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FIRST-ORDER METHODS FOR THE IMPATIENT: SUPPORT

IDENTIFICATION IN FINITE TIME WITH CONVERGENT

FRANK–WOLFE VARIANTS\ast 
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Abstract. In this paper, we focus on the problem of minimizing a nonconvex function over the
unit simplex. We analyze two well-known and widely used variants of the Frank–Wolfe algorithm
and first prove global convergence of the iterates to stationary points, both when using exact and
Armijo line search. Then we show that the algorithms identify the support in a finite number of
iterations (the identification result does not hold for the classic Frank–Wolfe algorithm). This, to
the best of our knowledge, is the first time a manifold identification property has been shown for
such a class of methods.
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1. Introduction. The minimization of a (possibly nonconvex) function over the
probability simplex is a problem arising in many different contexts such as, e.g.,
machine learning, statistics, and economics (see, e.g., [7, 11] for an overview of real-
world applications). When dealing with this kind of problem, Frank–Wolfe variants
(see, e.g., [16] and references therein) guarantee good scalability thanks to the way
they handle the feasible set, and also give a sparse representation of the iterates, thus
offering a good alternative to projected gradient algorithms. Despite this, some may
argue that projected gradient methods still represent the best choice in the considered
framework, since they can identify the sparsity pattern, i.e., the final set of nonzero
variables, in a finite number of iterations (under some specific assumptions). This
feature is particularly useful if the solution of the problem is sparse and we just want to
find its support, since it means we do not need to run the algorithm until convergence.
It is also important when trying to speed up a given algorithm. Indeed, after we
identify the set of nonzero variables, we could simply apply some more sophisticated
Newton-like method over the lower-dimensional space those variables describe. Such
a feature may also help to develop suitable support identification/active-set strategies
like the ones described in, e.g., [2, 4, 9, 10, 12, 14].

There exists a considerable number of papers analyzing support/active-set iden-
tification properties of optimization methods. Bertsekas first showed in [1] that the
projected gradient method identifies the sparsity pattern in a finite number of iter-
ations when using nonnegativity constraints. In [6] the authors showed that some
simple algorithms (including projected gradient) would, in a finite number of itera-
tions, identify the face of a polyhedral feasible region on which the solutions to an
optimization problem occur. These results were generalized in [24] to the case of
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nonpolyhedral convex sets. Analysis for nonconvex constraints is reported in [5, 15].
The support identification property has also been established for other algorithms
like certain coordinate descent and stochastic gradient methods [18, 25], proximal
gradient methods (see, e.g., [19, 21]), and sequential minimal optimization methods
for support vector machine (SVM) training [22]. In [7], the problem of minimizing a
convex function over the probability simplex is considered, and coreset-based results
are reported for fully corrective versions of some Frank–Wolfe variants. Recall that a
coreset is a face of the simplex with the property that the minimum of the function
on the face is a good approximate solution of the full problem. It is further important
to remark that fully corrective algorithms heavily rely on the fact that a minimum
of the function over a given face can be calculated at each iteration. Hence, those
algorithms cannot be considered when dealing with nonconvex problems.

In the present paper, we consider two well-known variants of the Frank–Wolfe al-
gorithm, namely away-step Frank–Wolfe [23] and pairwise Frank–Wolfe [16, 20], and
prove global convergence of their iterates to stationary points when using exact or
Armijo line search (in the sense of characterizing all accumulation points of iterates
by stationarity), and moreover global convergence for the full iteration sequence for
the away-step variant. These results then enable us to prove support identification in
a finite number of iterations for those algorithms. More specifically, when considering
a convergent sequence (xk) generated by one of those Frank–Wolfe variants, we have
that it converges to a stationary point x̄. Furthermore, we can be sure the iterates xk

will match the sparsity pattern of x̄ when k is sufficiently large (if strict complemen-
tarity holds at x̄). This, to the best of our knowledge, is the first time that a support
identification result is proved for Frank–Wolfe-like algorithms.

This result is quite surprising if we take into account the fact that the classic
Frank–Wolfe algorithm does not guarantee support identification in finite time. We
will give some examples later on (see section 4) where all iterates generated by the
algorithm have full support (i.e., the number of nonzero coordinates is equal to the
number of variables in the problem), and the limit point of the iterate sequence does
not.

The paper is organized as follows. After a preliminary analysis of the problem in
section 2, we describe in depth the algorithmic framework in section 3. In section 4 we
establish global convergence and the support identification property of the methods.
Finally, in section 5, we draw some conclusions.

2. Preliminary analysis of the problem. Denoting by e = (1, . . . , 1)\top the
n-dimensional vector with all entries equal to one, the problem we consider here is
the following:

(2.1) min
x\in ∆

f(x),

where f : Rn \rightarrow R and ∆ = \{ x \in R
n : e\top x = 1, x \geq 0\} is the probability simplex. A

class of C2-objective functions f including all quadratic functions will be considered
in this paper. For any fixed x \in ∆ and any feasible direction d (we will construct d
such that [0, 1] \subseteq Ifeas(x, d) := \{ \alpha \in R : x+ \alpha d \in ∆\} always holds), define

\varphi x
d(\alpha ) = f(x+ \alpha d) , \alpha \in Ifeas(x, d),

with derivatives \̇varphi x
d(\alpha ) = d\top \nabla f(x+ \alpha d) and \varphi x

d(\alpha ) = d\top \nabla 2f(x+ \alpha d)d.
We now give a key assumption on the curvature of \varphi x

d that will be needed to
prove convergence of the iterates (see subsection 4.2). As we will see later on, this
will guarantee that iteration is homotopical for the algorithms we analyze in the paper.

