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Abstract

First-order approximation and model management is a

methodology for a systematic use of variable-fidelity models

or approximations in optimization. The intent of model man-

agement is to attain convergence to high-fidelity solutions with

minimal expense in high-fidelity computations. The savings in

terms of computationally intensive evaluations depends on the

ability of the available lower-fidelity model or a suite of models

to predict the improvement trends for the high-fidelity problem.

Variable-fidelity models can be represented by data-fitting ap-

proximations, variable-resolution models, variable-convergence

models, or variable physical fidelity models. The present

work considers the use of variable-fidelity physics models. We

demonstrate the performance of model management on an aero-

dynamic optimization of a multi-element airloil designed to

operate in the transonic regime. Reynolds-averaged Navier-

Stokes equations represent the high-fidelity model, while the Eu-

ler equations represent the tow-fidelity model. An unstructured

mesh-based analysis code FUN2D evaluates functions and sen-

sitivity derivatives for both models. Model management tbr the

present demonstration problem yields fivefold savings in terms

of high-fidelity evaluations compared to optimization done with

high-fidelity computations alone.

Key Words: Aerodynamic optimization, airfoil de-

sign. approximation concepts, approximation manage-

ment, model management, nonlinear programming, sur-

rogate optimization, variable-fidelity

Background

Approximations and low-fidelity models have long

been used in engineering design to reduce the cost of opti-

mization (e.g., [ I-3 ]). An overview of approximations in

*Member AIAA. Multidisciplinary Optimization Branch, MS
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structural optimization, tbr instance, can be found in [4].

Accounts of recent efforts in developing methodologies

tor variable-complexity modeling are relayed in [5, 61.

The present work concerns an approach, the Approx-

imation and Model Management Framework (AMMF)

[7-10], designed to enable rapid and early integration of

high fidelity nonlinear analyses and experimental results

into the multidisciplinary optimization process. This is

accomplished by reducing the frequency of performing

high-fidelity computations within a single optimization

procedure.

Until recently, procedures for the use of variable-

fidelity models and approximations in design had relied

on heuristics or engineering intuition. In addition, with

a few exceptions (e.g., [I I], [12]), the analysis of algo-

rithms had focused on convergence to a solution of the ap-

proximate or surrogate problem ([ 13], [14]). The AMMF

methodology discussed here and in related papers is dis-

tinguished by a systematic approach to alternating the use

of variable-fidelity models that results in procedures that

are provably globally convergent to critical points or so-

lutions of the high-fidelity problem.

Model management can be, in principle, imposed on

any optimization algorithm and used with any models. In

[ 15], we considered AMMF schemes based on three non-

linear programming methods and demonstrated them on

a 3D aerodynamic wing optimization problem and a 2D

airfoil optimization problem. In both cases, Euler analy-

sis perlormed on meshes of varying degree of refinement

formed a suite of variable-resolution models. Results in-

dicated approximately threefold savings (similar across

the three schemes) in terms of high-fidelity function eval-

uations. The AMMF based on the sequential quadratic

programming (SQP) approach was judged to be the most

promising for single-discipline problems with a modest
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number of design variables, as well as for certain fl_rmu-

lations of the MDO problem.

The study in [15] has served as a proof of con-

cepl for AMMF in the case where low-fidelity models
are represented by data-fitting approximations (kriging,

splines and polynomial response surfaces) or variable-

resolution models. The present work considers, arguably,
the most challenging combination of the high and low-

fidelity models within a single optimization procedure -
that of variable-fidelity physics models. The performance

of the first-order model management is demonstrated on

an aerodynamic optimization of a multi-element airloil.

Variable-fidelity models are represented by an unstruc-

tured mesh-based analysis run in viscous and inviscid
modes.

In the next section, we describe the AMMF under in-

vestigation and discuss the points of interest for the cur-

rent study. We then present the demonstration problem,

lollowed by a discussion of the numerical experiments
and results.

AMMF under investigation

For the present demonstration, the optimal design
problem is represented by the bound constrained nonlin-

ear programming problem:

min f(.r)
(1)

s.t. / <.r < ,,

where .r is the vector of design variables, the objective

f is a continuously different|able nonlinear function, and

/ _< .r _< , denotes bound constraints on the design vari-
ables.

