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Abstract

We present a comprehensive analysis of the emerging order and chaos and enduring sym-
metries, accompanying a generic (high-barrier) first-order quantum phase transition (QPT).
The interacting boson model Hamiltonian employed, describes a QPT between spherical and
deformed shapes, associated with its U(5) and SU(3) dynamical symmetry limits. A classical
analysis of the intrinsic dynamics reveals a rich but simply-divided phase space structure
with a Hénon-Heiles type of chaotic dynamics ascribed to the spherical minimum and a
robustly regular dynamics ascribed to the deformed minimum. The simple pattern of mixed
but well-separated dynamics persists in the coexistence region and traces the crossing of the
two minima in the Landau potential. A quantum analysis discloses a number of regular low-
energy U(5)-like multiplets in the spherical region, and regular SU(3)-like rotational bands
extending to high energies and angular momenta, in the deformed region. These two kinds
of regular subsets of states retain their identity amidst a complicated environment of other
states and both occur in the coexistence region. A symmetry analysis of their wave func-
tions shows that they are associated with partial U(5) dynamical symmetry (PDS) and SU(3)
quasi-dynamical symmetry (QDS), respectively. The pattern of mixed but well-separated
dynamics and the PDS or QDS characterization of the remaining regularity, appear to be
robust throughout the QPT. Effects of kinetic collective rotational terms, which may disrupt
this simple pattern, are considered.
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1. Introduction

Quantum phase transitions (QPTs) are qualitative changes in the properties of a physical
system induced by a variation of parameters λ in the quantum Hamiltonian Ĥ(λ) [1, 2, 3].
Such ground-state transformations have received considerable attention in recent years and
have found a variety of applications in many areas of physics and chemistry [4]. These
structural modifications occur at zero-temperature in diverse dynamical systems including
spin lattices [5], ensembles of ultracold atoms [6, 7] and atomic nuclei [8].

The particular type of QPT is reflected in the topology of the underlying mean-field
(Landau) potential V (λ). Most studies have focused on second-order (continuous) QPTs,
where V (λ) has a single minimum which evolves continuously into another minimum. The
situation is more complex for discontinuous (first-order) QPTs, where V (λ) develops multiple
minima that coexist in a range of λ values and cross at the critical point, λ = λc. The
competing interactions in the Hamiltonian that drive these ground-state phase transitions
can affect dramatically the nature of the dynamics and, in some cases, lead to the emergence
of quantum chaos [9, 10, 11]. This effect has been observed in quantum optics models of N
two-level atoms interacting with a single-mode radiation field [12, 13], where the onset of
chaos is triggered by continuous QPTs. In the present article, we examine similar effects for
the less-studied discontinuous QPTs, and explore the nature of the underlying classical and
quantum dynamics in such circumstances.

The interest in first-order quantum phase transitions stems from their key role in phase-
coexistence phenomena at zero temperature. In condensed matter physics, it has been
recently recognized that, for clean samples, the nature of the QPT becomes discontinu-
ous as the critical-point is approached. Examples are offered by the metal-insulator Mott
transition [14], itinerant magnets [15], heavy-fermion superconductors [16], quantum Hall
bilayers [17], Bose-Einstein condensates [18] and Bose-Fermi mixture [19]. First-order QPTs
are relevant to shape-coexistence in mesoscopic systems, such as atomic nuclei [8], and to
optimization problems in quantum computing [20].

Hamiltonians describing first-order QPTs are often non-integrable, hence their dynamics
is mixed. They form a subclass among the family of generic Hamiltonians with a mixed
phase space, in which regular and chaotic motion coexist. Mixed phase spaces are often
encountered in billiard systems [9, 10, 11], which are generated by the free motion of a
point particle inside a closed domain whose geometry governs the amount of chaoticity.
Here, in contrast, we consider many-body interacting systems undergoing a first-order QPT,
where the onset of chaos is governed by a change of coupling constants in the Hamiltonian.
The amount of order and disorder in the system is affected by the relative strengths of
different terms in the Hamiltonian which have incompatible symmetries. Order, chaos and
symmetries are thus intertwined, and their study can shed light on the structure evolution.
In conjunction with first-order QPTs, this raises a number of key questions. (i) How does the
interplay of order and chaos reflect the first-order QPT, in particular, the changing topology
of the Landau potential in the coexistence region. (ii) What is the symmetry character (if
any) of the remaining regularity in the system, amidst a complicated environment. (iii) What
is the effect of kinetic terms, which do not affect the potential, on the onset of chaos across
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the QPT.
To address these questions in a transparent manner, we employ an interacting boson

model (IBM) [21], which describes quantum phase transitions between spherical and de-
formed nuclei. The model is amenable to both classical and quantum treatments, has a rich
algebraic structure and inherent geometry. The phases are associated with different nuclear
shapes and correspond to solvable dynamical symmetry limits of the model. The Hamilto-
nian accommodates QPTs of first- and second order between these shapes, by breaking and
mixing the relevant limiting symmetries. These attributes make the IBM an ideal framework
for studying the intricate interplay of order and chaos and the role of symmetries in such
quantum shape-phase transitions. It is a representative of a wide class of algebraic models
used for describing many-body systems, e.g., nuclei [21], molecules [22] and hadrons [23].

QPTs have been studied extensively in the IBM framework [8, 24, 25] and are manifested
empirically in nuclei [26, 27]. The situation is summarized in the indicated review papers
where a complete list of references is given. Particular attention has been paid to symmetry
aspects (critical point symmetries [28, 29], quasi-dynamical [30, 31, 32] and partial dynamical
symmetries [33]), finite-size effects [34, 35, 36, 37, 38] and scaling behavior [39, 40, 41].
Further extensions of the QPT concept to excited states [42] and to Bose-Fermi systems [43],
have also been considered.

Chaotic properties of the IBM have been throughly investigated both classically and
quantum mechanically [44, 45, 46, 47, 48, 49, 50, 51]. All such treatments involved a sim-
plified Hamiltonian giving rise to integrable second order QPTs and to non-integrable first
order QPTs with an extremely low barrier and narrow coexistence region. A new element in
the present treatment, compared to previous works, is the employment of IBM Hamiltonians
without such restrictions [37] and their resolution into intrinsic and collective parts [52, 53].
This enables a comprehensive analysis of the vibrational and rotational dynamics across a
generic (high-barrier) first-order QPT, both inside and outside the coexistence region. Brief
accounts of some aspects of this analysis were reported in [54, 55].

Section 2 reviews the algebraic, geometric and symmetry content of the IBM. An in-
trinsic Hamiltonian for a first-order QPT between spherical and deformed shapes, with an
adjustable barrier height, is introduced in Section 3, and its symmetry properties are dis-
cussed. The classical limit of the QPT Hamiltonian is derived in Section 4. The topology of
the classical potential is studied in great detail, identifying the control and order parameters
in various structural regions of the QPT. A comprehensive classical analysis is performed
in Section 5, focusing on regular and chaotic features of the intrinsic vibrational dynamics
across the QPT. Special attention is paid to the dynamics in the vicinity of minima in the
Landau potential and to resonance effects. An elaborate quantum analysis is conducted in
Section 6 with emphasis on quantum manifestations of classical chaos and remaining reg-
ular features in the spectrum. A symmetry analysis is performed in Section 7, examining
the symmetry content of eigenstates and the evolution of purity and coherence throughout
the QPT. The impact of different collective rotational terms on the classical and quantum
dynamics is considered in Section 8. The implications of modifying the barrier height, are
examined in Section 9. The final Section is devoted to a summary and conclusions. Specific
details on the IBM potential surface and on linear correlation coefficients are collected in
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Appendix A and B, respectively.

2. The interacting boson model: algebras, geometry, symmetries

The interacting boson model (IBM) [21] describes low-lying quadrupole collective states
in nuclei in terms of N interacting monopole (s) and quadrupole (d) bosons representing
valence nucleon pairs. The bilinear combinations Gij ≡ b†ibj = {s†s, s†dm, d†ms, d†mdm′} span
a U(6) algebra, which serves as the spectrum generating algebra. The IBM Hamiltonian
is expanded in terms of these generators, Ĥ =

∑

ij ǫij Gij +
∑

ijkℓ uijkℓ GijGkℓ + . . ., and
consists of Hermitian, rotational-invariant interactions which conserve the total number of
s- and d- bosons, N̂ = n̂s + n̂d = s†s +

∑

m d†mdm. A dynamical symmetry (DS) occurs
if the Hamiltonian can be written in terms of the Casimir operators of a chain of nested
sub-algebras of U(6). The Hamiltonian is then completely solvable in the basis associated
with each chain. The three dynamical symmetries of the IBM [56, 57, 58] and corresponding
bases are

U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) |N, nd, τ, n∆, L〉 spherical vibrator (1a)

U(6) ⊃ SU(3) ⊃ O(3) |N, (λ, µ), K, L〉 axially−deformed rotor (1b)

U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) |N, σ, τ, n∆, L〉 γ−unstable deformed rotor (1c)

The associated analytic solutions resemble known limits of the geometric model of nuclei [59],
as indicated above. The basis members are classified by the irreducible representations
(irreps) of the corresponding algebras. Specifically, the quantum numbers N, nd, (λ, µ), σ, τ
and L label the relevant irreps of U(6), U(5), SU(3), O(6), O(5) and O(3), respectively. n∆

and K are multiplicity labels needed for complete classification of selected states in the
reductions O(5) ⊃ O(3) and SU(3) ⊃ O(3), respectively. Each basis is complete and can
be used for a numerical diagonalization of the Hamiltonian in the general case. Relevant
information on the generators, Casimir operators and eigenvalues for the above algebras is
collected in Table 1. Also listed are additional algebras, O(6) and SU(3), obtained by a
phase-change of the s-boson.

A geometric visualization of the model is obtained by a potential surface

V (β, γ) = 〈β, γ;N |Ĥ|β, γ;N〉 , (2)

defined by the expectation value of the Hamiltonian in the following intrinsic condensate
state [60, 61]

|β, γ;N〉 = (N !)−1/2[ Γ†
c(β, γ) ]

N |0〉 , (3a)

Γ†
c(β, γ) =

[

β cos γd†0 + β sin γ(d†2 + d†−2)/
√
2 +

√

2− β2s†
]

/
√
2 . (3b)

Here (β, γ) are quadrupole shape parameters analogous to the variables of the collective
model of nuclei [59]. Their values (βeq, γeq) at the global minimum of V (β, γ) define the
equilibrium shape for a given Hamiltonian. For one- and two-body interactions, the shape
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Table 1: Generators, linear and quadratic Casimir operators ĈG and their eigenvalues 〈ĈG〉, for
algebras G in the IBM. Here n̂s = s†s, n̂d =

√
5U (0), N̂ = n̂s + n̂d, L

(1)
m =

√
10U

(1)
m , Q

(2)
m =

Π
(2)
m −

√
7
2 U

(2)
m , Q̄

(2)
m = Π

(2)
m +

√
7
2 U

(2)
m , Π

(2)
m = d†ms + s†d̃m, Π̄

(2)
m = i(d†ms − s†d̃m), U

(ℓ)
m = (d† d̃)

(ℓ)
m ,

where U
(ℓ)
m stands for a spherical tensor operator of rank ℓ projection m, and d̃m = (−1)md−m.

Algebra Generators Casimir operator ĈG Eigenvalues 〈ĈG〉

O(3) U (1) L(1) · L(1) L(L+1)

O(5) U (1), U (3) 2
∑

L=1,3 U (L) · U (L) τ(τ + 3)

O(6) U (1), U (3),Π(2) ĈO(5) +Π(2) · Π(2) σ(σ + 4)

SU(3) U (1), Q(2) 2Q(2) ·Q(2) + 3
4
ĈO(3) λ2 + (λ+ µ)(µ+ 3)

U(5) U (ℓ) ℓ = 0, ... , 4 n̂d, n̂d(n̂d + 4) nd, nd(nd + 4)

U(6) n̂s, Π
(2), Π̄(2), U (ℓ) ℓ = 0, ... , 4 N̂ , N̂(N̂ + 5) N, N(N + 5)

O(6) U (1), U (3), Π̄(2) ĈO(5) + Π̄(2) · Π̄(2) σ̄(σ̄ + 4)

SU(3) U (1), Q̄(2) 2Q̄(2) · Q̄(2) + 3
4
ĈO(3) λ̄2 + (λ̄+ µ̄)(µ̄+ 3)

can be spherical (βeq = 0) or deformed (βeq > 0) with γeq = 0 (prolate), γeq = π/3 (oblate)
or γ-independent. The parameterization adapted in Eq. (3) is particularly suitable for a
classical analysis of the model. An alternative parameterization for the shape parameters
and further properties of the potential surface are discussed in Appendix A.

The dynamical symmetries of Eq. (1) correspond to solvable limits of the model. The
often required symmetry breaking is achieved by including in the Hamiltonian terms as-
sociated with different sub-algebra chains of U(6). In general, under such circumstances,
solvability is lost, there are no remaining non-trivial conserved quantum numbers and all
eigenstates are expected to be mixed. However, for particular symmetry breaking, some
intermediate symmetry structure can survive. The latter include partial dynamical sym-
metry (PDS) [62] and quasi-dynamical symmetry (QDS) [30]. In a PDS, the conditions of
an exact dynamical symmetry (solvability of the complete spectrum and existence of exact
quantum numbers for all eigenstates) are relaxed and apply to only part of the eigenstates
and/or of the quantum numbers. In a QDS, particular states continue to exhibit selected
characteristic properties (e.g., energy and B(E2) ratios) of the closest dynamical symmetry,
in the face of strong-symmetry breaking interactions. This “apparent” symmetry is due to
the coherent nature of the mixing. Interestingly, both PDS [33] and QDS [30, 31, 32] have
been shown to occur in quantum phase transitions.