D
o
w

n
lo

ad
ed

 0
2
/2

4
/2

1
 t

o
 1

4
7
.1

6
2
.2

2
.6

6
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SUPPORT IDENTIFICATION IN FRANK–WOLFE VARIANTS 2213

Assumption 2.1. Any \varphi x
d is either concave or strictly convex over Ifeas(x, d). Fur-

thermore, curvature should be bounded away from zero in the strictly convex case
along descent directions: to be more precise, for all x \in ∆ and all d with nonconcave
\varphi x
d we ask existence of \eta d > 0 such that

(2.2) \eta d \leq \varphi x
d(\alpha ) for all \alpha \in Ifeas(x, d) if \̇varphi 

x
d(0) < 0 .

All quadratic functions f(x) = x\top Qx + c\top x, where Q is a possibly indefinite
symmetric matrix, satisfy (2.2) with \eta d = d\top Qd for all x \in ∆. But many more
functions f may meet the requirements of Assumption 2.1, for example1 the function
f(x) = c\top x+

\sqrt{} 
x\top Qx for indefinite but strictly (co)positive Q (similar functions are

used in volatility modeling). Then

[(x+ \alpha d)\top Q(x+ \alpha d)]3/2\varphi x
d(\alpha ) = (x\top Qx)(d\top Qd) - (d\top Qx)2

does not depend on \alpha but can change sign with varying d.
For proving global convergence of the methods and support identification results

(see section 4), we need an essential global estimate implied by continuity of \nabla 2f over
∆ (a set of diameter

\surd 
2) made explicit in the following observation.

Observation 2.1. For all directions d with \| d\| \leq 
\surd 
2 and all \alpha \in Ifeas(x, d) we

have bounded curvatures \varphi x
d(\alpha ), or, slightly more generally, \| \nabla 2f(x)\| spec \leq K for all

x \in ∆ with the spectral norm \| \cdot \| spec, implying

(2.3) | \varphi x
d(\alpha ) | = | d\top \nabla 2f(x+ \alpha d)d | \leq 2K for all x \in ∆ if \| d\| \leq 

\surd 
2 .

We further notice that minimizing a function h(x) over a polytope P can be
written as problem (2.1). Let V =

\bigl[ 
v1, . . . , vm

\bigr] 
\in R

n\times m be the matrix whose
columns are the vertices of P . Since any point y \in P can be expressed as a convex
combination of the columns of V , the problem min\{ h(y) : y \in P\} can be rewritten
as the problem min\{ f(x) = h(V x) : x \in ∆\} . We note that

1. x̄ is a stationary point for f over ∆ (cf. (3.1) below) if and only if ȳ = V x̄ is
a stationary point for h over P , i.e., it satisfies the KKT conditions;

2. d is a descent direction for f at x \in ∆ if V d is one for h at y = V x \in P ; and
3. condition (2.2) carries over from h to f too, as \nabla 2f(x) = V \top \nabla 2h(V x)V .

3. Frank–Wolfe variants for minimization over the simplex. In this sec-
tion, we describe two well-known Frank–Wolfe variants that can be used to minimize
a function over the probability simplex. In order to do that, we report below the
generic scheme related to those iterative algorithms (see Algorithm 3.1). Beforehand
we recall that x\ast \in ∆ is a stationary point for the problem (2.1) if and only if

(3.1) \nabla rf(x
\ast ) \geq \nabla f(x\ast )\top x\ast for all r with equality if x\ast 

r > 0 .

By construction, either the algorithm stops after finitely many iterations at a
stationary point, or else the generated sequence takes infinitely many values in ∆ as
f(xk+1) < f(xk).

3.1. Frank–Wolfe-type directions. At every iteration k of Algorithm 3.1, we
compute, at step 4, a feasible descent search direction dk that is used to generate the
new iterate xk+1. We describe here the different types of directions that can be used

1We are grateful to Werner Schachinger who pointed to this in a personal communication.
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Algorithm 3.1 Line-search algorithmic scheme.

1 Choose a point x0 \in ∆
2 For k = 0, 1, . . .
3 If xk is a stationary point (3.1), then STOP
4 Compute a feasible descent direction dk at xk

5 Compute a step size \alpha k \in (0, 1] via line search for improving the objective
6 Set xk+1 = xk + \alpha kd

k

7 End for

in Algorithm 3.1. We indicate the set of all indices related to the coordinates of vector
x by I = \{ 1, . . . , n\} , and by Sk = \{ i \in I : xk

i > 0\} we denote the support of xk.
The Frank–Wolfe and the away-step directions (see, e.g., [13, 16]) computed in

xk are, respectively,

dx
k

FW = e\̂imath  - xk, \̂imath \in Argmin
i\in I

\bigl\{ 
\nabla if(x

k)
\bigr\} 
,(3.2)

dx
k

A = xk  - e\jmath , \jmath \in Argmax
j\in Sk

\bigl\{ 
\nabla jf(x

k)
\bigr\} 
.(3.3)

We further indicate by xk
\jmath the \jmath th coordinate of xk, where \jmath is defined as in (3.3).

Taking into account (3.2) and (3.3), we consider the following two search directions.

(AFW) The away-step Frank–Wolfe direction:

dx
k

AFW =

\left\{ 
   
   

dx
k

FW if \nabla f(xk)\top dx
k

FW \leq \nabla f(xk)\top dx
k

A ,

xk
\jmath 

1 - xk
\jmath 

dx
k

A otherwise.

(PFW) The pairwise Frank–Wolfe direction:

dx
k

PFW = xk
\jmath (d

xk

FW + dx
k

A ) = xk
\jmath (e\̂imath  - e\jmath ) ,

where \̂imath and \jmath are defined as in (3.2) and (3.3), respectively.

It is easy to verify that all above directions are strict descent directions, i.e., they
satisfy \̇varphi x

d(0) = \nabla f(x)\top d < 0.

3.2. Computation of the step size. In the framework of Algorithm 3.1, given
x \in ∆ and a descent direction d at x, we aim at the largest (global) minimizer \alpha x

d > 0
of \varphi x

d(\alpha ) over (0, 1], i.e.,

(3.4) \alpha x
d := maxArgmin

\alpha \in (0,1]

\varphi x
d(\alpha ) .

