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Abstract. The use of artificial neural networks (ANN) requires solving struc-

tural and parametric identification problems corresponding to the choice of the 

optimal network topology and its training (parameter settings). In contrast to the 

problem of determining the structure, which is a discrete optimization (combi-

natorial), the search for optimal parameters is carried out in continuous space 

using some optimization methods. The most widely used optimization method 

in deep learning is the first-order algorithm that based on gradient descent 

(GD). In the given paper a comparative analysis of convolutional neural net-

works training algorithms that are used in tasks of image recognition is provid-

ed. Comparison of training algorithms was carried out on the Oxford17 catego-

ry flower dataset with TensorFlow framework usage. Studies show that for this 

task a simple gradient descent algorithm is quite effective. At the same time, 

however, the problem of selecting the optimal values of the algorithms parame-

ters that provide top speed of learning still remains open. 

Keywords: Convolution, Optimization, Neural Network, Algorithm, Gradient, 

Training, Image Recognition. 

1 Introduction 

Deep Learning is a class of Artificial Neural Network (ANN) that has many pro-

cessing layers. There is huge number of ANN architectures variants in the literature. 

ANNs can be used as a very effective technology to solving a wide class of problems 

[1-5]. After the breakthrough result in the ImageNet classification challenge [2], dif-

ferent kinds of neural network, i.e. convolution NN (CNN) architectures have been 

proposed and the performance is improved year by year [6,7]. 

The use of ANN requires solving structural and parametric identification problems 

corresponding to the choice of the optimal network topology and its training (parame-

ter settings). In contrast to the problem of determining the structure, which is a dis-

crete optimization (combinatorial), the search for optimal parameters is carried out in 

continuous space using classical optimization methods. To train direct distribution 
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networks with a teacher, algorithms are usually used that optimize some objective 

function. There are a lot of works that aim to improve ANN in different aspects (ar-

chitecture design, choice and optimization of training algorithms and so on).  

The most widely used optimization method in deep learning is the first-order algo-

rithm that based on gradient descent (GD). The BP algorithm is the standard training 

method for ANN which uses GD. These methods can be split into the following cate-

gories: batch gradient decent method, mini-batch gradient decent method, and sto-

chastic gradient decent method (SGD) [8, 9]. The GD method is the earliest optimiza-

tion method. It often converges with a slower speed. The batch gradient decent meth-

od has high computational complexity for scale data. 

The using of SGDs is the predominant methodology in training deep learning 

(CNN). 

2 The Structure of the Convolution Neural Network  

Initially, the convolution neural network structure was created taking into account the 

structural features of some parts of the human brain responsible for vision. The basis 

for the development of such networks is incorporated by three mechanisms: 

- local perception; 

- forming a set of layers in the shape of the characteristics maps (shared weights); 

- sub-sampling (sub-set). 

Under the local perception it is understood that the input neuron receives not the 

whole picture but only some part of it. This helps to keep the image configuration 

during the transition from layer to layer. 

The idea of shared weights means that a large number of connections used a small 

set of weights, i.e. each area of the image to which it is divided, will be processed by 

the same set of weights. Such artificial limitation of weights improves network’s gen-

eralization property. 

CNN consists of the convolution layers, sub-sampling and fully connected neural 

network layers. 

3 Convolution Neural Network Layers 

CNN got its name from the operator "convolution". The main purpose of convolution 

in the CNN case is to extract features from the input image. 

Convolution keeps spatial relations among pixels, studying the features of the im-

age, using the small batches of the input data. 

Each neuron in the plane of the convolutional layer receives its inputs from the cer-

tain region of the previous layer (local receptive field). 

Subsample layer zooms planes by local averaging of the neurons output values. 

Subsequent layers extract more common characteristics relied upon the picture distor-

tion. 



 

Each convolutional layer is followed by subsampling or computational layer which 

produces a reduction of the image dimension by local averaging the values of the 

neurons output. 

The architecture of the convolution network is assumed that evidence of the fea-

ture’s existence is more important information than its exact location. Therefore, from 

a plurality of neighboring neurons in the map attributes one neuron with maximum 

value is chosen to map features of smaller dimension. 