In discussing the dynamics of the IBM Hamiltonian, it is convenient to resolve it into
intrinsic and collective parts [52, 53],

Ĥ = Ĥint + Ĥcol . (4)

The intrinsic part (Ĥint) determines the potential surface V (β, γ), Eq. (2), and is defined to
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yield zero when acting on the equilibrium condensate

Ĥint|β = βeq, γ = γeq;N〉 = 0 . (5)

For βeq = 0, the condensate is spherical, and consists of a single state with angular momen-
tum L = 0 built from N s-bosons. For (βeq > 0, γeq = 0) the condensate is deformed, and
has angular projection K = 0 along the symmetry z-axis. States of good L projected from it
span the K = 0 ground band, and other eigenstates of Ĥint are arranged in excited K-bands.
The collective part (Ĥcol) has a flat potential surface and involves collective rotations linked
with the groups in the chain O(6) ⊃ O(5) ⊃ O(3). These orthogonal groups correspond
to “generalized” rotations associated with the β-, γ- and Euler angles degrees of freedom,
respectively. Apart from constant terms of no significance to the excitation spectrum, the
collective Hamiltonian is composed of the two-body parts of the respective Casimir operators

Ĥcol = c̄3

[

ĈO(3) − 6n̂d

]

+ c̄5

[

ĈO(5) − 4n̂d

]

+ c̄6

[

ĈO(6) − 5N̂
]

. (6)

Here ĈG are defined in Table 1 and a per-boson scaling is invoked c̄i = ci/N(N − 1) to
ensure that the bounds of the energy spectrum do not change for large N . In general, the
intrinsic and collective Hamiltonians do not commute and Ĥcol splits and mixes the bands
generated by Ĥint.

3. First order quantum phase transitions in the IBM

The dynamical symmetries of the IBM, Eq. (1), correspond to phases of the system, and
provide analytic benchmarks for the dynamics of stable nuclear shapes. Quantum phase
transitions (QPTs) between different shapes are studied [61] by considering Hamiltonians
Ĥ(λ) that mix interaction terms from different DS chains, e.g., Ĥ(λ) = λĤ1 + (1 − λ)Ĥ2.
The coupling coefficient (λ) responsible for the mixing, serves as the control parameter which
upon variation induces qualitative changes in the properties of the system. The kind of QPT
is dictated by the potential surface V (λ) ≡ V (λ; β, γ), Eq. (2), which serves as a mean-field
Landau potential with the equilibrium deformations (βeq, γeq) as order parameters. The
order of the phase transition and the critical point, λ = λc, are determined by the order of
the derivative with respect to λ of V (λ; βeq, γeq), where discontinuities first occur.

The IBM phase diagram [63] consists of spherical and deformed phases separated by
a line of first-order transition ending in a point of second-order transitions in-between the
spherical [U(5)] and deformed γ-unstable [O(6)] phases. The spherical [U(5)] to axially-
deformed [SU(3)] transition is of first order and the O(6)-SU(3) transition exhibits a cross-
over. In what follows, we examine the nature of the classical and quantum dynamics across
a generic first-order QPT, with a high-barrier separating the two phases.

3.1. Intrinsic Hamiltonian in a first order QPT
Focusing on first-order QPTs between stable spherical (βeq = 0) and prolate-deformed

(βeq > 0, γeq = 0) shapes, the intrinsic Hamiltonian reads

Ĥ1(ρ)/h̄2 = 2(1−ρ2β2
0)n̂d(n̂d−1) + β2

0R
†
2(ρ) · R̃2(ρ) , (7a)

Ĥ2(ξ)/h̄2 = ξP †
0 (β0)P0(β0) + P †

2 (β0) · P̃2(β0) , (7b)
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where n̂d is the d-boson number operator and the boson pair operators are defined as

R†
2µ(ρ) =

√
2s†d†µ + ρ

√
7(d†d†)(2)µ , (8a)

P †
0 (β0) = d† · d† − β2

0(s
†)2 , (8b)

P †
2µ(β0) =

√
2β0s

†d†µ +
√
7(d†d†)(2)µ . (8c)

In Eq. (7), R̃2µ = (−1)µR2,−µ, P̃2µ = (−1)µP2,−µ, standard notation of angular momentum
coupling is used and the dot implies a scalar product. As in Eq. (6), scaling by h2 ≡
h2/N(N − 1) is used throughout (h2 > 0), to facilitate the comparison with the classical
limit. The control parameters that drive the QPT are ρ and ξ, with 0 ≤ ρ ≤ β−1

0 and ξ ≥ 0,
while β0 is a constant.

The intrinsic Hamiltonian in the spherical phase, Ĥ1(ρ), describes the dynamics of a
spherical shape and satisfies Eq. (5), with βeq = 0. For large N , its normal modes involve
five-dimensional quadrupole vibrations about the spherical global minimum of its potential
surface, with frequency

ǫ = 2h̄2Nβ2
0 . (9)

The intrinsic Hamiltonian in the deformed phase, Ĥ2(ξ), describes the dynamics of an
axially-deformed shape and satisfies Eq. (5), with (βeq =

√
2β0(1 + β2

0)
−1/2, γeq = 0). For

large N , its normal modes involve one-dimensional β vibration and two-dimensional γ vibra-
tions about the prolate-deformed global minimum of its potential surface, with frequencies

ǫβ = 2h̄2Nβ2
0(2ξ + 1) , (10a)

ǫγ = 18h̄2Nβ2
0(1 + β2

0)
−1 . (10b)

The two intrinsic Hamiltonians coincide at the critical point, ρc=β−1
0 and ξc=0,

Ĥ int
cri ≡ Ĥ1(ρc) = Ĥ2(ξc) , (11)

where Ĥ int
cri is the critical-point intrinsic Hamiltonian considered in [37].

The collective Hamiltonian, Eq. (6), does not affect the shape of the potential surface
but can contribute a shift to the normal-mode frequencies, Eqs. (9)-(10), by the amount

ǫc = 2Nc̄6 , (12a)

ǫcβ = 2Nc̄6 , (12b)

ǫcγ = 2N
[

c̄6 + c̄5β
2
0(1 + β2

0)
−1

]

. (12c)

In general, given an Hamiltonian Ĥ, the intrinsic and collective parts, Eq. (4), are fixed
by the condition of Eq. (5) and by requiring Ĥint and Ĥ to have the same shape for the
potential surface. For example, an Hamiltonian [64] frequently used in the study of QPTs is

Ĥ = ǫ n̂d − κQ(χ) ·Q(χ) , (13)
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whereQ(χ) = d†s+s†d̃+χ(d†d̃)(2) is the quadrupole operator and ǫ ≥ 0, κ ≥ 0, −
√
7
2

≤ χ < 0.
The critical-point Hamiltonian is obtained for a specific relation among ǫ, κ and χ,

Ĥcri : ǫ = κ
[

(2
7
χ2 + 4)N + 5

7
χ2 − 8

]

. (14)

The parameters of the intrinsic and collective Hamiltonians are then found to be

Ĥ int
cri : h̄2 = 2κ , ρc = β−1

0 , ξc = 0 , β0 = − 1√
14
χ . (15a)

Ĥcol
cri : c̄3 = κ(2− β2

0) , c̄5 = κ(4β2
0 − 5) , c̄6 = κ . (15b)

In the present study, we adapt a different strategy. We fix the value of the parameter β0 in
the intrinsic Hamiltonian, Eq. (7), so as to ensure a high barrier at the critical point. We
then vary, independently, the control parameters (ρ, ξ) in the intrinsic Hamiltonian and the
parameters c̄3, c̄5, c̄6, of the collective Hamiltonian, Eq. (6). This will allow us to examine,
separately, the influence on the dynamics of those terms affecting the Landau potential and
of individual rotational kinetic terms, in a generic (high-barrier) first order QPT.

3.2. Symmetry properties and integrability

The symmetry properties of the intrinsic Hamiltonian (7) depend on the choice of control
parameters (ρ, ξ) and of β0. In general, the dynamical symmetries are completely broken
in the Hamiltonian and hence the underlying dynamics is non-integrable. However, for
particular values of these parameters, exact dynamical symmetries (DS) or partial dynamical
symmetries (PDS) can occur and their presence affects the integrability of the system.

The appropriate intrinsic Hamiltonian in the spherical phase is Ĥ1(ρ), Eq. (7a), with
0 ≤ ρ ≤ β−1

0 . For ρ = 0, Ĥ1(ρ = 0) reduces to

Ĥ1(ρ = 0)/h̄2 = 2n̂d(n̂d − 1) + 2β2
0(N̂ − n̂d)n̂d , (16)

and hence has U(5) DS. The spectrum is completely solvable

|N, nd, τ, n∆, L〉 EDS =
[

2nd(nd − 1) + 2β2
0(N − nd)nd

]

h̄2 . (17)

The eigenstates are those of the U(5) chain, Eq. (1a), with nd = 0, 1, 2, . . . , N and τ =
nd, nd − 2, . . . 1 or 0. The values of L are obtained by partitioning τ = 3n∆ + p, with
n∆, p ≥ 0 integers, and L = 2p, 2p − 2, 2p − 3, . . . , p. The spectrum resembles that of an
anharmonic spherical vibrator, describing quadrupole excitations of a spherical shape. The
lowest U(5) multiplets involve states with quantum numbers [56]

nd = 3 : L = 6, 4, 3, 0 (τ = 3) L = 2 (τ = 1)
nd = 2 : L = 4, 2 (τ = 2) L = 0 (τ = 0)
nd = 1 : L = 2 (τ = 1)
nd = 0 : L = 0 (τ = 0)

(18)

The situation changes drastically when ρ > 0, for which the Hamiltonian becomes

Ĥ1(ρ)/h̄2 = 2n̂d(n̂d−1) + 2β2
0(N̂ − n̂d)n̂d + ρ2β2

0(2ĈO(5) − ĈO(3) − 2n̂d)

+ρβ2
0

√
14[(d†d†)(2) · d̃s+H.c.] , (19)
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where H.c. means Hermitian conjugate. In this case, the last term in Eq. (19) breaks the
U(5) DS, and induces U(5) and O(5) mixing subject to ∆nd = ±1 and ∆τ = ±1,±3.
The explicit breaking of O(5) symmetry leads to non-integrability and, as will be shown
in subsequent discussions, is the main cause for the onset of chaos in the spherical region.
Although Ĥ1(ρ), Eq. (19), is not diagonal in the U(5) chain, it retains the following selected
solvable U(5) basis states [62]

|[N ], nd = τ = L = 0〉 EPDS = 0 , (20a)

|[N ], nd = τ = L = 3〉 EPDS = 6
[

2 + β2
0(N − 3) + 3ρ2β2

0

]

h̄2 , (20b)

while other eigenstates are mixed. As such, it exhibits U(5) partial dynamical symmetry
[U(5)-PDS].

In the deformed phase, the appropriate intrinsic Hamiltonian is Ĥ2(ξ), Eq. (7b), with
ξ ≥ 0. The latter has a zero-energy ground band composed of states with L = 0, 2, 4, . . . , 2N ,
projected from the intrinsic state, Eq. (3), with (βeq =

√
2β0(1 + β2

0)
−1/2, γeq = 0). For

β0 =
√
2 and ξ = 1, the Hamiltonian reduces to

Ĥ2(ξ = 1; β0 =
√
2)/h̄2 = −ĈSU(3) + 2N̂(2N̂ + 3) , (21)

and hence has SU(3) DS. The spectrum is completely solvable

|N, (λ, µ), K, L〉 EDS/h̄2 = [−c(λ, µ) + 2N(2N + 3)] h̄2 , (22)

where c(λ, µ) are the eigenvalues of the SU(3) Casimir operator listed in Table 1. The
eigenstates are those of the SU(3) chain, Eq. (1b), with (λ, µ) = (2N − 4k − 6m, 2k), with
k,m non-negative integers, such that, λ, µ ≥ 0. The values of L contained in these SU(3)
irreps are L = K,K+1, K+2, . . . , K+max{λ, µ}, where K = 0, 2, . . . ,min{λ, µ}; with the
exception of K = 0 for which L = 0, 2, . . . ,max{λ, µ}. The spectrum resembles that of an
axially-deformed rotor with degenerate K-bands arranged in SU(3) multiplets, K being the
angular momentum projection on the symmetry axis. The lowest SU(3) irreps are (2N, 0)
which describes the ground band g(K = 0), (2N − 4, 2) which contains the β(K = 0) and
γ(K = 2) bands, and (2N − 8, 4), (2N − 6, 0), which contain the β2(K = 0), βγ(K = 2),
γ2(K = 0, 4) bands. The corresponding band-members are [57]

(λ, µ) = (2N − 6, 0) : L = 0, 2, 4, . . . (K = 0) γ2 , β2

(λ, µ) = (2N − 8, 4) : L = 4, 5, 6, . . . (K = 4) γ2

L = 2, 3, 4, . . . (K = 2) βγ
L = 0, 2, 4, . . . (K = 0) β2 , γ2

(λ, µ) = (2N − 4, 2) : L = 2, 3, 4, . . . (K = 2) γ
L = 0, 2, 4, . . . (K = 0) β

(λ, µ) = (2N, 0) : L = 0, 2, 4, . . . (K = 0) g

(23)

For β0 =
√
2 and ξ 6= 1, the Hamiltonian becomes

Ĥ2(ξ; β0 =
√
2)/h̄2 = −ĈSU(3) + 2N̂(2N̂ + 3) + (ξ − 1)P †

0P0 , (24)
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where P †
0 ≡P †

0 (β0=
√
2) of Eq. (8b). The added term breaks the SU(3) DS of the Hamiltonian

and most eigenstates are mixed with respect to SU(3). However, the following states [62]

|N, (2N, 0)K = 0, L〉 L = 0, 2, 4, . . . , 2N

EPDS = 0 (25a)

|N, (2N − 4k, 2k)K = 2k, L〉 L = K,K + 1, . . . , (2N − 2k) k > 0 ,

EPDS = 6k (2N − 2k + 1) h̄2 (25b)

remain solvable with good SU(3) symmetry. As such, Ĥ2(ξ; β0 =
√
2) exhibits SU(3) partial

dynamical symmetry [SU(3)-PDS]. The selected states of Eq. (25) span the ground band
g(K = 0) and γk(K = 2k) bands. Such Hamiltonians with SU(3)-PDS have been used for
the spectroscopy of deformed rotational nuclei [65, 66]. In general, the analytic properties
of the solvable states in a PDS, provide unique signatures for their identification in the
quantum spectrum.