Obviously, any global interior minimizer of \varphi in (0, 1) satisfies the first-order condition

0 = \̇varphi x
d(\alpha 

x
d) = \̇varphi x

d(0) + \alpha x
d\varphi 

x
d(\̃alpha )

for some \̃alpha \in [0, 1] depending on d and x. Hence, if \varphi x
d(\̃alpha ) > 0 we have

(3.5) \alpha x
d =

 - \̇varphi x
d(0)

\varphi x
d(\̃alpha )

.
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3.2.1. Exact and Armijo’s line search. Exact line search chooses, at a given

iteration k, the largest minimizer of \varphi xk

dk (\alpha ) over (0, 1], that is

(3.6) \alpha k := \alpha xk

dk defined as in (3.4) for x = xk and d = dk .

Unless the function \varphi xk

dk has some special structure (e.g., convexity/concavity),
determining the step size in (3.6) might in general be an expensive task. More practical
strategies perform an inexact line search to identify the step size giving sufficient
reductions in the objective function at a minimal cost. A classic example is represented
by the Armijo method (see, e.g., [3] and references therein). This method iteratively
shrinks the step size in order to guarantee a sufficient reduction of the objective
function. It represents a good way to replace exact line search in cases when it gets too
costly. In practice, we fix parameters \delta \in (0, 1) and \gamma \in (0, 1

2 ), and start with maximal
feasible step size equal to one. We then try steps \alpha = \delta m with m \in N0 = \{ 0, 1, 2, . . .\} 
until the sufficient decrease inequality

(3.7) f(xk + \alpha dk) \leq f(xk) + \gamma \alpha \nabla f(xk)\top dk

is satisfied, i.e., we choose

m(xk, dk) := min \{ m \in N0 : (3.7) is satisfied for \alpha = \delta m\} < \infty 

and set

(3.8) \alpha k = \delta m(xk,dk) as well as xk+1 = xk + \alpha kd
k .

Observe that under Assumption 2.1 on the curvature of \varphi x
d , all step-size variants we

discuss here have in common that a full feasible step is always taken except in the
case of strictly convex \varphi x

d , where \varphi x
d(\alpha ) > 0 for all \alpha \in [0, 1]. So \alpha k < 1 is possible

only if \varphi xk

dk (0) > 0 for any strict descent direction dk at xk.

3.2.2. Theoretical properties of line searches. Now we prove that function
f reduces when moving from xk to xk+1, and that the sequence of the directional
derivatives along the search direction converges to zero when using the Armijo rule.
We will further see that a similar result also holds for the exact line search.

Proposition 3.1. Let (xk) be the sequence generated by Algorithm 3.1 using the
Armijo line search defined in (3.8) with any strict descent direction dk satisfying
\| dk\| \leq 

\surd 
2. Then we have that

(a) if xk+1 \not = xk, then f(xk+1) < f(xk);
(b) if xk+1 \not = xk for all k \in N, then limk\rightarrow \infty \nabla f(xk)\top dk = 0.

Proof. We first notice that in a finite number of steps the Armijo line search
finds a step satisfying condition (3.7). Then, due to the fact that dk is such that
\nabla f(xk)\top dk < 0, we get that

f(xk+1) < f(xk).

Using again (3.7), we have

(3.9) f(xk) - f(xk+1) \geq \gamma \alpha k| \nabla f(xk)\top dk| .

Since f(xk) is monotonically decreasing and bounded in k, we can write

(3.10) lim
k\rightarrow \infty 

\alpha k| \nabla f(xk)\top dk| = 0.
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Let us consider, by contradiction, that (b) does not hold. In this case, due to the fact
that \{ \nabla f(xk)\top dk\} is bounded, there exists an infinite subsequence kj such that

(3.11) lim
j\rightarrow \infty 

\nabla f(xkj )\top dkj =  - \xi < 0

with \xi > 0. Considering the limit in (3.10), we need to have

(3.12) lim
j\rightarrow \infty 

\alpha kj
= 0.

Using compactness of the feasible set ∆, we know that it is possible to get a subse-
quence (for ease of notation we again call it kj) such that

(3.13) lim
kj\rightarrow \infty 

xkj = \widehat x and lim
kj\rightarrow \infty 

dkj = \widehat d .

Using continuity of the gradient, we thus can write

(3.14) lim
j\rightarrow \infty 

\nabla f(xkj )\top dkj = \nabla f(\widehat x)\top \widehat d =  - \xi < 0.

Taking into account (3.12), we in particular have for kj sufficiently large that

\alpha kj
< 1 .

Therefore

(3.15) f

\biggl( 
xkj +

\alpha kj

\delta 
dkj

\biggr) 
 - f(xkj ) >

\gamma \alpha kj

\delta 
\nabla f(xkj )\top dkj .

Using the mean value theorem we can replace the left-hand side and write

(3.16)
\alpha kj

\delta 
\nabla f(ykj )\top dkj > \gamma 

\alpha kj

\delta 
\nabla f(xkj )\top dkj

with ykj = xkj + \theta kj

\alpha kj

\delta dkj and \theta kj
\in (0, 1). Now, dividing by

\alpha kj

\delta > 0 and taking
into account that ykj \rightarrow \widehat x due to (3.12), we have

\nabla f(\widehat x)\top \widehat d \geq \gamma \nabla f(\widehat x)\top \widehat d ,
which finally gives us

\xi \leq \gamma \xi ,

thus contradicting \gamma < 1 and proving that (b) holds.

Proposition 3.1 still holds when considering a step size \̄alpha k \in (0, 1] satisfying the
following inequality:

f(xk + \̄alpha kd
k) \leq f(xk + \alpha kd

k),

where \alpha k is the step size obtained using the Armijo rule. Indeed, if the above inequal-
ity is satisfied, then (3.9) holds as well as the rest of the proof (see also Remark 5
in [10]). Hence, we can easily get the following result.

Corollary 3.2. Let (xk) be the sequence of points in the feasible set ∆ generated
by Algorithm 3.1 using the exact line search defined in (3.6) with any feasible descent
direction dk. Then we have that

(a) if xk+1 \not = xk, then f(xk+1) < f(xk);
(b) if xk+1 \not = xk for all k \in N, then limk\rightarrow \infty \nabla f(xk)\top dk = 0.

