACTORED FIRST-ORDER MDPS 208

length form of the constraints in the linear program representations that arise from these solu-

tions. Nonetheless, we showed that we can make a mildly restrictive domain size assumption

and exploit the resulting constraint structure to efficiently evaluate them in a constraint gener-

ation framework without grounding. To do this, we borrowed from the first-order probabilistic

inference (FOPI) framework [Poole, 2003; de Salvo Braz et al., 2005] and introduced the novel

existential and linear elimination techniques for respectively exploiting existential and linear

structure in the evaluation of cost networks during constraint generation. Using these tech-

niques, we empirically demonstrated that we can solve the SYSADMIN factored FOMDPs in

time and space that scales polynomially in the logarithm of the domain size—results that were

impossible to obtain for previous techniques that relied on grounding.

Unfortunately, while we have provided the representation and basic symbolic dynamic pro-

gramming equations for factored FOMDPs, we have only begun to scratch the surface of their

solution methods. Thus, this chapter should be viewed more as an introduction to the factored

FOMDP representation and potential solution methods rather than a guide to its generic solu-

tion. A lot of the underlying theories are in development and the methods for manipulating

and simplifying first-order case expressions are just beginning to be explored. It is beyond

the scope of this thesis to address all of these topics comprehensively, nonetheless, it was our

objective to provide an idea of what is possible with these novel solution approaches.

In conclusion, we do note one negative result that may partially explain our inability to

provide comprehensive algorithms for factored FOMDP solutions. Jaeger [2000] proved that

lifted inference in relational Bayes nets (i.e., those equivalent in expressive power to our pCase

representation for transition DBNs in factored FOMDPs, which condition probabilities on first-

order formulae) cannot always be done exactly for trivial queries (i.e., determining the prob-

ability of a single ground atom) in a manner whose inferential complexity is less than that of

performing inference in a fully grounded problem. Since inference in the backup operator for

factored FOMDPs is at least as expressive as these trivial queries, this implies that we will

not always be able to symbolically evaluate a factored transition distribution (or cost network

constraint structure built from this distribution) in an asymptotically faster manner than that

obtained by fully grounding it out — thus losing the benefits of the compact factored FOMDP

representation.

Nonetheless, this does not preclude the possibility of restricted classes of structure for

which we can obtain efficient solutions. As an example, for problem structures similar to the

F-BOXWORLD and SYSADMIN problems discussed in this chapter, we note that there is much

hope for efficient solutions. And one additional idea is that if we are willing to approximate

CHAPTER 6. FACTORED FIRST-ORDER MDPS 209

our model in order to fit into a class of efficiently solvable FOMDPs, then we can use a solution

to this approximated model as guidance for other more computationally expensive algorithms

ranging from seed values for value iteration to ground heuristic search to reward shaping in re-

inforcement learning [Ng et al., 1999; Marthi, 2007]. Or we may just choose to act according

to this approximated model, especially if we can obtain error bounds on performance [Dearden

and Boutilier, 1997]. We revisit this idea in our concluding chapter since it outlines an effec-

tive framework for making use of FOMDPs and factored FOMDPs where they excel, while

avoiding their use where they are problematic.

Chapter 7

Conclusions

We have come a long way since we first introduced the ground enumerated state MDP and its

variant solutions as the basic model for representing and solving decision-theoretic planning

problems. Since that point, we have introduced factored structure into MDPs and we have

covered a variety of exact and approximate solution algorithms that exploit this factored MDP

structure. We have also introduced the FOMDP representation to exploit some of the relational

and first-order structure inherent in many planning problem representation languages such as

PPDDL. And we have combined factored and first-order structure into a factored FOMDP

model that combines the representational advantages of both.

Not only have we shown that various forms of factored and relational structure can be

exploited in the concise and natural representation of MDPs — we have also demonstrated

that this structure can be exploited in solution methods as well. We have introduced a variety

of methods for exploiting structure in exact solution approaches and we have heavily moti-

vated the linear-value approximation approach for exploiting all levels of MDP structure. For

this approach, we have presented comparative results from the ICAPS International Proba-

bilistic Planning Competitions that demonstrate that our first-order linear-value approximation

approach is competitive with other state-of-the-art planners. And finally, we have also pre-

sented encouraging empirical results showing vast reductions in solution complexity on certain

types of problems over less-structured approaches through the exploitation of various forms of

structure — be it context-specific, additive or multiplicative independence, or the exploitation

of factored MDP structure, first-order MDP structure, decomposable goal structure or combi-

nations of the above.

Here, we review the major contributions of the thesis, outline some interesting directions for

future work, and part with some concluding remarks on the framework of first-order decision-

210

CHAPTER 7. CONCLUSIONS 211

theoretic planning in structured relational environments.

7.1 Summary of Contributions

In a thesis such as this one that draws on so much background work, it can be difficult to

discern new contributions from prior work. Consequently, we briefly review some of the major

contributions of this thesis:

1. Affine Algebraic Decision Diagrams: Having identified various shortcomings with the

algebraic decision diagram (ADD) [Bahar et al., 1993] representation, we introduced

the affine ADD (AADD) to simultaneously exploit additive, multiplicative and context-

specific independence in factored MDP representation and solution methods. We proved

that the AADD never performs more than a constant factor worse in time and space than

an ADD and can lead to an exponential-to-linear reduction in time and space over the

ADD. And we presented a variety of empirical results suggesting that AADDs are of-

ten as good as or better than ADDs or tabular representations in the solution of factored

MDPs. Unfortunately, a preliminary investigation into the use of AADDs for approx-

imate inference in MDPs has not proved fruitful; yet approximation approaches seem

crucial for scaling beyond the limits of exact inference while simultaneously mitigating

issues of representational blowup that may occur due to numerical precision errors in the

AADD computations.

2. First-order Decision Diagrams: In the same way that ADDs and AADDs exploit struc-

ture to compactly represent factored MDPs, we introduced first-order ADDs and first-

order AADDs (collectively termed FO(A)ADDs) to represent structure in the case rep-

resentation of FOMDPs. We introduced an additional type of structure — first-order

context-specific independence — that can be exploited in these diagrams and we dis-

cussed how to perform case operations directly on this representation. We explored the

difficulties that can occur with using FO(A)ADDs for all FOMDP solution computa-

tions and thus advocated a hybrid approach for their use that enabled the fully automated

solution of a few example FOMDPs.

One of the key components for producing compact FO(A)ADDs is the use of equality

simplification procedures to (a) remove unneccessary variables and quantifiers and (b) to

distribute quantifiers as deeply into a formula as possible in an effort to expose proposi-

tional structure in a first-order formula. Our current approach for simplification is based

CHAPTER 7. CONCLUSIONS 212

on the heuristic search-based application of rewrite rules outlined in Chapter 4, but it is

likely that there are better and more efficient methods for doing this.

3. Additive Decomposition of Universal Rewards: FOMDPs with universally quantified

rewards pose a number of interesting difficulties for solution techniques based on the case

representation or its decision diagram extensions. Having discussed these issues, we then

proceeded to propose an additive goal decomposition approach to handling universal re-

wards motivated in part by the work of [Boutilier et al., 1997; Singh and Cohn, 1998;

Meuleau et al., 1998b; Poupart et al., 2002a]. This approach required an offline generic

solution combined with an online additive decomposition of Q-values w.r.t. goals spec-

ified at run-time. Then we outlined an approach for exploiting the additivity of Q-

values to efficiently perform run-time policy evaluation. We used these techniques in

the FOALP and FOAPI planners — FOALP, in particular, proved to be a capable plan-

ner, due in part to its ability to efficiently exploit universal reward structure. However, we

remark that additive goal decomposition is only a heuristic approach and it is relatively

easy to construct examples where it will fail; it is not clear to what extent enhancements

and a deeper analysis of goal structure can mitigate these problems.

4. Linear-value Approximation for FOMDPs: We showed how to generalize linear-value

approximation techniques from factored MDPs [Guestrin et al., 2002; Schuurmans and

Patrascu, 2001] to the case of FOMDPs. This solution involved a number of novel con-

tributions w.r.t. the introduction of the first-order linear programming paradigm, a gen-

eralization of the variable elimination algorithm to relation elimination, and the use of

this algorithm in an efficient constraint generation approach to solving the first-order

linear program. Additionally, we showed how the generation of orthogonal basis func-

tions could be exploited in our solution algorithms. Together, all of these contributions

made first-order generalizations of approximate linear programming (FOALP) and ap-

proximate policy iteration (FOAPI) possible. And in combination with additive goal

decomposition as mentioned previously, FOALP managed to outperform state-of-the art

stochastic planners on certain classes of problems due to its exploitation of relational and

goal-oriented structure.

We note that the generalization of approximate linear programming (ALP) to the first-

order case of FOALP was only heuristic in that we could not directly represent the

ALP objective in FOALP. It would be useful to revisit our assumptions in modeling the

FOALP objective to determine if there are better approaches. While we did manage to

CHAPTER 7. CONCLUSIONS 213

directly generalize approximate policy iteration (API) to the first-order case of FOAPI —

thus obtaining a first-order generalization of the API error bounds — we note that FOAPI

proved to be a difficult method to apply in practice. The main problem with FOAPI was

that its policy representation could not be maintained in a compact form and the growth

of the policy representation as more basis functions were added quickly outstripped the

ability of our theorem prover to detect inconsistency. Thus, for FOAPI to be a viable

approach in the future, we need to focus on compact ways to derive and represent the

policy. Finally, for both FOALP and FOAPI, we remark that our basis function gen-

eration was highly heuristic and geared towards a specific set of probabilistic planning

problems. More work is needed to identify general, automated methods of producing

first-order basis functions.

5. Representation and Solution of Factored FOMDPs: We contributed the factored

FOMDP formalism to permit FOMDPs to domain-independently represent factored struc-

ture such as additive rewards and factored actions that scale with the domain size. We

provided a compact formalization of effect axioms and discussed a number of their prop-

erties that could be exploited in solution approaches.

Beyond the representation, our investigation of solution methods was highly exploratory

and we were only able to provide small examples and ad-hoc approaches for exploiting

some of the structure that may occur in factored FOMDPs. For example, we identified a

case where parameterized case structure may arise and we modified our case operators to

handle such additional structure. We also contributed specialized symbolic dynamic pro-

gramming and linear-value approximation techniques to solve certain factored FOMDPs.

Even though our linear-value approximation approach was specific to a domain size, we

introduced a framework that allowed the constraints to be evaluated without requiring

domain grounding. These ideas built on the first-order probabilistic inference (FOPI)

work of [Poole, 2003; de Salvo Braz et al., 2005; de Salvo Braz et al., 2006] where we

also introduced the two novel elimination methods of existential elimination and linear

elimination for performing variable elimination in this framework without grounding.

Together, these ideas permitted the factored FOALP solution of the SYSADMIN problem

in space and time that scaled sublinearly in the domain size — a result that is impossible

to obtain for the corresponding grounded ALP approach. However this work is just the

tip of the iceberg and leaves many important open questions such as “what classes of

factored FOMDP structure can be solved efficiently?” We provide some guidance on

CHAPTER 7. CONCLUSIONS 214

this problem in the next section covering directions for future work.

6. Correspondence of Symbolic Dynamic Programming for FOMDPs and Dynamic

Programming for MDPs: We provided a proof of correspondence between symbolic

dynamic programming (SDP) for FOMDPs and Dynamic Programming for MDPs. The

key to this proof was showing that when an SDP solution to FOMDPs is grounded w.r.t.

a domain closure assumption, the result is equivalent to the solution obtained by first

grounding the FOMDP and then applying standard ground MDP solution techniques.

We remark that this was an alternate proof approach than that given in [Boutilier et al.,

2001]. There the emphasis was on proving the correctness of the SDP algorithm at a

purely logical level (including the case of infinite models). In our proof, we focused on

proving correspondence between the first-order and well-known ground MDP solutions.

Among other things, this allowed us to lift the results for approximation error bounds to

the first-order case.

7.2 Future Directions

With respect to this thesis work, there are a number of open ends that are worth further explo-

ration. Here we enumerate a few of them:

1. An interesting approach for the practical application of FOMDPs to decision-theoretic

planning is to combine their approximate offline solution with online methods for en-

hancing their performance. And for ideas, we need only look at the range of successful

planners used in planning competitions. Perhaps one of the most useful approaches

would be to use offline methods for solving FOMDPs to generate a domain-independent

approximated value function. Then we could use such a value function as a heuristic seed

for online search methods such as RTDP [Barto et al., 1993]. Another approach would

be to consider domain-specific control knowledge encoded as temporal logic constraints

as in TLPlan [Bacchus and Kabanza, 2000], program constraints as in Golog [Levesque

et al., 1997] (both TLPlan and Golog are deterministic planners) or decision-theoretic

extensions such as DT-Golog [Boutilier et al., 2000]. We discuss the use of program

constraints further in a moment.