The collective Hamiltonian of Eq. (6) preserves the O(5) symmetry for any choice of
couplings c̄i, hence its dynamics is integrable with τ and L as good quantum numbers.
The ĈO(3) and ĈO(5) terms lead to an L(L + 1) and τ(τ + 3) type of splitting. In general,
integrability is lost when the collective Hamiltonian is added to the intrinsic Hamiltonian (7),
since the latter breaks the O(5) symmetry, and only L remains a good quantum number for
the full Hamiltonian. A notable exception is when ρ = 0, since now all terms in Ĥ1(ρ =
0) + Ĥcol, respect the O(5) symmetry.

4. Classical limit

The classical limit of the IBM is obtained through the use of Glauber coherent states [67].
This amounts to replacing (s†, d†µ) by six c-numbers (α∗

s, α
∗
µ) rescaled by

√
N and taking

N → ∞, with 1/N playing the role of ~. Number conservation ensures that phase space
is 10-dimensional and can be phrased in terms of two shape (deformation) variables, three
orientation (Euler) angles and their conjugate momenta. The shape variables can be identi-
fied with the β, γ variables introduced through Eq. (3). Setting all momenta to zero, yields
the classical potential which is identical to V (β, γ) of Eq. (2). In the classical analysis pre-
sented below we consider, for simplicity, the dynamics of L = 0 vibrations, for which only
two degrees of freedom are active. The rotational dynamics with L > 0 is examined in the
subsequent quantum analysis.
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4.1. Classical limit of the QPT Hamiltonian

For the intrinsic Hamiltonian of Eq. (7), constrained to L = 0, the above procedure
yields the following classical Hamiltonian

H1(ρ)/h2 = H2
d,0 + β2

0(1−Hd,0)Hd,0 + ρ2β2
0p

2
γ

+ρβ2
0

√

1−Hd,0

2

[

(p2γ/β − βp2β − β3) cos 3γ + 2pβpγ sin 3γ
]

, (26a)

H2(ξ)/h2 = H2
d,0 + β2

0(1−Hd,0)Hd,0 + p2γ

+β0

√

1−Hd,0

2

[

(p2γ/β − βp2β − β3) cos 3γ + 2pβpγ sin 3γ
]

+ξ
[

β2p2β +
1
4
(β2 − T )2 − β2

0(1−Hd,0)(β
2 − T ) + β4

0(1−Hd,0)
2
]

. (26b)

Here the coordinates β ∈ [0,
√
2], γ ∈ [0, 2π) and their canonically conjugate momenta

pβ ∈ [0,
√
2] and pγ ∈ [0, 1] span a compact classical phase space. The term

Hd,0 ≡ (T + β2)/2 , T = p2β + p2γ/β
2 , (27)

denotes the classical limit of n̂d (restricted to L = 0) and forms an isotropic harmonic
oscillator Hamiltonian in the β and γ variables. Notice that the classical Hamiltonian of
Eq. (26) contains complicated momentum-dependent terms originating from the two-body
interactions in the Hamiltonian (7), not just the usual quadratic kinetic energy T . Setting
pβ = pγ = 0 in Eq. (26) leads to the following classical potential

V1(ρ)/h2 = β2
0β

2 − ρβ2
0

√

2−β2β3 cos 3γ +
1

2
(1−β2

0)β
4 , (28a)

V2(ξ)/h2 = β2
0 [1− ξ(1+β2

0)]β
2 − β0

√

2−β2β3 cos 3γ

+
1

4

[

2(1−β2
0) + ξ(1+β2

0)
2
]

β4 + ξβ4
0 . (28b)

The same expressions can be obtained from Eq. (2) using the static intrinsic coherent
state (3). Notice that the potential of Eq. (28) is independent of N due to the per-boson
scaling used in Eq. (7).

The variables β and γ can be interpreted as polar coordinates in an abstract plane
parameterized by Cartesian coordinates (x, y). The transformation between these two sets
of coordinates and conjugate momenta is

x = β cos γ , y = β sin γ , (29a)

px = pβ cos γ − (pγ/β) sin γ , py = (pγ/β) cos γ + pβ sin γ . (29b)

Using the relations

pγ = xpy − ypx , βpβ = xpx + ypy , β2 = x2 + y2 , β3 cos 3γ = x3 − 3xy2 , (30a)

(p2γ/β − βp2β) cos 3γ + 2pβpγ sin 3γ = x(p2y − p2x) + 2ypxpy , (30b)

Hd,0 ≡ (T + x2 + y2)/2 , T = p2x + p2y , (30c)
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one can express the classical Hamiltonians of Eq. (26) in terms of (x, y, px, py). Setting
px = py = 0 in the resulting expressions, we obtain the classical potential of Eq. (28) in
Cartesian form

V1(ρ)/h2 = β2
0(x

2 + y2)− ρβ2
0

√

2− (x2 + y2)
[

x3 − 3xy2
]

+
1

2
(1−β2

0)(x
2 + y2)2 , (31a)

V2(ξ)/h2 = β2
0

[

1− ξ(1+β2
0)
]

(x2 + y2)− β0

√

2− (x2 + y2)
[

x3 − 3xy2
]

+
1

4

[

2(1−β2
0) + ξ(1+β2

0)
2
]

(x2 + y2)2 + ξβ4
0 . (31b)

Note that the potentials V (β, γ) = V (x, y) depend on the combinations β2 = x2 + y2,
β4 = (x2 + y2)2 and β3 cos 3γ=x3 − 3xy2.

The classical limit of the collective Hamiltonian, Eq. (6), constrained to L = 0, is obtained
in a similar manner and is given by

Hcol = c5 p
2
γ + c6

(

−T 2 + 2T − β2p2β
)

= c5 (xpy − ypx)
2 + c6

[

−T 2 + 2T − (xpx + ypy)
2
]

, (32)

where T = p2β + p2γ/β
2 = p2x + p2y. The O(3)-rotational c3-term is absent from Eq. (32), since

the classical Hamiltonian is constrained to angular momentum zero. The purely kinetic
character of the collective terms is evident from the fact that Hcol vanishes for pβ = pγ = 0,
thus not contributing to the potential V (β, γ).

4.2. Topology of the classical potentials

The values of the control parameters ρ and ξ determine the landscape and extremal points
of the potentials V1(ρ; β, γ) and V2(ξ; β, γ), Eq. (28). Important values of these parameters at
which a pronounced change in structure is observed, are the spinodal point where a second
(deformed) minimum occurs, an anti-spinodal point where the first (spherical) minimum
disappears and a critical point in-between, where the two minima are degenerate. For the
potentials under discussion, the critical point (ρc, ξc) given by

ρc = β−1
0 and ξc = 0 , (33)

separates the spherical and deformed phases. The spinodal point (ρ∗)

ρ∗ =
1√
6

[

−(r2 − 4r + 1) + (r + 1)
√

(r + 1)(r − 1/3)
]1/2

, r ≡ β−2
0 , (34)

and the anti-spinodal point (ξ∗∗)

ξ∗∗ = (1 + β2
0)

−1 , (35)

embrace the critical point and mark the boundary of the phase coexistence region. The
derivation of these expressions is explained in Appendix A.

In general, the only γ-dependence in the potentials (28) is due to the
√

2− β2β3 cos 3γ
term. This induces a three-fold symmetry about the origin β = 0, as is evident in the contour

12



Figure 1: Contour plots of the potential V1(ρ;x, y), Eq. (31a), [lower portion], and the section V1(ρ;x, y = 0)
[upper portion], for β0 =

√
2, h2 = 1, relevant to the spherical side of the QPT (0 ≤ ρ ≤ ρc). Here ρU(5) = 0

corresponds to the U(5) limit, ρ∗ the spinodal point, Eq. (34), and ρc the critical point, Eq. (33). The
stationary values (Vsph,Vdef ,Vbar, Vsad, Vmax) and boundary values (Vlim) of V1(ρ;x, y) are marked by arrows.
The energy scale of the color coding in the contour plots can be inferred from the respective panels above
them.

plots of the potentials shown in Figs 1-2. As a consequence, the deformed extremal points are
obtained for γ = 0, 2π

3
, 4π

3
(prolate shapes), or γ = π

3
, π, 5π

3
(oblate shapes). It is therefore

possible to restrict the analysis to γ = 0 and allow for both positive and negative values of β,
corresponding to prolate and oblate deformations, respectively. Henceforth, we occasionally
use the shorthand notation, V1(ρ; β) ≡ V1(ρ; β, γ = 0) and V2(ξ; β) ≡ V2(ξ; β, γ = 0). These
γ = 0 sections are shown in the upper portion of Figs. 1-2.

The spherical phase (0 ≤ ρ ≤ ρc = β−1
0 ).

The relevant potential in the spherical phase is V1(ρ; β, γ), Eq. (28a), with 0 ≤ ρ ≤ ρc.
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Figure 2: Same as in Fig. 3, but for the potential V2(ξ;x, y), Eq. (31b), [lower portion], and the section
V2(ξ;x, y = 0) [upper portion], relevant to the deformed side of the QPT (ξ∗∗ ≤ ξ ≤ 1). Here ξ∗∗ denotes
the anti-spinodal point, Eq. (35), and ξSU(3) = 1 corresponds to the SU(3) limit.

In this case, β = 0 is a global minimum of the potential at an energy Vsph, representing the
equilibrium spherical shape,

βeq = 0 : Vsph = V1(ρ; βeq = 0, γ) = 0 . (36)

The limiting value at the domain boundary is

Vlim = V1(ρ; β =
√
2, γ) = 2h2 . (37)

For ρ = 0, the potential is independent of γ,

V1(ρ = 0)/h2 = β2
0β

2 + 1
2
(1−β2

0)β
4 , (38)
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and has βeq = 0 as a single minimum.
For ρ > 0, the deformed extremal points (β 6= 0) are given by

β =
√
2β̃(1 + β̃2)−1/2 , (39)

where β̃ are real solutions of the cubic equation

ρβ̃3 + 3ηβ̃2 − 3ρβ̃ + 1 = 0 , η = (2− β2
0)/3β

2
0 . (40)

For ρ < ρ∗, Eq. (40) has one real root, β̃1 < 0. The corresponding deformation, β1 < 0,
obtained from Eq. (39), produces a maximum in V1(ρ; β) at an energy Vmax = F1(ρ, β̃1),
where

F1(ρ; β̃)/h2 = β2
0(1 + β̃2)−1β̃2(1− ρβ̃) . (41)

At the spinodal point, ρ = ρ∗, Eq. (40) has one negative root (β̃1 < 0) and a doubly-
degenerate positive root (β̃2 > 0), given by

β̃1 = −2
√

1 + (η/ρ∗)2 − η/ρ∗ , (42a)

β̃2 =
√

1 + (η/ρ∗)2 − η/ρ∗ . (42b)

The corresponding deformations β1 < 0 and β2 > 0, obtained from Eq. (39), correspond to
a maximum of the potential at an energy Vmax = F1(ρ

∗; β̃1), and to an inflection point at an
energy Vdef = F1(ρ

∗; β̃2), respectively.
For ρ > ρ∗, Eq. (40) has three distinct real roots, β̃1 < β̃2 < β̃3, satisfying β̃1+ β̃2+ β̃3 =

−3η/ρ, β̃1β̃2+ β̃2β̃3+ β̃3β̃1 = −3 and β̃1β̃2β̃3 = ρ−1. The extremal points (β1 < 0, β2 > 0 and
β3 > 0) obtained from Eq. (39), correspond to a maximum, a saddle and a minimum point
of V1(ρ, β), at energies Vmax = F1(ρ; β̃1), Vbar = F1(ρ; β̃2), and Vdef = F1(ρ; β̃3), respectively.
The saddle point (β2) forms a barrier between the newly-developed local deformed minimum
(β3) and the global minimum at βeq = 0. As seen in the contour plot of Fig. 1, the potential
near the saddle point decreases towards the spherical and prolate-deformed minima, and
increases towards the two-out-of-three equivalent oblate-deformed maxima. Thus a barrier
in the β-direction at the saddle point, separates the spherical and deformed phases.

The deformed phase (ξ ≥ ξc = 0).

The relevant potential in the deformed phase is V2(ξ; β, γ), Eq. (28b), with ξ ≥ ξc. In this
case, [βeq > 0, γeq = 0] is a global minimum of the potential at an energy Vdef , representing
the equilibrium deformed shape

[βeq =
√
2β0(1 + β2

0)
−1/2, γeq = 0] : Vdef = V2(ξ; βeq > 0, γeq = 0) = 0 . (43)

The limiting value of the domain boundary is

Vlim = V2(ξ; β =
√
2, γ) = (2 + ξ)h2 . (44)
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β = 0 is an extremal point and occurs at an energy Vsph

β = 0 : Vsph = V2(ξ; β = 0, γ) = h2ξβ
4
0 . (45)

It is a local minimum for ξ < ξ∗∗ and a maximum for ξ > ξ∗∗. The deformed extremal points
(β 6= 0) are given by β =

√
2β̃(1 + β̃2)−1/2, where β̃ satisfies the following cubic equation,

β0β̃
3 + [ 2− β2

0 + ξ(1 + β2
0) ]β̃

2 − 3β0β̃ + β2
0 [ 1− ξ(1 + β2

0) ] = 0 . (46)

One solution of Eq. (46) is β̃ = β0, which yields the global deformed minimum, βeq =√
2β0(1+β2

0)
−1/2, Eq. (43). The remaining solutions (β̃ = β̃±) satisfy the quadratic equation,

β0β̃
2 + [ 2 + ξ(1 + β2

0) ]β̃ + β0[ ξ(1 + β2
0)− 1 ] = 0 , (47)

and determine two additional deformed extremal points, β± =
√
2β̃±(1 + β̃2

±)
−1/2.