Summarizing Proposition 3.1 and Corollary 3.2, we get under the step-size choice
of (3.6) or (3.8) that

(3.17) \̇varphi k(0) = \nabla f(xk)\top dk \rightarrow 0 as k \rightarrow \infty .
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4. Convergence results. To clarify, let us stress that we use common termi-
nology: “global convergence” means that we establish the stationarity property for
all accumulation points of the sequence of iterates (xk), regardless of whether or not
there may be more than one accumulation point. By contrast, “iterates convergence”
means convergence of the full sequence (xk). Under mild assumptions which are
generically true,2 we can show that there is only one accumulation point (which then
enjoys stationarity by the global convergence results) if the sequence is generated by
the (AFW) rule.

4.1. Global convergence analysis. In this section, for every considered choice
of the direction dk, we establish global convergence to stationary points of the algo-
rithmic scheme described above. Since the arguments for the different step-size choices
vary slightly, we choose to split the treatment. However, in a effort to be concise, the
two search-direction choices are treated simultaneously.

Theorem 4.1. Let (xk) be a sequence generated by Algorithm 3.1, where
\bullet the search direction dk is computed according to the (AFW) or (PFW) rules,
\bullet the step size \alpha k is computed using the Armijo line search described in (3.8).

Then, either an integer k̄ \geq 0 exists such that xk̄ is a stationary point for prob-
lem (2.1), or else the sequence (xk) is infinite and every limit point x\ast of the sequence
is a stationary point (see (3.1)) for problem (2.1).

Proof. We first consider the case when the algorithm stops after a finite number
of iterations k̄. This can only happen if the condition at step 3 of Algorithm 3.1 is
satisfied, i.e., if no direction dAFW can be chosen, which is the case if and only if xk̄

is a stationary point.
Now we consider the case when the sequence (xk) is infinite. Arguing by con-

tradiction, assume that there is an i such that \nabla if(x
\ast ) < \nabla f(x\ast )\top x\ast . We again

distinguish cases.

Case 1 (not needed for (PFW)). There is a subsequence kj along which xkj \rightarrow x\ast 

and dkj = dx
kj

FW = eij  - xkj for all j, where ei denotes the ith column of the n \times n
identity matrix (and ij \in \{ 1, . . . , n\} is suitably chosen). Then

\̇varphi kj
(0) = \nabla f(xkj )\top dx

kj

FW = \nabla ijf(x
kj ) - \nabla f(xkj )\top xkj

\leq \nabla if(x
kj ) - \nabla f(xkj )\top xkj \rightarrow \nabla if(x

\ast ) - \nabla f(x\ast )\top x\ast < 0

as j \rightarrow \infty , contradicting (3.17).

Case 2(a). There is a subsequence kj along which xkj \rightarrow x\ast and such that there
is an \eta > 0 with

(4.1) xkj
rj \geq \eta for all j ,

where in the (AFW) case we have

(4.2) dkj =
x
kj
rj

1 - x
kj
rj

dx
kj

A =
x
kj
rj

1 - x
kj
rj

(xkj  - erj ),

whereas in the (PFW) case we have

(4.3) dkj = xkj
rj (d

xkj

FW + dx
kj

A ) = xkj
rj (e

r̃j  - erj )

2Namely, that there are only finitely many stationary points of the problem (2.1).
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with er̃j the Frank–Wolfe vertex and erj the away-step vertex. Then in the (AFW)
case, as

x
kj
rj

1 - x
kj
rj

\geq \eta 

1 - \eta 
> 0

holds for all j, we arrive at

1 - \eta 

\eta 
\̇varphi kj

(0) =
1 - \eta 

\eta 
\nabla f(xkj )\top dx

kj

A

\leq \nabla f(xkj )\top dx
kj

A \leq \nabla f(xkj )\top dx
kj

FW \leq \nabla if(x
kj ) - \nabla f(xkj )\top xkj

\rightarrow \nabla if(x
\ast ) - \nabla f(x\ast )\top x\ast < 0 as j \rightarrow \infty ,

again contradicting (3.17). Similarly, in the (PFW) case the contradiction is obtained
via

1

\eta 
\̇varphi kj

(0) =
1

\eta 
\nabla f(xkj )\top 

\Bigl( 
dx

kj

FW + dx
kj

A

\Bigr) 

\leq \nabla f(xkj )\top 
\Bigl( 
dx

kj

FW + dx
kj

A

\Bigr) 
\leq \nabla f(xkj )\top dx

kj

FW

\leq \nabla if(x
kj ) - \nabla f(xkj )\top xkj \rightarrow \nabla if(x

\ast ) - \nabla f(x\ast )\top x\ast < 0

as j \rightarrow \infty . Hence the only remaining possibility is now the following.

Case 2(b). If neither Case 1 nor Case 2(a) apply, any convergent subsequence
xkj \rightarrow x\ast with limit x\ast satisfies

(4.4) xkj
rj \rightarrow 0 as j \rightarrow \infty ,

where eventually (4.2) or (4.3) holds. Irrespective of the chosen direction, at least one
such sequence (sj) exists by the assumption that x\ast is a limit point of (xk). Consider
this subsequence and their immediate successors kj = sj + 1. By (4.2) or (4.3), we
know that

\| xsj+1  - xsj\| \leq \alpha sj max

\Biggl\{ \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
x
kj
rj

1 - x
kj
rj

dx
kj

A

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| , \| x
kj
rj (d

xkj

FW + dx
kj

A )\| 
\Biggr\} 

\leq 
\surd 
2

x
kj
rj

1 - x
kj
rj

\rightarrow 0

as j \rightarrow \infty , since \| dxkj

A \| = \| xkj  - erj\| \leq diam∆ =
\surd 
2 and likewise \| dxkj

FW + dx
kj

A \| =
\| er̃j  - erj\| \leq diam∆ =

\surd 
2. Therefore, also xsj+1 \rightarrow x\ast as j \rightarrow \infty , and we may also

consider (4.4) with (4.2) or (4.3) for the successor sequence kj = sj + 1. By suitably
thinning (sj) if necessary, we may and do assume that eventually rj = r for all j.