2. We did not fully evaluate all of the possible combinations of structural exploitation in

FOMDPs. For example, we introduced both FOADDs and FOAADDs, but we only

CHAPTER 7. CONCLUSIONS 215

used FOADDs in our experiments since preliminary experiments involving FOAADDs

demonstrated that there was little additive or multiplicative structure to exploit in these

problems. Furthermore, we discussed the APRICODD extension of SPUDD for approx-

imate value iteration with ADDs in Chapter 3, but we did not consider similar extensions

for approximate value iteration with first-order ADDs for FOMDPs. Given the success

of APRICODD, this approach is quite appealing for first-order approximate value itera-

tion; when the FOADD representing the value function becomes too large we can simply

prune out nodes in the FOADD (as demonstrated in APRICODD for ADDs in Figure 3.6)

in an effort to reduce the size of the value function while minimizing the approximation

error.

3. We only skimmed the surface of research on factored FOMDPs. Perhaps the single

greatest unanswered question for factored FOMDPs is how to identify structure that can

be efficiently exploited by solution methods — and furthermore, how to automate these

solutions. One approach to addressing this would analyze specific classes of problem

structure, their efficient solution (if possible), and how these classes of problem structure

could be combined while still permitting efficient solutions. In many ways, this is similar

to the field of description logics in its nascency, when researchers sought to determine

which combinations of logical constructors permitted efficient subsumption reasoning.

However, the well-known result of Levesque and Brachman [1987] for description log-

ics (showing that very minor changes in logical representation can lead to major changes

in tractability) portends a similar negative result for factored FOMDPs due to the un-

derlying connections at an abstract logical level. That is, very simple factored FOMDP

structures that are efficiently solvable in isolation may interact such that their combi-

nation is no longer efficiently solvable. However, such discussion is only hypothetical

and a clear formal analysis is needed to verify this. Nonetheless, in light of the results

of Jaeger [2000] as discussed in the conclusion of Chapter 6, it does become clear that

exact solutions to factored FOMDPs will not always be tractable and thus we discuss

additional ideas for approximate solution approaches momentarily.

One other interesting avenue for future research is on methods that extend first-order

probabilistic inference (FOPI) ideas [Poole, 2003; de Salvo Braz et al., 2005; de Salvo

Braz et al., 2006] to the relation elimination approach of Chapter 5 to permit a more gen-

eral application of FOPI to linear-value approximation techniques for factored FOMDPs.

At the current time, FOPI-based inference focuses on non-quantified relational structure

CHAPTER 7. CONCLUSIONS 216

in the form of parameterized factors (i.e., parfactors in the FOPI lexicon), yet general

factored FOMDPs clearly permit the use of quantifiers in the case statement represen-

tation that generalizes parfactors to full first-order logic. However, while the represen-

tational generalization is clear, the algorithmic generalization is much less clear since

the lifted propositional ordered resolution used at the parfactor level in FOPI has much

better computational properties than the first-order ordered resolution used at the case

level in relation elimination (i.e., the propositional variant is guaranteed to terminate on

any single elimination step whereas the first-order variant may not). But perhaps the use

of specially restricted languages and more complex ordered resolution methods based on

reduction orderings may resolve some of these difficulties; a fascinating thesis on this

latter topic is given by Motik [2006].

4. One very fascinating idea and perhaps one of the most promising uses of FOMDPs and

factored FOMDPs is at the highest level of an abstraction hierarchy for agent-based

decision-theoretic planning. Dearden and Boutilier [1997] demonstrate that an MDP

model can be approximated to a structure that is efficiently solvable and that error bounds

can be obtained on the resulting optimal policy in the abstracted model w.r.t. the opti-

mal policy in the non-abstracted version. If we lift such results to FOMDPs and factored

FOMDPs, then this offers a very appealing paradigm for their use: we can approximate a

general (factored) FOMDP model to a level that we know we can solve efficiently while

obtaining error bounds on the performance of the optimal policy in this approximated

model. Or, further afield, we can use a solution to this approximated model as guidance

for other more computationally expensive algorithms like ground heuristic search or as

shaped rewards [Ng et al., 1999; Marthi, 2007] or seed values [Wiewiora, 2003] for value

iteration in the non-abstracted MDP model.

In addition to the immediate open ends of our current research, we have only touched

on the surface of FOMDPs and the vast array of stochastic decision processes and symbolic

solution methods that are possible. There remain a number of promising directions for the

exploitation of structure in relationally-specified decision-theoretic planning problems that we

briefly describe here:

1. One of the original goals in the FOMDP and symbolic dynamic programming frame-

works [Boutilier et al., 2001] was to allow for very general symbolic representations.

While most current FOMDP research has assumed a constant numerical representation

CHAPTER 7. CONCLUSIONS 217

of the values in case statement partitions, we began to uncover situations where we might

obtain parameterized case structure in Chapter 6. We could continue this line of in-

quiry into parameterized value representations in the context of modeling continuous

state properties, perhaps combined with discrete state properties in a hybrid (FO)MDP.

This idea is intriguing in that it permits the specification of FOMDPs with the state

represented in terms of continuous quantities where actions may range over continuous

variables and rewards may scale continuously with state variables (or relations). It is

quite easy to formulate some simple problems in this domain, such as moving quantities

of water between tanks by opening and closing valves [Hauskrecht and Kveton, 2004;

Guestrin et al., 2004]. However, solving such a problem domain-independently and effi-

ciently will likely require a significant extension of current methods.

2. In many FOMDPs there is an element of underlying topological graph structure. For

example, in logistics planning, this graph structure may involve the accessibility of dif-

ferent cities via roads and flight routes. Currently, this graph structure is not exploited

by our solution methods. Yet its regularity, if known a priori, could likely be exploitable

by solution methods that could “compile” out this graph structure. This approach would

be far more advantageous than relying on the first-order case representation to extract

relevant graph properties using the cumbersome specification of transitively composed

relations (i.e., ∃c1, c2.Road(c1, c2) ∧ ∃c3.Road(c2, c3) ∧ ∃c4.Road(c3, c4) ∧ . . .).

3. We often have a predefined set of constraints on the behavior of an agent and we need to

optimize the agent’s policy w.r.t. those constraints. If we can specify the program con-

straints in the form of a Golog program [Levesque et al., 1997], then we can generalize

the hierarchy of abstract machines (HAM) architecture [Parr and Russell, 1998; Andre

and Russell, 2001; Andre and Russell, 2002] to the case of solving FOMDPs w.r.t. Golog

program constraints. Such a solution would permit the (approximately) optimal execu-

tion of an incompletely specified program over all possible domain-instantiations. Var-

ious approaches in the decision-theoretic DT-Golog framework [Boutilier et al., 2000;

Soutchanski, 2001; Ferrein et al., 2003] have provided an initial investigation into these

ideas.

Altogether, it should be clear that this thesis only represents the tip of the iceberg for first-

order decision-theoretic planning in structured relational environments. And the above sugges-

tions are but a few of the many possible avenues in this fecund field of research.

CHAPTER 7. CONCLUSIONS 218

7.3 Concluding Remarks

For a few years immediately succeeding the publication of first-order MDPs and their symbolic

dynamic programming solution [Boutilier et al., 2001], this approach was disparaged as being

unrealistic for practical applications due to the complexity of value functions or due to the need

for logical simplification and theorem proving [Yoon et al., 2002; Gardiol and Kaelbling, 2004;

Guestrin et al., 2003]. While these are all in fact significant obstacles to be overcome in the

practical application of first-order MDPs to decision-theoretic planning applications, this thesis

has aimed to show that these obstacles are not insurmountable. It has provided a substantial step

in the direction of demonstrating that with careful attention paid to the first-order representation

and algorithms specifically designed to exploit that representation, lifted solutions can work in

practice. And at the present point in time, not only can they work, but they can scale well

beyond that of grounded approaches in many notable cases.

Despite these successes, many researchers will continue to avoid lifted first-order meth-

ods and resort to grounded methods for the very practical reason that grounded methods are

both easier to understand and easier to implement. But there is a great potential payoff to

be gained by understanding and working at the first-order level when approaching decision-

theoretic planning problems. And there is a world of relational and symbolic structure waiting

to be exploited. This thesis represents just a few points in that space of ideas and there are

likely a plethora of breakthroughs in first-order decision-theoretic planning patiently awaiting

discovery. Our hope is that this thesis lays out the foundations for further exploration of this

space and helps move this nascent field further along the path of practical impact.

Appendix A

Proof of Correctness of Symbolic Dynamic

Programming

In this appendix, we provide a proof of correspondence between symbolic dynamic program-

ming (SDP) for the FOMDP model of Chapter 4 and dynamic programming (DP) for the MDP

model of Chapter 2 under finite domain assumptions.

A.1 General Proof Approach

The key to this proof is showing that when a SDP solution to FOMDPs is grounded w.r.t. a

finite domain via domain closure axioms1, the result is equivalent to the solution obtained by

first grounding the FOMDP and then applying standard ground MDP solution techniques (see

Figure A.1 for a visual representation of this proof).

Boutilier et al. [2001] provide a proof that SDP and thus every step of value iteration pro-

duces a correct logical description of the value function. However, they do not provide an ex-

plicit correspondence between FOMDPs formalized with the deterministic situation calculus

and MDPs as formalized in Chapter 2 with explicit stochastic actions. While the correspon-

dence is not difficult to show, it is nonetheless useful to make this explicit. Thus, we provide a

direct correspondence between FOMDPs and MDPs in this Appendix and provide an alternate

proof of correctness of first-order value iteration based on this correspondence

1Throughout this appendix, when we say ground, we mean to restrict the interpretations to a finite domain via

domain closure axioms. Domain closure will be formally defined in the next section.

219

APPENDIX A. PROOF OF CORRECTNESS OF SYMBOLIC DYNAMIC PROGRAMMING 220

FOMDP Value Function
Representation

Ground MDP

Representation

(Domain

 Closure)

Ground
(Domain

 Closure)

Ground

FOMDP Solution Algorithm

Ground MDP Solution Algorithm

?

Ground MDP Value Function

FOMDP

Figure A.1: Proving correspondence between FOMDPs and MDPs.

A.2 Correspondence of Case and Ground Representations

For simplicity, we will assume an unsorted first-order logic with equality. While we have previ-

ously assumed a sorted representation, we will assume that sort information has been compiled

into an unsorted logical form where ∀Sort : c φ(c) has been rewritten as ∀c. Sort(c) ⊃ φ(c)

and likewise ∃Sort : c φ(c) has been rewritten as ∃c. Sort(c) ∧ φ(c). In the following pre-

sentation we draw on the logical notation and semantics for unsorted first-order logic given in

Brachman and Levesque [2004]. It is particularly important to note the following two restric-

tions:

• Predicate Symbols: We assume a set of predicates Pi of each arity 0 ≤ i ≤ m for some

finite maximum m. We assume “=”∈ P2.

• Function Symbols: We assume a set of function symbols fj of each arity 0 ≤ j ≤ n for

some finite maximum n.

We recapitulate the case notation introduced in Chapter 4 and used in the first-order MDPs

in this thesis. We use the notation:

t = case[φ1, t1; · · · ;φn, tn] (A.1)

as an abbreviation for the logical formula:

∨

i≤n

{φi ∧ t = ti} (A.2)

APPENDIX A. PROOF OF CORRECTNESS OF SYMBOLIC DYNAMIC PROGRAMMING 221

Here, the φj(s) are state formulae (whose situation term does not use do) and we assume in

these proofs that the tj are real-valued constants such that ∀i. ti ∈ R. We will always assume

an implicit case element 〈¬φ1∧ . . .∧¬φn,−∞〉 to ensure that the case statement exhaustively

assigns a value to all possible ground states and we assume that all case partitions are mutually

exclusive2 unless otherwise noted. We assume that the free variable t in the logical formula for

which t = case[φ1, t1; · · · ;φn, tn] is an abbreviation does not appear in any of the φj .

A finite interpretation is a pair ℑ = 〈D, I〉 where D is a finite, nonempty set of domain

elements {c1, . . . , ck} and I is a mapping from all predicate names in Pi for 0 ≤ i ≤ m into

a subset of Di and from function names in fj for 0 ≤ j ≤ n into a map of Dj → D. We

represent variable bindings for free variables of a formula as a variable assignment µ, which

is a set of substitutions {v/c} of c ∈ D for variable v. We use φµ to represent the formula

resulting from making the substitutions of µ for free variables in φ. We say an interpretation

ℑ and a variable binding µ satisfy a formula φ, written ℑ, µ |= φ, if φµ can be recursively

evaluated to be true under the model-theoretic interpretation of first-order logic syntax given

ℑ [Brachman and Levesque, 2004].

