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Smooth convex optimization

f ∗ = min
x∈Q

f (x)

where

• Q ⊂ Rn is a closed convex set

• f : Q → R is

1 convex:

f (x) ≥ f (y) + 〈∇f (y), x − y〉 ∀x , y ∈ Q

2 smooth with Lipschitz-continuous gradient:

f (x) ≤ f (y) + 〈∇f (y), x − y〉+
L(f )

2
‖x − y‖2

2 ∀x , y ∈ Q.

Notation: f ∈ F 1,1
L(f )(Q)
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First-order Methods

• Numerical methods using only values of the function and of
the gradient at some points.
This first-order information is given by an Oracle O.

• Oracle = Unit (Black-box) that computes f (xk) and ∇f (xk)
for the numerical method at each point xk :

(f (xk),∇f (xk)) = O(xk).

• Why FOM ?
Methods of choice for large-scale problems due to their cheap
iteration cost.

• In Smooth Convex Optimization, two main FOM:

1 Gradient method (GM)
2 Fast gradient method (FGM)
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Gradient Method

Very simple algorithm:

Initialization
Choose x0 ∈ Q

Iteration k ≥ 0

• (f (xk),∇f (xk)) = O(xk)

• xk+1 = arg minx∈Q [f (xk) + 〈∇f (xk), x − xk〉+ L(f )
2 ‖x − xk‖2

2]

Convergence rate in O( 1
k ) ⇒ Non-optimal FOM for F 1,1

L(f )(Q)
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Fast Gradient Method

Accelerated version of the gradient method due to Nesterov:
Let {αk}∞k=0 satisfying α0 ∈]0, 1], α2

k ≤
∑k

i=0 αi .
Initialization
Choose x0 ∈ Q

Iteration k ≥ 0

• (f (xk),∇f (xk)) = O(xk)

• yk = arg minx∈Q{f (xk) + 〈∇f (xk), y − xk〉+ L(f )
2 ‖y − xk‖2

2}
• zk = arg minx∈Q{

∑k
i=0 αi [f (xi ) + 〈∇f (xi ), x − xi 〉] +

L(f )
2 ‖x − x0‖2

2}
• τk = αk+1∑k+1

i=0 αi

• xk+1 = τkzk + (1− τk)yk

Convergence rate in O( 1
k2 ) ⇒ Optimal FOM for F 1,1

L(f )(Q)
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Exact Oracle for F 1,1
L(f )(Q)

If f ∈ F 1,1
L(f )(Q) then the output of the oracle

(f (y),∇f (y)) = O(y) is characterized by:

f (y)+〈∇f (y), x−y〉 ≤ f (x) ≤ f (y)+〈∇f (y), x−y〉+L(f )

2
‖x − y‖2

for all x ∈ Q.

f HyL+Ñf HyLHy-xL+
L

2
Èx-yÈ²

f HxL

Hy,f HyLL

f HyL+Ñf HyLHy-xL

Exact oracle HfHyL,ÑfHyLL for FL
1,1HQL

9



(δ, L)-oracle

f is equipped with a first-order (δ, L) oracle if for all y ∈ Q, we can
compute (fy ,δ, gy ,δ) = Oδ,L(y):

fy ,δ+〈gy ,δ, x−y〉 ≤ f (x) ≤ fy ,δ+〈gy ,δ, x−y〉+
L

2
‖x − y‖2+δ ∀x ∈ Q.

f∆,LHyL+g∆,LHyLHy-xL+

L

2
Èx-yÈ²+∆

f HxL

Hy, f∆,LHyLL

Hy, f∆,LHyL+∆L
f∆,LHyL+g∆,LHyLHy-xL

∆

Inexact oracle H f∆,LHyL,g∆,LHyLL
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Gradient Method with Inexact Oracle

Exact oracle:

f (xk)− f ∗ ≤ L(f )R2

2k

(δ, L)-oracle:

f (xk)− f ∗ ≤ LR2

2k
+ δ.

• No accumulation of errors
Error asymptotically tends to δ (OA).

• Complexity: ε-solution if k ≥ O
(
LR2

ε−δ

)
• Let ε be the desired accuracy for the solution (SA). We can

take OA of same order than SA: δ = Θ(ε) e.g. δ = ε
2
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Fast Gradient Method with Inexact Oracle

Exact oracle:

f (yk)− f ∗ ≤ 4L(f )R2

(k + 1)(k + 2)

(δ, L)-oracle:

f (yk)− f ∗ ≤ 4LR2

(k + 1)(k + 2)
+

1

6
(2k + 6)δ.

• Accumulation of errors
Divergence: Error asymptotically tends to ∞ (Decreases fast
at first then increases).

• Complexity: ε-solution if Θ

(√
L
εR

)
≤ k ≤ Θ

(
ε
δ

)
• OA must be smaller than SA: δ = Θ(ε3/2).
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Which method should we choose?
Case 1: Inexact oracle with fixed OA δ

GM : f (xk)− f ∗ ≤ LR2

2k + δ

FGM : f (yk)− f ∗ ≤ 4LR2

(k+1)(k+2) + 1
6 (2k + 6)δ

We need to stop the FGM after k∗ = Θ

(
3

√
LR2

δ

)
iterations:

best SA reachable by the FGM ε∗ = Θ(δ2/3).
If such accuracy is sufficient: FGM. If not, only possibility: GM.
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Which method should we choose?
Case 2: Inexact oracle but the OA δ can be chosen

In order to have a SA of ε:

GM : O

(
LR2

ε

)
iterations but with δ = Θ(ε)

FGM : O

(√
L

ε
R

)
iterations but with δ = Θ(ε3/2)

Choice depends on the complexity of inexact oracle.
Let C (δ)= number of operations needed by the inexact oracle to
compute (fx ,δ, gx ,δ).