Then x
sj+1
r = 0 eventually holds because otherwise \alpha sj < 1 and Proposition A.2

applies, contradicting (4.4). Applying our conclusion (4.4) with (4.2) or (4.3) now to
kj = sj +1, we also see that an away-step xsj+1  - eh (or a PFW step involving eh as
an away-step vertex) with h \not = r is selected for k = sj + 1 (if j is large enough) with

the property (again, after suitable thinning) that x
sj+1
h \rightarrow 0 as j \rightarrow \infty , but we still

have, by construction of the away (or PFW) step, x
sj+2
r = 0 for all large enough j. So

again we have xsj+2 \rightarrow x\ast as j \rightarrow \infty , and hence an index t /\in \{ r, h\} would be chosen
for the away step at k = sj + 2, and, repeating the argument less than n times, no
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choice for dA would be left, which is absurd in view of the fact that the sequence is
infinite, whence neither Case 1 nor Case 2(a) applies. So the theorem is proved.

We close this section by proving global convergence of the Algorithm 3.1 when
using the exact line search for calculating the step size.

Theorem 4.2. Let (xk) be a sequence generated by Algorithm 3.1, where
\bullet the search direction dk is computed according to the (AFW) or (PFW) rules,
\bullet the step size \alpha k is computed using the line search described in (3.6).

Then, either an integer k̄ \geq 0 exists such that xk̄ is a stationary point for prob-
lem (2.1), or else the sequence (xk) is infinite and every limit point x\ast of the sequence
is a stationary point (3.1) for problem (2.1).

Proof. The proof is very similar to the one given for the Armijo line search. The
only difference is in Case 2(b), where we yield a contradiction by applying Proposi-
tion A.1.

4.2. Iterates convergence and support identification in finite time. We
start with a general observation, applicable in particular to the (AFW) and (PFW) di-
rections. All we need is that the conclusions of Theorems 4.1 and 4.2 hold, namely that
all accumulation points are stationary; with this property, any strict local minimizer
which is isolated among all stationary points can be shown to attract all sequences
generated by Algorithm 3.1 which start close enough to it. Conversely, if the limit
point attracts all iterates starting close enough to it, then necessarily this must be an
isolated stationary point and a strict local minimizer of f over ∆.

Note that the equivalence below holds irrespective of whether or not there are
nonstrict local solutions to (2.1).

Theorem 4.3. Let Assumption 2.1 hold. Consider Algorithm 3.1 with any de-
scent direction and any step size such that all accumulation points of generated se-
quences (xk) are stationary. Then the following two statements on a stationary point
p \in ∆ are equivalent:

(a) there is a p-neighborhood U \subseteq ∆ with no stationary point in U \setminus \{ p\} , and
f(x) > f(p) for all x \in U \setminus \{ p\} ;

(b) there is a p-neighborhood V \subseteq ∆ such that every sequence (xk) starting at
x0 \in V converges to p.

Proof. (a) \Rightarrow (b) Let \varepsilon > 0 be so small that B := \{ x \in ∆ : \| x - p\| \leq \varepsilon \} \subseteq U
and define

\sigma := min \{ f(x) : x \in ∆ , \| x - p\| = \varepsilon \}  - f(p) > 0 .

Then V := \{ x \in ∆ : f(x) < f(p) + \sigma , \| x - p\| < \varepsilon \} \subseteq U is relatively open in ∆ and
contains p, and therefore a neighborhood of p in ∆. We claim that any sequence
starting in V will remain there forever. Indeed, suppose xk+1 /\in V but xk \in V for
some k; then by convexity or concavity of f along conv(xk, xk+1) we have

(4.5) f(\lambda xk+1 + (1 - \lambda )xk) \leq f(xk) < f(p) + \sigma for all \lambda \in [0, 1] ,

so xk+1 /\in V would imply \| xk+1  - p\| \geq \varepsilon and hence \| \lambda xk+1 + (1 - \lambda )xk  - p\| = \varepsilon for
some \lambda \in (0, 1], contradicting the definition of \sigma . By compactness, all accumulation
points of (xk) must lie in B and thus in U . Since all of them are stationary by
assumption, there can only be one, namely p, which means that (b) holds.

(b) \Rightarrow (a) Choose U := V . By monotonicity and continuity, we have f(p) =
infk f(x

k) < f(x0) for all x0 \in U \setminus \{ p\} , a set which does not contain any stationary
points, as all sequences starting there have to converge to p by assumption.
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We thus have shown that in our model that every strict local solution is isolated
(among all alternative stationary points x̃ \in ∆), which generally is not the case.
Inspection of the proof of Theorem 4.3 reveals that the only essential property is that
the iteration is homotopical, i.e., the inequality on the left-hand side in (4.5) holds.
We can conclude that for all these homotopical iteration procedures, convergence to a
saddle point is highly unlikely, which is in line with recent findings in this research area
for other first-order methods; see, e.g., [17] and references therein. Note that most of
these papers deal with smooth transition maps (which facilitate characterization of
saddle points via the Jacobian matrix) while our transition maps lack even continuity.

Next we need an auxiliary observation which only applies to dAFW .

Lemma 4.4. Let Assumption 2.1 hold. Let \gamma = limk\rightarrow \infty f(xk) = infk\in N f(xk)
and assume \gamma = f(ei) for some i \in I. Consider a certain iteration counter k
with xk+1 \not = xk. Then the following implications hold for both step-size choices (3.6)
and (3.8):

(a) if dk = dx
k

FW = ei  - xk, then Algorithm 3.1 stops at k + 1;
(b) if xk

i > 0 and

dk =
xk
i

1 - xk
i

dx
k

A =
xk
i

1 - xk
i

(xk  - ei),

then xk+1
i = 0.