A domain closure assumption is an axiom that restricts the universe of objects to those

explicitly in a finite domain D. Throughout this appendix, we will refer to a case statement

under a domain closure assumption, written generically as caseD. We will assume that the

following domain closure axiom is implicit in the background theory:

∀x. x = c1 ∨ . . . ∨ x = ck (A.3)

A.3 Correspondence of Representations and Operations

Although we typically use a ground representation expressed as caseD, we note that there is a

simple transformation between caseD and the more familiar ground representation of propo-

sitional factors used in the ground factored MDP representation from Chapter 3. Here we

present a simple method for converting caseD to a propositional factor where caseD that we

call grounding:

Definition A.3.1 (Grounding). To ground caseD to a propositional factor C as demonstrated

in Figure A.2, we perform the following steps where we assume the partitions of caseD are

mutually exclusive and exhaustive:

2Mutual exclusivity can be easily enforced with the unary casemax operator from Chapter 4.

APPENDIX A. PROOF OF CORRECTNESS OF SYMBOLIC DYNAMIC PROGRAMMING 222

caseD =
∃x. A(x) : 10
¬∃x. A(x) : 5

7−→ Prop. Factor C:

A(c1) A(c2)

⊥ ⊥ 5
⊥ ⊤ 10
⊤ ⊥ 10
⊤ ⊤ 10

Figure A.2: Given the tabular representation of a case statement caseD, its grounded repre-

sentation as a propositional factor for D = {c1, c2} is given on the RHS. If our language had

included function symbols, we would have included extra columns in the factor C representing

all truth-value of all possible function equalities.

1. Expand all quantifiers into finite conjunctions (∀) or disjunctions (∃) over all elements

of D. It is easy to see that the resulting case statement will only consist of connectives

over ground atoms and terms (with the exception of variable t).

2. Build a tabular representation of a propositional factor C that enumerates all truth as-

signments of all ground atoms w.r.t.D (the ground atoms for equality suffice to represent

all function valuations) referenced by the caseD formula in the rows of the table.

3. Each row r of C represents a set of interpretations w.r.t. domain D that are consistent

with the truth assignments to ground atoms in that row. Each row r of C is also assigned

a value tr. Because C forms an exhaustive truth table over relevant ground atoms, the

rows of C disjointly and exhaustively partition the set of all interpretations for a fixed

domain D (no interpretation could satisfy the assignments from two different rows). We

denote the set of all interpretations for row r of C to be ρr. We assume there are no free

variables of caseD other than t, which appears in the formal logical representation of

t = caseD. If 〈φj, tj〉 is a partition of caseD and ∀ℑ ∈ ρr.ℑ |= φj then we assign value

tr = tj for row r.

Next we define a binary relation 7−→ that allows us to establish a correspondence between

caseD and a ground propositional factor C:

Definition A.3.2 (7−→). Let all symbols be defined as in Definition A.3.1. Define the ground

atoms relevant to caseD as all of the ground atom truth assignments that could be potentially

required during the model-theoretic evaluation of the logical representation of caseD. Assume

that the rows of C exhaustively enumerate all truth assignments to relevant ground atoms of

APPENDIX A. PROOF OF CORRECTNESS OF SYMBOLIC DYNAMIC PROGRAMMING 223

caseD. Then the correspondence caseD 7−→ C holds iff for all rows r of C, there exists exactly

one partition 〈φj, tj〉 of caseD s.t. ∀ℑ ∈ ρr.ℑ, {t/tr} |= φj ∧ t = tj .

Lemma A.3.3. If we ground caseD to obtain C using Definition A.3.1, then caseD 7−→ C.

Proof. Let all symbols be defined as in Definition A.3.1. By the definition of the grounding

procedure, the rows of C exhaustively partition all possible relevant ground atoms of caseD

(an examination of the rules for model-theoretic evaluation reveal that we need only know

truth assignments to the ground atoms for the relations and function symbols w.r.t. D in caseD,

which the grounding procedure indeed provides).

Now, choose any particular row r of C. We know that every row r (viewed as an interpre-

tation) is a model of exactly one φj . This follows from the mutually exclusive and exhaustive

nature of partitions 〈φj, tj〉 in caseD and the fact that row r makes truth assignments to all rele-

vant ground atoms of caseD. Since allℑ ∈ ρr are just augmentations of the truth assignments to

r, we then know ∀ℑ ∈ ρr.ℑ |= φj . Furthermore, by the definition of the grounding procedure,

we can infer tr = tj . From this, we can then infer from Definition A.3.2 that caseD 7−→ C

must hold.

We provide a simple example of a case statement under domain closure and its grounded

representation as a propositional factor in Figure A.2. Note that the top partition of the caseD

statement is modeled by the three bottom rows of the propositional factor C and that each row

of C corresponds to exactly one partition of caseD.

For a binary operation op ∈ {⊕,⊗,⊖,max}, the application of op on tabular represen-

tations of propositional factors can be expressed in exactly the same form as a binary operation

on the case representation: a cross-product operation op of all rows with inconsistency re-

moval (and optional simplification).

We note that performing operations on case statements under domain closure is equivalent

to transforming the case statements to propositional tables and performing the same operations

on propositional tables. To show that this is correct, we prove the following theorem:

Theorem A.3.4. Using Definition A.3.1 to ground caseD
1 to C1 and caseD

2 to C2, let caseD
R =

(caseD
1 op caseD2) and let CR = C1 op C2. Then caseD

R 7−→ CR.

Proof. From Lemma , we know that caseD
1 7−→ C1 and caseD

2 7−→ C2. Our goal is to show

that caseD
R 7−→ CR by Definition A.3.2.

By the construction ofCR as the result of a binary operation on ground propositional factors

(previously discussed), we know that it exhaustively enumerates truth assignments to all ground

APPENDIX A. PROOF OF CORRECTNESS OF SYMBOLIC DYNAMIC PROGRAMMING 224

atoms of C1 and C2, which in turn include all relevant ground atoms of caseD
1 and caseD2 . As

the only possible relevant ground atoms of caseD
R are those corresponding to the grounding

of function symbols and predicates of caseD
1 and caseD2 (recall that caseD

R simply contains a

conjunction of formulae from caseD
1 and caseD2), we can infer that CR exhaustively enumerates

truth assignments to all relevant ground atoms of caseD
R .

By the construction of caseD
R , we know that all partitions of caseD

R are exhaustive and

mutually exclusive. This follows from the fact that each of caseD
1 and caseD

2 were exhaustive

and mutually exclusive and thus the resulting cross-product of case partitions in caseD
R likewise

retains this property.

Now, choose a row r of CR. By construction, we know that row r was formed from a row

i in C1 and a row j in C2. Let ρ1
i and ρ2

j be the set of respective intepretations corresponding

to a row i of C1 and row j of C2. We note the following: (1) ∀ℑ1 ∈ ρ1
i .ℑ1 |= φ1 and (2)

∀ℑ2 ∈ ρ2
j .ℑ2 |= φ2.

By definition of the case operations there will be a case element 〈φr, tr〉 in caseD
R where

φr ≡ φ1 ∧ φ2 and tr = t1 op t2 if φ1 ∧ φ2 0 ⊥. To complete the proof, we first need to

show that ∀ℑR ∈ ρ1
i ∩ ρ2

j .ℑR, {t/(t1 op t2)} |= φr ∧ t = tr for 〈φr, tr〉 in caseD
R (i.e., we

need to show that all interpretations of row r of CR model the correct value w.r.t. caseD
R).

Replacing φr with the equivalent φ1 ∧ φ2, and recursively decomposing the model-theoretic

interpretation of ∧, this requires us to show (3) ∀ℑR ∈ ρ1
i ∩ ρ2

j .ℑR, {t/(t1 op t2)} |= φ1,

(4) ∀ℑR ∈ ρ1
i ∩ ρ2

j .ℑR, {t/(t1 op t2)} |= φ2, and (5) ∀ℑR ∈ ρ1
i ∩ ρ2

j .ℑR, {t/(t1 op t2)} |=
t = tr. (3) and (4) follow respectively from (1) and (2); (5) follows from the definition of

tr = t1 op t2. Finally we need to show φ1 ∧ φ2 0 ⊥, but this follows easily since (3) and (4)

imply ∀ℑ ∈ ρ1
i ∩ ρ2

j .ℑ |= φ1 ∧ φ2 and we know ρ1
i ∩ ρ2

j is non-empty because it contains the

model corresponding to row r of CR.

A.4 Correspondence of a FOMDP and an MDP

To begin the correspondence proofs given in Figure A.1, we must first define the FOMDP and

its grounded MDP variant.

To define a FOMDP, we slightly modify notation from Chapter 4 such that we use the

case specification both for a generic FOMDP and a specific instance to avoid confusion with

the ground MDP notation. A FOMDP is described by a reward case statement rCase(s),

case statements representing Nature’s choice distribution over deterministic action outcomes

pCase(ni,j(~y), Ai(~y), s) where for each stochastic action term Ai(~y) for 1 ≤ i ≤ p there is

APPENDIX A. PROOF OF CORRECTNESS OF SYMBOLIC DYNAMIC PROGRAMMING 225

a corresponding set of Nature’s choice deterministic action outcomes ni,j(~y) for 1 ≤ i ≤ p,

1 ≤ j ≤ q, and a set of successor state axioms (SSAs) for each fluent and Nature’s choice

action. Often, when we are referring to a specific action, we will drop the index i, e.g.,

pCase(nj(~x), A(~x)). Somewhat more importantly, we note the following notational conven-

tion:

• Since state properties can be recovered from situation terms due to the Markovian as-

sumptions of an MDP, we drop the situation term s from all FOMDP case statements

from here out. The use of the stage-to-go index t will allow us to track the state that a

case statement is referring to.

To define an MDP and derive it from a FOMDP grounded w.r.t. domain D, we use the

factored propositional MDP notation from Chapter 3. We define the set of states SD in terms of

all possible truth assignments to a vector of binary state variables ~x consisting of the following

variables:

• For all i (0 ≤ i ≤ m), for all predicate names P ∈ Pi, and for all ~c ∈ Di, there is a

binary variable representing whether the atom P (~c) is true. Again, due to the inclusion

of the equality predicate, this suffices to handle all function valuations.

In essence, under a domain assumption D, the state variables ~x are capable of representing all

possible mappings I for a finite interpretation ℑ = 〈D, I〉.
With these definitions, we define the MDP reward as a factor R(~x) for ~x ∈ SD, and for all

i, j (1 ≤ i ≤ p, 1 ≤ j ≤ q), and we define the MDP value function as V t(~x) for t ≥ 0 and

~x ∈ SD.

The set AD contains all grounded versions of stochastic actions Ai(~y) (1 ≤ i ≤ p) for

a FOMDP grounded w.r.t. AD. Likewise, the set ND contains all grounded Nature’s choice

deterministic actions ni,j(~y) (1 ≤ i ≤ p,1 ≤ j ≤ q). We define AD and ND in the following

way where we assume αi is the arity of action Ai:

• AD: For all i (1 ≤ i ≤ p) and for all ~c ∈ Dαi , there is a stochastic action symbol for the

term Ai(~c).

• ND: For all i (1 ≤ i ≤ p), for all j (1 ≤ j ≤ q), and for all ~c ∈ Dαi , there is a Nature’s

choice deterministic action symbol for the term ni,j(~c).

We note that the FOMDP and MDP share symbols at a syntactic level, namely those in AD

and ND, which are function terms in the FOMDP case and enumerated symbols in the ground

APPENDIX A. PROOF OF CORRECTNESS OF SYMBOLIC DYNAMIC PROGRAMMING 226

MDP case. However, the “meaning” of the symbols can be disambiguated by context in the

following presentation unless otherwise noted.

Next we show how to build the transition functions P (~x′|~x,Ai(~c)) for all actions Ai(~c) ∈
AD in the MDP given P (ni,j(~c)|Ai(~c), ~x) in the FOMDP where ni,j(~c) ∈ ND, Ai(~c) ∈ AD,

and ~x ∈ SD.

To do this, we need to show how a next-state ~x′ can be determined given a current state

~x and Nature’s choice deterministic action ni,j(~c). Recalling the definition of successor-state

axioms (SSAs) from Chapter 4, Section 4.2.2, this is easy. For each relational fluent F (~y, s)3,

we have an SSA of the form F (~y, do(a, s)) ≡ ΦF (~y, a, s). Given a ground action a = ni,j(~c)

and the corresponding set of SSAs, we can determine the truth-value of all atoms represented

in ~x′ directly from these SSAs; for each atom in ~x′, we find its corresponding fluent — call

it F (~d, s) — then we evaluate ΦF (~d, ni,j(~c), s) on the pre-action state ~x to determine whether

that atom should be set to true or false. We denote the ~x′ that results from performing action

ni,j(~c) in ~x with the notation ~x′ = Progress(~x, ni,j(~c)).