Difference between subsample layer and convolution layer is that in the convolu-

tion layer neighboring neurons overlap, which does not occur in the subsampling 

layer. 

Thus, CNN is constructed by alternating of convolution and subsampling layers. At 

the output of the network several layers of fully connected neural network are usually 

installed. The input for these layers is the final feature’s map. Each neuron of the 

output layer is the perceptron, which has a non-linear activation function. 

4 Training Methods of Convolution Neural Network 

For convolutional neural network training a standard backpropagation algorithm and 

its various modifications can be used. The basis of this method is a stochastic gradient 

descent algorithm (Stochastic Gradient Descent). 

4.1 Training Based on Stochastic Gradient 

Stochastic gradient descent (SGD) and its variants are the most widely-studied algo-

rithms for optimization problems in machine learning and stochastic approximation. 

The usual gradient descent is described by the following relation 

 ( 1) ( ) ( ( )),k k J k              (1) 

where   – network parameter 1N  , ( ( ))J k – the loss function;  – training speed 

parameter (learning rate). 

Algorithm (1) convergence is generally not guaranteed, but it is proved [9, 10] that 

in the case of a convex function ( ( ))J k and under the following conditions: 
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gradient descent process will converge. 

There are two main approaches to implementing gradient descent:  

 Batch - when the training sample is viewed entirely at each iteration, and on-

ly after this   is changed. This requires large computational cost. 



 Stochastic (online) - where at each iteration of the algorithm from the train-

ing set some (random) object is selected. Thus, the vector   is configurable 

for each newly selected object.  

The following disadvantages are inherent to this algorithm: 

 stuck in local minima and saddle points of the minimized functional. 

 Slow convergence due to difficult terrain of the objective function when the 

plateau regions alternate with strong nonlinearity (the derivative of the plat-

eau is almost zero, and sudden fall, on the contrary, can change the parame-

ter estimation). 

 Some of the parameters are updated less often than others, especially when 

in the data some informative but rare features are found. This has a bad ef-

fect on the nuances of the network rules generalization. On the other hand, 

giving too much importance to all rarely seen features can lead to overtrain-

ing. 

 Too small value of 


 parameter leads to slow convergence and stucking in 

local minima, while too large value of 


 leads to "overshooting" the narrow 

global minima or no divergence at all. 

Using the second-order methods discussed above requires calculating the Hessian - 

derivative matrix for each pair of parameters, and, for the Newton’s method addition-

ally its inverse matrix, i.e. implementation of these methods involves considerable 

computing effort. 

Therefore, in practice, widespread methods are based on the stochastic gradient 

method which has number of advantages [11]. 

Consider these methods in more detail. 

4.2 Stochastic Average Gradient (SAG) 

The stochastic average gradient (SAG) algorithm [12] is a difference decrease strate-

gy proposed to increase the speed of convergence.  

The SAG iterations take the form 
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where ( )k  is the learning rate and a random index ki  is selected at each iteration 

during which we set. 

Essentially, SAG maintains in memory, the gradient with respect to each function 

in the sum of functions being optimized. The gradient value of only one such function 

is computed and updated in memory at each iteration. The SAG method estimates the 

overall gradient at by averaging the gradient values stored in memory.  



 

However, the SAG technique can be utilized only with the smooth loss function 

and a convex objective function. The SAG has better convergence comparing to the 

SGD in tasks like convex linear prediction problems. 

4.3 Stochastic Variance Reduction Gradient (SVRG)  

The SVRG algorithm [13] calculates gradient % in the following way: 
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where % - interval update parameter. SVRG performs gradient updates by using fol-

lowing equation: 

 ( 1) ( ) ( ( )( ( ) ( )( ) ).i ik k g k k g k         % %   (5) 

The gradient can be calculated up to two times during each update. After w  itera-

tions, parameter % is updated and the next w iterations start. Through these update, 

( 1)k   and the interval update parameter %will converge to the optimal  , and 

then 0% , and 

 ( )( ( ) ( )( ) ( )( ( ) ( )( ) 0.i i i ig k k g k g k k g k        % %   (6) 

There are also many variants of such linear convergence stochastic optimization algo-

rithms, such as the SAGA algorithm [13, 14]. 