Proof. (a) By construction and assumption, we have

0 \leq f(xk+1) - \gamma \leq f(ei) - \gamma = 0,

and hence xk+2 = xk+1, which is a stationary point, using Proposition 3.1(a) or
Corollary 3.2(a).

(b) Suppose that \alpha k < 1; then \varphi k has to be strictly convex, and by smoothness,
f has to be strictly convex over the whole interval conv(xk+1, ei). But as assumed
above, we have f(ei) = \gamma \leq f(xk+1) < f(xk) in contradiction to the fact that
xk \in conv(xk+1, ei). So necessarily \alpha k = 1 and therefore xk+1

i = 0.

We proceed to establish a convergence result for the full sequence of iterates under
mild assumptions for the away-step Frank–Wolfe variant.

Theorem 4.5. Let Assumption 2.1 hold. Consider a sequence (xk) generated by
Algorithm 3.1 with step-size choice (3.6) or (3.8), and dAFW as descent direction.
Suppose that (xk) has finitely many accumulation points. Then it must converge:
there is a p \in ∆ such that xk \rightarrow p as k \rightarrow \infty .

Proof. The statement obviously needs a proof only if the sequence (xk) is infinite.
So suppose there are finitely many (pairs of) accumulation points, but at least two.
Choose pairwise disjoint neighborhoods around all of them and wait until all xk lie in
exactly one of these neighborhoods if k \geq k0. Then, arguing by contradiction, if xk

would not converge, there is a subsequence kj with k1 \geq k0 such that xkj \rightarrow p and
the immediate successors xkj+1 \rightarrow q \not = p as j \rightarrow \infty , which implies \̄alpha := infj \alpha kj

> 0.
Now, by thinning (kj) if necessary, we may and do assume that \alpha kj

\rightarrow \alpha \infty > 0 as
j \rightarrow \infty , and that there is an i \in I with dkj = ei  - xkj for all j, or else

dkj =
x
kj

i

1 - x
kj

i

(xkj  - ei)
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with x
kj

i > 0 for all j. Moreover, in this case we even get x
kj

i > c for all j and a
suitable constant c > 0 because

0 < \| q  - p\| = lim
j

\| xkj+1  - xkj\| \leq 
\surd 
2\alpha \infty lim

j

x
kj

i

1 - x
kj

i

=
\surd 
2\alpha \infty 

pi
1 - pi

.

Next suppose that eventually the step size is smaller than one, and we are in the
strictly convex case. Then, employing (3.17) and

(4.6) f(xk+1) - f(xk) = \varphi k(\alpha k) - \varphi k(0) = \alpha k

\Bigl[ 
\̇varphi k(0) +

\alpha k

2
\varphi k(\̂alpha k)

\Bigr] 
,

we obtain

(4.7) \varphi kj
(\̂alpha kj

) \rightarrow 0 .

Furthermore by continuity we have, for any \alpha \in Ifeas(p, e
i  - p),

\varphi kj
(\alpha ) \rightarrow (ei  - p)\top \nabla 2f((1 - \alpha )p+ \alpha ei)(ei  - p)

in the FW case, and, for any \alpha \in Ifeas(p, \mu (p - ei)),

\varphi kj
(\alpha ) \rightarrow \mu 2(p - ei)\top \nabla 2f((1 + \alpha \mu )p - \alpha \mu ei)(p - ei)

with \mu = pi

1 - pi
in the away step case. On the other hand, we can employ (4.7) in

all cases. Now by (2.2) in Assumption 2.1 for x = (1  - \alpha )p + \alpha ei, \alpha \in [0, 1], and by
choosing d = ei - p in the FW case or d = \mu (p - ei) in the away step case, we conclude
that f must be linear along conv(p, ei) with slope limj \̇varphi kj

(0) = 0, so constant, and
f(ei) = f(p) = infk f(x

k) results.
Now in the case of the FW direction, Lemma 4.4(a) would then yield the absurd

conclusion that Algorithm 3.1 stops even at iteration k1 + 1.

In the case of the away direction, we conclude by Lemma 4.4(b) that x
kj+1
i =

0. But since x
kj+1

i > 0, we must have an FW step dk = ei  - xk for some k \in 
\{ kj + 1, . . . , kj+1  - 1\} . Now we again invoke Lemma 4.4(a) to arrive at the contra-
diction that Algorithm 3.1 stops at iteration k + 1, using f(ei) = f(p) = infk f(x

k).
So we are left with the case that the step size eventually equals one. But then

the argument is even simpler: in the FW case, we stop at ei, and in the away case we

directly get x
kj+1
i = 0 and, as argued just before, stop again at ei at some iteration

counter k \in \{ kj + 1, . . . , kj+1  - 1\} as well.

As a corollary to Theorems 4.1, 4.2, and 4.5, we thus obtain a generic convergence
result for the iterates generated by Algorithm 3.1 for the away-step variant.

Corollary 4.6. Suppose that (2.1) admits only finitely many stationary points.
Then any sequence (xk) generated by Algorithm 3.1 with step-size choice (3.6) or (3.8),
and dAFW as descent direction, must converge: there is a p \in ∆ such that xk \rightarrow p as
k \rightarrow \infty .

Now we introduce three sets that will be useful when carrying out the analysis
related to support identification in finite time. More specifically, we call

S+(x) := \{ i \in I | \nabla if(x) > x\top \nabla f(x)\} ,
S - (x) := \{ i \in I | \nabla if(x) < x\top \nabla f(x)\} ,
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and

S0(x) := \{ i \in I | \nabla if(x) = x\top \nabla f(x)\} .
We hence report the announced results on support identification in finite time;

note that strict complementarity (again generically true) of the stationary point x̄
exactly means S̄ = S0(x̄) in the below theorem. Recall that S - (x̄) = \emptyset by (3.1).

Theorem 4.7. Consider a convergent sequence of iterates (xk), with supports
Sk = S(xk), generated by Algorithm 3.1 to the following specifications:

\bullet the search direction dk is computed according to the (AFW) or (PFW) rules;
\bullet the step size \alpha k is computed using the line search described in (3.6) or (3.8).

