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Abstract: We show that the second order field equations characterizing extremal solutions

for spherically symmetric, stationary black holes are in fact implied by a system of first

order equations given in terms of a prepotential W . This confirms and generalizes the

results in [14]. Moreover we prove that the squared prepotential function shares the same

properties of a c-function and that it interpolates between M2
ADM and M2

BR, the parameter

of the near-horizon Bertotti-Robinson geometry. When the black holes are solutions of

extended supergravities we are able to find an explicit expression for the prepotentials,

valid at any radial distance from the horizon, which reproduces all the attractors of the

four dimensional N > 2 theories. Far from the horizon, however, for N -even, our ansatz

poses a constraint on one of the U-duality invariants for the non-BPS solutions with Z 6= 0.

We discuss a possible extension of our considerations to the non extremal case.
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1. Introduction

Recent progress in the understanding of extremal non-BPS black-hole solutions in extended

supergravities (for a review on black holes in supergravity see for example [1, 2]) have

revived the interest in the physics of extremal black holes.

The peculiar feature of these solutions is the attractor mechanism [3 – 13], according

to which the scalar “hair” of the black hole runs into a fixed value on the horizon, inde-

pendently of the boundary conditions at spatial infinity. For static, spherically symmetric

black holes, the fixed values of the scalars at the horizon are determined in terms of the

quantized electric and magnetic charges characterizing the solution, as extrema of an effec-

tive potential VBH [5]. This induces to expect the radial dependence of the scalar fields in

each extremal solution to admit a description in terms of a system of first order equations:

Φ̇r ∝ ∂rW (Φ) , (1.1)

which implies the second order field equations, provided VBH has a definite expression in

terms of W and its derivatives. In this description, the attractor point Φ̇ = 0 is given by

the singular point ∂rW (Φ0) = 0 which is also an extremum of VBH. We will call W the

prepotential of the extremal solution. This is indeed the case for BPS black holes, whose

associated first-order differential equations are implied by the Killing-spinor equations. For

the N = 2 case one finds W = |Z| where Z is the central charge of the supersymmetry
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algebra. Therefore, this poses the problem of finding the analogous first order differential

equations, with the associated prepotential, describing the non-BPS extremal solutions.

Another motivation for developing a first order formulation is that it provides a natural

framework for defining a c-function associated with the radial flow of the fields in these

solutions [19]. In fact, as we will show, the squared prepotential is a viable candidate for

such a function, sharing with it the monotonicity property in the radial variable and the

value taken at the horizon.1

This problem was first addressed in [14] where, by exploiting the formal analogy be-

tween extremal black holes and domain wall solutions, explicit examples of W correspond-

ing to certain N = 2 non-BPS extremal solutions were found.

It is the aim of the present paper to give a general form of the prepotential in extended

supergravity which will allow to reproduce the attractor behavior of all the known extremal

black-hole solutions for N ≥ 3. W will be given as a function of the U -duality invariants

of the theory built in terms of the dressed charges. Different attractors will correspond to

different choices of the coefficients in W . Note, however, that the general ansatz we give

for W can be considered as a minimal one reproducing correctly all the attractor points

of static extremal black-hole solutions in extended four dimensional supergravity. Indeed,

if we consider the full black-hole solution outside the horizon, it turns out that our ansatz

requires a restriction, in the N -even cases, on the duality invariants characterizing the non-

BPS Z 6= 0 attractors. More precisely, for these solutions the above restriction amounts

to fixing an invariant overall phase of the complex dressed charges at radial infinity to the

value it takes on the horizon. We argue that a refined ansatz could relax this restriction.

The paper is organized as follows. In section 2 we recall the main facts about static,

spherically symmetric black holes and introduce the prepotential W , proving, in the ex-

tremal case, that it is monotonic. In section 3, which contains the main results of the

paper, the general expression for W in the extremal case is given for N ≥ 3 extended

supergravity, and also some examples of N = 2 solutions. Section 4, which includes the

concluding remarks, contains a speculative discussion where the issue of a possible exten-

sion of the definition of the prepotential to the non extremal case is addressed. For a class

of non extremal black holes we show that a first order formulation in terms of a prepotential

W may exist and we find the corresponding description in terms of first order differential

equations. This generalizes the results in [18] to the case of scalar-matter coupled gravity.

2. Black holes as solutions to first order differential equations

We will consider the class of theories described by the bosonic action [3]:

S =

∫ √−g d4x

(

−1

2
R + ImNΛΓFΛ

µνFΓ|µν +
1

2
√−g

ReNΛΓǫµνρσ FΛ
µνFΓ

ρσ+

+
1

2
grs(Φ)∂µΦr∂µΦs

)

, (2.1)

1We thank Sandip Trivedi for drawing this to our attention.
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where R is the scalar curvature, Φr are a set of scalar fields and FΛ gauge field strengths.

grs(Φ), NΛΣ(Φ) (r, s, . . . = 1, . . . ,m) are matrices depending on the scalar fields.

The most general Ansatz for a spherically symmetric and stationary metric is

ds2 = e2U dt2 − e−2U

(

c4

sinh4(cτ)
dτ2 +

c2

sinh2(cτ)
dΩ2

)

. (2.2)

The evolution coordinate τ is related to the radial coordinate r by the following relation:

(

dr

dτ

)2

=
c2

sinh2(cτ)
= (r − r0)

2 − c2 = (r − r−) (r − r+) . (2.3)

r± being the radii of the two event horizons, with r+ > r−. Here c ≡ 2ST is the extremality

parameter of the solution, with S the entropy and T the temperature of the black hole. In

the extremal case c → 0, eq. (2.3) reduces to τ = − 1
r−rH

, where rH denotes the radius of

the horizon.

