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Abstract. We show that the two-dimensional isotropic ferromagnetic rotator
model exhibits a first order phase transition if the interaction decays as r~a

with 2<α<4.

Introduction

It is known that the isotropic two-dimensional ferromagnetic Heisenberg model
does not exhibit spontaneous magnetization in two dimensions if the forces
between the spins are not too long ranged. Typically for a potential of the type
J(r)~(r+l)~α, where r is the distance between the two spins in interaction, we
need α>2 in order to obtain a normal thermodynamic behaviour and α>4 for
the absence of spontaneous magnetization (Mermin and Wagner [1], Ruelle [2].
This result equally holds for a variety of classical spin systems, most notably the
plane rotator and the classical Heisenberg model (Mermin [3], Yuillermot,
Romerio [4], Dobrushin, Shlosman [5]). These proofs have put on a firm ground
already existing intuitive arguments based on the droplet model of condensation
(Fisher [6], Mermin [7]). These arguments are based on the fact that in order to
create a droplet D of size L of the opposite phase, one needs an energy of the
order of £ r2J(r) at worst. Therefore, if J(r)~ r~α, r being large, we obtain three

reD

different cases depending on the value of α. If α>4, the quantity Y^r2J(r) is
reD

always bounded by a number independent from the size of D and thus making
big droplets very probable. Whereas if α^4,

α<4,

£ ( ) , α = 4 .
reD

Therefore the energy of a droplet increases with the size of the droplet if α^4,
but as a power law when α<4 and only logarithmically when α = 4. Such big
droplets are very unlikely and therefore the order in the system cannot be de-
stroyed, at least when α<4. The case oc = 4 is evidently more delicate. This situa-
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tion is very reminiscent of what happens in a one-dimensional system like the
Ising model with long-ranged interaction. In fact the parallel intuitive argument
had been put forward by Landau and developed by Thouless [8]. Since then
Dyson was able to give a rigorous proof of the existence of a phase transition for
a class of long-ranged potentials decaying for example like r~a with 1 < α < 2 [9].
The strategy of his proof is the following: define an auxialiary model, which he
calls hierarchical, for which the existence of long-range order is established and
then compare the order parameter of this model to that of the original one by
means of Griffiths inequalities. This is exactly the path we have followed, but by
necessity we needed to restrict ourselves to plane rotators because it is the only
model with a continuous internal symmetry group for which a useful analogue
of Griffiths inequalities was proved by Ginibre [11].

Hence we see that, in the case of rotators at least, the intuitive arguments
based on the droplet model lead to a correct conclusion as regard the absence
or presence of long-range order. The borderline case α = 4 has been left undecided.
This case merits attention because it would be very interesting to prove whether
a Thouless effect, i.e. a jump in the spontaneous magnetization at the critical
point ([8,10]), occurs as it does in the one-dimensional case. However, we will
not discuss this problem which is much more difficult.

Description of the Model

Let us consider the lattice 7L2 which is formed by all linear combinations with
integer coefficients of the two vectors ^ = ( 1 , 0 ) and e2 = (0,1). With each site
x = (xux2) of Έ2 we associate a continuous spinσ(jc) which is represented by a
unit vector in IR2. The plane rotator model, called hereafter model I, is defined
as follows: Let us consider a finite set A of Έ?. The hamiltonian is then

H=- X J(\x-y\)σ(x)-σ(y)-hΣσ(x) (1)
x + y xeΛ

x,yeΛ

where σ(x) σ(y) means the scalar product of the two vectors σ(x) and σ(y) of S\
the unit sphere in IR2. The real function J(\r\) satisfies

J(| r I) ̂  0 (ferr omagnetism) (2)

Σ «<oo, (3)

and h is a real constant. We define for the model I two different long-range order
parameters:

mo= lim lim 1/\Λ\ / ̂  σ(x)\ (4)
/i->0+ Λ^Έ2 \χeΛ Ih

where < yh is the average taken with the hamiltonian (1), and

m 2 = lim l / | Λ | / | Σ < τ ( * ) | 2 \ - 1 / 2 (5)
Λ^Έ2 \\xeΛ I / 0 .

It is known that mo^m2 [12].
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Our task is to show that there exists functions J(r) and temperatures T such
that m o >0. To solve this problem we proceed as in the paper of Dyson [9]:
We construct a vectorial hierarchical model, called hereafter model II, for which
we can prove

We describe this model [14] in the next section

A Vectorial Hierarchical Model on Z 2

This model is also defined on Έ? and for his description we introduce the lexi-
cographic order on Z2. Let us consider the square A of Έ2 whose smallest
element is (1,1) and which contains 4^ spins. We introduce all partitions of /t,
called hereafter levels, made out of 4N~P square blocks of length 2P. These levels
are labelled by the integers p, O^prgiV, and we denote an element of the level p
by A(p, x):

We remark that 2px is the greatest point of A(p, x) and that the natural length
for the level p is 2P. With each A(p, x) we associate a block-spin Sζ,

sp

x= Σ * ω
yeΛ(p,x)

Each block of the level p-fl is built up by four adjacent blocks of the level p

, 2x).

The hamiltonian for the level p is

2 N - p - i 2 N ~ P ' {

H" = -(i/42"+ί)bp+ι Σ Σ Σ s f P 1 . l l i 2 r 2 . i 2 s s r i . j l > 2 r 2 . j 2
Π = 1 f 2 = l iuji,iiJ2 = 0A

(il,Ϊ2)<(jlj2)

and the hamiltonian for the total system is
N- 1

HN= ΣHP-

In particular at the level p two block-spins interact if and only if they are in the
same block of the level p + 1. Through the block-spins each spin interacts with
other spins at each level, but two given spins interact only at a well-defined level.
The bp are chosen positive.