Define x̄ := limk\rightarrow \infty xk as well as S̄ := \{ i \in I : x̄i > 0\} , so that by stationarity (3.1)
of x̄ we have S̄ \subseteq S0(x̄). Then there is a finite k̄ such that

S̄ \subseteq Sk \subseteq S0(x̄) for all k \geq k̄ .

Proof. We can assume that xk = ei, with i \in I, cannot happen infinitely often.
Indeed, otherwise by Lemma 4.4 the algorithm would stop after a finite number of
iterations. So, we assume that xk \not = ei for k sufficiently large. Now, by continuity of
the gradient, we can find an iterate such that both the following inclusions hold:

S+(x̄) \subseteq S+(x
k) and S̄ \subseteq Sk .

From stationarity of x̄ we can further write S̄ \subseteq S0(x̄) = I \setminus S+(x̄). Hence, we have

S - (x
k) \subseteq I \setminus S+(x

k) \subseteq I \setminus S+(x̄) = S0(x̄),

implying

(4.8) S - (x
k) \subseteq S0(x̄) .

We claim now that once

(4.9) Sk \subseteq S0(x̄)

holds for some k, then (4.9) is guaranteed for all the following iterations. Indeed,
either Sk+1 = Sk \cup \{ i\} and i \in S - (x

k) \subseteq S0(x̄) or else the support is a subset of the
current support, i.e., Sk+1 \subseteq Sk. By contradiction to (4.9), let us assume that, when
k is sufficiently large, the set Sk \setminus S0(x̄) is never empty. Again, by continuity of the
gradient, we can choose a sufficiently large k0 to ensure existence of a positive value
\varrho > 0 such that

| \nabla f(xkj )\top (ei  - xkj )| < \varrho for all i \in S0(x̄) whenever k \geq k0 ,

and

\nabla f(xk)\top (er  - xk) > \varrho for all r \in Sk \setminus S0(x̄) = Sk \cap S+(x̄) whenever k \geq k0 .

Hence, for both direction variants (AFW) and (PFW), we have that er(k) is chosen
in the algorithm as an away-step vertex for some r(k) \in Sk \setminus S0(x̄) if k \geq k0. Further,
due to the finiteness of I, by considering a suitable subsequence kj we can assume

r(kj) = r \in Skj
\setminus S0(x̄) = Skj

\cap S+(x̄) .

By stationarity of x̄ we know r /\in S̄, so the rth coordinate of x̄ satisfies x̄r = 0.

Eventually, x
kj+1
r = 0 holds exactly because otherwise \alpha kj

< 1 and Proposition A.1
or Proposition A.2 apply, contradicting x

kj
r \rightarrow x̄r = 0. Repeating the same argument

for all other indices in Sk \setminus S0(x̄), the result is proved.
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As we pointed out in the introduction, the classic Frank–Wolfe algorithm does not
guarantee support identification in finite time. Below we report an example where all
iterates xk have full support (i.e., | Sk| = n) and the point x̄ does not (i.e., | S̄| < n).

Example 4.1 (bad behaviour of the Frank–Wolfe algorithm). We consider problem
(2.1) having a quadratic objective function

f(x) =
1

2
x\top Qx

with

Q =

\left[ 
  
6 0 6

0 3 3

6 3 10

\right] 
  .

It is easy to see that the solution in this case is the global minimizer x̄ = ( 13
2
3 0)\top .

If we choose as a starting point x0 = (0.1 0.3 0.6)\top , the Frank–Wolfe algorithm will
not be able to get an iterate with the same support as x̄ in finite time, neither via the
exact nor via the Armijo line search [8].

Moreover, the behaviour of this version may even be deceptive as the support of
the iterates is also eventually constant for this algorithm; indeed, either the iterates
coincide with a vertex ei infinitely often, so that monotonicity would imply finite
convergence to ei, or eventually no vertex is hit exactly during the iterations, so that
supports must (weakly) increase with k. By finiteness it follows that they remain
eventually constant, but, as the example shows, Sk may overestimate the correct
support S̄.

5. Conclusions. In this paper, we studied methods for solving minimization
problems over the probability simplex. More specifically, we analyzed two variants
of the Frank–Wolfe algorithm, namely away-step and pairwise Frank–Wolfe. We first
proved convergence of the iterates to stationary points both when using the exact
and Armijo line searches, and even convergence for the full sequence of iterates for
the away-step variant, under mild regularity assumptions. Then we showed that
both discussed variants of algorithms guarantee support identification in finite time,
a property shared by projected gradient methods. As a future development, it may be
worthwhile analyzing conditions which allow us to get explicit bounds on the number
of iterations required to identify the support correctly.

Appendix A. Auxiliary results.

Proposition A.1. Let (xsj ) \rightarrow x\ast as j \rightarrow \infty be a convergent subsequence gen-
erated by Algorithm 3.1 according to the (AFW) or (PFW) rules, where we write
djFW = dx

sj

FW and djA = dx
sj

A . We assume that for some fixed r we have, for all j,

\bullet dx
sj

AFW = x
sj
r

1 - x
sj
r

djA = x
sj
r

1 - x
sj
r

(xsj  - er) or dx
sj

PFW = x
sj
r (eij  - er),

\bullet the step size is computed using the line search described in (3.6) and satisfies
\alpha sj < 1,

\bullet one of the following cases holds:
1. there exists i such that \nabla if(x

\ast ) < \nabla f(x\ast )\top x\ast , or
2. there exists \varrho > 0 such that \nabla f(xsj )\top (er  - xsj ) > \varrho .