Given stochastic action Ai(~c) we want to build P (~x′|~x,Ai(~c)) by summing the proba-

bility of reaching ~x′ from ~x given one of Nature’s choice deterministic outcomes ni,j(~c) of

Ai(~c) for each ~x′ and ~x . We implement this directly with the following calculation where

I[·] is an indicator function taking the value 1 when its argument is true and 0 otherwise and

pCaseD(nj(~c), A(~c)) 7−→ P (ni,j(~c)|Ai(~c), ~x):

P (~x′|~x,Ai(~c)) =

q
∑

j=1

I[~x′ = Progress(~x, ni,j(~c))] · P (ni,j(~c)|Ai(~c), ~x) (A.4)

Given the constructions above, we can now obtain an MDP instance from a particular

FOMDP under domain instantiation D:

Definition A.4.1 (Grounding a FOMDP w.r.t. D to obtain an MDP). A FOMDP and its

grounding w.r.t. a domain D to obtain an MDP are given by the following ground correspon-

dences where ~x ∈ SD (the function may actually only be over a subset of variables in ~x),

ni,j(~c, ~x) ∈ ND, and Ai(~c) ∈ AD (as defined above):

• Obtain R(~x) from rCaseD by grounding according to Definition A.3.1

• Obtain P (~x′|~x,Ai(~c)) from pCaseD(nj(~c), A(~c)) via Equation A.4.

• Use the discount γ from the FOMDP for the MDP.

3We ignore functional fluents in this presentation as in Chapter 4, but they could be incorporated if needed.

APPENDIX A. PROOF OF CORRECTNESS OF SYMBOLIC DYNAMIC PROGRAMMING 227

Note that given a FOMDP t-stage-to-go value function vCaset,D, we can likewise obtain a

ground representation V t(~x) using Definition A.3.1.

Now we return to the overall goal of our proof as illustrated in Figure A.1. Definition A.4.1

gives us the correspondence between the FOMDP and its ground MDP representation illus-

trated as the vertical 7−→ on the LHS of Figure A.1. But it also gives us a means for grounding

a FOMDP value function vCaset,D to obtain V t(~x) for any t ≥ 0 so that we can verify the verti-

cal 7−→ on the RHS of Figure A.1. Consequently, our task in the remaining sections is to show

that symbolic dynamic programming and dynamic programming algorithms (respectively, the

top and bottom horizontal 7−→ in Figure A.1) preserve the correspondence vCaset,D 7−→ V t(~x)

of the respective representations for all t ≥ 0.

A.5 Correspondence of FODTR and DTR

Given the correspondence between a FOMDP and an MDP w.r.t. domain D from Defini-

tion A.4.1, we now seek to show a correspondence betwen first-order decision-theoretic re-

gression (FODTR) and decision-theoretic regression (DTR) for a specific action instantiation

A(~x).

To recap, in Chapter 3, we introduced DTR as a crucial step in the dynamic programming

solution of MDPs that yields the Q-function:

Qt+1(~x,A(~c)) = DTR[V t(~x), A(~c)] (A.5)

= R(~x) + γ

[

∑

~x′

P (~x′|~x,Ai(~c))V
t(~x′)

]

Here we have substituted appropriate notation from Definition A.4.1 on the RHS of this equa-

tion.

In Chapter 4, we introduced FODTR as a crucial step in the dynamic programming solution

of FOMDPs that yields the first-order Q-function. We include it here in its original form with

situation terms in order to ensure that Regr is well-defined:

qCaset+1(s, A(~y)) = FODTR[vCaset(s), A(~y)] (A.6)

= rCase ⊕ casemax∃y.γ
[

q
⊕

j=1

{pCase(ni,j(~c), Ai(~y), s)⊗ Regr(vCaset(do(ni,j(~y), s)))}
]

APPENDIX A. PROOF OF CORRECTNESS OF SYMBOLIC DYNAMIC PROGRAMMING 228

For this proof, we are only interested in showing correspondence for a specific action parameter

substitution {~y/~c} so we can use the slightly simplified form of FODTR:

qCaset+1(s, A(~c)) = FODTR[vCaset(s), A(~c)] (A.7)

= rCase ⊕ γ
[

q
⊕

j=1

{pCase(ni,j(~c), Ai(~c), s)⊗ Regr(vCaset(do(ni,j(~c), s)))}
]

Note that in the following, we treat case statements as being state-oriented and thus drop situa-

tion terms for the most part. However, we must reintroduce situation terms to perform FODTR,

but we assume they are stripped off once the result has been computed.

To prove correspondence of FODTR and DTR, we need to prove the following theorem:

Theorem A.5.1. Given rCaseD, pCaseD(nj(~c), A(~c)), SSAs, and γ from a FOMDP, obtain

R(~x), P (~x′|~x,Ai(~c)), and γ for an MDP w.r.t. domainD from Definition A.4.1. Let qCaset+1,D(A(~c))

= FODTR[vCaset, A(~c)] as given in Equation A.7 for some vCaset. Obtain V t(~x) from

vCaset using Definition A.3.1. Let Qt+1(~x,A(~c)) = DTR[V t(~x), A(~c)] be obtained by first

grounding the FOMDP w.r.t. D as defined above and applying the ground computation as

given in Equation A.5. Then qCaset+1,D(A(~c)) 7−→ Qt+1(~x,A(~c)).

Proof. First we establish the one-to-one correspondence of the case statements in Equation A.7

and the propositional factors in Equation A.5 as assumed in Definition A.4.1. Specifically, it is

immediately obvious that rCaseD 7−→ R(~x) and vCaset,D 7−→ V t(~x) by Definition A.3.1 and

Lemma A.3.

Now we prove correspondence of the expectation portions of Equation A.7 and Equa-

tion A.5 (i.e., the content in the square braces [·] in both equations). To make this clear, let

us temporarily ignore the reward and the discount factor γ and define two new equations where

we have substituted the definition of P (~x′|~x,Ai(~c)) from Equation A.4 in the first equation:

Qt+1
−R,γ(~x,A(~c)) =

[

∑

~x′

q
∑

j=1

{

I[~x′ = Progress(~x, ni,j(~c))] · P (ni,j(~c)|Ai(~c), ~x)V
t(~x′)

}

]

(A.8)

qCaset+1
−R,γ(s, A(~c)) =

[

q
⊕

j=1

{

pCase(ni,j(~c), Ai(~c), s)⊗ Regr(vCaset(do(ni,j(~c), s)))
}

]

(A.9)

Our goal is to show qCaset+1
−R,γ(A(~c)) 7−→ Qt+1

−R,γ(~x,A(~c)). Specifically, let ρr be the set of

APPENDIX A. PROOF OF CORRECTNESS OF SYMBOLIC DYNAMIC PROGRAMMING 229

respective intepretations corresponding to some row r of Qt+1
−R,γ(~x,A(~c)) having state variable

assignment ~xr and taking value vr. And let 〈φ, vφ〉 be some partition in qCaset+1
−R,γ(A(~c)). If

∀ℑ ∈ ρr.ℑ |= φ then our goal is to show that vr = vφ.

We know by the definition of FODTR that for all Nature’s choice outcomes ni,j(~c) (j =

1 . . . q) of Ai(~c) that φ ≡ Regr [φ′
j(do(ni,j(~c), s))] for some value partition 〈φ′

j, tj〉 of vCaset.

Thus, given φ, we can directly express vφ =
∑q

j=1 tj · pCase(ni,j(~c), Ai(~c)).

Similarly for DTR, given ~xr and ni,j(~c)), let t~xr,ni,j(~c) denote the value of V t(~x′r) for the

unique ~x′r satisfying I[~x′r = Progress(~xr, ni,j(~c))] = 1. Then, we can directly express vr =
∑q

j=1 t~xr,ni,j(~c) · P (ni,j(~c)|Ai(~c), ~xr).

To prove vr = vφ, we need to show (1) pCase(ni,j(~c), Ai(~c)) 7−→ P (ni,j(~c)|Ai(~c), ~xr)

(already shown at beginning of proof) and (2) tj = t~xr,ni,j(~c). To prove (2), we need to show

that if ρr is a set of interpretations consistent with ~xr and ρr |= φ, then a set of interpretations ρ′r

consistent with ~x′r (obtained by progressing ~xr through ni,j(~c)) must satisfy ∀ℑ ∈ ρ′r.ℑ |= φ′
j .

We prove (2) by contradiction. Assume ρr is a set of interpretations consistent with ~xr and

ρr |= φ. Also assume there exists an ℑ ∈ ρ′r s.t. ℑ is consistent with ~x′r and ℑ 6|= φ′
j . Briefly

reintroducing situation terms, we derive φ(s) via the SSAs using φ(s) ≡Regr [φ′
j(do(ni,j(~c), s))]

and then drop the situation term s from φ(s) to obtain φ. We know that the models ρr of φmust

be consistent with ~xr. Then the ground atom truth assignments of ~xr must be consistent with

the predecessor-state conditions φ that make φ′
j true. The interpretations in ρ′ that are consis-

tent with ~x′r (by definition) must also satisfy ∀ℑ ∈ ρ′r.ℑ |= φ′
j — this is the crucial step and

follows from the fact that the truth assignments in ~xr had to satisfy all of the preconditions

that led to φ′
j and thus ~x′r = Progress(~xr, ni,j(~c)) (which simply uses a ground version of the

SSAs) can only produce truth assignments in ~x′r that are consistent with all interpretations of

φ′
j . But this result contradicts our assumption and thus we can conclude that for all ℑ ∈ ρ′r s.t.

ℑ is consistent with ~x′r that ℑ |= φ′
j

This proves correspondence of the expectations qCaset+1
−R,γ(A(~c)) 7−→ Qt+1

−R,γ(~x,A(~c)).

From this result and the two equations

Qt+1(~x,A(~c)) = R(~x) + γ ·Qt+1
−R,γ(~x,A(~c))

qCaset+1(A(~c)) = rCase ⊕ γ · qCaset+1
−R,γ(A(~c))

we can easily infer that qCaset+1,D(A(~c)) 7−→ Qt+1(~x,A(~c)) follows directly from the results

of our case operation correspondence Theorem A.3.4.

APPENDIX A. PROOF OF CORRECTNESS OF SYMBOLIC DYNAMIC PROGRAMMING 230

A.6 Correspondence of Symbolic and Ground Maximization

Having proved the correspondence qCaset+1,D(A(~c)) 7−→ Qt+1(~x,A(~c)) for a ground action

A(~c), we now proceed to tackle the maximization required to make the full Bellman backup

and obtain the correspondence pair vCaset+1,D 7−→ V t+1(~x).

As previously defined, we assume the FOMDP has p action templates A1(~y), . . . , Ap(~y).

To compute the Bellman backup in the ground case, we must take the maximum of Q(~x, a)

over all ground actions a ∈ AD, where the elements of AD can be partitioned according to

which of the p action templates they were derived from. Since maximization is commutative

and associative, we first tackle the maximization for all ground action instantations of a single

stochastic action template A(~y) = Ai(~y) (1 ≤ i ≤ p). Recalling that αi is the arity of Ai, we

enumerate all possible ground instantiations ~y = ~c as ~c ∈ Dαi where Dαi = {~c1, . . . ,~c|~y|}.

Theorem A.6.1. Define the FOMDP, MDP w.r.t. domain D, corresponding value functions

vCaset,D and V t(~x), and Q-functions qCaset+1,D(A(~c)) andQt+1(~x,A(~c)) as in Theorem A.5.1.

Let qCaset+1,D(A(~y)) be the result of computing Equation A.7 for vCaset,D and action tem-

plate A(~y) w.r.t. a given FOMDP. Then the following correspondence holds:

casemax ∃~y qCaset+1,D(A(~y)) 7−→ max
a∈{A(~c1),...,A(~c|A(~y)|)}

Qt+1(~x, a)

Proof. We can make the following equivalence transformations to rewrite the LHS until it

directly corresponds to the RHS (we justify the steps below):

casemax ∃~y.
φ1(~y) : t1

: : :

φn(~y) : tn

= casemax

∃~y. φ1(~y) : t1

: : :

∃~y. φn(~y) : tn

(A.10)

= casemax

φ1(~c1) ∨ . . . ∨ φ1(~c|A(~y)|) : t1

: : :

φn(~c1) ∨ . . . ∨ φn(~c|A(~y)|) : tn

(A.11)

APPENDIX A. PROOF OF CORRECTNESS OF SYMBOLIC DYNAMIC PROGRAMMING 231

= casemax

φ1(~c1) : t1

: : :

φ1(~c|A(~y)|) : t1

: : :

φn(~c1) : tn

: : :

φn(~c|A(~y)|) : tn

(A.12)

= max









φ1(~c1) : t1

: : :

φn(~c1) : tn

, . . . ,

φ1(~c|A(~y)|) : t1

: : :

φn(~c|A(~y)|) : tn









(A.13)

= max
a∈{A(~c1),...,A(~c|A(~y)|)}

qCaset+1,D(a) (A.14)

7−→ max
a∈{A(~c1),...,A(~c|A(~y)|)}

Qt+1(~x, a) (A.15)

The LHS of Equation A.10 is just the LHS of the theorem. The first equivalence in Equa-

tion A.10 follows from the properties of the ∃ quantifier and the disjunction of case elements

within a case statement. The second equivalence in Equation A.11 follows from the application

of domain closure assumptions. The third equivalence in Equation A.12 is a rewrite of the case

elements since they are already disjunctively defined and we can distribute the conjoined t = ti

terms for each case element into the disjunction.