It is known [5] that by eliminating the vector fields via their equations of motion this

system may be reduced to the following set of field equations for the metric function U(τ)

and the scalar fields Φr(τ) in terms of the evolution parameter τ :

d2U

dτ2
≡ Ü = VBH(Φ, p, q)e2U , (2.4)

D2Φr

Dτ2
≡ Φ̈r + Γr

stΦ̇
s Φ̇t = grs(Φ)

∂VBH(Φ, p, q)

∂Φs
e2U , (2.5)

together with the constraint

(

dU

dτ

)2

+
1

2
grs(Φ)

dΦr

dτ

dΦs

dτ
− VBH(Φ, p, q)e2U = c2 , (2.6)

where VBH(Φ, p, q) is a function of the scalars and of the electric and magnetic charges of

the theory defined by:

VBH = −1

2
QtM(N )Q , (2.7)

and Q is the symplectic vector of quantized magnetic and electric charges Qt = (pΛ, qΛ).

M(N ) is the symplectic matrix defined in terms of the gauge field-strengths kinetic matrix

NΛΣ(Φ):

M(N ) =

(

ImN + ReN ImN−1ReN −ReN ImN−1

−ImN−1ReN ImN−1

)

. (2.8)

The field equations (2.5) can be extracted from the effective one-dimensional lagrangian:

Leff =

(

dU

dτ

)2

+
1

2
grs

dΦr

dτ

dΦs

dτ
+ VBH(Φ, p, q)e2U , (2.9)

constrained with equation (2.6).
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We are going to show that the second order field equations (2.4), (2.5) can in fact be

derived by a first order system, for a large class of extremal and non-extremal black holes,

by performing the following Ansatz [14]:

dU

dτ
≡ U̇ = eU W (Φ, τ) , (2.10)

where W is a function of the scalar fields (depending on the quantized charges and τ) and

explicitly of τ ; the derivative is performed with respect to the evolution parameter τ . We

argue that the extremal case corresponds to

∂τW = 0 ⇒ W = W (Φ) , (2.11)

while for non extremal black holes, in those cases which admit a first order description, an

explicit dependence of W on τ should be included.

2.1 Extremal case

Let us consider in detail the extremal case c = 0. In this case eq. (2.10) becomes

U̇ = W (Φ) eU . (2.12)

Differentiating (2.12) with respect to τ gives

Ü = (U̇)2 + ẆeU ≡ W 2 e2U + ẆeU , (2.13)

where

Ẇ = Φ̇r∂rW . (2.14)

Comparing eq. (2.13) with (2.4) we find the following expression for VBH:

VBH = W 2 + e−UẆ . (2.15)

Moreover from eqs. (2.4) and (2.6) one finds:

Ü − (U̇)2 =
1

2
grsΦ̇

rΦ̇s = Φ̇r∂rW eU , (2.16)

while eq. (2.13) can be recast in the form:

Ü − (U̇)2 = Ẇ eU = Φ̇r∂rW eU . (2.17)

It follows that, for Φ̇r 6= 0, eq. (2.16) is solved for:2

Φ̇r = 2 eU grs ∂sW . (2.21)

2To be precise, the most general solution to the constraint (2.16) would be:

Φ̇r = 2 e
U

g
rs

∂sW + α
r(Φ, τ ) , (2.18)

where αr = P rshs and P r
s ≡

“

δr

s − Φ̇
r
Φ̇s

Φ̇ℓΦ̇ℓ

”

is a projector orthogonal to Φ̇r. In this more general case the

effective potential would include one additional term:

VBH = W
2 + 2∂rW∂

r
W −

1

2
e
−2U

αrα
r
. (2.19)
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Eq. (2.21) is reminiscent of the BPS condition; for a given W it relates the evolution of the

scalar fields on the corresponding configuration to the partial derivative of the prepotential

W with respect to the scalar fields. Note in particular that the fixed points for Φr are

in direct relation with the extrema of W . Together with (2.10) and (2.14), (2.21) allows

to express the field-equations in terms of a first order system. Indeed, using (2.21) the

effective potential reads [14]

VBH = W 2 + 2 grs ∂rW ∂sW . (2.22)

By inserting eqs. (2.21) and (2.22) in the second order evolution equation for the

scalars, eq. (2.5), we find that it is identically satisfied. This shows that, as far as the

scalar sector is concerned, the system of second order differential equations (2.5) is in

fact a first order system once expressed in terms of the prepotential W . Moreover, given

any explicit expression for W , also the space-time metric may be found as solution of a

first-order equation (2.12). Furthermore, the effective potential (2.22) is extremized for

∂VBH

∂Φr
≡ ∂rVBH = 2 ∂sW

(

Wδs
r + 2gsℓ∇r∂ℓW

)

= 0 , (2.23)

that is the fixed points for the scalars (corresponding to extrema of W ) are also extrema

of the potential VBH. Since the black-hole horizon is identified as the fixed point of the

scalars, in this formulation it is directly related to the extrema of W (that are in particular

also extrema for VBH). The BH entropy then reads, in terms of W , as

SBH = VBH|extr = W 2|extr = W 2(Φ|hor) . (2.24)

Furthermore, let us observe that from the evolution equations above, together with the

boundary condition on U at spatial infinity (U(τ = 0) = 0), it is easy to deduce that

W and W 2 are monotonic functions, both decreasing along the evolution from spatial

infinity towards the horizon. Indeed, if we define the function b(τ) = − 1
τ

e−U , as in [7],

the conditions of regularity of the solution at the horizon and of flatness of space-time at

radial infinity, imply the following limiting behaviors:

τ → −∞ : b(τ) −→ rH + O(τ−1) (2.25)

τ → 0− : b(τ) −→ −1

τ
+ MADM + O(τ) . (2.26)

Since e−U = −τb, using the first order equations we may write

W = − d

dτ
e−U =

d

dτ
(τb) = b + τ ḃ , (2.27)

For αr 6= 0, however, the attractor condition at the horizon becomes

lim
τ→−∞

∂rW = −
1

2
e
−U

αr(τ → −∞) 6= 0 . (2.20)

As we will see in the following (see eq. (2.24)), such deformation is immaterial since it gives for the entropy

the same value V |extr = W 2|extr as for the case with αr = 0. It could instead play a role in more general

situations, for example when considering black-holes out of extremality, where the effect of αr would be to

effectively deform the constant non-extremality parameter c2 into a function C2(Φ, τ ) = c2 + 1

2
αrα

r.
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which implies the following asymptotic limits for W :

lim
τ→−∞

W = rH = MBR ,

lim
τ→0−

W = MADM ≥ MBR , (2.28)

where MBR denotes the Bertotti-Robinson mass parameter associated with the near-horizon

geometry. Let us now show that W is monotonic:

dW

dτ
=

(

Ü − (U̇)2
)

e−U =
(

V − W 2
)

eU = 2 grs ∂rW∂sW eU ≥ 0 , (2.29)

where we have used eq. (2.22) and the first order equations. We conclude that W is a

positive monotonic function decreasing from the value MADM at radial infinity, towards

the value MBR ≤ MADM at the horizon. In [19] it was shown that for static, spherically

symmetric black holes a monotone function A(r) always exists such that A(rH) = SBH,

with A(r) decreasing towards the horizon. For the extremal case, W 2 then appears as the

appropriate quantity to play the role of the c-function A(r).