At the critical point (ξc = 0, ρc = β−1
0 ), the potentials in the spherical and deformed

phases coincide V2(ξc; β, γ) = V1(ρc; β, γ) ≡ Vcri(β, γ), and read

Vcri(β, γ)/h2 = β2
0β

2 − β0

√

2−β2β3 cos 3γ +
1

2
(1−β2

0)β
4 . (48)

The topology of Vcri(β, γ) is shown on the right panel in Fig. 1. In this case, the global
deformed minimum (βeq > 0) of Eq. (43), is degenerate with the spherical minimum (β = 0),
and both occur at zero energy,

Vcri(β = 0, γ) = Vcri(βeq > 0, γeq = 0) = 0 . (49)

The two solutions of Eq. (47), for ξc = 0, are β̃± = [−1 ±
√

1 + β2
0 ]/β0 and the resulting

additional deformed extremal points, β± =
√
2β̃±(1 + β̃2

±)
−1/2, are found to be

β± = ±
[

1∓ (1 + β2
0)

−1/2
]1/2

. (50)

Here β− < 0 corresponds to a maximum of Vcri(β, γ = 0) and occurs at an energy Vmax

Vmax = Vcri(β−, γ = 0) =
1

2
h2

(

1 +
√

1 + β2
0

)2

. (51)

β+ > 0 corresponds to a saddle point, which creates a barrier of height Vbar,

Vbar = Vcri(β+, γ = 0) =
1

2
h2

(

1−
√

1 + β2
0

)2

, (52)

separating the spherical and deformed minima. The height and width of the barrier are
governed by β0.
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Figure 3: Evolution of the stationary and boundary values of the potential surfaces V1(ρ) and V2(ξ), Eq. (28),
with β0 =

√
2, h2 = 1. ρU(5) = 0 and ξSU(3) = 1 correspond to the U(5) and SU(3) limits, respectively.

Vlim = V (β =
√
2, γ) are the domain boundaries. Vsph is the energy of the spherical configuration which is

a global minimum for 0 ≤ ρ < ρc and a local minimum for ξc ≤ ξ < ξ∗∗. For ρ > 0, a deformed maximum
occurs at an energy Vmax. Beyond the spinodal point, ρ > ρ∗, a local deformed minimum at an energy
Vdef develops, along with a saddle point which creates a barrier of height Vbar separating the two minima.
The latter cross and become degenerate (Vsph = Vdef) at the critical point (ρc, ξc). At the anti-spinodal
point, ξ∗∗, the spherical configuration changes from a minimum to a maximum, the deformed configuration
remains a single minimum (energy Vdef) and the saddle point (energy Vsad), now separates pairs of equivalent
deformed minima (see Fig. 2). Note that Vbar = Vdef at ρ

∗ and Vbar = Vsph at ξ∗∗. The relations Vsph = Vmax

and Vsad = Vlim at ξSU(3) = 1 are a specific property of the SU(3) surface.

For ξ > ξc, the spherical β = 0 minimum turns local with an energy Vsph > 0, Eq. (45),
above that of the deformed minimum [βeq > 0, γeq = 0], Eq. (43). The additional deformed
extremal points, β± =

√
2β̃±(1 + β̃2

±)
−1/2, are determined by the solutions of Eq. (47)

β̃± =
−[2 + ξ(1 + β2

0)]±
√
∆

2β0

, (53a)

∆ = (1 + β2
0)
[

4 + 4ξ(1− β2
0) + ξ2(1 + β2

0)
]

. (53b)

The two solutions β̃± satisfy, β̃−+ β̃+ = −[2+ ξ(1−β2
0)]/β0 and β̃−β̃+ = ξ(1+β2

0)− 1. The
extremal point β− corresponds to a maximum of the potential at an energy Vmax, and β+ is
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Table 2: Significant values of the control parameters (ρ, ξ) and order parameters, (βeq, γeq) for a
first order QPT between a spherical [U(5)] phase and an axially-deformed [SU(3)] phase. The
relevant intrinsic Hamiltonians are Ĥ1(ρ), Eq. (7a) and Ĥ2(ξ), Eq. (7b) with β0 =

√
2. At the

critical point, the barrier height is Vbar = 0.268h2, and the domain boundary is Vlim = 2h2.

Special points Control parameters Order parameters

Spherical phase 0 ≤ ρ ≤ 1√
2

βeq = 0

Deformed phase 0 ≤ ξ ≤ 1 [βeq =
2√
3
, γeq = 0]

U(5) DS ρU(5) = 0

Spinodal point ρ∗ = 1
2

Critical point ρc =
1√
2
, ξc = 0

Anti-spinodal point ξ∗∗ = 1
3

SU(3) DS ξSU(3) = 1

a saddle point at an energy Vsad, given by

β− =
√
2β̃−(1 + β̃2

−)
−1/2 : Vmax = V2(β−, γ = 0) = F2(β̃−) , (54a)

β+ =
√
2β̃+(1 + β̃2

+)
−1/2 : Vsad = V2(β+, γ = 0) = F2(β̃+) , (54b)

where

F2(β̃)/h2 =
1

2
β2
0 β̃

2 +
1

2
ξβ0(1 + β2

0)(1 + β̃2)−1β̃2(β̃± − β0) + ξβ4
0 . (55)

For 0 ≤ ξ < ξ∗∗, the local spherical minimum, Eq. (45), coexists with the deformed
global minimum, Eq. (43), and β−β+ < 0. At the anti-spinodal point, ξ = ξ∗∗, the spherical
minimum disappears and β = 0 becomes an inflection point. For ξ > ξ∗∗, β = 0 becomes
a maximum, [βeq > 0, γeq = 0] remains a single minimum of the potential, and β−β+ > 0.
In this case, as seen in the contour plot in Fig. 2, the potential near the saddle point (β+)
increases both towards the spherical maximum (β = 0) and the oblate-deformed maximum
(β−), and decreases towards the two-out-of-three equivalent prolate-deformed global minima
(βeq > 0). The saddle point has now a different character from that encountered in the
coexistence region, accommodating a barrier in the γ-direction between pairs of equivalent
prolate-deformed minima.

The evolution of the various stationary and asymptotic values of the Landau potentials
(Vsph, Vmax, Vdef , Vbar, Vsad, Vlim) as a function of the control parameters ρ and ξ, is depicted
in Fig. 3. Most of these quantities, depend also on the parameter β0 of the Hamiltonian (7).
In particular, β0 determines the equilibrium deformation in the deformed phase βeq > 0,
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Figure 4: Behavior of the order parameter, βeq, as a function of the control parameters (ρ, ξ) of the intrinsic
Hamiltonian (7), with β0 =

√
2. Here ρ∗, (ρc, ξc), ξ

∗∗, are the spinodal, critical and anti-spinodal points,
respectively, with values given in Table 2. The deformation at the global (local) minimum of the Landau
potential (28) is marked by solid (dashed) lines. βeq=0 (βeq=

2√
3
) on the spherical (deformed) side of the

QPT. Region I (III) involves a single spherical (deformed) shape, while region II involves shape-coexistence.

Eq. (43), the height of the barrier at the critical point Vbar, Eq. (52), and the width of the
coexistence region through the values of the spinodal point ρ∗, Eq. (34), and anti-spinodal
point ξ∗∗, Eq. (35). In the present work, we choose β0 =

√
2, for which the intrinsic

Hamiltonian interpolates between the U(5) and SU(3) dynamical symmetries and various
expressions simplify, since η = 0 in Eq. (40). For convenience, Table 2 lists the values of the
relevant control and order parameters when β0 =

√
2.

4.3. Structural regions of the QPT and order parameters

The preceding classical analysis of the potential surfaces has identified three regions with
distinct structure.

I. The region of a stable spherical phase, ρ ∈ [0, ρ∗], where the potential has a single
spherical minimum.

II. The region of phase coexistence, ρ ∈ (ρ∗, ρc] and ξ ∈ [ξc, ξ
∗∗), where the potential has

both spherical and deformed minima which cross and become degenerate at the critical
point.

III. The region of a stable deformed phase, ξ ≥ ξ∗∗, where the potential has a single
deformed minimum.

The potential surface in each region serves as the Landau potential of the QPT, with
the equilibrium deformations as order parameters. The latter evolve as a function of the
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control parameters (ρ, ξ) and exhibit a discontinuity typical of a first order transition. As
depicted in Fig 4, the order parameter βeq is a double-valued function in the coexistence
region (in-between ρ∗ and ξ∗∗) and a step-function outside it. In what follows we examine
the nature of the classical dynamics in each region.

5. Regularity and chaos: classical analysis

Hamiltonians with dynamical symmetry are always completely integrable [68]. The
Casimir invariants of the algebras in the chain provide a complete set of constants of the mo-
tion in involution. The classical motion is purely regular. A dynamical symmetry-breaking is
usually connected to non-integrability and may give rise to chaotic motion [68, 69, 70]. This
is the situation encountered in a QPT, which occurs as a result of a competition between
terms in the Hamiltonian with incompatible symmetries.

Regular and chaotic properties of the IBM have been studied extensively, employing
various measures of classical and quantum chaos [44, 45, 46, 47, 48, 49, 50, 51]. All such
treatments involved the simplified Hamiltonian of Eq. (13), giving rise to an extremely low
barrier and narrow coexistence region. For that reason, the majority of studies focused on
the regions I and III of stable phases, while far less effort was devoted to the dynamics
inside the region II of phase-coexistence. Considerable attention has been paid to integrable
paths (the U(5)-O(6) transition for χ = 0 in Eq. (13) [49, 50]) and to specific sets of
parameters leading to an enhanced regularity (“arc of regularity” [46, 51]) within these
regions. Similar type of analysis was performed in the framework of the geometric collective
model of nuclei [71, 72, 73, 74, 75].

In the present work, we consider the evolution of order and chaos across a generic first
order quantum phase transition, with particular emphasis on the role of a high barrier
separating the two phases. For that purpose, we employ the intrinsic Hamiltonian of Eq. (7)
with β0 =

√
2. In this case, the height of the barrier at the critical point, Eq. (52), is

Vbar/h2 = 0.268, substantially higher than barrier heights encountered in previous works.

In comparison, for the Hamiltonian of Eq. (14) with χ = −
√
7
2
, the corresponding quantities

are β0 =
1

2
√
2
and Vbar/h2 = 0.0018. A high barrier will allow us to uncover a rich pattern of

regularity and chaos in region II of shape-coexistence.
The classical dynamics of L=0 vibrations, associated with the Hamiltonian (7), can be

depicted conveniently via Poincaré surfaces of sections [9, 10, 11]. The latter are chosen in
the plane y = 0 which passes through all the various types of stationary points (minimum,
maximum, saddle) in the Landau potential (28). The values of x and px are plotted each time
a trajectory intersects the plane. The method of Poincaré sections provides a snapshot of
the dynamics at a given energy. Regular trajectories are bound to toroidal manifolds within
the phase space and their intersections with the plane of section lie on one-dimensional
curves (ovals). In contrast, chaotic trajectories diverge exponentially and randomly cover
kinematically accessible areas of the section. Although restricted to L = 0, the method is
particularly valuable to the present study, due to its ability to identify different forms of
dynamics occurring at the same energy in separate regions of phase space. Standard global
classical measures of chaos, such as, the fraction of chaotic volume and the average largest
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Figure 5: Classical dynamics of H1(ρ), Eq. (26a) with β0 =
√
2, h2 = 1, for several values of ρ and energies

E, in the vicinity of a spherical minimum. Selected trajectories (bottom row) and corresponding Poincaré
sections (top row), portray the motion in the presence of a single spherical minimum. (a) ρ = 0.03, E = 0.5.
(b) ρ = 0.2, E = 0.5. (c) ρ = 0.2, E = 1.114. (d) ρ = 0.2, E = 1.5.

Lyapunov exponent, are insensitive such local variations. We first discuss distinctive features
of the dynamics in each region and relate them to the morphology of the Landau potential.
This will provide the necessary background for understanding the complete evolution of the
dynamics across the QPT.

5.1. Characteristic features of the dynamics in the vicinity of minima

Considerable insight into the nature of the classical dynamics at low energy can be gained
by examining the topology of the Landau potential in the vicinity of its minima. A sample of
representative Poincaré sections for the classical Hamiltonian constrained to L = 0, Eq. (26),
are depicted in Figs. 5-6, along with selected trajectories.

The spherical configuration (β = 0) is a global minimum of the potential V1(ρ; β, γ),
Eq. (28a), on the spherical side of the QPT (0 ≤ ρ ≤ ρc). For ρ = 0, the system has
U(5) DS and hence is integrable. The potential V1(ρ = 0), Eq. (38), is γ-independent and
exhibits β2 and β4 dependence. As shown in Fig. 5(a), the sections, for small ρ, show
the phase space portrait typical of a weakly perturbed anharmonic (quartic) oscillator with
two major regular islands and quasi-periodic trajectories. The effect of increasing ρ on the
dynamics in the vicinity of the spherical (s) minimum (β ≈ 0), can be inferred from a small
β-expansion of the potential,

V1,s(ρ) ≈ β2
0β

2 − ρ
√
2β2

0β
3 cos 3γ . (56)

To order β3, V1,s(ρ) has the same functional form as the the well-known Hénon-Heiles (HH)
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Figure 6: Classical dynamics of H2(ξ), Eq. (26b) with β0 =
√
2, h2 = 1, for several values of ξ and energies

E, in the vicinity of a deformed minimum. Selected trajectories (bottom row) and corresponding Poincaré
sections (top row), portray the motion in the presence of a single deformed minimum. (a) ξ = 0.11, E = 0.02.
(b) ξ = 0.258, E = 0.11. (c) ξ = 0.505, E = 0.12. (d) ξ = 1, E = 0.15. Panel (a) shows a typical pattern
encountered for most values of ξ ≥ ξ∗∗. Panels (b)-(c)-(d) correspond to R = ǫβ/ǫγ = 1/2, 2/3, 1 in Eq. (59),
and show the effect of local degeneracies of normal modes. Panel (d) corresponds to the SU(3) DS limit.

potential [76], which in polar coordinates (r, φ) reads

VHH = r2 − α r3 cos 3φ , (57)

with α > 0. The latter potential serves as a paradigm of a system that exhibits a transition
from regular to chaotic dynamics as the energy increases [9, 10, 11]. As shown for ρ=0.2, at
low energy [Fig. 7(b)], the dynamics remains regular, and two additional islands show up.
The four major islands surround stable fixed points and unstable (hyperbolic) fixed points
occur in-between. At higher energy [Fig. 7(c)], one observes a marked onset of chaos and an
ergodic domain. This typical HH-type of behaviour persists in the vicinity of the spherical
minimum throughout the coexistence region, including the critical point (ρc, ξc) and beyond
where the spherical minimum is only local (0 ≤ ξ ≤ ξ∗∗). This can be inferred from a similar
small β-expansion of the relevant potential V2(ξ; β, γ), Eq. (28b),

V2,s(ξ) ≈ ξβ4
0 + β2

0 [1− ξ(1+β2
0)]β

2 −
√
2β0β

3 cos 3γ . (58)

It should be noted that although the expansions in Eqs. (56) and (58) are similar in form
to the Hénon-Heiles potential (57), the full potentials, Eq. (28), have a finite domain and
include a β4 term, thus ensuring that the motion is bounded at all energies.