The rewrite between Eqs. A.12 and A.13 follows from the lemma immediately following

this proof (note that we have switched from unary casemax to n-ary max). The transforma-

tion from Equation A.13 to Equation A.14 simply involves a notational substitution and the

final step follows from the correspondence of qCaset+1,D(a) 7−→ Qt+1(~x, a) proved in Theo-

rem A.5.1 for a ground action a and the correspondence of the case (max) operation proved in

Theorem A.3.4. Thus, the theorem follows.

Lemma A.6.2. The transformation between Eqs. A.12 and A.13 is an equivalence-preserving

transform.

Proof. The rewrite between Eqs. A.12 and A.13 follows from the semantics of the unary case

APPENDIX A. PROOF OF CORRECTNESS OF SYMBOLIC DYNAMIC PROGRAMMING 232

maximization operator and n-ary maximization operators discussed in Chapter 4. Assume for

an interpretation ℑ that ℑ |= φi where 〈φi, ti〉 is an element of case statement in Equation A.12

and for all other case elements 〈φj, tj〉 either tj ≤ ti or ℑ 2 φj .

Let 〈φm, tm〉 be a case element in the resulting cross-product used to compute the n-ary

maximization of Equation A.13. To show the equivalence of the semantics of this maximization

with the previous from Equation A.12, we need to show that if ℑ |= φm then tm = ti. We

assume the condition and break this into two cases:

(1) φm was formed from a partition conjoined with 〈φi, ti〉, or

(2) φm was not formed from a partition conjoined with 〈φi, ti〉.

For (1), we know that if φm is consistent then all other 〈φj, tj〉 must have tj ≤ ti, so the

max yields tm = ti. For (2), we can show that ℑ |= ¬φi due to the mutual exclusivity of all

partitions in the n-ary cross-product. Since this violates our previous assumption that ℑ |= φi,

we know this case is vacuous and (1) must hold. Thus, the equivalence of Eqs. A.12 and A.13

follows.

Now we complete the (symbolic) dynamic programming step. For the ground case, we

specify the completion of the dynamic programming step as the following maximization (where

a ∈ AD
i (~y) denotes that a ranges over all ground instantiations A(~c) of action template Ai(~y)

given domain D):

V t+1(~x) = max
i=1...p

max
a∈AD

i (~y)
Qt+1(~x, a) (A.16)

And for the FOMDP representation, we break the symbolic dynamic programming step into

the following two step maximization given by the following:

vCaset+1 = max
i=1...p

casemax∃~y. qCaset+1(Ai(~y)) (A.17)

Now we prove the final theorem that guarantees correspondence of dynamic programming and

symbolic dynamic programming for one step:

Theorem A.6.3. Define the FOMDP, MDP w.r.t. domain D, corresponding value functions

vCaset,D and V t(~x), and Q-functions qCaset+1,D(A(~y)) andQt+1(~x,A(~c)) as in Theorem A.6.1.

Let vCaset+1,D be obtained from computing Equation A.16 and let V t+1(~x) be computed from

Equation A.17. Then vCaset+1,D 7−→ V t+1(~x).

APPENDIX A. PROOF OF CORRECTNESS OF SYMBOLIC DYNAMIC PROGRAMMING 233

Proof. Based on the assumptions and Theorem A.6.1, we know

casemax∃~y. qCaset+1(Ai(~y)) 7−→ max
a∈AD

i (~y)
Qt+1(~x, a).

The remainder of the theorem follows from the correspondence of the max operands from

Lemma A.3 and operator applications, for which correspondence has already been proved in

Theorem A.3.4.

A.7 Correspondence of Symbolic and Ground Value Itera-

tion

Our previous theorems lead us to the following obvious result:

Theorem A.7.1. Given rCaseD, pCaseD(nj(~c), A(~c)), and γ from a FOMDP, obtain R(~x),

P (~x′|~x,Ai(~c)), and γ for an MDP w.r.t. domainD from Definition A.4.1. Let vCaset,D (for t >

0) be obtained by applying symbolic dynamic programming for t steps. Let V t(~x) (for t > 0)

be obtained by applying ground dynamic programming for t steps. Then vCaset,D 7−→ V t(~x)

for all t ≥ 0.

Proof. The proof is by induction. As defined respectively in Chapters 3 and 4 V 0(~x) = R(~x)

and vCase0,D = rCaseD. By Lemma A.3, we know that vCase0,D 7−→ V 0(~x) for any finite

domain D. This provides the base case for t = 0. For the inductive step, we have shown that

given vCaset,D 7−→ V t(~x), we can prove vCaset+1,D 7−→ V t+1 after applying one step of

(symbolic) dynamic programming to the respective value representations via Theorem A.6.3.

This proves the inductive case for all t > 0. Thus the theorem follows.

Appendix B

Remaining Proofs

B.1 Proofs from Chapter 3

Lemma 3.4.2. Fix a variable ordering over x1, . . . , xn. For any function g(x1, . . . , xn) map-

ping B
n −→ R, there exists a unique generalized AADD G over variable domain x1, . . . , xn

satisfying the given variable ordering such that for all ρ ∈ B
n we have g(ρ) = V al(G, ρ).

Proof. We prove this lemma by induction on n. For n = 0, we have a function representing a

constant C. The constraints imply that G = C + 0 · 0 is the only legal representation of this

function.

Now, for the inductive case, we assume that we have n variables in our function f(x1, . . . , xn)

with variable x1 first in the ordering. We inductively assume that the lemma holds for the rep-

resentation of the functions fh(x1 = true, x2, . . . , xn) and fl(x1 = false, x2, . . . , xn) over

n − 1 variables so that both of these functions are represented by unique generalized AADDs

Gh = ch + bhFh and Gl = cl + blFl. If Gh = Gl, then this case is satisfied by our inductive

assumption since f(x1, . . . , xn) technically ranges over n − 1 variables. Otherwise Gh 6= Gl,

so the only way to represent f(x1, . . . , xn) in the grammar is to use an if node branching on x1.

Constraint (1) implies that we can have at most one if node above Fh and Fl branching on vari-

able x1. So we build F = if (F var) then c′h + b′hFh else c′l + b′lFl and G = c+ bF to represent

f(x1, . . . , xn). Let rmin = min(ch, cl), rmax = max(ch + bh, cl + bl), and rrange = rmax− rmin;

these respectively denote the minimum, maximum, and value span of the child functions Gl

and Gh, which allow us to normalize the newly constructed F node to have a range of [0, 1],

while at the same time providing us with the offset c and multiplier b for the newly constructed

G node.

234

APPENDIX B. REMAINING PROOFS 235

Now, we must solve for c, b, c′h, b
′
h, c

′
l, b

′
l that satisfy constraints (2) and (3). This gives us

the following six equations that must be simultaneously satisfied:

c = rmin

b = rmin + rrange

ch = b · c′h + c

bh = b · b′h
cl = b · c′l + c

bl = b · b′l

In matrix form, this linear system is non-singular when b > 0, which follows from rmin +

rrange > 0 as implied by constraint (4). Thus, the matrix is full rank and the linear system has

one unique solution. By simple Gaussian elimination, we can derive this unique solution as the

following: c = rmin, b = rmin + rrange, c′h = ch−rmin

rrange
, c′l = cl−rmin

rrange
, b′h = bh

rrange
, b′l = bl

rrange
. This

shows us that there is only one unique construction of G to represent f(x1, . . . , xn). Thus, the

inductive case is satisfied and the statement of the lemma follows.

Theorem 3.4.3. For all functions F1 : B
n −→ R and F2 : B

m −→ R (n ≥ 0 and m ≥ 0),

the time and space performance of Reduce(F1) and Apply(F1, F2, op) for AADDs (operands

and results represented as canonical AADDs) is within a multiplicative constant of Reduce(F1)

and Apply(F1, F2, op) for ADDs (operands and results represented as canonical ADDs) in

the worst case assuming any fixed variable ordering.

Proof. The ADD Reduce and Apply algorithms can be seen as analogs of the corresponding

AADD algorithms without the overhead of progagating the affine transforms of edge weights

during recursive calls and normalizing them when returning. However, a comparison of the

ADD/AADD Reduce and Apply algorithms shows that there are only a constant number of

additional constant time operations for manipulating edge weights in each AADD algorithm

in comparison to the corresponding ADD algorithm. Thus each call to the AADD algorithm

incurs an additional constant time overhead over the corresponding call to the ADD algo-

rithm. We denote the respective constant time to evaluate one ADD Reduce or Apply call to

be TReduce
ADD and TApply

ADD , respectively. Likewise, we denote the respective time to evaluate one

AADD Reduce or Apply call to be TReduce
AADD = TReduce

ADD +CReduce
AADD and TApply

AADD = TApply
ADD +CApply

AADD

where C represents the additional constant time overhead of the call for an AADD in compar-

APPENDIX B. REMAINING PROOFS 236

ison to the ADD.

Now, we only need to show that the AADD makes equal or fewer calls to Reduce and

Apply than the ADD version. First we note that under the same variable ordering, an ADD is

equivalent to a non-canonical AADD with fixed edge weights c = 0, b = 1. Thus, if we did

not normalize AADD nodes in Reduce and Apply , then there would be a direct 1-1 mapping

between each Reduce and Apply call for ADDs and the corresponding call for AADDs. Since

normalization can only increase the number of Reduce and Apply cache hits and reduce the

number of cached nodes, it is clear that an AADD must generate equal or fewer Reduce and

Apply calls and have equal or fewer cached nodes than the corresponding ADD. This allows us

to conclude that in the worst case, the AADD generates as many Reduce and Apply calls and

cache hits as the ADD. Assuming n calls are made by both the ADD and AADD variants of

Reduce and Apply , then the ADD requires total time nTReduce
ADD and nTApply

ADD for each respective

algorithm whereas the AADD requires time n(TReduce
ADD +CReduce

AADD) and n(TApply
ADD +CApply

AADD) for

each respective algorithm. This verifies that the AADD operations are within a multiplicative

constant of the time required by the corresponding ADD operations (specifically,
TReduce
ADD +CReduce

AADD

TReduce
ADD

for Reduce and
TApply
ADD +CApply

AADD

TApply
ADD

for Apply).

An analogous proof for space can be obtained by substituting “space” for “time” above.

Theorem 3.4.4. There exist functions F1 and F2 and an operator op such that the running

time and space performance of Apply(F1, F2, op) for AADDs can be linear in the number of

variables when the corresponding ADD operations are exponential in the number of variables.

Proof. Two functions and Apply operation examples where this holds true are
∑n

i=1 2ixi ⊕
∑n

i=1 2ixi and
∏n

i=1 γ
2ixi ⊗∏n

i=1 γ
2ixi . (Examples of these operands as ADDs and AADDs

were given in Figures 3.7(c) and 3.8.) Because these computations result in a number of ter-

minal values exponential in n, the ADD operations must require time and space exponential in

n. On the other hand, it is known that the operands can be represented in linear-sized AADDs.

Due to this structure, the Apply algorithm will begin by recursing on the high branch of both

operands to depth n. Then, at each step as it returns and recurses down the low branch of

decision test xi, the respective additive difference of 2i and multiplicative coefficient of γ2i

in

the corresponding high-branch and low-branch Apply operation calls will be normalized out

for the respective operations of⊕ and⊗ due to the canonical caching scheme in Table 3.2, thus

yielding cache hits for all low branches. For each operation on the specified pair of functions,

this results in n cached nodes and 2n Apply calls for the AADD operations.

APPENDIX B. REMAINING PROOFS 237

B.2 Proofs from Chapter 5

Theorem 5.2.1. Let V (s) be the approximated value function obtained by the weights ~w(i)

of the final LP solution of Equation 5.21 for FOAPI applied to a given FOMDP where FOAPI

has converged. Let β(i) be the objective value of this final LP solution. Then the error bounds

on Vπ̃(s) (the value function obtained by acting according to the greedy policy π̃ w.r.t. V (s))

derived from plugging β(i) in for β in Equation 2.19 hold for all possible finite ground domain

instantiations of this FOMDP.

Proof. At convergence, we know that ~w(i) = ~w(i−1). Then in summary, we note that the con-

straints in the FOAPI LP provide a bound on the Bellman error of the value function corre-

sponding to ~w(i), which we can then use to derive a bound on the error of acting according to a

greedy policy w.r.t. this value function as described for MDPs in Section 2.5.2 of Chapter 2.