3. The prepotential for extremal solutions of extended supergravity

It is our purpose to show that when the extremal black hole is a solution of an N > 2

extended supersymmetric theory, where the scalar manifold is a coset G/H, it is possible

to find a general expression for W which reproduces all the known results concerning the

BPS and non-BPS attractor points of the theory (see [2] for a review collecting all the

solutions in four dimensions). Our results may be extended to the N = 2 case when the

special geometry is described by homogeneous spaces. For more general models a case by

case inspection is necessary. Some N = 2 examples have been given in [14].

We propose the following:

W =
∑

M

αMeM . (3.1)

where eM ∈ R are related to the invariants of the isotropy subgroup H built in terms of

the complex central and matter charges. Such invariants indeed can be expressed in terms

of the skew eigenvalues of the matrix of central charges ZAB and of the norm of the matter

charge vectors ZI that we collectively call {eM}.
The real coefficients αM can be computed by requiring that the potential (2.22), with

W given by (3.1), reproduces the general form taken by the effective scalar potential for

any extended supersymmetric theory:

VBH =
1

2
ZABZ

AB
+ ZIZ

I
. (3.2)

Here and in the following A,B are SU(N) R-symmetry group indices while the indices I, J

label the fundamental representation of the matter group when present (namely U(3) for

N = 3 and SO(6) in the N = 4 case). Since (2.22) involves the gradient of the prepotential

W , the evaluation of VBH requires the knowledge of the differential relations among central

– 6 –
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and matter charges, for which we refer to [15, 2]. In general, since the equations in the αM

are quadratic, their sign is not fixed in principle, but it can be fixed by requiring that the

prepotential W is extremized on the black-hole horizon ∂rW |extr = 0.

It was observed in [14] that for any VBH it should exist a multiple choice of W . Here,

using the ansatz (3.1) we give the explicit expression and the precise number of independent

prepotentials for any given extended theory. Indeed, as we are going to show by a case by

case analysis, there are in general up to three independent choices of {αM} all reproducing

the same VBH. The various independent solutions for W will reproduce the known different

BPS and non-BPS solutions for any given theory. Any independent choice of {αM} would

then parametrize a different black-hole solution.

We may then adopt two equivalent points of view to find the different extremal black-

hole attractors: either we study the extrema of VBH, or alternatively we consider the

possible inequivalent choices of W compatible with the expression (3.2) for VBH.

We first analyze the N -odd cases, which are easier because the central and matter

charges in normal form can all be made real. The cases with N even, which in general also

include a solution with complex charges (corresponding to a negative fourth-order invariant

of the duality group G) will be analyzed afterwords.

3.1 The N-odd cases

Since these are the simplest cases, we shall describe the calculations in detail. In the

N -even cases the relevant results will be given.

3.1.1 The N = 3 case

In the N = 3 theory the scalar manifold is U(3, n)/[U(3) × U(n)] and the central charge

matrix ZAB = −ZBA, A = 1, 2, 3, and matter charges ZI , I = 1, . . . , n; the central and

matter charges obey the differential relations

{∇ZAB = PIABZ
I

∇ZI = 1
2PIABZ

AB
,

(3.3)

where PIAB = PIAB,idzi (i = 1, . . . 3n) is the holomorphic vielbein of U(3, n)/[U(3)×U(n)],

∇ denotes the U(1)-Kähler covariant and H-covariant derivative (we generally denote by

H the isotropy group of the symmetric spaces G/H representing the scalar manifold of the

various N ≥ 3 theories [2, 15]). By a U(3) rotation it is always possible to put ZAB in

normal form

ZAB = e





0 1 0

−1 0 0

0 0 0



 ; e ∈ R (3.4)

while by a U(n) rotation the vector ZI may by chosen to be real and pointing in a given

direction, say

ZI = ρδ1
I ; ρ ∈ R . (3.5)

– 7 –
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We then propose the following general expression for W :

W = a e + b ρ

= a

√

1

2
ZABZ

AB
+ b

√

ZIZ
I
. (3.6)

From the relation (2.22) one obtains:

V =
(

a2 + b2
) (

e2 + ρ2
)

+ 4ab eρ. (3.7)

In order to reproduce the general result (3.2), that written in normal form takes the form

V = e2 + ρ2 , (3.8)

we must have:
{

a2 + b2 = 1 ,

ab = 0 .
(3.9)

There are two different solutions to the system (3.9), namely

1. a = 1, b = 0, implying

W(1) = e =
1

2

√

ZABZ
AB

(3.10)

2. a = 0 and b = 1, which imply

W(2) = ρ =

√

ZIZ
I
. (3.11)

Note that these two choices reproduce precisely the two independent solutions for the

extremization of the black-hole solutions of N = 3 supergravity [2]. The former solution,

which implies:

∇iW(1) =
1

4

√

1
2ZABZ

AB
Z

I
Z

AB
PIAB,i (3.12)

is extremized for ZI = 0, ZAB 6= 0 and corresponds to the BPS solution, with entropy

S(1) = W 2
(1)|extr = 1

2 |ZAB |2. The second one gives

∇iW(2) =
1

4

√

ZIZ
I
Z

I
Z

AB
PIAB,i (3.13)

and is extremized for ZAB = 0, ZI 6= 0 corresponding to the non-BPS solution, with

entropy S(2) = W 2
(2)|extr = |ZI |2.