The first-order AMMF used here for solving (1) is

based on the trust-region strategy, which is a methodol-

ogy lor the improvement of global behavior of the local

model-based optimization algorithms I 161. The following

pseudo-code describes the AMMF.

Initialize .r',.._k,,

Do until convergence:
Select a model a,. such that

,, (.,',) : f(._', ) and U<,,.(.r_) : U'f(._,,

Solve approximately for ,_, : 2' - .r_.:

min ., (.r, + ._)
s

s.t. / < .r < ,

[I-, II,_ _<x,

Compute p,. -- .ff_', )-.fi3, +._, ).f(.,._.)-. _(.r• +._. :_

Update _k, and ._', based on p,.
End do

Details of the updating strategy can be found, for instance,

in [7]. Briefly. the point .r, is accepted if the step s, re-
suits in a simple decrease in the objective function, i.e., if

f(J,_,) > f(.r,. + ._,.). Otherwise the step is rejected. The

(, trust region (chosen because it interacts naturally with

the bound constraints) is decreased if pc is small. Experi-

ence suggests that "small" be taken as less that 10 -r'. if

p,: is close to one or greater than one (this indicates excel-

lent predictive properties of the model), the trust region is

doubled. Otherwise, it is left unchanged.

The conditions

a,(a',) = f(,r,) (2)

U'a<.(.rc) = Vf(a'_) (3)

are known as the first-order consistency conditions, which

we will discuss presently.

In conventional optimization, a,. is usually a linear or

quadratic model of the objective f. AMMF replaces this

local. Taylor series approximation by an arbitrary model

required to satisfy the consistency conditions (2)-(3). Re-
gardless of the properties of the low-fidelity model, the

consistency conditions tbrce it to behave as a first-order

Taylor series approximation at points where they are sat-

isfied. Solving the subproblem of minimizing a,, is itself

an iterative procedure that now requires the function and

derivative inlormation from the low-fidelity model.

First-order AMMF methods can be shown to converge

to critical points or solutions of the high-fidelity problem

under appropriate standard assumptions of continuity and
boundedness of the constituent functions and derivatives

(see [9], tbr instance), given that the consistency condi-

tions (2)-(3) arc imposed at each maior iterate .r,..

Qualitatively, the reason a first-order AMMF con-

verges to an answer of the high-fidelity problem may be

summarized as follows. Although a lower-fidelity model

may not capture a particular feature of the physical phe-

nomenon to the same degree of accuracy (or at all) as

its higher-fidelity counterpart, a lower-fidelity model may

still have satisfactory predictive properties lbr the pur-

poses of finding a good direction of improvement |'or the

higher-fidelity model. By imposing the consistency con-
ditions. AMMF ensures that at least at the major iterates,

the lower-fidelity model provides the same direction of

descent as the high-fidelity counterpart. Two questions

arise. How easy is it to impose the first-order consistency?

How does the method perfl_rm in practice'/

The answer to the first question is that imposing the

conditions (2)-(3) is straightfl_rward using a correction

technique due to Chang et al. 117] This technique cor-

rects a low-fidelity version Jio of an arbitrary function so

that it agrees to lirst-order with a given high-fidelity ver-

sion fhi. This is done by defining the correction factor J;_
as

j_/(._.)
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FigureI: Meshfortheviscousmodel

1/7

Figure 2: Mesh for the inviscid modcl

Given the current design variable vector ._.,., one builds a
first-order model 3,. of 3 about ._:,:

_b (x) = ,3(._',) + T3(._,, )7"(.r - ._',,).

The local model of 3 is then used to correct J)o to obtain

a better approximation ,(.r) of fhi:

fhi(.l') = ;3(_')fto(,r) ,_ a(J') -= ,3c(;rlflo(x).

The corrected approximation a(.r) has the properties that

a(x,.) = fhi(x,.)and XSa(.trc) = X-'fhi(._',.). Zero-order or

higher-order corrections are easily constructed as well.