Define the SDP [·] operator to take a value function V (s) and compute its one-step symbolic

dynamic programming backup under the FOMDP dynamics as defined in Section 4.4. Then

we break the proof into two parts:

1. At convergence, the constraints can be transformed with the following series of rewrites

explained below:

β(i) ≥
∣

∣

∣

∣

∣

R(s)⊕ ∃~x∗
(

π
(i)
A(~x∗)(s)⊕BA(~x∗)

[

k
⊕

j=1

w
(i)
j · bj(s)

])

⊖
k
⊕

j=1

w
(i)
j · bj(s)

∣

∣

∣

∣

∣

; ∀A, s

≥
∣

∣

∣
R(s)⊕ ∃~x∗

(

π
(i)
A(~x∗)(s)[V (s)]⊕BA(~x∗)[V (s)]

)

⊖ V (s)
∣

∣

∣
; ∀A, s (B.1)

≥ |SDP [V (s)]⊖ V (s) |; ∀s (B.2)

To obtain Equation B.1, we simply substituted V (s) in for its linear-value representation

as defined in the statement of the theorem. To make it explicit that the policy case

statements π
(i)
A(~x∗)(s) were derived from V (s), we make this explicit using the notation

π
(i)
A(~x∗)(s)[V (s)]. To obtain Equation B.2 we apply Lemma B.2.1 below.

2. By Theorem A.7.1 (that proves the correspondence between symbolic dynamic program-

ming and ground dynamic programming) and Theorem A.3.4 (that proves the correspon-

dence of the case operator ⊖ for the first-order and grounded representations of a case

statement) both from Appendix A, we know that the constraints in Equation B.2 hold

for all ground domain instantiations. Since these ground constraints imply a Bellman

error β(i) for all ground domain instantiations of the approximated value function V (s),

APPENDIX B. REMAINING PROOFS 238

the error bounds on Vπ̃(s) (the value function obtained by acting according to the greedy

policy π̃ w.r.t. V (s)) derived from plugging β(i) in for β in Equation 2.19 hold for all

ground domain instantiations.

The final result of step 2 proves the theorem.

Lemma B.2.1. Under the assumptions and notation of Theorem 5.2.1, if the constraints

β(i) ≥
∣

∣

∣
R(s)⊕ ∃~x∗

(

π
(i)
A(~x∗)(s)[V (s)]⊕BA(~x∗)[V (s)]

)

⊖ V (s)
∣

∣

∣
; ∀A, s

hold then the constraints β(i) ≥ |SDP [V (s)]⊖ V (s) |; ∀s must also hold.

Proof. We prove this through the following derivation, which we justify below:

β(i) ≥
∣

∣

∣R(s)⊕ ∃~x∗
(

π
(i)
A(~x∗)(s)[V (s)]⊕BA(~x∗)[V (s)]

)

⊖ V (s)
∣

∣

∣ ; ∀A, s (B.3)

≥
∣

∣

∣

∣

∣

R(s)⊕
⋃

A

[

∃~x∗
(

π
(i)
A(~x∗)(s)[V (s)]⊕BA(~x∗)[V (s)]

)]

⊖ V (s)

∣

∣

∣

∣

∣

; ∀s (B.4)

≥

∣

∣

∣

∣

∣

∣

∣

∣

R(s)⊕
⋃

A









∃~x∗









ψA,1 ∧ φA,1(~x
∗, s) : 0

: ∧ : : :

ψA,n ∧ φA,n(~x∗, s) : 0

⊕
φA,1(~x

∗, s) : tA,1

: : :

φA,n(~x∗, s) : tA,n

















⊖ V (s)

∣

∣

∣

∣

∣

∣

∣

∣

; ∀s

(B.5)

≥

∣

∣

∣

∣

∣

∣

∣

∣

R(s)⊕
⋃

A

ψA,1 ∧ ∃~x∗φA,1(~x
∗, s) : tA,1

: ∧ : : :

ψA,n ∧ ∃~x∗φA,n(~x∗, s) : tA,n

⊖ V (s)

∣

∣

∣

∣

∣

∣

∣

∣

; ∀s (B.6)

≥ |R(s)⊕ π(s)[V (s)]⊖ V (s)| ; ∀s (B.7)

≥
∣

∣

∣

∣

∣

R(s)⊕ casemax

(

⋃

A

BA[V (s)]

)

⊖ V (s)

∣

∣

∣

∣

∣

; ∀s (B.8)

≥ |SDP [V (s)]⊖ V (s) |; ∀s (B.9)

We assume that the constraints in Equation B.3 hold and proceed to rewrite them in Equa-

tion B.4 where we have exploited the disjointness of the policy π
(i)
A(~x∗) for each A; that is, for

any situation s, if a partition of π
(i)
A(~x∗) holds true then no partition of π

(i)
B(~x∗) for B 6= A can also

hold true. This guarantees equivalence to Equation B.3 since the constraint is “active” for one

A in each s and thus Equation B.4 self-selects which A constraint should apply for each s.

The transform to Equation B.5 is purely notational where we have written out the case

APPENDIX B. REMAINING PROOFS 239

statements for BA(~x∗)[V (s)] and π
(i)
A(~x∗). Note that the case statements share the formula pre-

fixed with φ since the policy case statement π
(i)
A(~x∗)(s)[V (s)] for action A was derived from

BA(~x∗)[V (s)] (c.f., Section 4.4.4). The formulae prefixed with ψ represent the additional guard

formulae added to each policy partition to prevent it from applying when higher valued pol-

icy partitions were possible. Then, performing the explicit “cross-sum” ⊕ (and removing all

inconsistent partitions) and distributing the ∃~x∗ into the result, we obtain Equation B.6.

We recognize that the case statements within the ∪ in Equation B.6 are just the action-

specific policy case statements πA(s)[V (s)], which were derived in Section 5.2.2 of Chapter 5

by partitioning the policy π(s)[V (s)] into case statements for each action. Thus we apply the

∪ to reverse this derivation and obtain Equation B.7. Next we substitute π(s)[V (s)] with its

derivation from the RHS of Equation 4.28 (c.f. Section 4.4.4 of Chapter 4) to obtain Equa-

tion B.8. Noting that the first two terms of Equation B.8 are just the definition of SDP [V (s)],

we obtain the final result in Equation B.9 that proves the lemma.

B.3 Proofs from Chapter 6

Proposition 6.1.1. P (a|A(~x), s) defines a proper probability distribution over a, i.e.,

∑

a∈NA(~x)

P (a|A(~x), s) = ⊤ : 1 . (B.10)

Proof. We can effectively sum over all a ∈ NA(~x) by generating a summation over all possible

instantiations of a according to its definition in Equation 6.14. Doing this and substituting the

definition of P (a|A(~x), s) from Equation 6.16, we obtain the following:

∑

a∈NA(~x)

P (a|A(~x), s) =
⊕

n1(~x,~̇y1)∈N1(~x,~̇y1),...,np(~x,~̇y|~y|)∈Np(~x,~̇y|~y|),...,n1(~x,~̇y1)∈N1(~x,~̇y1),...,np(~x,~̇y|~y|)∈Np(~x,~̇y|~y|)




∏

~y∈{~̇y1,...,~̇y|~y|}

p
∏

i=1

P (ni(~x, ~y)|Ai(~x, ~y), s)





Now, we can exploit the independence of the random variables ni(~x, ~̇y) inherent in this factored

representation of the joint probability distribution to marginalize over each ni(~x, ~̇y) indepen-

dently. Here we push the first marginalization into its only relevant factor, where the result

APPENDIX B. REMAINING PROOFS 240

follows from the properties of P (ni(~x, ~̇y)|Ai(~x, ~̇y), s) as defined in Equation 6.13:

∑

a∈NA(~x)

P (a|A(~x), s) =
⊕

n2(~x,~̇y1)∈N2(~x,~̇y1),...,np(~x,~̇y|~y|)∈Np(~x,~̇y|~y|),...,n1(~x,~̇y1)∈N1(~x,~̇y1),...,np(~x,~̇y|~y|)∈Np(~x,~̇y|~y|)








∏

~y∈{~̇y1,...,~̇y|~y|}

p
∏

if ~y=~̇y1 then i=1 else i=2

P (ni(~x, ~y)|Ai(~x, ~y), s)









⊕

n1(~x,~̇y1)∈N1(~x,~̇y1)

P (n1(~x, ~̇y1)|A1(~x, ~̇y1), s)









=
⊕

n2(~x,~̇y1)∈N2(~x,~̇y1),...,np(~x,~̇y|~y|)∈Np(~x,~̇y|~y|),...,n1(~x,~̇y1)∈N1(~x,~̇y1),...,np(~x,~̇y|~y|)∈Np(~x,~̇y|~y|)








∏

~y∈{~̇y1,...,~̇y|~y|}

p
∏

if ~y=~̇y1 then i=1 else i=2

P (ni(~x, ~y)|Ai(~x, ~y), s)



 ⊤ : 1





Repeating this marginalization process indefinitely until none remain, we obtain the final result:

∑

a∈NA(~x)

P (a|A(~x), s) = ⊤ : 1

This proves the proposition.

Proposition 6.1.4. Let Ai(~x, ~̇yj) and Ah(~x, ~̇yk) be two distinct aspects of stochastic action

A(~x) (i.e., either i 6= h or ~̇yj 6= ~̇yk) and recall that Ni(~x, ~̇yj) and Nh(~x, ~̇yk) are the respective

sets of Nature’s deterministic sub-action outcomes for each of these aspects. Then for all A(~x)

and i 6= h and ~̇yj 6= ~̇yk where ni(~x, ~̇yj) ∈ Ni(~x, ~̇yj) and nh(~x, ~̇yk) ∈ Nh(~x, ~̇yk), if the following

condition holds:

∀~x. [P (ni(~x, ~̇yj)|A(~x), s) > 0 ∧ P (nh(~x, ~̇yk)|A(~x), s) > 0

⊃ (Eni(~x,~̇yj)
∧ Enh(~x,~̇yk)) is consistent]

then Assumption 6.1.3 must hold for the given factored FOMDP.

Proof. By definition of inconsistency and the conjunctive effect representation, we note that

the effect set Ea =
⋃

~̇y, i=1...pEni(~x,~̇y) for a joint action a is inconsistent iff
∧

~̇y, i=1...pEni(~x,~̇y)

contains at least two respective conjoined fluents of the form F (~x, s) and ¬F (~x, s). Since

we previously assumed that a single Eni(~x,~̇y) is consistent, these two fluents must have been

APPENDIX B. REMAINING PROOFS 241

contributed by two sub-action effect sets Eni(~x,~̇yj)
and Enh(~x,~̇yk) where either i 6= h or ~̇yj 6= ~̇yk.

In addition, since P (a|A(~x), s) > 0, it must trivially hold that

P (ni(~x, ~̇yj)|A(~x), s) > 0 ∧ P (nh(~x, ~̇yk)|A(~x), s) > 0

since both of these are multiplicative factors of P (a|A(~x), s) by definition in Equation 6.16.

Since every inconsistent joint action a with P (a|A(~x), s) > 0 has at least two constituent

sub-actions ni(~x, ~̇yj) and nh(~x, ~̇yk) with inconsistent effects and P (ni(~x, ~̇yj)|A(~x), s) > 0 and

P (nh(~x, ~̇yk)|A(~x), s) > 0, this proves Proposition 6.1.4.

Proposition 6.2.2. (Removal of Irrelevant Aspects)

Irr[φ(s), Ai(~x, ~y)] ⊃
{

∀ ni(~x, ~y) ∈ Ni(~x, ~y), ∀a ∈ NA(~x), ∀c. (a = ni(~x, ~y) ◦ c) ⊃
Regr [φ(s), ni(~x, ~y) ◦ c] ≡ Regr [φ(s), c]

}

Proof. From the definition of Irr[φ(s), Ai(~x, ~y)] we know that

∀ni(~x, ~y) ∈ Ni(~x, ~y). Regr(φ(do(ni(~x, ~y), s))) ≡ φ(s).

By this result and the construction of SSAs in terms of factored effect axioms derived from

Eni(~x,~y) (c.f., Section 6.1.3 and Equation 6.21), we can conclude that all disjoined elements of

the SSAs relevant to fluents of φ(·) contributed by Eni(~x,~y) simplified to ⊥ and were removed

duringRegr[φ(do(ni(~x, ~y)))], thus yielding φ(s). Since the effects considered in the regression

of Regr(φ(do(c◦ni(~x, ~y), s))) are compiled from Ec∪Eni(~x,~y) and we know that the disjoined

elements of the SSAs relevant to fluents of φ(·) contributed byEni(~x,~y) simplify to⊥, the effects

contributed by Eni(~x,~y) can be ignored during this regression. Then the only effects relevant to

the regression on the LHS and RHS of the final line of the proposition are Ec and thus the

regressions are equivalent.