Since we know that the potential (3.2) has two minima for the N = 3 theory, W(1)

and W(2) exhaust the possible minima of the general potential for this theory. This in

particular implies that eq. (2.23) cannot have further solutions coming from the vanishing

of the second factor, as it can be easily shown by an explicit calculation.

– 8 –
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3.1.2 The prepotential for the N = 5 case

In this case there are no matter multiplets and the scalar manifold is the Kähler manifold

SU(1, 5)/U(5), spanned by the holomorphic vielbein PABCD = PABCD,i dzi = ǫABCDEPE

(with A, i = 1, . . . , 5) and its complex conjugate PABCD = PABCD
,ı dzı. The central charges

ZAB = −ZBA obey the differential relations:

∇ZAB =
1

2
PABCDZ

CD
. (3.14)

Via a U(5) rotation they may be put in the normal form:

ZAB =















0 e1 0 0 0

−e1 0 0 0 0

0 0 0 e2 0

0 0 −e2 0 0

0 0 0 0 0















(3.15)

in terms of the two real (non negative) proper-values e1 and e2, which are related to the

two U(5) invariants

{

I1 ≡ 1
2ZABZ

AB
= (e1)

2 + (e2)
2

I2 ≡ 1
2ZABZ

BC
ZCDZ

DA
= (e1)

4 + (e2)
4

(3.16)

by the inverse relation











e1 =

√

1
2

[

I1 +
√

2I2 − I2
1

]

e2 =

√

1
2

[

I1 −
√

2I2 − I2
1

]

. (3.17)

According to equation (3.1), we then propose for the prepotential W the form

W = a1e1 + a2e2 . (3.18)

Writing (3.14) in normal form, that is

∇ie1 = P,i e2 ,

∇ie2 = P,i e1 , (3.19)

its holomorphic gradient in normal form is

∂iW =
1

2
P,i(a1e2 + a2e1) , (3.20)

where P,i = P1234,i is the component of the holomorphic scalar vielbein which appears

in (3.14) when the central charge is in its normal form. Evaluating the potential using (3.14)

gives, for the black-hole potential,

VBH = (a2
1 + a2

2)
[

(e1)
2 + (e2)

2
]

+ 4a1a2e1e2 . (3.21)
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This reproduces the result for the black-hole potential of supersymmetric theories, V = I1,

for
{

a2
1 + a2

2 = 1

a1a2 = 0
(3.22)

This system has, essentially, only one independent solution that, with our choice (3.17) of

proper-values (which implies e1 ≥ e2) is

a1 = 1 , a2 = 0 (3.23)

giving W = e1, which is extremized for ∇iW = e2 = 0. It is a BPS solution.

Note that the extremization of the scalar potential (3.21) gives

∂iVBH = 2∂kW
(

δk
i W + 2gk∇i∂W

)

= 0, (3.24)

since, from (3.20), ∇i∂kW = 0. It may be easily shown by explicit calculation that there

are no other solutions to ∂iVBH = 0 besides ∂iW = 0 from which we conclude that also in

this case the extrema of W give all the extrema of VBH.

3.2 The N-even cases

In the cases with N = 3 and N = 5 supercharges the central and matter charges ZM ≡
{ZAB , ZI} in normal form may all be chosen real and non negative. On the other hand,

in the N -even cases the normal form of the ZM contains in general an overall phase. Since

our choice (3.1) of the prepotential is given only in terms of the moduli of the charges,

we will see that the solution for the coefficents αM in (3.1) which reconstruct the effective

potential VBH implies in particular that the phase must be fixed at certain values all over

the moduli space. This value is actually the one corresponding to the attractor condition

at the horizon.

Our general ansatz (3.1) can then be considered as the minimal one reproducing cor-

rectly all the attractor points of static extremal black-hole solutions in extended four di-

mensional supergravity. We argue that a refined ansatz could relax the fixing of the phase

before extremization.

3.2.1 The prepotential for the N = 4 attractors

In this case the scalar manifold is the coset space

G/H =
SU(1, 1)

U(1)
× SO(6, n)

SO(6) × SO(n)
(3.25)

and the relations among central and matter charges are:

{

DZAB = Z
I
PABI + 1

2Z
CD

ǫABCD P ,

DZI = 1
2Z

AB
PABI + ZI P .

(3.26)

We recall that for this theory the vielbein PABI satisfies the reality condition P
ABI ≡

(PABI)
⋆ = 1

2ǫABCDP I
CD.
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Using the U(1) × SO(6) ∼ U(4) symmetry of the theory we can bring the central

charges in the normal form [16]

ZAB =









0 Z1 0 0

−Z1 0 0 0

0 0 0 Z2

0 0 −Z2 0









(3.27)

where the graviphoton skew-eigenvalues Z1, Z2 can be chosen real and non-negative, thus

coinciding with their modulus Z1,2 = |Z1,2| = e1,2. Further, using an SO(n) transformation

it is also possible to reduce the vector of matter charges in such a way that only one real

and one complex matter charge are different from zero. Let us call them ZI = ρIe
iθI ,

I = 1, 2 (with the proviso that one of the phases may be always put to zero).

We consider a prepotential W of the form:

W = a1 e1 + a2 e2 +

2
∑

I=1

bI ρI . (3.28)

It encodes the H invariants:



















I1 ≡ 1
2ZABZ

AB
= (e1)

2 + (e2)
2 ,

I2 ≡ 1
2ZABZ

BC
ZCDZ

DA
= (e1)

4 + (e2)
4 ,

I3 ≡ ZIZI = ρIρI ,

I4 ≡ Re (ZIZI) .

(3.29)

The potential is related to W by eq. (2.22). In order to compute the derivatives of

W we rewrite, as usual, the differential relations in normal form, where P = P,idzi is the

Kählerian vielbein of SU(1, 1)/U(1) while P12I ≡ PI (P34I = P 12I) are the components of

the (non Kählerian) vielbein SO(6, n)/SO(6) × SO(n):







∇Z1 = Z
I
PI + Z2 P ,

∇Z2 = Z
I
P I + Z1 P ,

∇ZI = Z1PI + Z2P I + ZI P .