Then x\ast 
r > 0.
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Proof. Since \alpha sj < 1 we have that (3.5) holds for some \̃alpha kj
\in [0, 1]. So we arrive

via (2.3) at

x
sj
r

1 - x
sj
r

\geq \alpha sj

x
sj
r

1 - x
sj
r

=
 - \̇varphi sj (0)

\varphi sj (\̃alpha sj )

x
sj
r

1 - x
sj
r

=
 - \nabla f(xsj )\top djA

[djA]
\top \nabla 2f(xsj + \̃alpha kj

dsj )djA

\geq  - \nabla f(xsj )\top djA
2K

\geq  - \nabla f(xsj )\top djFW

2K
\geq \nabla f(xsj )\top xsj  - \nabla if(x

sj )

2K

\rightarrow \nabla f(x\ast )\top x\ast  - \nabla if(x
\ast )

2K
> 0 as j \rightarrow \infty 

if we assume that case 1 holds, and we also get the same inequality for j \rightarrow \infty in
case 2 since

 - \nabla f(xsj )\top djA > \varrho > 0 .

This implies x\ast 
r > 0 for the (AFW) rule and likewise

xsj
r \geq \alpha sjx

sj
r =

 - \̇varphi sj (0)

\varphi sj (\̃alpha sj )
xsj
r =

 - \nabla f(xsj )\top [djFW + djA]

[djFW + djA]
\top \nabla 2f(xsj + \̃alpha kj

dsj )[djFW + djA]

\geq  - \nabla f(xsj )\top [djFW + djA]

2K
\geq  - \nabla f(xsj )\top djFW

2K
\geq \nabla f(xsj )\top xsj  - \nabla if(x

sj )

2K

\rightarrow \nabla f(x\ast )\top x\ast  - \nabla if(x
\ast )

2K
> 0 as j \rightarrow \infty 

proves the result in case 1 with the (PFW) rule; the same inequality for j \rightarrow \infty holds
in case 2 since

 - \nabla f(xsj )\top [djFW + djA] >  - \nabla f(xsj )\top djA > \varrho > 0 .

Proposition A.2. Let (xsj ) \rightarrow x\ast as j \rightarrow \infty be a convergent subsequence gener-
ated by Algorithm 3.1 according to the (AFW) or (PFW) rules, where we abbreviate
djFW = dx

sj

FW and djA = dx
sj

A . We assume that for some fixed r we have, for all j,

\bullet dx
sj

AFW = x
sj
r

1 - x
sj
r

djA = x
sj
r

1 - x
sj
r

(xsj  - er) or dx
sj

PFW = x
sj
r (eij  - er),

\bullet the step size is computed using the Armijo line search described in (3.8) and
satisfies \alpha sj < 1,

\bullet one of the following cases holds:
1. there exists i such that \nabla if(x

\ast ) < \nabla f(x\ast )\top x\ast , or
2. there exists \varrho > 0 such that \nabla f(xsj )\top (er  - xsj ) > \varrho .

Then x\ast 
r > 0.

Proof. We first notice that for any \alpha \in [0, 1] and k = sj , by (2.3) we can write

f(xk + \alpha dk) \leq f(xk) + \alpha k\nabla f(xk)\top dk +
\alpha 2K

2
\| dk\| 2 .

So the sufficient decrease condition (3.7) would be satisfied if

f(xk) + \alpha \nabla f(xk)\top dk +
\alpha 2K

2
\| dk\| 2 \leq f(xk) + \gamma \alpha \nabla f(xk)\top dk ,

and the latter holds true if

\alpha \leq \alpha max
k :=

2(1 - \gamma )

K

| \nabla f(xk)\top dk| 
\| dk\| 2 .
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This gives us an interval [0, \alpha max
k ] of step sizes satisfying sufficient decrease. Now, if

\alpha k < 1 is chosen as the Armijo step size, then either \alpha k > \alpha max
k or else \alpha k \in [0, \alpha max

k ]
but then \alpha k

\delta > \alpha max
k as the step size \alpha = \alpha k

\delta would violate (3.7) by definition (3.8).
In both cases, we get

\alpha k > \delta \alpha max
k .

Now we consider the two different search directions, writing djFW = dx
sj

FW and djA =

dx
sj

A . For the (AFW) rule, case 1, we can write

x
sj
r

1 - x
sj
r

\geq \alpha sj

x
sj
r

1 - x
sj
r

> \delta \alpha max
sj

x
sj
r

1 - x
sj
r

=
 - \nabla f(xsj )\top djA

\| djA\| 2
2\delta (1 - \gamma )

K

\geq  - \nabla f(xsj )\top djA
2

2\delta (1 - \gamma )

K

\geq  - \nabla f(xsj )\top djFW

2

2\delta (1 - \gamma )

K

\geq \delta (1 - \gamma )

K

\bigl[ 
\nabla f(xsj )\top xsj  - \nabla if(x

sj )
\bigr] 

\rightarrow \delta (1 - \gamma )

K

\bigl[ 
\nabla f(x\ast )\top x\ast  - \nabla if(x

\ast )
\bigr] 
> 0 as j \rightarrow \infty ,

and the same inequality for j \rightarrow \infty can be obtained in case 2 since

 - \nabla f(xsj )\top djA > \varrho .

This implies x\ast 
r > 0. Similarly, for (PFW), case 1, we can write

xsj
r \geq \alpha sjx

sj
r > \delta \alpha max

sj xsj
r

=
 - \nabla f(xsj )\top [djA + djFW ]

\| djA + djFW \| 2
2\delta (1 - \gamma )

K

\geq  - \nabla f(xsj )\top [djA + djFW ]
\delta (1 - \gamma )

K

\geq  - \nabla f(xsj )\top dx
sj

FW

\delta (1 - \gamma )

K

\geq \delta (1 - \gamma )

K

\bigl[ 
\nabla f(xsj )\top xsj  - \nabla if(x

sj )
\bigr] 

\rightarrow \delta (1 - \gamma )

K

\bigl[ 
\nabla f(x\ast )\top x\ast  - \nabla if(x

\ast )
\bigr] 
> 0 as j \rightarrow \infty ,

and the same inequality holds for j \rightarrow \infty in case 2 since

 - \nabla f(xsj )\top [djFW + djA] >  - \nabla f(xsj )\top djA > \varrho > 0 .
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