Bibliography

[Andre and Russell, 2001] David Andre and Stuart Russell. Programmable reinforcement

learning agents. In In Advances in Neural Information Processing Systems, volume 13,

2001.

[Andre and Russell, 2002] David Andre and Stuart Russell. State abstraction for pro-

grammable reinforcement learning agents. In In Proc. AAAI-02, Edmonton, Alberta, 2002.

AAAI Press.

[Bacchus and Grove, 1995] Fahiem Bacchus and Adam Grove. Graphical models for pref-

erence and utility. In Uncertainty in Artificial Intelligence. Proceedings of the Eleventh

Conference (1995), pages 3–10, San Francisco, 1995. Morgan Kaufmann Publishers.

[Bacchus and Kabanza, 2000] Fahiem Bacchus and Froduald Kabanza. Using temporal logics

to express search control knowledge for planning. Artificial Intelligence, 116(1-2):123–191,

2000.

[Bacchus et al., 1995] Fahiem Bacchus, Joseph Y. Halpern, and Hector J. Levesque. Reason-

ing about noisy sensors in the situation calculus. In IJCAI-95, pages 1933–1940, Montreal,

1995.

[Bahar et al., 1993] R. Iris Bahar, Erica Frohm, Charles Gaona, Gary Hachtel, Enrico Macii,

Abelardo Pardo, and Fabio Somenzi. Algebraic Decision Diagrams and their applications.

In IEEE /ACM International Conference on CAD, 1993.

[Baier et al., 2007] J. Baier, F. Bacchus, and S. McIlraith. A heuristic search approach to plan-

ning with temporally extended preferences. In Proceedings of the Twentieth International

Joint Conference on Artificial Intelligence (IJCAI-07), pages 1808–1815, Hyderabad, India,

January 2007.

242

BIBLIOGRAPHY 243

[Barto and Sutton, 1998] Andrew Barto and Richard Sutton. Reinforcement Learning. MIT

Press, 1998.

[Barto et al., 1993] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning to

act using real-time dynamic programming. Technical Report UM-CS-1993-002, U. Mass.

Amherst, , 1993.

[Bellman, 1957] Richard E. Bellman. Dynamic Programming. Princeton University Press,

Princeton, NJ, 1957.

[Bertsekas and Tsitsiklis, 1996] Dmitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic

Programming. Athena Scientific, Belmont, MA, 1996.

[Bertsekas, 1987] Dmitri P. Bertsekas. Dynamic Programming. Prentice Hall, Englewood

Cliffs, NJ, 1987.

[Bienvenu et al., 2006] M. Bienvenu, C. Fritz, and S. McIlraith. Planning with qualitative

temporal preferences. In Proceedings of the 10th International Conference on Principles of

Knowledge Representation and Reasoning (KR06), pages 134–144, Lake District, UK, June

2006.

[Blum and Furst, 1995] Avrim L. Blum and Merrick L. Furst. Fast planning through graph

analysis. In IJCAI 95, pages 1636–1642, Montreal, 1995.

[Bonet and Geffner, 2004] Blai Bonet and Hector Geffner. mGPT: A probabilistic planner

based on heuristic search. In Online Proceedings for The Probablistic Planning Track of

IPC-04: http://www.cs.rutgers.edu/˜mlittman/topics/ipc04-pt/proceedings/, 2004.

[Boutilier et al., 1995a] Craig Boutilier, Thomas Dean, and Steve Hanks. Planning under un-

certainty: Structural assumptions and computational leverage. In Proceedings of the Third

European Workshop on Planning, Assisi, Italy, 1995.

[Boutilier et al., 1995b] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Exploiting

structure in policy construction. In IJCAI 95, San Francisco, 1995.

[Boutilier et al., 1996] Craig Boutilier, Nir Friedman, Moisés Goldszmidt, and Daphne Koller.

Context-specific independence in Bayesian networks. In UAI-96, pages 115–123, Portland,

OR, 1996.

BIBLIOGRAPHY 244

[Boutilier et al., 1997] Craig Boutilier, Ronen I. Brafman, and Christopher Geib. Prioritized

goal decomposition of Markov decision processes: Toward a synthesis of classical and de-

cision theoretic planning. In IJCAI-97, pages 1156–1162, Nagoya, 1997.

[Boutilier et al., 1999] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic

planning: Structural assumptions and computational leverage. JAIR, 11:1–94, 1999.

[Boutilier et al., 2000] Craig Boutilier, Ray Reiter, Mikhail Soutchanski, and Sebastian Thrun.

Decision-theoretic, high-level agent programming in the situation calculus. In AAAI-00,

pages 355–362, Austin, TX, 2000.

[Boutilier et al., 2001] Craig Boutilier, Ray Reiter, and Bob Price. Symbolic dynamic pro-

gramming for first-order MDPs. In IJCAI-01, pages 690–697, Seattle, 2001.

[Brachman and Levesque, 2004] Ronald Brachman and Hector Levesque. Knowledge Repre-

sentation and Reasoning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2004.

[Brafman and Chernyavsky, 2005] Ronen I. Brafman and Yuri Chernyavsky. Planning with

goal preferences and constraints. In International Conference on Automated Planning and

Scheduling, 2005.

[Bryant and Chen, 1995] Randal E. Bryant and Yirng-An Chen. Verification of arithmetic

circuits with binary moment diagrams. In Design Automation Conference, pages 535–541,

1995.

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, C-35(8), August 1986.

[Buffet and Aberdeen, 2006] Olivier Buffet and Douglas Aberdeen. The factored policy gra-

dient planner (ipc-06 version). In Proceedings of the Fifth International Planning Competi-

tion, 2006.

[Chen and Bryant, 1997] Yirng-An Chen and Randal E. Bryant. PHDD: an efficient graph

representation for floating point circuit verification. In ICCAD ’97: Proceedings of the 1997

IEEE/ACM international conference on Computer-aided design, pages 2–7, Washington,

DC, 1997.

BIBLIOGRAPHY 245

[Cimatti and Roveri, 1999] Alessandro Cimatti and Marco Roveri. Conformant planning via

model checking. In ECP, pages 21–34, 1999.

[de Farias and Van Roy, 2003] DP de Farias and Ben Van Roy. The linear programming ap-

proach to approximate dynamic programming. Operations Research, 51:6:850–865, 2003.

[de Salvo Braz et al., 2005] Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. Lifted first-

order probabilistic inference. In IJCAI-05, Edinburgh, UK, 2005.

[de Salvo Braz et al., 2006] Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. MPE and par-

tial inversion in lifted probabilistic variable elimination. In AAAI-06, Boston, USA, 2006.

[Dean and Kanazawa, 1989] Thomas Dean and Keiji Kanazawa. A model for reasoning about

persistence and causation. Computational Intelligence, 5(3):142–150, 1989.

[Dearden and Boutilier, 1997] Richard Dearden and Craig Boutilier. Abstraction and approx-

imate decision-theoretic planning. Artificial Intelligence, 89(12):219–283, 1997.

[Dechter, 1999] Rina Dechter. Bucket elimination: A unifying framework for reasoning. In

Artificial Intelligence, volume 113, pages 41–85, 1999.

[Drechsler and Sieling, 2001] R. Drechsler and D. Sieling. Binary decision diagrams in theory

and practice. In Software Tools for Technology Transfer, volume 3, 2001.

[Fern et al., 2003] Alan Fern, SungWook Yoon, and Robert Givan. Approximate policy itera-

tion with a policy language bias. In NIPS-2003, Vancouver, 2003.

[Ferrein et al., 2003] Alexander Ferrein, Christian Fritz, and Gerhard Lakemeyer. Extending

DTGolog with Options. In IJCAI-2003, Acupulco, Mexico, 2003.

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to

the application of theorem proving to problem solving. AI Journal, 2:189–208, 1971.

[Fox and Long, 2001] M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing

temporal planning domains., 2001.

[Gardiol and Kaelbling, 2004] Natalia H. Gardiol and Leslie Pack Kaelbling. Envelope-based

planning in relational MDPs. In Advances in Neural Information Processing Systems 16

(NIPS-03), Vancouver, CA, 2004.

BIBLIOGRAPHY 246

[Gerevini et al., 2006] Alfonso Gerevini, Blai Bonet, and Bob Givan, editors. On-

line Proceedings for The Fifth International Planning Competition IPC-05:

http://www.ldc.usb.ve/ bonet/ipc5/docs/ipc-2006-booklet.pdf.gz, Lake District, UK,

2006.

[Gretton and Thiebaux, 2004] Charles Gretton and Sylvie Thiebaux. Exploiting first-order re-

gression in inductive policy selection. In UAI-04, pages 217–225, Banff, Canada, 2004.

[Gretton et al., 2004] Charles Gretton, David Price, and Sylvie Thiebaux. NMRDPP:

Decision-theoretic planning with control knowledge. In Online Proceedings for The

Probablistic Planning Track of IPC-04: http://www.cs.rutgers.edu/˜mlittman/topics/ipc04-

pt/proceedings/, 2004.

[Guestrin et al., 2001] Carlos Guestrin, Daphne Koller, and Ronald Parr. Max-norm projec-

tions for factored MDPs. In IJCAI-01, pages 673–680, Seattle, 2001.

[Guestrin et al., 2002] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venktara-

man. Efficient solution methods for factored MDPs. JAIR, 19:399–468, 2002.

[Guestrin et al., 2003] Carlos Guestrin, Daphne Koller, Chris Gearhart, and Neal Kanodia.

Generalizing plans to new environments in relational MDPs. In IJCAI-03, Acapulco, Mex-

ico, 2003.

[Guestrin et al., 2004] Carlos Guestrin, Milos Hauskrecht, and Branislav Kveton. Solving fac-

tored MDPs with continuous and discrete variables. In Proceedings of the 20th Conference

on Uncertainty in Artificial Intelligence, pages 235–242, 2004.

[Haddawy and Hanks, 1998] Peter Haddawy and Steve Hanks. Utility models for goal-

directed decision-theoretic planners. Computational Intelligence, 14(3), 1998.

[Hauskrecht and Kveton, 2004] Milos Hauskrecht and Branislav Kveton. Linear program ap-

proximations for factored continuous-state Markov decision processes. In Advances in Neu-

ral Information Processing Systems 16, pages 895–902, 2004.

[Heckerman, 1990] David Heckerman. A tractable inference algorithm for diagnosing mul-

tiple diseases. In Proceedings of the 5th Annual Conference on Uncertainty in Artificial

Intelligence (UAI-90), New York, NY, 1990. Elsevier Science.

BIBLIOGRAPHY 247

[Hoey et al., 1999] Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. SPUDD:

Stochastic planning using decision diagrams. In UAI-99, pages 279–288, Stockholm, 1999.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard Nebel. The ff planning system:

Fast plan generation through heuristic search. Journal of Artificial Intellence Research JAIR,

14:253–302, 2001.

[Hölldobler and Skvortsova, 2004] Steffen Hölldobler and Olga Skvortsova. A logic-based

approach to dynamic programming. In In AAAI-04 Workshop on Learning and Planning

in Markov Processes–Advances and Challenges, pages 31–36. AAAI Press, Menlo Park,

California, 2004.

[Howard and Matheson, 1984] Ronald A. Howard and James E. Matheson. Influence dia-

grams. In Ronald A. Howard and James E. Matheson, editors, Readings on the Principles

and Applications of Decision Analysis. Strategic Decision Group, Menlo Park, CA, 1984.

[Howard, 1960] Ronald A. Howard. Dynamic Programming and Markov Processes. MIT

Press, 1960.

[Jaeger, 2000] Manfred Jaeger. On the complexity of inference about probabilistic relational

models. Artificial Intelligence, 117(2):297–308, 2000.

[Karabaev and Skvortsova, 2005] Eldar Karabaev and Olga Skvortsova. A heuristic search

algorithm for solving first-order MDPs. In UAI-2005, pages 292–299, Edinburgh, Scotland,

2005.

[Keeney and Raiffa, 1976] R.L. Keeney and H. Raiffa. Decisions with multiple objectives:

Preferences and value tradeoffs. J. Wiley, New York, 1976.

[Kersting et al., 2004] Kristian Kersting, Martijn van Otterlo, and Luc de Raedt. Bellman goes

relational. In ICML-04. ACM Press, 2004.

[Kjaerulff, 1990] U. Kjaerulff. Triangulation of graphs–algorithms giving small total state

space. Technical Report Research Report R-90-09, Aalborg University, 1990.

[Koehler, 1976] G. J. Koehler. A case for relaxation methods in large scale linear program-

ming. In Large Scale Systems Theory and Applications, pages 293–302, Pittsburgh, PA,

1976.