(3.30)

We then find:

∇iW = P,i A + PI,i BI + P I,i BI ,

A =
1

2

[

(a1 e2 + a2 e1) +
∑

I

bIρI e2 i θI

]

,

BI =
1

2

[

(a1ρI + bIe1) e− i θI + (a2ρI + bIe2) e i θI

]

. (3.31)
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In terms of the above quantities the potential reads:

W 2 + 2 grs∂rW∂sW =
(

||a||2 + ||b||2
)

(|Z1|2 + |Z2|2 +
∑

I

ρ2
I)

+
∑

I 6=J

(

b2
I − b2

J + 2 a1 a2 cos(2 θI)
)

ρ2
I

+2 |Z1||Z2|
(

2 a1 a2 +
∑

I

b2
I cos(2 θI)

)

+4
∑

I

|Z1|ρI bI (a1 + a2 cos(2 θI))

+4
∑

I

|Z2|ρI bI (a2 + a1 cos(2 θI))

+2 b1 b2 ρ1ρ2 (cos 2 (θ1 − θ2) + 1) , (3.32)

where we have defined: ||a||2 = a2
1 + a2

2, ||b||2 =
∑

I b2
I . Since the potential in terms of the

central charges in the normal form reads

V = |Z1|2 + |Z2|2 +
∑

I

ρ2
I . (3.33)

the coefficients ak, bI and the phases have to be chosen in such a way that the cross terms

in the central charges in (3.32) vanish and the coefficients of the square norm of the central

charges be equal to one. This implies that:



































||a||2 + ||b||2 = 1 ,

b2
I − b2

J + 2 a1 a2 cos(2 θI) = 0 , ∀I 6= J ,

2 a1 a2 +
∑

I b2
I cos(2 θI) = 0 ,

bI (a1 + a2 cos(2 θI)) = 0 ∀I ,

bI (a2 + a1 cos(2 θI)) = 0 ∀I ,

b1 b2 (cos 2 (θ1 − θ2) + 1) = 0 .

(3.34)

In the following we choose normal form of the matter charges so that θ2 = 0. The above

conditions can be explicitly solved giving three independent solutions for the coefficients.

Consequently we have three different prepotentials, each characterizing a different attractor

solution. The inequivalent solutions are:

1. a1 = 1, a2 = 0, bI = 0 or a1 = 0, a2 = 1, bI = 0, ∀I.

The prepotential reads:

W(1) = WBPS = e1 . (3.35)

The attractor condition for this solution gives indeed, from (3.31):

∂iW(1) = 0 ⇒ e2 = ρI = 0. (3.36)

This corresponds to the BPS attractor, with entropy S1 = W 2
1|extr

= e2
1.
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2. a1 = a2 = 1√
2
b1 = 1

2 , b2 = 0, θ1 = π
2 . The complete choice of the prepotential,

fixed by the attractor condition at the horizon, gives:

W(2) =
1

2
(e1 + e2 +

√
2ρ1) , (3.37)

which is indeed extremized for:

e1 = e2 = e ; ZI=1 =
√

2ie ; ZI=2 = 0 . (3.38)

The entropy is given by S2 = W 2
2|extr

= 4 e2.

3. a1 = a2 = 0, b1 = b2 = 1√
2

, θ1 = π
2 . The prepotential reads

W(3) =
1√
2

( ρ1 + ρ2) . (3.39)

The extremum condition for this solution is

e1 = e2 = 0 ZI=2 = iZI=1 = ρ . (3.40)

The entropy is S3 = W 2
3|extr

= ρ2.

3.2.2 The prepotential for the N = 6 theory

In this case the scalar manifold is SO∗(12)/U(6), spanned by the holomorphic vielbein

PABCD = PABCD,i dzi = 1
2ǫABCDEF PEF (with A = 1, . . . 6, i = 1, . . . 15) and its complex

conjugate PABCD = PABCD
,ı dzı. The central charges of this theory are split into an

antisymmetric matrix ZAB = −ZBA and a singlet X. They obey the differential relations
{∇ZAB = 1

2PABCDZ
CD

+ 1
4!ǫABCDEF P

CDEF
X

∇X = 1
2!4!ǫABCDEF P

CDEF
Z

AB . (3.41)

The singlet complex charge X may be parametrized as X = ρ eiα (with ρ ∈ R+, α ∈ R).

On the other hand the antisymmetric matrix ZAB may be put in the normal form via a

U(6) rotation:

ZAB =



















0 Z1 0 0 0 0

−Z1 0 0 0 0 0

0 0 0 Z2 0 0

0 0 −Z2 0 0 0

0 0 0 0 0 Z3

0 0 0 0 −Z3 0



















(3.42)

in terms of the three proper-values Z1, Z2, Z3. In the normal form they may indeed be

chosen real and non negative Zα = |Zα| ≡ eα (α = 1, 2, 3).

The four parameters eα, ρ are related to the four U(6) invariants:


















I1 ≡ 1
2ZABZ

AB
= (e1)

2 + (e2)
2 + (e3)

2

I2 ≡ XX = ρ2

I3 ≡ 1
2ZABZ

BC
ZCDZ

DA
= (e1)

4 + (e2)
4 + (e3)

4

I4 ≡ −1
2ZABZ

BC
ZCDZ

DE
ZEF Z

FA
= (e1)

6 + (e2)
6 + (e3)

6 .

(3.43)
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Writing the differential relations among the dressed charges (3.41) in normal form, we

find a simple expression for the holomorphic derivatives of the skew-eigenvalues eα, namely:



























∇ie1 = 1
2

(

P1,ie2 + P2,iρeiα + P3,ie3

)

∇ie2 = 1
2

(

P1,ie1 + P2,ie3 + P3,iρeiα
)

∇ie3 = 1
2

(

P1,iρeiα + P2,ie2 + P3,ie1

)

∇iρ = 1
2eiα (P1,ie3 + P2,ie1 + P3,ie2)

∇iα = i
2ρ

eiα (P1,ie3 + P2,ie1 + P3,ie2)

(3.44)

where P1,i = P1234,i, P2,i = P3456,i, P3,i = P1256,i are the components of the scalar vielbein

appearing in (3.44) when the central charge is written in normal form. We then propose,

for the prepotential W , the form:

W = a1e1 + a2e2 + a3e3 + bρ , (3.45)

giving, for its holomorphic gradient in normal form:

∇iW =
1

2

{

P1,i

[

a1e2 + a2e1 + eiα(a3ρ + be3)
]

+

+P2,i

[

a2e3 + a3e2 + eiα(a1ρ + be1)
]

+

+P3,i

[

a1e3 + a3e1 + eiα(a2ρ + be2)
]

}

. (3.46)

Using eqs. (3.44) and eq. (3.45), the right-hand side of (2.22) takes the following form:

W 2 + 4 gi∂iW∂W = (a2
1 + a2

2 + a2
3 + b2)

(

e2
1 + e2

2 + e2
3 + b2

)

+2e1e2(a1a2 + a3b cos α) + 2e3ρ(a1a2 cos α + a3b)

+2e2e3(a2a3 + a1b cos α) + 2e1ρ(a2a3 cos α + a1b)

+2e3e1(a3a1 + a2b cos α) + 2e2ρ(a3a1 cos α + a2b) (3.47)

which reproduces the result for the black-hole potential of supersymmetric theories,

V = I1 + I2 = e2
1 + e2

2 + e2
3 + ρ2 (3.48)

if:











































a2
1 + a2

2 + a2
3 + b2 = 1

a1a2 + a3b cos α = 0

a1a2 cos α + a3b = 0

a1a3 + a2b cos α = 0

a1a3 cos α + a2b = 0

a2a3 + a1b cos α = 0

a2a3 cos α + a1b = 0 .

(3.49)

This system, together with the requirement of the existence of an attractor at the horizon,

allows three inequivalent solutions, all of which requiring the phase of the singlet charge to

be fixed, when the system is in normal form, by cos2 α = 1.
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1. a1 = 1, a2 = a3 = b = 0 (or, equivalently, for a1 ↔ a2 ↔ a3).

In this case the prepotential encoding the solution has the form:

W(1) = e1 , (3.50)

which is extremized (see (3.46)), for e1 = e, e2 = e3 = ρ = 0. The Bekenstein-

Hawking entropy is:

V(1)|extr = e2 . (3.51)

This is the BPS solution.

2. a1 = a2 = a3 = 0, b = 1.

In this case the prepotential is:

W(2) = ρ =
√

XX . (3.52)

It is extremized for e1 = e2 = e3 = 0, and it is a non-BPS solution. The corresponding

entropy is:

V(2)|extr = ρ2 . (3.53)

3. a1 = a2 = a3 = b = 1
2 .

This solution requires that the phase of the singlet charge X be fixed to α = π:

X = −ρ. We then have:

{

W(3) = 1
2 (e1 + e2 + e3 + ρ)

α = π .
(3.54)

W is extremized for: e1 = e2 = e3 = e, X = −e. In this case the entropy is

V(3)|extr = 4e2 (3.55)

This is also a non-BPS extremal solution.

Note that since the bosonic sector of the N = 6 theory also describes an N = 2 model,

the three solutions above are also solutions of the equivalent N = 2 model based on the

coset SO∗(12)/U(6). In this case, however, the singlet charge X is the central charge

corresponding to the N = 2 graviphoton, while the ZAB are matter charges, so that the

first two solutions are interchanged in the N = 2 version: the first one is non-BPS while

the second one is the BPS solution.

3.2.3 The prepotential for the N = 8 theory

The scalar manifold of the N = 8 theory is E7(−7)/SU(8). It is not a Kähler manifold,

and it is spanned by the vielbein PABCD = 1
4!ǫABCDEFGHP

EFGH
(with A = 1, . . . 8). The
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central charges of this theory belong to an antisymmetric matrix ZAB = −ZBA. They obey

the differential relations:

∇ZAB =
1

2
PABCDZ

CD
. (3.56)

Since for this theory, differently from the other four dimensional cases, the holonomy group

does not contain a U(1) factor, when the antisymmetric matrix ZAB is put in normal form

via an SU(8) rotation, it still depends on an overall phase. Therefore we can write:

ZAB = ei α

4









e1 0 0 0

0 e2 0 0

0 0 e3 0

0 0 0 e4









⊗
(

0 1

−1 0

)

. (3.57)

in terms of the four real (non negative) skew-eigenvalues e1, e2, e3, e4 (er = |Zr|, r =

1, . . . , 4) and of the phase α. The moduli er of the skew-eigenvalues are related to the

following SU(8) invariants:



















I1 ≡ 1
2ZABZ

AB
= (e1)

2 + (e2)
2 + (e3)

2 + (e4)
2

I2 ≡ 1
2ZABZ

BC
ZCDZ

DA
= (e1)

4 + (e2)
4 + (e3)

4 + (e4)
4

I3 ≡ −1
2ZABZ

BC
ZCDZ

DE
ZEF Z

FA
= (e1)

6 + (e2)
6 + (e3)

6 + (e4)
6

I4 ≡ 1
2ZABZ

BC
ZCDZ

DE
ZEF Z

FG
ZGHZ

HA
= (e1)

8 + (e2)
8 + (e3)

8 + (e4)
8 .

(3.58)

The differential relations among the dressed charges still have a simple expression when

written in terms of the skew-eigenvalues. We find indeed:











































∇re1 = Re
[

e−i α

2 (P1,re2 + P2,re3 + P3,re4)
]

∇re2 = Re
[

e−i α

2 (P1,re1 + P2,re4 + P3,re3)
]

∇re3 = Re
[

e−i α

2 (P1,re4 + P2,re1 + P3,re2)
]

∇re4 = Re
[

e−i α

2 (P1,re3 + P2,re2 + P3,re1)
]

(3.59)

where P1,r = P1234,r, P2,r = P1256,r, P3,r = P3456,r are the components of the scalar vielbein

appearing in (3.59) when the central charge is written in normal form.