Existence of Long-Range Order for the Model II

We give in this section a sufficient condition on the bp for the existence of long-
range order, which is defined here by

( m 2 ) 2 = lim sup(m 2 N)2

Λ->oo

with
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where < >N is the average taken in the model with 4N spins. We establish first
a relation between lN and /]v_1. Let YN be the partition function and let us put
s = S^~2\ t = SN

ί-JL

), u = S^~1\ Ό = S^y We write dΩ = dφ for the measure on S1

and form the expression

i x

which is the partition function for fixed s in the model II with 4N~1 spins. The
invariance of rotation implies

where s is the norm of s. We obtain easily the relation

by applying the inequalities of Ginibre [11] which are analogous to those of
Griffiths for the Ising model. If we apply once more these inequalities we find

(s t)N^(\dΩehstcosφstcosφ)/($dΩehstcosφ)

with h = β41~2NbN and the average < > is taken with respect to the probability
measure

The reader may notice that this last estimate reduces the discussion of our model
to the analogous one-dimensional hierarchical model. For this step it is essential
to have inequalities like those of Ginibre.

The crucial step now is the proof of the following:

Lemma. If x = ((st)2}1/2, then

<J dΩehstcosφst cosφ>/<J dΩehstcosφ) ^ x ( l - 1/fcc).

Since the proof is a bit lengthy we postpone it to the end of the paper.
This result allows us to conclude if we remark that x = 42(N~1)lN_1. Indeed

we find

and by applying this recurrence relation N times we prove the Theorem I.

Theorem I. The plane rotator hierarchical model with ferromagnetic interaction
has a phase transition if

B= X l/b,<oo.

It has long-range order if β>3B.
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Existence of First Order Phase Transition for the Plane Rotator Model

We compare here the interactions in the models I and II by means of Ginibre
inequalities and we give a sufficient condition which ensures that nΐ\^m\. We
restrict ourselves to the case where J(r) = J(r) is a monotone decreasing positive
function. We know that two spins in the model II interact only at a well-defined
level. Furthermore if they interact at the level p their relative distance d satisfies

The desired condition is consequently

sup
P

r<]/2-2P+ι

) ^ sup bp+1/42p+]

p

or

because J(r) is monotone decreasing.

Theorem II. The plane rotator model with ferromagnetic interaction and with
J(r) monotone decreasing undergoes a first order phase transition in two dimensions if

a) (r5J(r))~x is a monotone decreasing function and
b) 'Z(n5J(n))-1<^.

fceN

Corollary. // J(r)~l/rα, then the plane rotator model exhibits spontaneous
magnetization at low temperature if 2 < α < 4 .

Proof of the Theorem. We have spontaneous magnetization if

w i t h bp = 42p-1J{]/2{2p-l)).

-ι<oo

This condition is equivalent to

£ 2p(25pJ(]/2(2p-l)))
P^ί

which is in turn equivalent to

if n5 J(ή) is a positive monotone decreasing function [13].

Proof of the Lemma. We prove here the fundamental lemma. This lemma was
proved by Dyson when the σ(x)eS2 the unit sphere in R3. We can prove the
lemma when σ{x)eSn. Our main result does not extend however, because the
inequalities of Ginibre are proven only for n = l. We divide the proof in four
points.

A) We define first the function /„, n ̂  2

fn{x)= J dz{l-zψ~3)/2zexzl j dz{l-z2){n-3)l2exz

- 1 / - 1

where xeIR+.
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This function has the properties

/Λ(0) = 0, fn(x) = 0(x) and fn(x)^0.

It satisfies also the following differential equation

(d/dx) Ux) =-fn

2(x)+l-(n-l)χ-1 fn(x)

which is easily derived if we note that

and

+ 1

I (ί-zψ-1)l2exzdz = x^ J (\-z2T-γ)l2{dldz)exzdz
- 1 - 1

+ 1

= («- l )x~ 1 ^ (l-z2){n~3)/2zexzdz.
- 1

B) The following inequality holds

Proof. Let us consider the function gn — fn-γ—fw We have g(0) = 0 and

(d/dx)gn(x) = - ( / „ _ !(x) + /π(x))ffn(x) - (« - 2)x- ^B(x) + x- x/Λ(x).

Let us suppose that there exists a positive xι such that ^ ( x J gO. Then we must
have (d/dx)gn(xl)>0. But this implies that gn(x)<gn(xι) for all 0<x<xx and in
particular gn(0)^0 by continuity.

C) Let vw(x) be a probability measure and let us define for α §; 0

oo + 1

$dxvn(x) j dz(l-z2f-3 ) /V* z

0 - 1

and
00 / 00

x2

n = \dxvn(x)x2 \dxvn{x).

0 / 0

Lemma. φn(Gc)^xnfn(axn).

Proof. As before we derive the following differential equation for φn(ot):

(d/doc)φn(oc) = - φ2((x)- (n- l)oc~1 φn(cή + <x2>π(α)

with
oo

\ d x v n ( x ) x 2 I n ( a x ) , , , , , .

and

In(κx) =

ι —

+ 1

0 0

\dxvn\
0

ίz(l-z

(x). In(ooc)

n-3)/2eaxz ̂
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We see easily that In(ax) is increasing with x and thus we obtain by Tchebychef s
inequality

Consequently we have for the derivative of φn((x) with respect to α

Furthermore φn(0) = 0 and φπ(α)^0. Let φw(α) be the solution of

dψJda=-ψ2-(n-l)(x~1ψnΛ-x2 .

Then we find immediately that

Ψn(<x) = xnfn(xxn)

and by the same argument as in B)

D) It is easy to calculate /3(x),

This implies in particular that
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Note Added in Proof. It is possible to show, by means of Bogoliubov inequality, that there is no
spontaneous magnetization when α = 4.