BIBLIOGRAPHY 248

[Koller and Parr, 1999a] Daphne Koller and Ronald Parr. Computing factored value functions

for policies in structured MDPs. In IJCAI-99, pages 1332–1339, Stockholm, 1999.

[Koller and Parr, 1999b] Daphne Koller and Ronald Parr. Policy iteration for factored MDPs.

In UAI-2000, pages 1332–1339, Stockholm, 1999.

[Kushmerick et al., 1995] Neil Kushmerick, Steve Hanks, and Dan Weld. An algorithm for

probabilistic planning. Artificial Intelligence, 76(12):239–286, 1995.

[Levesque and Brachman, 1987] Hector J. Levesque and Ronald J. Brachman. Expressiveness

and tractability in knowledge representation and reasoning. Computational Intelligence,

3:78–93, 1987.

[Levesque et al., 1997] Hector J. Levesque, Ray Reiter, Yves Lespérance, Fangzhen Lin, and

Richard Scherl. GOLOG: a logic programming language for dynamic domains. Journal of

Logic Programming, 31(1-3):59–83, 1997.

[Little, 2006] Iain Little. Paragraph: A Graphplan-based probabilistic planner. In Proceedings

of the Fifth International Planning Competition, 2006.

[Littman and Younes, 2004a] Michael L. Littman and Hakan L. S. Younes. Introduction to the

probabilistic planning track. In Online Proceedings for The Probablistic Planning Track of

IPC-04: http://www.cs.rutgers.edu/˜mlittman/topics/ipc04-pt/proceedings/, 2004.

[Littman and Younes, 2004b] Michael L. Littman and Hakan L. S. Younes, ed-

itors. Online Proceedings for The Probablistic Planning Track of IPC-04:

http://www.cs.rutgers.edu/˜mlittman/topics/ipc04-pt/proceedings/, Vancouver, Canada,

2004.

[Littman et al., 1998] Michael L. Littman, Judy Goldsmith, and Martin Mundhenk. The com-

putational complexity of probabilistic planning. JAIR, 9:1–36, 1998.

[Littman, 1997] Michael L. Littman. Probabilistic propositional planning: Representations

and complexity. In AAAI-97, pages 748–754, Providence, RI, 1997.

[Mahadevan, 2005] Sridhar Mahadevan. Samuel meets Amarel: Automating value function

approximation using global state space analysis. In AAAI-05, pages 1000–1005, Pittsburgh,

2005.

BIBLIOGRAPHY 249

[Marthi, 2007] Bhaskara Marthi. Automatic shaping and decomposition of reward functions.

In 24th International Conference on Machine Learning (ICML), Portland, OR, 2007.

[McCarthy, 1963] J. McCarthy. Situations, actions and causal laws. Technical report, Stanford

University, 1963. Reprinted in Semantic Information Processing (M. Minsky ed.), MIT

Press, Cambridge, Mass., 1968, pages 410-417.

[McDermott et al., 1998] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock,

Ashwin Ram, Manuela Veloso, Dan Weld, and David Wilkins. PDDL—The planning do-

main definition language, 1998.

[Meuleau et al., 1998a] Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim, Leonid Peshkin,

Leslie Pack Kaelbling, Thomas Dean, and Craig Boutilier. Solving very large weakly cou-

pled Markov decision processes. In AAAI-98, pages 165–172, Madison, WI, 1998.

[Meuleau et al., 1998b] Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim, Leonid Peshkin,

Leslie Pack Kaelbling, Thomas Dean, and Craig Boutilier. Solving very large weakly cou-

pled Markov decision processes. In AAAI-98, pages 165–172, Madison, WI, 1998.

[Motik, 2006] Boris Motik. Reasoning in Description Logics using Resolution and Deductive

Databases. PhD thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany, January 2006.

[Ng et al., 1999] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under

reward transformations: theory and application to reward shaping. In Proc. 16th Interna-

tional Conf. on Machine Learning, pages 278–287. Morgan Kaufmann, San Francisco, CA,

1999.

[Parr and Russell, 1998] Ronald Parr and Stuart Russell. Reinforcement learning with hier-

archies of machines. In M. Kearns M. Jordan and S. Solla, editors, Advances in Neural

Information Processing Systems 10, pages 1043–1049. MIT Press, Cambridge, 1998.

[Pearl, 1986] J Pearl. Fusion, propagation, and structuring in belief networks. Artificial Intel-

ligence, 29(3):241–288, 1986.

[Pednault, 1989] Edwin P. D. Pednault. ADL: Exploring the middle ground between STRIPS

and the situation calculus. In KR, pages 324–332, 1989.

[Poole, 1997] David Poole. The independent choice logic for modelling multiple agents under

uncertainty. Artificial Intelligence, 94(1-2):7–56, 1997.

BIBLIOGRAPHY 250

[Poole, 2003] David Poole. First-order probabilistic inference. In IJCAI, pages 985–991,

2003.

[Poupart et al., 2002a] Pascal Poupart, Craig Boutilier, Relu Patrascu, and Dale Schuurmans.

Piecewise linear value function approximation for factored MDPs. In AAAI-02, pages 292–

299, Edmonton, 2002.

[Poupart et al., 2002b] Pascal Poupart, Relu Patrascu, Dale Schuurmans, Craig Boutilier, and

Carlos Guestrin. Greedy linear value-approximation for factored Markov decision pro-

cesses. In AAAI-02, pages 285–291, Edmonton, 2002.

[Puterman and Shin, 1978] Martin L. Puterman and M.C. Shin. Modified policy iteration al-

gorithms for discounted Markov decision problems. Management Science, 24:1127–1137,

1978.

[Puterman, 1994] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-

namic Programming. Wiley, New York, 1994.

[R. Drechsler et al., 1997] R. Drechsler, B. Becker, and S. Ruppertz. Manipulation algorithms

for K*BMDs. In E. Brinksma, editor, Tools and Algorithms for the Construction and Analy-

sis of Systems, pages 4–18, Enschede, The Netherlands, 1997. Springer Verlag, LNCS 1217.

[Reiter, 1991] Raymond Reiter. The frame problem in the situation calculus: A simple so-

lution (sometimes) and a completeness result for goal regression. In V. Lifschitz, editor,

Artificial Intelligence and Mathematical Theory of Computation (Papers in Honor of John

McCarthy), pages 359–380. Academic Press, San Diego, 1991.

[Reiter, 2001] Ray Reiter. Knowledge in Action: Logical Foundations for Specifying and Im-

plementing Dynamical Systems. MIT Press, 2001.

[Riazanov and Voronkov, 2002] Alexandre Riazanov and Andrei Voronkov. The design and

implementation of vampire. AI Communications, 15(2):91–110, 2002.

[Rintanen, 2003] Jussi Rintanen. Expressive equivalence of formalisms for planning with

sensing. In ICAPS, pages 185–194, 2003.

[Rossi et al., 1990] Francesca Rossi, Charles Petrie, and Vasant Dhar. On the equivalence of

constraint satisfaction problems. In ECAI-90: Proceedings of the 9th European Conference

on Artificial Intelligence, pages 550–556, Stockholm, 1990.

BIBLIOGRAPHY 251

[Rudell, 1993] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In

(ICCAD), 1993.

[Sanner and Boutilier, 2005] Scott Sanner and Craig Boutilier. Approximate linear program-

ming for first-order MDPs. In UAI-2005, Edinburgh, Scotland, 2005.

[Sanner and Boutilier, 2006] Scott Sanner and Craig Boutilier. Practical linear evaluation tech-

niques for first-order MDPs. In UAI-2006, Boston, Mass., 2006.

[Sanner and Boutilier, 2007] Scott Sanner and Craig Boutilier. Approximate solution tech-

niques for factored first-order MDPs. In Proceedings of the Seventeenth International Con-

ference on Automated Planning and Scheduling (ICAPS 07), 2007.

[Sanner and McAllester, 2005] Scott Sanner and David McAllester. Affine algebraic decision

diagrams (AADDs) and their application to structured probabilistic inference. In IJCAI

2005, 2005.

[Schuurmans and Patrascu, 2001] Dale Schuurmans and Relu Patrascu. Direct value approxi-

mation for factored MDPs. In NIPS-2001, pages 1579–1586, Vancouver, 2001.

[Schweitzer and Seidmann, 1985] Paul Schweitzer and Abraham Seidmann. Generalized

polynomial approximations in markovian decision processes. Journal of Mathematical

Analysis and Applications, 110:568–582, 1985.

[Singh and Cohn, 1998] Satinder P. Singh and David Cohn. How to dynamically merge

Markov decision processes. In NIPS-98, pages 1057–1063. MIT Press, Cambridge, 1998.

[Soutchanski, 2001] Mikhail Soutchanski. An on-line decision-theoretic golog interpreter. In

IJCAI-2001, Seattle, Washington, 2001.

[St-Aubin et al., 2000] Robert St-Aubin, Jesse Hoey, and Craig Boutilier. APRICODD: Ap-

proximate policy construction using decision diagrams. In NIPS-2000, pages 1089–1095,

Denver, 2000.

[Stergiou and Walsh, 1999] Kostas Stergiou and Toby Walsh. Encodings of non-binary con-

straint satisfaction problems. In Proceedings of AAAI-99, pages 163–168, Orlando, FL.,

July 1999.

[Tafertshofer and Pedram, 1997] Paul Tafertshofer and Massoud Pedram. Factored edge-

valued binary decision diagrams. Form. Methods Syst. Des., 10(2-3), 1997.

BIBLIOGRAPHY 252

[Teichteil and Fabiani, 2006] Florent Teichteil and Patrick Fabiani. Symbolic stochastic fo-

cused dynamic programming with decision diagrams. In Proceedings of the Fifth Interna-

tional Planning Competition, 2006.

[Trick and Zin, 1997] Michael A. Trick and Stanley E. Zin. Spline approximations to value

functions: A linear programming approach. In Macroeconomic Dynamics, volume 1, pages

255–277, 1997.

[Tsitsiklis and Van Roy, 1996] John N. Tsitsiklis and B. Van Roy. Feature-based methods for

large scale dynamic programming. Machine Learning, 22:59–94, 1996.

[Veloso, 1992] Manuela Veloso. Learning by analogical reasoning in general problem solv-

ing. PhD thesis, Carnegie Mellon University, August 1992.

[Wang and Khardon, 2007] Chenggang Wang and Roni Khardon. Policy iteration for rela-

tional MDPs. In UAI, Vancouver, Canada, 2007.

[Wang et al., 2007] Chenggang Wang, Saket Joshi, and Roni Khardon. First order decision

diagrams for relational MDPs. In IJCAI, Hyderabad, India, 2007.

[Weld, 1999] Daniel S. Weld. Recent advances in AI planning. AI Magazine, 20(2):93–123,

1999.

[Wiewiora, 2003] Eric Wiewiora. Potential-based shaping and Q-value initialization are equiv-

alent. Journal of Artificial Intelligence Research, 19:205–208, 2003.

[Williams and Baird, 1994] Ronald Williams and Leeman Baird. Tight performance bounds

on greedy policies based on imperfect value functions. In Eighth Yale Workshop on Adaptive

and Learning Systems, pages 108–113, New Haven, CT, 1994.

[Williamson and Hanks, 1994] Michael Williamson and Steve Hanks. Utility-directed plan-

ning. In Artificial Intelligence and Planning Systems, 1994.

[Yianilos, 1993] Peter N. Yianilos. Data structures and algorithms for nearest neighbor search

in general metric spaces. In Proceedings of the Fifth Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), 1993.

[Yoon et al., 2002] SungWook Yoon, Alan Fern, and Robert Givan. Inductive policy selection

for first-order Markov decision processes. In UAI-02, Edmonton, 2002.

BIBLIOGRAPHY 253

[Yoon et al., 2004] SungWook Yoon, Alan Fern, and Robert Givan. Learning reactive policies

for probabilistic planning domains. In Online Proceedings for The Probablistic Planning

Track of IPC-04: http://www.cs.rutgers.edu/˜mlittman/topics/ipc04-pt/proceedings/, 2004.

[Yoon et al., 2007] Sungwook Yoon, Alan Fern, and Robert Givan. Ff-replan: A baseline

for probabilistic planning. In Proceedings of the Seventeenth International Conference on

Automated Planning and Scheduling (ICAPS 07), 2007.

[Younes and Littman, 2004] Hakan Younes and Michael Littman. PPDDL: The probabilis-

tic planning domain definition language: http://www.cs.cmu.edu/˜lorens/papers/ppddl.pdf,

2004.

[Zhang and Poole, 1994] N. L. Zhang and D. Poole. A simple approach to bayesian network

computations. In Proc. of the Tenth Canadian Conference on Artificial Intelligence, pages

171–178, 1994.

[Zhang and Poole, 1996] Nevin Lianwen Zhang and David Poole. Exploiting causal indepen-

dence in bayesian network inference. J. Artif. Intell. Res. (JAIR), 5:301–328, 1996.