The deformed configuration (βeq > 0, γeq = 0), Eq. (43), is a global minimum of the
potential V2(ξ; β, γ), Eq. (28b), on the deformed side of the QPT (ξ ≥ ξc). The classical
dynamics in its vicinity (x ≈ 1) has a very different character, being robustly regular. At
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Figure 7: Local coordinates (δ, θ), Eq. (60), about a deformed minimum (β∗, γ∗ = 0).

low energy, the motion reflects the β and γ normal mode oscillations about the deformed
minimum. As shown in Fig. 6(a), the family of regular trajectories has a particular simple
structure. It forms a single set of concentric loops around a single stable (elliptic) fixed
point. They portray γ-vibrations at the center of the surface (px ≈ 0) and β-vibrations at
the perimeter (large |px|). This regular pattern of the dynamics is found for most values of
ξ ≥ 0 both inside and outside the phase coexistence region. The dynamics remains regular
but its pattern changes in the presence of resonances. The latter appear when the ratio of
normal mode frequencies, Eq. (10), is a rational number

R ≡ ǫβ
ǫγ

=
1

9
(1 + β2

0)(2ξ + 1) . (59)

Panels (b)-(c)-(d) of Fig. 8 show examples of such scenario for β0 =
√
2 and ξ-values corre-

sponding to R = 1/2, 2/3, 1. The corresponding surfaces exhibit four, three and two islands,
respectively. The phase space portrait for (ξ = 1, R = 1), shown in Fig. 8(d), corresponds to
the integrable SU(3) DS limit. These additional chains of regular islands will be considered
in more detail in Section 5.3.

Similar trends are observed in the region (ρ∗ < ρ ≤ ρc), where the deformed minimum
is only local. A regular dynamics is thus an inherent feature of a deformed minimum
and, at low energy, reflects the behaviour of the Landau potential in its vicinity. The
structure of the latter is revealed in an expansion of the potential in local coordinates.
Consider a deformed minimum (global or local) of the Landau potential characterized by
the deformation (β∗> 0, γ∗ = 0). The local coordinates (δ, θ) about it, shown in Fig 7, are
defined by the relations

β cos γ = β∗ + δ cos θ , (60a)

β sin γ = δ sin θ . (60b)

A small δ-expansion of the potential about this minimum (to order δ3 ), reads

V (β, γ) ≈ K1 + δ2
(

K2 +K3 cos
2 θ

)

+ δ3(K4 cos θ +K5 cos
3 θ) . (61)
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Figure 8: Classical dynamics of the critical point Hamiltonian, Hcri = H1(ρc) = H2(ξc), Eq. (26), at the
energy of the barrier. The lower, middle, and upper portions depict Vcri(β, γ = 0), Eq. (48), the Poincaré
section and selected trajectories, respectively. The pattern of mixed but well-separated chaotic and regular
dynamics, associated with the spherical and deformed minima, appears throughout the coexistence region.

Here V (β, γ) stands for V1(ρ; β, γ) in the spherical phase and V2(ξ; β, γ) in the deformed
phase. In general, the coefficients Ki depend on β∗ and the control parameters, e.g., K1 =
V (β∗, γ = 0). In the deformed phase, where the deformed minimum is global, β∗ = βeq =√
2β0(1 + β2

0)
−1/2, Eq. (43), and the Ki coefficients are given by

K1 = 0 , K2 =
9β2

0

1+β2
0

, K3 =
β2
0

1+β2
0

[

(β2
0 − 2)(β2

0 + 4) + 2ξ(1 + β2
0)

2
]

,

K4 =
√
2β0

2
√

1+β2
0

[

(β2
0 − 2)(β2

0 − 5) + 2ξ(1 + β2
0)

2
]

,

K5 =
√
2β0

2
√

1+β2
0

[

(β2
0 − 2)(β2

0 + 2)2 + β2
0(β

2
0 + 16)

]

. (62)

For β0 =
√
2, these expressions simplify to

V2(ξ) ≈ 6δ2
[

1 + 2ξ cos2 θ
]

+ 6
√
3δ3

[

2 cos3 θ + ξ cos θ
]

. (63)

The expansions in Eqs. (61) and (63) contain terms with cos θ, cos 2θ and cos 3θ dependence.
The presence of lower harmonics destroys, locally, the three-fold symmetry encountered near
the spherical minimum, Eqs. (56)-(58), due to the cos 3γ term. This asymmetry is clearly
seen in the contour plots of Figs. 1-2.

Both spherical and deformed minima of the Landau potentials V1(ρ; β, γ) and V2(ξ; β, γ),
are present in the coexistence region, ρ∗ < ρ ≤ ρc and ξc ≤ ξ < ξ∗∗. In this case, each
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minimum preserves its own characteristic dynamics resulting in a marked separation between
a Hénon-Heiles type of chaotic motion in the vicinity of the spherical minimum and a regular
motion in the vicinity of the deformed minimum. Such mixed form of dynamics occurring at
the same energy in different regions of phase space, is demonstrated in Fig. 10. The latter
depicts the potential landscape at the critical point (ρc, ξc), along with the Poincaré section
and selected trajectories at the barrier energy. In this case, the spherical (s) and deformed
(d) minima are degenerate, and for β0 =

√
2, the expansions of the corresponding Landau

potential in their vicinity exhibit a different morphology

Vs,cri ≈ 2β2 − 2β3 cos 3γ , (64a)

Vd,cri ≈ 6δ2 + 3
√
3δ3 [cos 3θ + 3 cos θ] . (64b)

The critical-point potential near the spherical minimum (Vs,cri) has a 3-fold symmetry and
its contours are either concave or convex towards the origin (see Fig. 1). The former contours
lead to divergence of trajectories, a characteristic property of chaotic motion. In contrast,
the critical-point potential near the deformed minimum (Vd,cri) has an egg-shape, without a
local 3-fold symmetry. The potential contours are convex and tend to focus the trajectories
towards the minimum, resulting in a confined regular motion.

5.2. Evolution of the classical dynamics across the QPT

We turn now to a comprehensive analysis of the classical dynamics, constraint to L = 0,
evolving across the first order QPT. The evolution is accompanied by an intricate interplay
of order and chaos, reflecting the change in structure. The shape-phase transition is induced
by the intrinsic Hamiltonian of Eq. (7) with β0 =

√
2. The Poincaré surfaces of sections,

are shown in Figs. 9-10-11 for representative energies, below the domain boundary (Vlim),
and control parameters (ρ, ξ) in regions I-II-III, respectively. The surfaces record a total of
40,000 passages through the y = 0 plane by 120 trajectories with randomly generated initial
conditions, in order to scan the whole accessible phase space at a given energy. The bottom
row in each figure displays the corresponding classical potential V (x, y = 0), Eq. (31).

The classical dynamics of L = 0 vibrations in the stable spherical phase (region I) is gov-
erned by the Hamiltonian H1(ρ), Eq. (26a), with 0 ≤ ρ ≤ ρ∗. The relevant potential V1(ρ),
Eq. (31a), has a single minimum at (x, y) = (0, 0). For ρ = 0, the quantum Hamiltonian
Ĥ1(ρ = 0), Eq. (16), has U(5) DS and its classical counterpart, H1(ρ = 0) = Hd,0(2−Hd,0),
involves the 2D harmonic oscillator Hamiltonian, Hd,0 = (p2x + p2y + x2 + y2)/2. The system
is completely integrable. The orbits are periodic and, as shown in Fig. 9, appear in the
surface of section as a finite collection of points. As previously noted, for small values of ρ
(ρ = 0.03 in Fig. 9), the sections are those of an anharmonic (quartic) oscillator, weakly per-
turbed by the small ρ(x3 − 3x2y) term. The orbits are quasi-periodic and appear as smooth
one-dimensional invariant curves. For larger values of ρ, the importance of the latter pertur-
bation increases. The derived phase-space portrait near x = 0, shown for ρ=0.2 in Fig. 9,
is similar to the Hénon-Heiles system (HH) [76] with regularity at low energy and marked
onset of chaos at higher energies. The chaotic component of the dynamics increases with ρ
and maximizes at the spinodal point ρ∗=0.5. The chaotic orbits densely fill two-dimensional
regions of the surface of section.
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Figure 9: Poincaré sections in the stable spherical phase (region I). Upper five rows depict the classical
dynamics of H1(ρ) (26a) with h2 = 1 and β0 =

√
2, for several values of ρ ≤ ρ∗∗. The bottom row displays

the corresponding classical potentials V1(ρ;x, y = 0) (31a). The five energies, below Elim = 2h2, at which
the sections were calculated consecutively, are indicated by horizontal lines. The left column (ρU(5) = 0)
corresponds to the integrable U(5) DS limit. The right column (ρ∗) corresponds to the spinodal point.
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Figure 10: Poincaré sections in the region of phase-coexistence (region II). The panels are as in Fig. 9,
but for H1(ρ) (26a) with ρ∗∗ < ρ ≤ ρc, and H2(ξ) (26b) with ξc ≤ ξ < ξ∗∗. The classical potentials are
V1(ρ;x, y = 0) (31a) and V2(ξ;x, y = 0) (31b), respectively. The middle column corresponds to the critical
point (ρc, ξc), and the vertical lines mark the turning points for energies below or equal to the barrier height.
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Figure 11: Poincaré sections in the stable deformed phase (region III) The panels are as in Fig. 9, but
for the classical intrinsic Hamiltonian H2(ξ) (26b) and potential V2(ξ;x, y = 0) (31b), with ξ ≥ ξ∗∗ and
Elim = h2(2+ξ). The left column (ξ∗∗) corresponds to the anti-spinodal point. The right column (ξSU(3) = 1)
corresponds to the integrable SU(3) DS limit.
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The dynamics changes profoundly in the coexistence region (region II). Here the relevant
classical Hamiltonians are H1(ρ), Eq. (26a), with ρ∗ < ρ ≤ ρc and H2(ξ), Eq. (26b), with
ξc ≤ ξ < ξ∗∗. The corresponding potentials V1(ρ), Eq. (31a), and V2(ξ), Eq. (31b) have
both spherical and deformed minima, which become degenerate and cross at the critical
point (ρc = 1/

√
2, ξc = 0). The Poincaré sections before, at and after the critical point,

(ρ = 0.6, ξc = 0, ξ = 0.1) are shown in Fig. 10. In general, the motion is predominantly
regular at low energies and gradually turning chaotic as the energy increases. However, the
classical dynamics evolves differently in the vicinity of the two wells. As the local deformed
minimum develops, robustly regular dynamics attached to it appears. The trajectories form
a single island and remain regular even at energies far exceeding the barrier height Vbar.
This behavior is in marked contrast to the HH-type of dynamics in the vicinity of the
spherical minimum, where a change with energy from regularity to chaos is observed, until
complete chaoticity is reached near the barrier top. The clear separation between regular and
chaotic dynamics, associated with the two minima, persists all the way to the barrier energy,
E = Vbar, where the two regions just touch. At E > Vbar, the chaotic trajectories from the
spherical region can penetrate into the deformed region and a layer of chaos develops, and
gradually dominates the surviving regular island for E ≫ Vbar. As ξ increases, the spherical
minimum becomes shallower, and the HH-like dynamics diminishes.

As seen in Fig. 11, the dynamics is robustly regular in the stable deformed phase (re-
gion III), where the relevant classical Hamiltonian is H2(ξ), Eq. (26b), with ξ ≥ ξ∗∗. The
spherical minimum disappears at the anti-spinodal point ξ∗∗=1/3 and the relevant poten-
tial V2(ξ), Eq. (31b), remains with a single deformed minimum. Regular motion prevails for
ξ≥ξ∗∗ where a single stable fixed point, surrounded by a family of elliptic orbits, continues
to dominate the Poincaré section. In certain regions of the control parameter ξ and energy,
the section landscape changes from a single to several regular islands, reflecting the sensi-
tivity of the dynamics to local degeneracies of normal modes. Such resonance effects will be
elaborated in more detail in Section 5.3. A notable exception to such variation is the SU(3)
DS limit (ξ = 1), for which the system is integrable and the phase space portrait is the same
for any energy.

5.3. Resonance effects

The preceding discussion has shown that even away from the integrable SU(3) limit, the
classical intrinsic dynamics associated with the deformed well, remains robustly regular. In
most segments of regions II and III, the Poincaré sections exhibit a single island, originating
from simple β (x) and γ (y) orbits, imprinting the small amplitude vibrations of normal
modes about the deformed minimum. As noted, occasionally, resonances in these oscillations
give rise to additional chains of regular islands. In the present section we examine in more
detail this sensitivity of the classical motion and attempt to demarcate the ranges of energy
and control parameters where these resonance effects occur.