We then propose, for the prepotential W , the form

W = a1e1 + a2e2 + a3e3 + a4e4 , (3.60)

giving, for its gradient in normal form:

∇W = Re
{

P1

[

e−i α

2 (a1e2 + a2e1) + ei α

2 (a3e4 + a4e3)
]

+

+P2

[

[e−i α

2 (a1e3 + a3e1) + ei α

2 (a2e4 + a4e2)
]

+

+P3

[

[e−i α

2 (a1e4 + a4e1) + ei α

2 (a2e3 + a3e2)
]}

, (3.61)
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where P1, P2, P3 are the scalar vielbein 1-forms in normal form. Using (3.56), eq. (3.60)

gives, for the right-hand side of (2.22):

W 2 + 2 grs∂rW∂sW = (a2
1 + a2

2 + a2
3 + a2

4)
(

e2
1 + e2

2 + e2
3 + e2

4

)

+2e1e2(a1a2 + a3a4 cos α) + 2e3e4(a1a2 cos α + a3a4)

+e1 → e2 → e3 → e4 → e1 . (3.62)

This reproduces the result for the black-hole potential of supersymmetric theories,

V = I1 = e2
1 + e2

2 + e2
3 + e2

4 , (3.63)

if










































a2
1 + a2

2 + +a2
3 + a2

4 = 1

a1a2 + a3a4 cos α = 0

a1a2 cos α + a3a4 = 0

a1a3 + a2a4 cos α = 0

a1a3 cos α + a2a4 = 0

a2a3 + a1a4 cos α = 0

a2a3 cos α + a1a4 = 0 .

(3.64)

This system is formally equivalent to (3.49) if we replace a4 with the singlet coefficient b

and if the overall phase in ZAB is reinterpreted as the N = 6 singlet phase. The solutions

can be found following the N = 6 approach, paying attention to the fact that since here we

consider the four charges on the same footing, the BPS and the first non-BPS solutions of

the N = 6 case become equivalent in the N = 8 version and correspond both to the BPS

solution of the N = 8 case. Therefore now the system allows only for two inequivalent

solutions.

1. All the a′is vanish except one, say a1: a1 = 1, a2 = a3 = a4 = 0.

In this case the prepotential encoding the solution has the form:

W(1) = e1 , (3.65)

which is extremized (see (3.61)), for e1 = e, e2 = e3 = e4 = 0. The Bekenstein-

Hawking entropy is:

V(1)|extr = e2 . (3.66)

This is the BPS solution.

2. a1 = a2 = a3 = a4 = 1
2 .

This solution requires that the overall phase of the central charge in the normal form

be fixed to α = π. We then have
{

W(2) = 1
2(e1 + e2 + e3 + e4)

α = π
(3.67)

which is extremized for e1 = e2 = e3 = e4 = e, α = π. In this case the entropy is

V(2)|extr = 4e2 (3.68)

This is a non-BPS extremal solution.
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3.2.4 The N = 2 case

The vector multiplet moduli space of N = 2 theory is given by special geometry, and allows

σ-models which are not in general homogeneous spaces. Since our ansatz for W is given in

terms of invariants of the representation of the isotropy group of the scalar manifold which

the dressed charges belong to, a general result here is not easy to obtain. However, we

know that the scalar manifold is embedded in the coset MSK ⊂ Sp(2n + 2)/U(n + 1) due

to the symplectic embedding. The n + 1 dressed charges (Z,Zi) = ZA compose a vector

of U(n + 1). For a general special manifold there are many U(n + 1)-invariants (the only

request is to build coordinate invariants of Kähler weight zero) which can be constructed

in terms of Z and Zi out of gi, Cijk, and/or their derivatives and products.

For special manifolds which are coset spaces G/H, the invariants are built in terms of

the invariant tensors of H, and the result is found by a case by case inspection.

In the minimal case SU(1, n)/U(n), where the Cijk ≡ 0, the procedure to find the

prepotential is straightforward. Indeed in this case we only have the 2 possible invariants

e2 = ZZ and ρ2 = ZiZg
i, so that

W = ae + bρ. (3.69)

Using the differential relations of special geometry on (3.69) we find

VBH = (a2 + b2)(e2 + ρ2) + 2abeρ (3.70)

which coincides with the supersymmetric one

VBH = |Z|2 + ZiZg
i (3.71)

for

a2 + b2 = 1

ab = 0 (3.72)

This system has two independent solutions corresponding to the two attractors:

1. a = 1, b = 0. In this case the prepotential encoding the solution has the form

W(1) = e which is extremized for Zi = 0. The Bekenstein-Hawking entropy is

V(1)|extr = e2 (3.73)

This is the BPS solution.

2. a = 0, b = 1. W(2) = ρ which is extremized for Z = 0. In this case the entropy is

V(2)|extr = ρ2 (3.74)

This is a non-BPS extremal solution.
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As a second example we may analyze the special manifold SO∗(12)/U(6) from the

N = 2 point of view. In this case the flat index I is identified with the antisymmetric couple

AB, and the C-tensor, with flat indices is identified with the invariant tensor ǫABCDEF [15].

We expect the following invariants to be involved: ZZ, ZIZ
I
, Z

J
Z

K
ZLZMCIJKCILM ,

|ZIZJZKCIJK |2. They are in fact related to the invariants of SO∗(12) introduced in (3.43)

by:















ZIZ
I

= I1

ZZ = I2

Z
J
Z

K
ZLZMCIJKCILM ∝

(

I2
1 − I3

)

|ZIZJZKCIJK|2 ∝
(

I3
1 − 3I1I3 + 4I4

)

.

(3.75)

We may then give for the prepotential exactly the same Ansatz (3.45) as for the N = 6 case

with er and ρ given in terms of the N = 2 invariants (3.75) through (3.43), finding exactly

the same solutions as in section 3.2.2. As already discussed there, the only difference is

that, since in the N = 2 interpretation the singlet X is in fact the central charge while

the ZAB = ZI are the matter charges, the meaning of the first two attractor solutions

enumerated in section 3.2.2 is now interchanged: the BPS one is the second solution, while

the first is now non-BPS.

Other examples are given in [14].

4. Concluding remarks and speculations on the non extremal case

In this paper we have dealt with the problem of finding, in four dimensional extended

supergravity, the analogue, for non-BPS extremal black holes, of the first order differential

equations which encode the attractor mechanism for BPS black holes and which imply the

second order field equations.

We have given a general Ansatz for the prepotential W which reproduces all the known

attractors in N ≥ 3 extended supergravity.