4.4 Momentum  

Instead of depending on current gradient only for updating weights, the gradient de-

scent algorithm [15] with momentum replaces the current gradient with ( 1)v k   ( v  

means the velocity), exponential moving average of the current and past gradients 

(i.e., before the time 1k  ) 

 ( 1) ( ) ( 1);k k v k                        (7) 

 ( 1) ( ) (1 ) ( ( ),v k v k J k                (8) 

where 
0.9. 

 

Later this pulse update becomes a standard for the gradient components upgrade. 



4.5 NAG (Nesterov Accelerated Gradient)  

This algorithm [16] implements the idea of accumulation the pulse by using the in-

formation on the change of each parameter in the form of an exponential moving 

average 

 ( 1) ( ) (1 ) .v k v k x       (9) 

The gradient algorithm accumulates target network functions 

 ( 1) ( ) ( ( )),v k v k J k       (10) 

which is used during the parameters correction 

 ( 1) ( ) ( ).k k v k                            (11) 

More precise correlation algorithm for NAG has the form 

 ( 1) ( ) ( 1);k k v k      (12) 

 ( 1) ( ) ( ( ) ( )).v k v k J k v k                     (13) 

4.6 SNM (Simplified Nesterov Momentum) 

In [17] was offer a new formulation of Nesterov momentum differing from (8) and 

(9). The main difference from (8) and (9) lies in committing to the “peekedahead” 

parameters ( ) ( ) ( ) ( )k k k v k     and backtracking by the same amount before each 

update. These new parameters ( 1)k  updates become [17]: 

 ( 1) ( ) ( ) ( ) ( ( ));v k k v k k J k        (14) 
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4.7 Adagrad  

Adagrad (adaptive gradient) [18] takes into account the frequency of neurons activa-

tion by storing for each network parameter the sum of its squares updates. It uses a 

modified formula of renovation 

 2 2 2{ ( 1)} { ( )} (1 ) ( ),M g k M g k g k       (16) 

and correction parameter is carried out according to the rule 

 ( 1) ( ) ( ),
( )

k k g k
G k


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
          (17) 



 

where ( ) ( ( );g k J k  ( )G k – the sum of the updates squares,  - smoothing pa-

rameter that is required in order to avoid division by 0. The frequently updated last 

parameter ( )G k is large (large denominator in (17)), i.e. the parameter will change 

slightly. Rarely changed parameters will change substantially. Parameter  generally 

selected in range of 10-6 - 10-8. 

4.8 RMSProp  

Disadvantage of Adagrad is that ( )G k in (17) can be increased without any limita-

tions. As the result, after short time an update becomes too small. This leads to paral-

ysis of the algorithm. RMSProp and Adadelta designed to solve this problem [19].  
Adagrad modifies parameters in such a way that the frequently updated weights are 

adjusted less frequently. To do this, instead of the full sum of the updates averaged 

over history gradient square is used, i.e., moving average of the following form 

 2 2 2{ ( 1)} { ( )} (1 ) ( ),M g k M g k g k       (18) 

then instead of (17) we obtain 

 
2

( 1) ( ) ( ).

{ ( )}

k k g k

M g k


 



  



     (19) 

Since the denominator represents the root of the mean squares gradient 

 
2{ ( )} { ( )} ,RMS g k M g k              (20) 

algorithm got its name RMSProp - root mean square propagation. 

4.9 Adadelta  

Adadelta is a continuation Adagrad [20], which aims to avoidance of monotonic de-

crease of training speed. Instead of accumulating all the gradients of the last square, 

Adadelta bounds the window of collected past gradients to the fixed size. 