The dynamical consequences of perturbing a classical integrable system, are governed by
the celebrated Kolmogorov-Arnold-Moser (KAM) and Poincaré-Birkhoff (PB) theorems [9,
10, 11]. According to the KAM theorem, most tori of the integrable system which are
sufficiently irrational, get slightly deformed in the perturbed system but are not destroyed.
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Figure 12: Lissajous figures of the simplest stable (middle row) and unstable (top row) resonant orbits of
H2(ξ), Eq. (26b), with β0 =

√
2. The bottom row illustrates the Poincaré-Birkhoff scenario of the breakdown

of resonant tori. Sequences of alternating stable (dots) and unstable (crosses) fixed points are seen in the
Poincaré sections due to the stable and unstable orbits for each particular resonance.

On the other hand, the resonant tori (the tori characterized by a rational ratio of winding
frequencies) of the integrable system, disintegrate when the system gets perturbed and
consequently, according to the PB theorem, a chain of islands is formed on the surface
of section. The resonant tori decay into sets of stable and unstable orbits, giving rise to
sequences of alternating elliptic and hyperbolic fixed points. The elliptic points lead to the
emergence of regular islands, inside which the trajectories are phase-locked and the ratio
of the corresponding frequencies remains equal to the rational number of the corresponding
initial resonant torus. The hyperbolic points lie on separatrix intersections between the
islands, about which chaotic layers can develop.

For the considered classical intrinsic Hamiltonian H2(ξ), Eq. (26b), in the deformed
region (ξ ≥ ξc = 0), the resonances are reached when the ratio R = ǫβ/ǫγ = m/n of
Eq. (59), is a rational number. The shape of the resonant orbits resembles Lissajous fig-
ures with the same ratio of frequencies. For more details on the topology of such orbits,
the reader is referred to [77]. The most pronounced resonances (thicker PB islands) cor-
respond to small co-prime (m,n) integers, and the number of islands in a given chain is
2/R. These features were observed in Fig. 6, and are shown schematically in Fig. 12, for
R = 1, 2/3, 1/2, 2/5, 1/3, corresponding to 2, 3, 4, 5, 6 islands, respectively.

At low energy (E → 0), where the harmonic approximation is valid, one expects the
resonances to occur at discrete values of the control parameter ξ ≈ ξR, in a narrow interval
around ξR,

ξR =
9

2
(1 + β2

0)
−1R− 1

2
, (65)
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Figure 13: Poincaré sections near the R = 2/3 normal-mode resonance. The three columns refer to values
of ξ = 0.475, 0.5, 0.55, before, at, and after the resonance point, ξR = 0.5, Eq. (65). The bottom, center
and top rows, correspond to energies E1 = Vlim(ξ)/21, E2 = 5Vlim(ξ)/21, E3 = 9Vlim(ξ)/21, respectively,
below the domain boundary Vlim(ξ) = (2 + ξ)h2, Eq. (44).

where the latter is obtained by inverting Eq. (59). At a finite energy (E > 0), anharmonic
effects in H2(ξ) come into play and, consequently, a PB chain of islands associated with a
given rational R ratio, can occur in wider ranges of ξ values.

The sensitivity of the classical dynamics to resonance effects is demonstrated in Fig. 13
near R = 2/3, where the PB chain consists of three regular islands. The different columns
show the Poincaré sections for ξ = 0.475, 0.5, 0.55, at energies E1 = Vlim(ξ)/21 (bottom
row), E2 = 5E1 (center row), and E3 = 9E1 (upper row), where Vlim(ξ) = (2+ξ)h2, Eq. (44).
At the resonance point, ξR = 0.5 (middle column), one observes at all chosen energies, the
expected three regular islands near the perimeter of the Poincaré sections, indicating an
instability with respect to the β-motion. Their relative size compared to the total area of
the section, increases with energy. In contrast, the PB islands are not seen at low E neither
at ξ = 0.475 (see panels for E = E1, E2), nor at ξ = 0.55 (panel for E = E1), where the
Poincaré sections display the usual pattern of a single island. These islands, however, do
appear at higher energies, E = E3 for ξ = 0.475 and E = E2 for ξ = 0.55. In the latter case,
the PB island-chain occurs near the center of the Poincaré section, signaling an instability
with respect to the γ-motion.
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Figure 14: Resonance map for the Hamiltonian H2(ξ) with β0 =
√
2 and h2 = 1, Eq. (26b), on the deformed

side of the QPT, ξ ≥ 0. The color-coded regions indicate the occurrence of major Poincaré-Birkhoff chains
of islands in the Poincaré sections due to normal-mode resonances with frequency ratios R = 1/3, 2/5, 1/2,
2/3 and 1/1, giving rise to 6, 5, 4, 3, 2 islands, respectively. As E → 0, the colored regions tip exactly
towards the resonant values ξR of Eq. (65). White areas involve (ξ, E) domains with a single island. Black
bullets (red stars) correspond to individual panels in Figs. 10-11 (Fig. 13). Stationary and boundary values
of the potential surface V2(ξ), Eq. (28b), are marked by thin black lines (compare with Fig. 3). The grey
area at high energies is inaccessible due to numerical instability.

Fig. 14 presents a detailed map of the (colored-coded) regions in the (ξ, E) plane, where
PB chains with 2, 3, 4, 5, 6 islands occur. The latter are associated with the most pro-
nounced resonances having normal-mode frequency ratios R = 1, 2/3, 1/2, 2/5, 1/3, respec-
tively. For E → 0, all the resonance regions end in a sharp tip at ξR = 0, 0.1, 0.25, 0.5, 1,
in agreement with Eq. (65). As the energy E > 0 increases, the resonance regions are either
tilted away from ξR (as for R = 1/3, 2/5, 1/2) or fan out and embrace ξR (as for R = 2/3, 1).
At higher energies, pairs of regions [(R = 1/3, 2/5), (R = 1/2, 2/3), (R = 2/3, 1)], can over-
lap, indicating that for a given Hamiltonian H2(ξ), Eq. (26b), two distinct PB island chains
can occur simultaneously in the Poincaré surface. The white areas outside the color-coded
resonance regions, identify the (ξ, E) domains where the Poincaré surfaces exhibit a sin-
gle island, without additional PB island chains. The dominance of these areas for E ≤ 1
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explains why this simple pattern prevails in most Poincaré sections at low energies.
Fig. 14 is very instrumental for understanding the rich regular structure arising from the

classical intrinsic dynamics in regions II and III of the QPT, for ξ ≥ 0. For orientation, a
few black bullets are marked in some of the color-coded resonance regions, corresponding to
particular Poincaré sections in Figs. 10-11. For the critical point, the line ξc = 0 is completely
inside a white area in Fig. 14 and no resonance regions are seen along it, consistent with the
single island observed in the panels of the ξc = 0 column in Fig. 10. At the anti-spinodal
point (ξ∗∗ = 1/3), the lowest two bullets marked in Fig. 14, are located in white areas
and the remaining bullets at higher energies reside inside the R = 1/2, 2/5, 1/3 resonance
regions, consecutively. This is consistent with the observed surfaces of the ξ∗∗ = 1/3 column
in Fig. 11, where the lowest two panels display a single island and the remaining panels in
consecutive order, show PB chains with 4, 5, 6 islands. The Poincaré sections of the ξ = 2/3
column in Fig. 11, show a single island (lowest three panels) and a PB chain of three islands
in the remaining panels at higher energies. This is again in line with the location of the
bullets for ξ = 2/3 in Fig. 14. For the SU(3)-DS limit (ξ = 1), the Poincaré sections in
Fig. 11 display two islands at all energies, consistent with the sole R = 1 resonance region
embracing the ξ = 1 line in Fig. 14.

Near the boundaries of each resonance region, the PB islands are tiny in size. Upon
varying ξ and/or E towards the center of a given region, the islands migrate to the interior
of the main regular island in the respective Poincaré sections, and grow in relative size. Such
a scenario is seen clearly in the panels of Fig. 13. The latter correspond to the red starred
points near/inside the R = 2/3 resonance region in Fig. 14. The dashed lines marking the
high-E boundaries of the R = 2/3 and R = 1 resonance regions, indicate the location where
the respective PB chains disappear in the surrounding chaotic sea. Thus, for ξ = 0.5 in
Fig. 14, the fourth black bullet lies on the dashed line marking the boundary of the R = 2/3
resonance region, where the three islands of the PB chain just disappear in an emerging
chaotic layer. Notice, that the same black bullet lies simultaneously inside the R = 1/2
resonance region and indeed, we observe four additional pronounced islands in the fourth
panel from the bottom of the ξ = 0.5 column in Fig. 11. In contrast, the fifth black bullet
at higher energy for ξ = 0.5, lies inside a white area in Fig. 14 and in the corresponding
fifth panel in Fig. 11, we observe just a single regular island, without any PB island chains,
embedded in a significant chaotic environment.

6. Quantum analysis

The analysis of the classical dynamics, constraint to L = 0, has revealed a rich inho-
mogeneous phase space structure with a pattern of mixed regular and chaotic dynamics,
reflecting the changing topology of the Landau potential across the QPT. It is clearly of in-
terest to examine the implications of this behavior to the quantum treatment of the system.
In what follows, we consider the evolution of levels in the corresponding quantum spectrum
and examine the regular and irregular features of these quantum states.
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6.1. Level evolution

Fig. 15 shows the correlation diagrams for energies of (N = 80, L = 0) eigenstates of
the intrinsic Hamiltonian, Eq. (7), with β0 =

√
2, as a function of the control parameters,

0 ≤ ρ ≤ ρc (upper portion) and ξc ≤ ξ ≤ 1 (lower portion). The position of the spinodal
point (ρ∗ = 1/2) and the anti-spinodal point (ξ∗∗ = 1/3), is indicated by vertical lines.
In-between these points, inside the coexistence region, solid lines mark the energies of the
barrier (Vbar) at the saddle point and of the local minima (Vdef for ρ

∗ < ρ ≤ ρc and Vsph for
ξc ≤ ξ < ξ∗∗) in the relevant Landau potential (compare with Fig. 3).

On the spherical side of the QPT, outside of the coexistence region (0 ≤ ρ ≤ ρ∗), the
spectrum of Ĥ1(ρ) (7a) at low energy, resembles the normal-mode expression of Eq. (9),
E = ǫnd (nd = 0, 2, 3, . . .), with ǫ = 4h̄2N independent of ρ (the missing nd = 1 state has
L = 2). As seen in the upper portion of Fig. 15, this low-energy behavior is observed also
inside the coexistence region (ρ∗ < ρ ≤ ρc) at energies E < Vdef below the local deformed
minimum. Anharmonicities are suppressed by 1/N , as can be verified by comparing the
spectrum at ρ = 0 with the U(5)-DS expression, Eq. (17). At higher energies and ρ > 0,
there are noticeable level repulsion and (avoided) level crossing occurring in the classical
chaotic regime. These effects become more pronounced as ρ increases and approaches the
spinodal point ρ∗, and are due to the U(5) breaking ρ-term in Eq. (19).

On the deformed side of the QPT, outside of the coexistence region (ξ∗∗ ≤ ξ ≤ 1),
the levels with L = 0 serve as bandheads of rotational K = 0 bands, associated with the
ground band g(K = 0) and multiple βnγ2k(K = 0) excitations of the prolate-deformed
shape. The low energy spectrum of Ĥ2(ρ) (7b) resembles the normal-mode expression of
Eq. (10), E = ǫβnβ + ǫγnγ (nβ = 0, 1, 2, . . . and nγ = 2, 4, 6, . . .) with ǫβ = 4h̄2N(2ξ + 1)
and ǫγ = 12h̄2N (only bands with nγ even support L = 0 states). In particular, bandhead
energies involving pure γ excitations are independent of ξ, while bandhead energies involving
β excitations are linear in ξ, a trend seen in the lower portion of Fig. 15. Local degeneracies
of normal-modes lead to bunching of energy levels and noticeable voids in the level density, in
the same regions of (ξ, E) shown in the classical resonance map of Fig. 14. For ξ = 1, one has
ǫβ = ǫγ and the spectrum follows the SU(3)-DS expression, Eq. (22), with anharmonicities
of order 1/N . This ordered pattern of levels is observed also inside the coexistence region
(ξc ≤ ξ < ξ∗∗) at energies E < Vsph below the local spherical minimum.

Dramatic structural changes in the level dynamics take place in the coexistence region
(ρ∗ < ρ ≤ ρc) and (ξc ≤ ξ < ξ∗∗). As shown in Fig. 15, at energies above the respective local
minima, (E > Vsph or E > Vdef), the spherical type and deformed type of levels approach
each other and their encounter results in marked modifications in the local level density.
In particular, there is an accumulation of levels near the top of the barrier (Vbar). Such
singularities in the evolution of the spectrum, referred to as excited state quantum phase
transition [42], have been encountered in integrable models involving QPTs [78]. In what
follows, we plan to examine the regular and irregular features of these quantum states, and
explore how their properties echo the mixed regular and chaotic dynamics observed in the
classical analysis of the first-order QPT.
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Figure 15: The evolution of L = 0 energy levels for the intrinsic Hamiltonian, Eq. (7), with β0 =
√
2, h2 = 1

and N = 80. Upper portion: the L = 0 spectrum of Ĥ1(ρ), Eq. (7a), relevant to the spherical side of the
QPT (0 ≤ ρ ≤ ρc). Here ρ = 0 corresponds to the U(5)-DS limit, ρ∗ = 0.5 is the spinodal point (marked by
a vertical line) and ρc = 1/

√
2 is the critical point. The energies of the barrier (Vbar) at the saddle point and

of the local deformed minimum (Vdef) are marked by solid lines inside the coexistence region (ρ∗ < ρ ≤ ρc).
Note that in this portion, the lowest L = 0 level is the solvable U(5) state with nd = 0, Eq. (20a). Lower
portion: the L = 0 spectrum of Ĥ2(ξ), Eq. (7b), relevant to the deformed side of the QPT (ξc ≤ ξ ≤ 1).
Here ξc = 0 is the critical point, ξ∗∗ = 1/3 is the anti-spinodal point (marked by a vertical line) and ξ = 1
correspond to the SU(3)-DS limit. The energies of the barrier (Vbar) at the saddle point and of the local
spherical minimum (Vsph) are marked by solid lines inside the coexistence region (ξc ≤ ξ ≤ ξ∗∗). Note that
in this portion, the lowest L = 0 level is the solvable SU(3) state of Eq. (25a).
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6.2. Peres lattices

Quantum manifestations of classical chaos are often detected by statistical analyses of
energy spectra [9, 10, 11]. In a quantum system with mixed regular and irregular states, the
statistical properties of the spectrum are usually intermediate between the Poisson and the
Gaussian orthogonal ensemble (GOE) statistics. Such global measures of quantum chaos are,
however, insufficient to reflect the rich dynamics of an inhomogeneous phase space structure
encountered in Fig. 9-11, with mixed but well-separated regular and chaotic regions. To do
so, one needs to distinguish between regular and irregular subsets of eigenstates in the same
energy intervals. For that purpose, we employ the spectral lattice method of Peres [79],
which provides additional properties of individual energy eigenstates. The Peres lattices
are constructed by plotting the expectation values Oi = 〈i|Ô|i〉 of an arbitrary operator,
[Ô, Ĥ] 6= 0, versus the energy Ei = 〈i|Ĥ|i〉 of the Hamiltonian eigenstates |i〉. The lattices
{Oi, Ei} corresponding to regular dynamics can be shown to display a regular pattern, while
chaotic dynamics leads to disordered meshes of points. The method has been recently applied
to the collective model of nuclei [74, 75] and to the IBM [80, 81]. The ability of the method
to distinguish between regular and irregular states, does not rely on the Peres operators Ô
used, and their choice can be made on physical grounds.