Because the 3-correction can make any two unrelated
functions match to first order, the framework admits a

wide range of models. In the worst case of performance,

the subproblem will yield a good predictive step .so for the

high-fidelity model only at the point ._'_.. Thus. the high-

fidelity intormation may potentially have to be computed

at every step to re-calibrate the low-fidelity information.
This would lead AMMF to become, at worst, a conven-

tional optimization algorithm. At its best, the AMMF

would be able to take many steps with the corrected low-

fidelity model before resorting to re-calibration with ex-

pensive evaluations. Which scenario actually takes place

depends on the problem at hand.

AMMF has shown promise with low-fidelity models

represented by data-fitting approximations and variable-
resolution models. In an attempt to evaluate the poten-

tial worst-case scenario, we are now considering manag-

ing variable physical fidelity models. We view this model
combination as the potential worst-case scenario, because
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Figure 3: Math number contours for viscous vs. inviscid model
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Figure 4: Drag coefficient contours of the viscous and inviscid models

I

low-fidelity physics models arc expected not to capture

the behavior of the high-fidelity counterparts accurately,

or at all, over some or all regions of interest in the design

space.

Demonstration problem

We consider aerodynamic optimization of a two-

element airfoil designed to operate in transonic condi-

tions [ 18 J.The inclusion of viscous effects is very impor-

tant for obtaining physically correct results. Therefore,

the high-fidelity model will be the Reynolds-averaged

Navier-Stokes equations and the low-lidelity model will

be the Euler equations. The flow solver, FUN2D, used

for this study 12)llows the unstructured mesh methodol-

ogy [I 9]. Sensitivity derivatives are provided via a hand-

coded adjoint approach [20].

The mesh lk)r the viscous model depicted in Fig. I
consists of 10449 nodes and 20900 triangles. The mesh

for the inviscid model, shown in Fig. 2, comprises l.q17

nodes and 38.q(J triangles. The Math number is ,'_I_ =

0.75, the Reynolds number is ll_ = !) × 10_;, the global

angle of attack is (_ :- I°.

Fig. 3 depicts the Mach number contours for the vis-

cous and inviscid model, respectively. The boundary and
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Test hi-fieval lo-fieval totaltime
PORTwithhi-fisurrogates,2var 15/15 negligible
AMMFwithsurrogates,2var 3/3 18/9 negligible
PORTwithhi-fianalyses,2var 14/I3 _ 12hrs
AMMFwithdirectanalyses,2var 3/3 19/9 _ :2.41hrs

Tablei: AMMFperformancevsPORT

factor

_5

,1.98

shear layers are clearly visible in the viscous case. Be-

cause of the importance of the viscous effects in this prob-

lems, the use of the inviscid equations for the low-fidelity

model should present an important test Ibr the present ap-

proach.

The objective of this problem is simply to minimize

the drag coefficient by adjusting the global angle of at-

tack and the y-displacement of the flap. In this study,

we restrict ourselves to two design variables to enable vi-
sualization. The baseline case for both models was con-

structed at _ = 1o and zero g-displacement of the flap.

Fig. 4 depicts the level sets of the drag coefficient

for the viscous and inviscid models. The problem ap-

pears to support the worse-case scenario: not only is the

low-fidelity model not a good representation of the high-

fidelity model but, in addition, the descent trends in the

two models are reversed. The solution for each problem

is marked with a circle. Thus the problem provides a good

test of the methodology indeed.

The computational expense necessary to calculate
functions and derivatives in the viscous case is consid-

erably greater than that for the inviscid model. We con-

ducted our experinaents on an SGP MOrigin TM 2000 work-

station with four MIPS RISC RIO000 processors. One

low-fidelity analysis took approximately 23 seconds and

one low-fidelity sensitivity analysis took between 70 and

100 seconds. In contrast, one high-fidelity analysis took
approximately 21 minutes and one high-tidelity sensitiv-

ity analysis took between 21 and 42 minutes to compute.
The measures were taken in CPU time. Thus, the time

per Iow-lidelity evaluation may be considered negligible

compared to that required for a high-fidelity evaluation.