In this concluding section, we discuss a possible extension of our analysis to the non

extremal case c 6= 0. In this more general situation, we may argue that a possible general-

ization of the expression for the prepotential W might include an explicit dependence on

the evolution parameter τ , that is:

U̇ = W (Φ, τ) eU . (4.1)

Indeed, differentiating (2.12) with respect to τ , we find:

Ü = (U̇)2 + ẆeU , (4.2)

where now:

Ẇ = Φ̇r∂rW + ∂τW . (4.3)

The (on-shell) expression for VBH is still formally the same as for the extremal case:

VBH = W 2 + e−UẆ . (4.4)
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However, when inserted in (2.6) the above expression now gives (using (2.4)):

Ü − (U̇)2 =
(

Φ̇r∂rW + ∂τW
)

eU =
1

2
grsΦ̇

rΦ̇s − c2 . (4.5)

For Φ̇r 6= 0, eq. (4.5) admits the particular solution

{

Φ̇r = 2 eU grs ∂sW

∂τW = −c2e−U . (4.6)

The integration of the second equation in (4.6) gives

W 2(Φ, U) = c2e−2U + W 2
0 (Φ) . (4.7)

Eq. (4.6) reproduces the correct description of non-extremal black holes near the hori-

zon. Indeed, given the general form (2.2) for the space-time metric, for τ → −∞ the

leading behavior of a generic charged black-hole solution is

e−2U ∼ A

4π

(

sinh(cτ)

c

)2

(4.8)

so that

W = − d

dτ
e−U = − cosh(cτ)

√

A

4π
(4.9)

giving

∂τW = −c sinh(cτ)

√

A

4π
= −c2e−U . (4.10)

Note that (4.9) may also be written as

W 2 =
A

4π

(

1 + sinh2(cτ)
)

=
A

4π
+ c2e−2U (4.11)

which coincides with (4.7) for W 2
0 = A

4π
.

For the non-extremal cases where eqs. (4.6) hold, the field equations for the scalar

sector are in fact still first order as for the extremal case. To show this, it is however

necessary to make a slight modification to the effective potential. Indeed, using (4.6) the

effective potential reads

VBH = W 2 + 2 grs ∂rW ∂sW − c2e−2U . (4.12)

By inserting eqs. (4.6) in the second order evolution equation for the scalars, eq. (2.5),

we actually find an inconsistency. However, since the expression (4.4) for the black-hole

potential is an on-shell relation, any expression for VBH given by

VBH = W 2 + 2 grs ∂rW ∂sW − c2e−2U + α e−U (∂τW + c2e−U ) (4.13)

is equivalent to (4.12). If we redo the calculation of the field equations for the scalars (2.5)

with the parametric expression (4.13), we find that for α = 2 it is automatically solved
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when we use the Ansatz (4.6) for Φ̇r. For all the cases where eqs. (4.6) hold, we then have

the following expression for the effective potential in terms of W :

VBH = W 2 + 2 grs ∂rW ∂sW + 2∂τWe−U + c2e−2U (4.14)

By inserting the explicit expression (4.7) in (4.14) we find

VBH = W 2
0 + 2 grs ∂rW0 ∂sW0 −

c2e−2U

W 2
0 + c2e−2U

2 grs ∂rW0 ∂sW0 . (4.15)

Note that the extrema of the prepotential W do not extremize VBH, corresponding to the

fact that for non-extremal black holes, the attractor mechanism is not expected to be at

work nor the horizon to be a fixed point for the scalar fields.

However, the expression (4.15) for the effective potential has the feature of containing

an explicit dependence on the evolution parameter τ . Such behavior could be acceptable for

purely bosonic theories such as fake supergravity [17, 18]. For black holes in supersymmetric

theories this clashes with the request that the effective potential be identified with the

general expression (2.7), where it depends on τ only through the scalars fields. We then

have to assume that, in the supersymmetric case, (4.15) is rigorously valid only for the

“double non-extremal” cases of constant scalars. For more general solutions, at a finite

distance from the black-hole horizon we then expect eq. (4.6) to receive corrections. For

completely general non-extremal cases, we do not expect to have a first-order description

in terms of a prepotential.

As a final remark, let us recall that in the BPS case the effective lagrangian (2.9) may

be written in terms of a sum of squares, as discussed in [4, 14]. We want to give a similar

treatment for general extremal black holes and for all the cases where (4.6) hold and the

effective potential takes the form (4.14). To this aim, we consider the following quantity:

K = (U̇ − WeU)2 +
1

2
grs(Φ̇

r − 2grℓ∂ℓW )(Φ̇s − 2gsm∂mW ) ≥ 0 (4.16)

Using (4.14) we find:

K = Leff − R , (4.17)

where

R = −
[

d

dτ
(2eU W ) + c2

]

= − d

dτ
(2eUW + c2τ) . (4.18)

Eq. (4.17) implies that the effective lagrangian Leff is bounded from below:

Leff ≥ − d

dτ
(2eUW + c2τ) (4.19)

The extremum value Leff = R is realized on-shell for






U̇ = WeU

Φ̇r = 2grℓ∂ℓW

∂τW = −c2e−U

(4.20)
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Under our hypothesis, (4.6), eqs. (4.20) are always verified and (4.19) then implies, on-shell,

that

Leff = − d

dτ
(2eUW + c2τ) (4.21)

is a topological quantity characterizing the extremal solution

Son−shell =

∫ 0

−∞
dτLeff = −[2U̇ + c2τ ]τ=0

τ→−∞ = −2(MADM − c) + 2c2τ |−∞ . (4.22)

The non extremal infinite contribution from c2 may be understood as a “vacuum energy”

contribution to the action.

Our result generalizes the argument for “non-extremal but BPS solutions” discussed

in [18] to cases where the scalar fields have a non trivial radial evolution. In [18], it

is shown that the effective two dimensional model describing the non-extremal but BPS

black hole has a supersymmetric completion where the first order equations play the role

of Killing spinor equations, even if there is an obstruction to the four dimensional uplift of

this effective supersymmetric model. It would be interesting to perform the same analysis

for the class of non-extremal black holes defined by the first order equations (4.6). This is

left to a future investigation.
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