• If C (δ) = Ω
(

1
δ

)
(expensive inexact oracle), we have to use

GM.

• If C (δ) = Θ
(

1
δ

)
, the two methods are equivalent.

• If C (δ) = o
(

1
δ

)
(cheap inexact oracle), we have to use FGM.
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Intrinsic accumulation of errors for fast FOM

Accumulation of errors = Intrinsic and unavoidable property
of any fast FOM using inexact oracle.

Theorem
Consider a FOM using a (δ, L)-oracle with convergence rate:

f (xk)− f ∗ ≤ C1LR
2

kp
+ C2k

qδ

then necessarily q ≥ p − 1.

In particular:

• q = 0⇒ p ≤ 1: GM is the fastest FOM without error
accumulation

• p = 2⇒ q ≥ 1: Any FOM with convergence rate 1
k2 must

suffer from error accumulation and FGM has the lowest
possible error accumulation for such a method: Θ(kδ).
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Applications

Two kind of situations where a (δ, L) oracle can be available:

1 Lack of accuracy in the first-order information
Smooth function (i.e. in F 1,1

L(f )(Q)) when the first-order
information is computed approximately.
In this case, δ represent the accuracy of the first-order
information.

2 Lack of smoothness for the function
Function with weaker level of smoothness (but typically with
exact first-order information).
In this case, δ can be chosen but there is a trade-off with L.
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(δ, L)-oracle for saddle-point problems

Assume that f ∈ F 1,1
L(f )(Q) is defined by another optimization

problem:
f (x) = max

u∈U
Ψ(x , u)

where Ψ is concave in u, convex in x and U is closed and convex.

Computations of f (x) and ∇f (x) require

ux ∈ Arg max
u∈U

Ψ(x , u)

since:
f (x) = Ψ(x , ux) ∇f (x) = ∇xΨ(x , ux).

But in practice, we are only able to solve this subproblem
approximately, computing ux , an approximate solution.

Consequences?
Which quality of ux ensures a (δ, L)-oracle ?
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(δ, L)-oracle for saddle-point problems: Examples

• Smoothing technique:
f (x) = maxu∈U{Ψ(x , u) = G (u) + 〈Au, x〉} where G is
strongly concave with parameter κ.
If V1(ux) = Ψ(x , ux)−Ψ(x , ux) ≤ δ

2 ,
fx ,δ = Ψ(x , ux) gx ,δ = Aux ⇒ (δ, 2L(f ))-oracle

• Moreau-Yosida Regularization:
f (x) = minu∈U{L(x , u) = h(u) + κ

2 ‖u − x‖2
2}.

If V2(ux) = max
u∈U

{
L(x , ux)− L(x , u) + κ

2 ‖u − ux‖2
2

}
≤ δ,

fx ,δ = L(x , ux)− δ gx ,δ = κ(x − ux) ⇒ (δ, L(f ))-oracle.

• Augmented Lagrangian Approach
f (x) = maxu∈U{Ψ(x , u) = −H(u) + 〈Au, x〉 − κ

2 ‖Au‖
2
2}.

If V3(ux) = maxu∈U〈∇uΨ(x , ux), u − ux〉 ≤ δ
fx ,δ = Ψ(x , ux) gx ,δ = Aux ⇒ (δ, L(f ))-oracle.
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(δ, L) oracle for non-smooth or weakly-smooth functions

Assume that f satisfies the following smoothness condition:

‖g(x)− g(y)‖∗ ≤ Lν ‖x − y‖ν , ∀x , y ∈ Q, ∀g(x) ∈ ∂f (x), g(y) ∈ ∂f (y).

When:

1 ν = 1: f is smooth with a Lipschitz-continuous gradient

2 ν = 0: f is non-smooth with bounded variation of the
subgradients

3 0 < ν < 1: f is weakly-smooth i.e. with a Hölder-continuous
gradient.

Important Observation: The exact oracle (f (y), g(y)) can be
seen as a inexact (δ, L) smooth oracle where δ is arbitrary and

L = Lν

[
Lν
2δ
· 1− ν

1 + ν

] 1−ν
1+ν

.

23



The FGM as a Universal Optimal FOM

This observation gives us the possibility to apply any FOM of
smooth convex-optimization to a function with weaker level of
smoothness:

1 We can apply GM with inexact oracle to a non- or
weakly-smooth function. With a optimal choice of δ:

Non-optimal rate of convergence Θ
(
LνR1+ν

k
1+ν

2

)
.

2 We can apply FGM with inexact oracle to a non- or
weakly-smooth function. With a optimal choice of δ:

Optimal rate of convergence Θ
(
LνR1+ν

k
1+3ν

2

)
.

The FGM can reach optimal convergence rate for various classes of
convex problems characterized by different levels of smoothness.
⇒ FGM= Universal Optimal FOM.
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Conclusion

• Introduction of a new definition of inexact oracle:
(δ, L)-oracle.

• Important examples where the first-order information is
computed with numerical errors or using approximative
solution of subproblems fit with this definition

• The GM is slow but robust with respect to oracle error. It is
the fastest FOM without error accumulation.

• The FGM is faster but sensitive to oracle error. Like any FOM
with optimal convergence rate, it suffers from accumulation of
errors.

• As exact non-smooth oracle= inexact smooth oracle
We can apply FOM of smooth convex opt. to non-smooth
(and weakly-smooth) convex problems.
⇒ FGM= Universal Optimal FOM.
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