Adadelta is different from RMSProp because we add to the numerator (17) the sta-

bilizing member proportional to RMS from ( ).k  In step 1k   value of 

{ ( )}RMS k is not yet known, so the update of the parameters is implemented in 

three stages instead of two: at the first stage square of the gradient is accumulated, 

then   is updated. And finally { ( )}RMS k , is updated 
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2

{ ( )} { ( ) } .RMS k M k                 (23) 

For RMSProp, Adadelta and Adagrad there is no need in very accurate choose of the 

learning curve - just its approximate value is needed. Usually it is advised to start 

snapping   from 0,1-1, and leave   0.9. The closer   to 1, the longer RMSProp and 

Adadelta with great { ( )}RMS k will much update rarely used weights. If 1   and 

{ ( )} 0RMS k  , then Adadelta be longer "with a grain of salt" refers to a rarely 

used weights that can lead to paralysis of the algorithm, and intentionally cause 

"greedy" behavior, when the algorithm updates the first neurons that encode the best 

features. 

4.10 Adam  

Adam (Adaptive moment estimation) – another  optimization algorithm. It combines 

the idea of accumulation of the motion and the idea of a weaker weight updates for 

typical features [21]. By analogy with (6) we can obtain: 

 1 1( 1) ( ) (1 ) ( ).m k m k g k       (24) 

Nesterov is different from Adam because there is no need to accumulate , and the 

gradient’s value. To obtain information about the gradient’s change in [21] it is pro-

posed to estimate additionally an average dispersion: 
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where 1 , 2 [0,1)  , ( )g k – stochastic gradient off J at ( 1)k  ,  – step size,   – a 

small constant. 

Authors of Adam offered as defaults 1 0.9,  2 0.999, 
810  and argue that 

an algorithm performs better or about the same as all previous algorithms on a broad 

set of datasets due to the initial calibration.  

4.11 AdaMax  

AdaMax algorithm [22] is a Adam’s algorithm modification, wherein the dispersion is 

used instead of the inertial moment of the distribution of arbitrary degree gradients p. 

https://arxiv.org/abs/1412.6980


 

While this may lead to the calculation of volatility, in practice the case p  . It 

works surprisingly well 
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4.12 Adapg  

Adapg combins Adadelta and Adam[6] 
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4.13 HAdam (High-order Adam)  

Using the core update law of Adam [23] it can be rewritten using induction as 

following 
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It is easy to note that ( 1)m k   and ( 1)v k   are different because of the exponential 

moving average utilization. In paper [23] was extend the second moment to high-

order moment.  

4.14 Nadam  

Nadam algorithm (Nesterov-accelerated Adaptive Moment Estimation) [22] is a mod-

ification of Nesterov algorithm with pulse parameter adaptation  
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 1 1( 1) ( ) (1 ) ( ( );g k g k J k                  (34) 

  22 2( 1) ( ) (1 ) ( ( ) ;G k G k J k         (35) 

α= 0.002; β₁= 0.9; β₂ = 0.999; ε = 10⁻⁷. 

4.15 AMSGrad  

Another version of Adam algorithm is AMSGrad [24]. This version revises the com-

ponents of the adaptive learning rate in Adam and changes it to ensure that the current 

G is always greater than at the previous time step 

 ( 1) ( ) ( );
ˆ ( )

k k g k
G k


 


  


             (36) 

  ˆ ˆ( 1) max ( ), ( 1) ;G k G k G k                 (37) 

 1 1( 1) ( ) (1 ) ( ( );g k g k J k                (38) 

  22 2( 1) ( ) (1 ) ( ( ) ;G k G k J k         (39) 

  22 2( 1) ( ) (1 ) ( ( ) ;G k G k J k         (40) 

α= 0.001; β₁= 0.9; β₂ = 0.999; ε = 10⁻⁷. 

4.16 WNGrad  

In WNGrad algorithm (weight normalization Grad) [25] the method of dynamic up-

date of the learning rate is used in accordance with the obtained gradients 
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According to the numerical experiments results, WNGrad is a rival to the simple sto-

chastic gradient descent algorithm in terms of sustainability and generalization error 

in the training of neural networks. In [15] WNGrad modifications are proposed which 

use pulse (WN-Adam and WNGrad-Momentum). 