In the present analysis, in order to highlight the classical-quantum correspondence, we
choose Ô = n̂d and define the Peres lattices as the set of points {xi, Ei}, with

xi ≡
√

2〈i|n̂d|i〉
N

, (66)

and |i〉 being the eigenstates of the IBM Hamiltonian. The expectation value of n̂d in the
condensate |β;N〉 ≡ |β, γ = 0;N〉 of Eq. (3)

x = β =

√

2〈β;N |n̂d|β;N〉
N

, (67)

is related to the deformation β (whose equilibrium value is the order parameter of the QPT)
and the coordinate x in the classical potential, V (x, y=0)=V (β, γ=0), Eqs. (28) and (31).
The spherical ground state is the s-boson condensate which has nd=xi =0. Excited spherical
states are obtained, to a good approximation, by replacing s-bosons in |β = 0;N〉 with d-
bosons, hence xi ∼

√

nd/N is small for nd/N << 1. Rotational members of the deformed
ground band are obtained by L-projection from |β;N〉 and have xi ≈ β to leading order
in N . This relation is still valid, to a good approximation, for states in excited deformed
bands, whose intrinsic states are obtained by replacing condensate bosons in |β;N〉 with
the orthogonal bosons, Γ†

β
= [

√

2− β2d†0 − βs†]/
√
2 and Γ†

γ,±2 = d†±2, representing β and γ

excitations [53, 82]. These attributes have the virtue that the chosen lattices {xi, Ei} of
Eq. (66), can identify the regular/irregular quantum states and associate them with a given
region in the classical phase space.

6.3. Evolution of the quantum dynamics across the QPT

The Peres lattices for (N = 80, L= 0) eigenstates of the intrinsic Hamiltonian (7) with
β0=

√
2 and h2=1, are shown in Fig. 16, portraying the quantum dynamics across the QPT

36



 0

 2

 4

 0  0.5  1

 0

 2

 4

 0  0.5  1

E

ξ**
 = 1/3

 0  0.5  1 0  0.5  1

ξ = 1/2

 0  0.5  1 0  0.5  1

ξ = 2/3

 0  0.5  1 0  0.5  1

ξSU(3) = 1

x

 0

 2

 4

 0

 2

 4

E

ρ = 0.6
ρc = 0.707

ξc = 0 ξ = 0.1

 0

 1

 2

 3

 0

 1

 2

 3

E

ρU(5) = 0 ρ = 0.03 ρ = 0.2 ρ*
 = 0.5

Figure 16: Peres lattices {xi, Ei}, Eq. (66), of (N = 80, L = 0) eigenstates of the intrinsic Hamiltonian,
Eq. (7), with h2 = 1, β0 =

√
2, for several values of the control parameters in region I (top row), region II

(center row) and region III (bottom row). The lattices are overlayed on the classical potential V (x, y = 0),
Eq. (31).

in regions I-II-III. To facilitate the comparison of the quantum and classical analyses, the
Peres lattices {xi, Ei} of Eq. (66) are overlayed on the classical potentials V (x, y = 0) of
Eq. (31). These are the same potentials shown at the bottom rows in Figs. 9-10-11, depicting
the classical dynamics in these regions.

The top row of Fig. 16 displays the evolution of quantum Peres lattices in the stable
spherical phase (region I) for the same values of the control parameter ρ ∈ [0, ρ∗] in Ĥ1(ρ),
Eq. (7a), as in the classical Poincaré sections of Fig. 9. For ρ = 0, the Hamiltonian (16)
has U(5) DS with a solvable spectrum Ei=2h̄2[2N−1 − nd]nd, Eq. (17). For large N , and
replacing xi by β, the Peres lattice coincides with V1(ρ = 0), Eq. (38), a trend seen for ρ = 0
(full regularity) and ρ = 0.03 (almost full regularity) in the top row of Fig. 16. For ρ = 0.2,
at low energy a few lattice points still follow the potential curve V1(ρ), but at higher energies
one observes sizeable deviations and disordered meshes of lattice points, in accord with the
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onset of chaos in the classical Hénon-Heiles system considered in Fig. 9. The disorder in the
Peres lattice enhances at the spinodal point ρ∗ = 0.5, where the chaotic component of the
classical dynamics maximizes.

The center row of Fig. 16 displays the evolution of quantum Peres lattices in the region
of phase-coexistence (region II) for ρ ∈ (ρ∗, ρc] in Ĥ1(ρ), Eq. (7a), and ξ ∈ [ξc, ξ

∗∗) in Ĥ2(ξ),
Eq. (7b). The calculations shown are for the same values of control parameters used in the
classical analysis in Fig 10. The occurrence of a second deformed minimum in the potential
is signaled by the occurrence of regular sequences of states localized within and above the
deformed well. They form several chains of lattice points close in energy, with the lowest
chain originating at the deformed ground state. A close inspection reveals that the xi-values
of these regular states, lie in the intervals of x-values occupied by the regular tori in the
Poincaré sections in Fig. 10. Similarly to the classical tori, these regular sequences persist to
energies well above the barrier Vbar. The lowest sequence consists of L=0 bandhead states of
the ground g(K = 0) and βn(K = 0) bands. Regular sequences at higher energy correspond
to multi-phonon βnγ2m(K = 0) bands. In contrast, the remaining states, including those
residing in the spherical minimum, do not show any obvious patterns and lead to disordered
(chaotic) meshes of points at high energy E > Vbar.

The bottom row of Fig. 16 displays the Peres lattices in the stable deformed phase
(region III) for ξ ∈ [ξc, 1], and is the quantum counterpart of Fig. 11. No lattice points
are seen at small values of x < 0.5, beyond the anti-spinodal point ξ∗∗, where the spherical
minimum disappears. On the other hand, more and longer regular sequences of K = 0
bandhead states are observed in the vicinity of the single deformed minimum (x ≈ 1) as its
depth increases. These sequences tend to be more aligned above the center of the potential
well, as ξ progresses from ξ∗∗ towards the SU(3) limit (ξ = 1). A close inspection reveals
slight dislocations in the ordered pattern of lattice points for those values of (ξ, E), mentioned
in Section 5, corresponding to a resonance.

Unlike the Poincaré sections of the classical analysis, the Peres spectral method can
be used to visualize also the dynamics of quantum states with non-zero angular momenta.
Examples of such Peres lattices of states with L = 0, 2, 3, 4 are shown in Fig. 17 for
representative values of the control parameters in region I (ρ = 0.2), region II (ξc = 0) and
region III (ξ = 0.8). The right column in the figure combines the separate-L lattices and
overlays them on the relevant classical potential. For ρ = 0.2, at low energies typical of the
regular Hénon Heiles (HH) regime, one can identify multiplets of states with L=0, L=2,
L=0, 2, 4, similar to the lowest U(5) multiplets of Eq. (18). As will be discussed in Section 7,
their wave functions show the dominance of a single nd component (nd = 0, 1, 2, respectively),
characteristic of a spherical vibrator. No such multiplet structure can be detected at higher
energy in the chaotic HH regime. Interestingly, a small number of low-energy U(5)-like
multiplets persists in the coexistence region, to the left of the barrier towards the spherical
minimum, as seen in the Peres lattice for the critical point, ξc = 0, in Fig. 17.

In regions II and III one can detect the rotational states with L = 0, 2, 4, . . ., comprising
the regular K=0 bands mentioned above. Additional K-bands with L=K,K+1, K+2, . . .,
corresponding to multiple β and γ vibrations about the deformed shape, can also be iden-
tified. These ordered band structures show up in the vicinity of the deformed well and are
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Figure 17: Peres lattices {xi, Ei}, Eq. (66), for L = 0, 2, 3, 4, eigenstates of the intrinsic Hamiltonian (7)
with h2 = 1, β0 =

√
2, N = 50. The lattices in region I (ρ = 0.2), region II (ξc = 0) and region III (ξ = 0.8)

are overlayed on the corresponding classical potential V (x, y = 0), Eq. (31). The right column combines the
separate-L lattices.

not present in the chaotic portions of the Peres lattice. The panels for ξc = 0 in Fig. 17
demonstrate the occurrence of such regular K =0, 2, 4 bands inside the coexistence region
(region II), alongside with other irregular states represented by the disordered meshes of
points in the Peres lattice. The panels for ξ = 0.8 in Fig. 17 indicate that in region III, as
the single deformed minimum becomes deeper, the regular K-bands exhaust larger portions
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Figure 18: Combined Peres lattices {xi, Ei}, Eq. (66), for L = 0, 2, 4, . . . , 34, eigenstates of the intrinsic
critical-point Hamiltonian, Eq. (11), with h2 = 1, β0 =

√
2, N = 50.

of the Peres lattice. Generally, the states in each regular band share a common intrinsic
structure as indicated by their nearly equal values of 〈n̂d〉 and a similar coherent decompo-
sition of their wave functions in the SU(3) basis, to be discussed in Section 7. The regular
bands extend to high angular momenta as demonstrated for the critical point in Fig. 18.
While it is natural to find regular rotational bands in a region with a single well-developed
deformed minimum, their occurrence in the coexistence region, including the critical point,
is somewhat unexpected, in view of the strong mixing and abrupt structural changes taking
place. Their persistence in the spectrum to energies well above the barrier and to high
values of angular momenta, amidst a complicated environment, validates the relevance of
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an adiabatic separation of intrinsic and collective modes [83], for a subset of states.
To conclude, the classical and quantum analyses presented so far, indicate that the

variation of the control parameters (ρ, ξ) in the intrinsic Hamiltonian, induces a change in
the topology of the Landau potential across the QPT which, in turn, is correlated with an
intricate interplay of order and chaos. For the considered Hamiltonian, whenever a spherical
minimum occurs in the potential, the system exhibits an anharmonic oscillator (AO) type
of dynamics for small ρ, and a Hénon Heiles (HH) type of dynamics at larger values of ρ.
While the AO dynamics is regular, the HH dynamics shows a variation with energy from
regular to chaotic character, which is reflected in the Peres lattices by a change from ordered
to disordered patterns. Whenever a deformed minimum occurs in the potential, the Peres
lattices display regular rotational bands localized in the region of the deformed well and
corresponding to the regular islands in the classical Poincaré sections. In the coexistence
region, these regular bands persist to energies well above the barrier and are well separated
from the remaining states, which form disordered meshes of lattice points in the classical
chaotic regime. The system in the domain of phase coexistence, thus provides a clear cut
demonstration of the classical-quantum correspondence of regular and chaotic behavior,
illustrating Percival’s conjecture concerning the distinct properties of regular and irregular
quantum spectra [84].

7. Symmetry aspects

The intrinsic Hamiltonian, Eq. (7), with β0 =
√
2, interpolates between the U(5)-DS limit

(ρ = 0) and the SU(3)-DS limit (ξ = 1). Away from these limits, (ρ > 0 and ξ < 1), both
dynamical symmetries are broken and the competition between terms in the Hamiltonian
with different symmetry character, drives the system through a first-order QPT. It is of
great interest to study the symmetry properties of the Hamiltonian eigenstates and explore
how they echo the observed interplay of order and chaos accompanying the QPT.

The preceding quantum analysis has revealed regular SU(3)-like sequences of states which
persist in the deformed region and, possibly, U(5)-like multiples which persist at low-energy
in the spherical region. It is natural to seek a symmetry-based explanation for the survival
of such regular subsets of states, in the presence of more complicate type of states. In
what follows, we show that partial dynamical symmetry (PDS) and quasi-dynamical sym-
metry (QDS) can play a clarifying role. They reflect, respectively, the enhanced purity and
coherence, observed in the wave functions of these selected states.

A number of works [85, 86] have shown that PDSs can cause suppression of chaos even
when the fraction of states which has the symmetry vanishes in the classical limit. SU(3)
QDS has been proposed [87] to underly the “arc of regularity” [46], a narrow zone of enhanced
regularity in the parameter-space of the IBM Hamiltonian, Eq. (13). In conjunction with
first-order QPTs, both U(5) and SU(3) PDSs were shown to occur at the critical point [33].
The QDS notion was originally applied to properties of selected low-lying states outside the
coexistence region [32]. Later works [80, 81] have demonstrated the relevance of SU(3) QDS
not only to the ground band, but also to high-lying bands in the stable deformed phase, with
a single deformed minimum. In what follows, we show that the PDS and QDS notions can
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be used also inside the coexistence region of the QPT and serve as fingerprints for structural
changes throughout this region. Their measures can uncover the survival of order in the face
of a chaotic environment.