Numerical results

We conducted the following computational experi-

ments. Because our test problem has expensive function

evaluations, we first built splint substitutes both for the
viscous and the inviscid model. Error analysis indicated

that the spline lit was highly satisfactory for both mod-

els. It should be emphasized that we did not use these

substitutes in the conventional sense, i.e., they were not

used to provide lower-fidelity models. Instead, they sim-

ply served to provide low-cost substitutes for both mod-

els for the problem components in the testing phase. Of
course, such a test would never be conducted in a non-

research setting, nor would it be considered for a problem

with more than a few variables. In our setting, however, it

saved us much time by providing an excellent approxima-

tion of the actual functions with respect to descent charac-

teristics at a tiny fraction of computational cost. After wc

ascertained the correctness of our procedures, tests were

conducted directly with the flow and adjoint solver, with-
out recourse to substitutes, because the substitutes were

expected to smooth out the problem to a certain degree.
The problems were first solved with single-fidelity

models alone by using well-known commercial optimiza-

tion software ¶ PORT [21], in order to obtain a baseline
number of function evaluations or iterations to find an

optimum. The problems were then solved with AMMF.

Identical experiments were conducted with spline substi-

tutes and with the actual flow and adjoint solver.

For each experiment, performance of AMMF was
evaluated in terms of the absolute number of calls to the

high and low-fidelity function and sensitivity calculations.

Because the time for low-fidelity computations was neg-

ligible in comparison to the high-fidelity computations,

we estimated the savings strictly in terms of high-fidelity
evaluations. Table I summarizes the number of function

(first number) and derivative (second number) computa-

tions expended in PORT and in AMMF.

Given the dissimilarity between the high-lidelity and

low-fidelity model, we were initially surprised to lind

that the AMMF performed well: it consistently yielded
approximately fivefold savings in terms of high-fidelity

computations. The result held both for the spline substi-

tutes and the actual functions. Optimization applied to

both cases produced nearly identical iterates.

Following an analysis of the results, we concluded that

the savings were not surprising after all. For our combi-

nation of models, the 3-correction worked extremely well.

This is illustrated in Fig. 5. The plot on the left shows the

'liThe use of names of commercial sc.flware in this paper is for accuratereporting and does not constitute an official endorsement, either ex-
pressed or implied, of such products by the National Aeronautics and Space Adminislration or Institute for Computer Applications to Science and
Engineering.
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Figure 5: Drag coefficient level sets of the viscous and corrected inviscid models

level sets of the high-fidelity model with the solution. The

plot on the right depicts the level sets of the Iow-lidelity
model .4-corrected at the initial point. The initial point is

marked by a square. We note that the correction is not

applied to the entire feasible region during iterations of

optimization algorithm. Here, we applied the correction

to the entire region to visualize the affect of the correction

on the low-fidelity function. The figure clearly shows that

the correction, using the function and derivative informa-

tion at the anchor point (at this iteration - the initial point),

reversed the trend of the low-fidelity model, allowing the

optimizer to find the next iterate in the left upper corner

of the plot, marked by a circle. Similar analysis can be
conducted for all iterations. In fact, AMMF located the

solution (n = 1.6305 °, flap !/-displacement = -0.00-18)

of the high-tidelity problem already at the next iteration.

The high-fidelity drag coefficient at the initial point was

(,initial = 0.0171, the high-fidelity drag coefficient at/)

the solution was ('final __ ().III48, a decrease of approxi-

mately 13.15(/_.

Concluding remarks

We believe that the results obtained in this study with

AMMF and variable-fidelity physics models arc promis-

ing. We observed livefoid savings in terms of high-fidelity

evaluations compared to conventional optimization. De-

spite the great dissimilarity between the models, AMMF

was able to capture the descent behavior of the high-
fidelity model with the assistance of the first-order cor-

rection. When the models are greatly dissimilar, first-

order information appears indispensable in obtaining rea-
sonable descent directions.

Given the present results, we are cautiously optimistic

about several much larger test cases (e.g.. _! variables)

that are currently under investigation. Large problems

must be tested carefully in AMMF in order to ascertain
that its performance is not in some measure an artifact of

the problem dimensionality. This does not appear to be

the case, because AMMF was prcviously tested on prob-

lems with over ten variables. However. the tests currently
conducted with realistic physical models should prove

more conclusive, regardless of the outcome.

The performance of AMMF with variable-fidelity

physics models raises a number of intriguing questions

about the nature of the corrections and an optimal choice

of low-fidelity models for a large set of problems. These

questions are currently under investigation.
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