 

4.17 Padam  

Padam (Partially adaptive momentum estimation method) [26] unifies Ad-

am/Amsgrad and SGD with momentum by a partially adaptive parameter 

 ( 1) ( ) ( );
ˆ ( )p

k k g k
G k


                 (43) 

  ˆ ˆ( 1) max ( ), ( 1) ,G k G k G k             (44) 

where (0,1/ 2]p is the partially adaptive parameter (1/2 is the largest possible value 

for p and a larger p  will result in non-convergence in the proof). When 0,p  Pa-

dam reduces to SGD with momentum and when 1/ 2p   it is exactly Amsgrad.  

It is empirically shown in [26] that Padam achieves the highest training speed 

while generalizing just as SGD. These outcomes recommend that a developer should 

get adaptive gradient methods by and by for faster adjustment of CNN weights. 

4.18 AdaShift  

The key difference between Adam and AdaShift (ADAptive learning rate method 

with temporal SHIFTing) [27] is that the latter temporally shifts the gradient ( )g k  for 

n -step, i.e., using ( )g k n  for calculating ( )v k  and using the kept-out n  gradients, 

which makes ( )v k  and ( )g k  temporally shifted and hence decorrelated: 
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2 2( 1) ( ) (1 ) ( ( ) ),v k v k g k n              (45) 

where   is a function (spatial operation). There is no restriction on the choice of 

  (in [27] ( ) max ( )).
i

x x i 

 

4.19 SWATS  

SWATS (Switching from Adam to SGD) [28] is a special method that Switches from 

Adam to SGD when a triggering condition is satisfied. 

While the focus of [28] has been on Adam, the strategy proposed is generally ap-

plicable and can be analogously employed to other adaptive methods such as Adagrad 

and RMSProp. A viable research direction includes exploring the possibility of 

switching back-and-forth, as needed, from Adam to SGD. 

4.20 Parallelizing SGD 

A strength of SGDs is that they are simple to implement and also fast for problems 

that have many training examples. However, SGD methods have many disadvantages 



[29]. Recently, several approaches [30][31][32] [33][34] towards an effective parallel-

ization of the SGD optimization have been proposed. 

A theoretical framework for the analysis of SGD parallelization performance has 

been presented in [30]. In [31] was introduced an update scheme called Hogwild that 

allows performing SGD updates in parallel on CPUs. In [32] was proposed an algo-

rithm called weighted parallel SGD (WP-SGD). Other methods of parallelizing SGD 

were introduced in [33] [34]. 

5 Modeling 

We train and evaluate our CNN model on the Oxford17 category flower dataset [35].  

It contains 17 categories of common flowers in the UK with 80 images for each class. 

Some of the pictures from the dataset are present at Figure 1. 

Proposed CNN based application is implemented using TensorFlow [36] and is 

trained with using Nvidia GeForce-2080 GPU. Performance and accuracy of different 

first-order optimization algorithms shown in Figure 2 and Figure 3. From presented 

results it can be seen that the considered training methods perform differently. Ada-

max, adagrad and SGD converge faster than the other methods. Performance of 

Adadelta is also acceptable.  

6 Conclusion 

A comparative analysis of gradient learning algorithms of convolutional neural net-

works in solving visual recognition problem was held in this report. Studies show that 

for this task quite effective is a simple gradient descent algorithm. Pulse usage in the 

considered modifications led to some improvement in the recognition process, but it 

also increased the computation cost. In the considered problems the most effective 

algorithm is Adamax. In [24] it is recommended to always start with the Adam opti-

mizer, regardless of the architecture of the neural network and problem areas in which 

it is used. However, in our opinion, at the decision of problems of recognition the 

Adamax algorithm should be used. At the same time, however, the problem of select-

ing the optimal values of the algorithms parameters that provide top speed of learning 

still remains open. 
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Fig. 1. Example images from the Oxford flower dataset 

 

 

Fig. 2. Performance of different first-order optimization algorithms 



 

Fig. 3. Accuracy of different first-order optimization algorithms 
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