7.1. Decomposition of wave functions in the dynamical symmetry bases

Consider an eigenfunction of the IBM Hamiltonian, |Li〉, with angular momentum L and
ordinal number i (enumerating the occurrences of states with the same L, with increasing
energy). Its expansion in the U(5) DS basis, |N, nd, τ, n∆, L〉, of Eq. (1a) and in the SU(3)
DS basis, |N, (λ, µ), K, L〉, of Eq. (1b) reads

|Li〉 =
∑

nd,τ,n∆

C(Li)
nd,τ,n∆

|N, nd, τ, n∆, Li 〉 ,

=
∑

(λ,µ),K

C
(Li)
(λ,µ),K |N, (λ, µ), K, Li 〉 , (68)

where, for simplicity, the dependence of |Li〉 and the expansion coefficients on N is sup-

pressed. The U(5) (nd) probability distribution, P
(Li)
nd , and the SU(3) [(λ, µ)] probability

distribution, P
(Li)
(λ,µ), are calculated as

P (Li)
nd

=
∑

τ,n∆

|C(Li)
nd,τ,n∆

|2 , (69a)

P
(Li)
(λ,µ) =

∑

K

|C(Li)
(λ,µ),K |2 . (69b)

The sum in Eq. (69a) runs over the O(5) labels (τ, n∆) compatible with the U(5) ⊃ O(5) ⊃
O(3) reduction and the sum in Eq. (69b) runs over the multiplicity label K, compatible with
the SU(3) ⊃ O(3) reduction.

The quantity P
(Li)
nd (69a) provides considerable insight on the nature of states. This

follows from the observation that “spherical” type of states show a narrow distribution, with
a characteristic dominance of single nd components that one would expect for a spherical
vibrator. In contrast, “deformed” type of states show a broad nd-distribution typical of a
deformed rotor structure. This ability to distinguish different types of states, is illustrated
for eigenstates of the critical-point Hamiltonian in Fig 19.

The states shown on the left column of Fig. 19, were selected on the basis of having the
largest components with nd = 0, 1, 2, 3, 4, within the given L spectra. States with different
L values are arranged into panels labeled by ‘nd’ to conform with the structure of the nd-
multiplets of the U(5) DS limit, Eq. (18). Each panel depicts the nd-probability, P

(Li)
nd , for

states in the multiplet and lists the energy of a representative eigenstate. In particular, the
zero-energy L = 0+2 state is seen to be a pure nd = 0 state which is the solvable U(5)-PDS
eigenstate of Eq. (20a). The state 2+2 has a pronounced nd = 1 component (96%) and the
states (L = 0+4 , 2

+
5 , 4

+
3 ) in the third panel, have a pronounced nd = 2 component. All

the above states with ‘nd ≤ 2’ have a dominant single nd component, and hence qualify
as ‘spherical’ type of states. These multiplets comprise the lowest left-most states shown
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Figure 19: U(5) (nd) decomposition for selected eigenstates of the intrinsic critical-point Hamiltonian,

Eq. (11), with h2 = 1, β0 =
√
2, N = 50. Left column: nd-probability distribution P

(Li)
nd

, Eq. (69a), for
spherical-type of states arranged in U(5)-like multiplets, ‘nd’, with a maximal nd = 0, 1, 2, 3, 4 component.
Note the dominance of a single dominant nd-component for states in the multiplets with ‘nd ≤ 2’. Right

column: P
(Li)
nd

for deformed-type of states, members of rotational K-bands, showing a broad nd-distribution.
Each panel lists the energy and U(5) Shannon entropy SU5(Li), Eq. (70a), of a representative state in the
multiplet.

in the combined Peres lattices for ξc = 0 in Fig. 17. In contrast, the states in the panels
‘nd = 3’ and ‘nd = 4’ of Fig. 19, are significantly fragmented. Notable exceptions are the
L = 3+2 state, which is the solvable U(5)-PDS state of Eq. (20b) with nd = 3, and the
L = 5+2 state with a dominant nd = 4 component. The existence in the spectrum of specific

spherical-type of states with either P
(Li)
nd = 1 or P

(Li)
nd ≈ 1, exemplifies the presence of an

exact or approximate U(5) PDS at the critical-point.
The states shown on the right column of Fig. 19, have a different character. They

belong to the five lowest regular sequences seen in the combined Peres lattices for ξc = 0
in Fig. 17. The association of a set of Li-states to a given sequence, is based on a close
proximity of their lattice points {xi, Ei}, and on having a similar decomposition in the
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Figure 20: SU(3) [(λ, µ)] decomposition for the same eigenstates of the intrinsic critical-point Hamiltonian

as in Fig. 19. Left column: (λ, µ)-probability distribution P
(Li)
(λ,µ), Eq. (69b), for spherical-type of states

arranged in ‘nd’ multiplets. Right column: P
(Li)
(λ,µ), for deformed-type of states arranged in rotational bands.

Note the coherent (L-independent) mixing for states in the same band. Each panel lists the energy, SU(3)
Shannon entropy SSU3(Li), Eq. (70b) and SU(3) correlator CSU3(0−6), Eq. (71), for representative states
in the multiplet.

SU(3) DS basis, to be discussed below. The states shown, exhibit a broad nd-distribution,
hence are qualified as ‘deformed’-type of states, forming rotational bands: g(K=0), β(K=
0), β2(K =0), β3(K =0) and γ(K =2). The bandhead energy of each K-band is listed in
each panel. Note that the zero-energy deformed ground state, L = 01, is degenerate with
the (nd = 0, L = 02) spherical state. The P

(Li)
nd probabilities for the K = 0 bands in Fig. 19,

display an oscillatory behaviour, reflecting the expected nodal structure of these ground and
multi β-phonon bands.

Fig. 20 shows the SU(3) (λ, µ)-distribution, P
(Li)
(λ,µ) (69b), for the same eigenstates of

the critical-point Hamiltonian as in Fig. 19. The spherical-type of states, shown on the
left column, involve considerable mixing with respect to SU(3), without any obvious com-
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mon pattern among states in the same ‘nd’ multiplet, and in marked contrast to their
nd-distribution shown in Fig. 19. The states in the ‘nd ≤ 2’ multiplets involve higher SU(3)
irreps, while those in the fragmented ‘nd ≥ 3’ multiplets are more uniformly spread among
all (λ, µ)-components. The ‘rotational’-type of states, shown on the right column of Fig. 20,
show again a very different behavior. First, the ground g(K = 0) and the γ(K = 2) bands
are pure with (λ, µ) = (2N, 0) and (2N − 4, 2) SU(3) character, respectively. These are the
solvable bands of Eq. (25) with SU(3) PDS. Second, the non-solvable K-bands are mixed
with respect to SU(3), but the mixing is similar for the different L-states in the same band.
Such strong but coherent (L-independent) mixing is the hallmark of SU(3) QDS. It results
from the existence of a single intrinsic state for each such band and imprints an adiabatic
motion and increased regularity [83].

By comparing the right hand side panels in Fig. 20, with the left hand side panels in
Fig. 19, we find that the SU(3) QDS property of the ‘deformed’ states persists, while the
U(5) PDS property of the spherical states dissolves at higher energy. This observation is
in accord with the classical and quantum analyses. As portrayed in the Poincaré sections
(Fig. 10) and Peres lattices (Figs. 17-18) at the critical point (ξc = 0), the dynamics ascribed
to the deformed well is regular and persists to energies higher than the barrier. In contrast,
the dynamics ascribed to the spherical well, shows a Hénon-Heiles (HH) type of transition
from regular to chaotic motion as the energy increases. A narrow chaotic layer in the classical
phase space starts to occur at E ≈ 0.1, while fully chaotic dynamics develops at E ≈ 0.24,
below the top of the barrier at Vbar/h2 = 0.268. For the boson number N = 50 considered,
the ‘nd = 0, 1’ states in Fig. 19, lie in the energy domain of the regular HH dynamics, the
‘nd = 2’ triplet resides in the relatively-regular domain just above the appearance of the
chaotic layer, while the ‘nd = 3, 4’ multiplets lie already near the barrier top, in the highly
chaotic domain. Thus, the observed breakdown of the U(5)-character of the multiplets, can
be attributed to the onset of chaos at higher energy in the region of the spherical well.

7.2. Measures of purity (PDS) and coherence (QDS)

The preceding discussion highlights the importance of U(5)-PDS and SU(3)-QDS in
identifying and characterizing the persisting regular states. These symmetry notions rely on
the purity and coherence of the states with respect to a DS basis. It is therefore of interest
to have at hand quantitative measures for these properties.

The Shannon state entropy is a convenient tool to evaluate the purity of eigenstates with
respect to a DS basis. Given a state |Li〉, with U(5) and SU(3) decomposition as in Eq. (68),
its U(5) and SU(3) entropies are defined as

SU5(Li) = − 1

lnD5

∑

nd

P (Li)
nd

lnP (Li)
nd

, (70a)

SSU3(Li) = − 1

lnD3

∑

(λ,µ)

P
(Li)
(λ,µ) lnP

(Li)
(λ,µ) . (70b)

Here P
(Li)
nd and P

(Li)
(λ,µ) are the U(5) and SU(3) probability distributions of Eq. (69). The

normalization D5 (D3) counts the number of possible nd [(λ, µ)] values for a given L and, for
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simplicity, their dependence on Li and N is suppressed. A Shannon entropy vanishes when
the considered state is pure with good G-symmetry [SG(Li) = 0] and is positive for a mixed
state. The maximal value [SG(Li) = 1] is obtained when the state |Li〉 is uniformly spread

among the irreps of G, i.e. for P
(Li)
G = 1/DG. Intermediate values, 0 < SG(Li) < 1, indicate

partial fragmentation of the state |Li〉 in the respective DS basis. The averaging of such
quantities over all eigenstates has been previously used to disclose the global DS content
of the IBM Hamiltonian, Eq. (13), and to correlate the implied degree of the eigenfunction
localization with chaotic measures [88, 89].

The values of the U(5) entropy SU5(Li), Eq. (70a), are listed for representative states
in Fig. 19. As expected, SU5 = 0 for the solvable U(5)-PDS states, Eq. (20), with (nd =
0, L=02) and (nd=3, L=32). Other spherical-type of states with ‘nd ≤ 2’ have a low value,
SU5 < 0.15, while the more dispersed states with ‘nd = 3, 4’ have SU5 > 0.40. The deformed-
type of states, shown on the right column of Fig. 19, have a large U(5) entropy, SU5 > 0.67.
The values of the SU(3) entropy SSU3(Li), Eq. (70b), are shown for selected states in Fig. 20.
As expected, SSU3 = 0 for the solvable SU(3)-PDS states, Eq. (25), members of the g(K = 0)
and γ(K = 2) bands. The deformed βn(K = 0) bands are mixed with respect to SU(3),
hence have non-zero values of SSU3, which increase with n. The spherical-type of states,
shown on the left column of Fig. 20, are strongly mixed with respect to SU(3) and have
SSU3 > 0.72.

The coherent decomposition characterizing SU(3) QDS, implies strong correlations be-
tween the SU(3) components of different L-states in the same band. This can be used as
a criterion for the identification of rotational bands. We focus here on the L = 0, 2, 4, 6,
members of K = 0 bands. Given a L = 0+i state, among the ensemble of possible states, we
associate with it those Lj > 0 states which show the maximum correlation, maxj{π(0i, Lj)}.
Here π(0i, Lj) is a Pearson correlation coefficient whose values lie in the range [−1, 1]. Specif-
ically, π(0i, Lj) = 1,−1, 0, indicate a perfect correlation, a perfect anti-correlation, and no
linear correlation, respectively, among the SU(3) components of the 0i and Lj states. More
details on these coefficients in conjunction with the present study, are discussed in Ap-
pendix B. To quantify the amount of coherence (hence of SU(3)-QDS) in the chosen set of
states, we adapt the procedure proposed in [81], and consider the following product of the
maximum correlation coefficients

CSU3(0i−6) ≡ max
j

{π(0i, 2j)} max
k

{π(0i, 4k)} max
ℓ

{π(0i, 6ℓ)} . (71)

We consider the set of states {0i, 2j, 4k, 6ℓ} as comprising a K = 0 band with SU(3)-QDS,
if CSU3(0i−6) ≈ 1.

The values of CSU3(0i−6) for selected sets of states are shown in Fig. 20. As expected,
CSU3(0i−6) ≈ 1 for all the ‘deformed’ K-bands. On the other hand, this quantity is much
smaller (but still non-zero) for the spherical-type of states. Band structure based on SU(3)
QDS thus necessitates a value of CSU3(0i−6) in very close proximity to 1. It should be noted
that the coherence properly of a band of states, as measured by CSU3(0i−6), is independent
of its purity, as measured by SSU3(Li). Thus, in Fig. 20, the pure g(K = 0) and γ(K = 2)
bands with SU(3) PDS have CSU3(0i−6) = 1 or CSU3(2i−8) = 1 and SSU3 = 0, while the
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mixed β3(K = 0) band has CSU3(0i−6) = 0.9996 and SSU3 = 0.406.

7.3. Evolution of U(5)-PDS and SU(3)-QDS across the QPT

We turn now to a detailed study of the evolution of partial- and quasi-dynamical symme-
tries across the first order QPT, induced by the intrinsic Hamiltonian Ĥ1(ρ), Eq. (7a), and
Ĥ2(ξ), Eq. (7b), with β0 =

√
2. For that purpose, we examine the change in the Shannon en-

tropies, SU5(Li) and SSU3(Li), Eq. (70), and in the SU(3) correlation coefficient CSU3(0i−6),
Eq. (71), as a function of the control parameters, 0 ≤ ρ ≤ ρc and ξc ≤ ξ ≤ 1, for the entire
spectrum.

Fig. 21 displays the values of the U(5) Shannon entropy SU5(L), Eq. (70a), for L = 0
(bottom) and L = 2 (top) eigenstates of Ĥint (7), with N = 50. The vertical axis lists the
energy E of the states, while the horizontal axis lists 35 values of the control parameters
(ρ, ξ). Vertical dashed lines which embrace each control parameter, correspond to the value
SU5(L) = 0 (left) and SU5(L) = 1 (right). Thus, states which are pure with respect to U(5)
(hence with SU5(L) = 0), are represented by points on the vertical dashed line to the left of
the given control parameter. Departures from this vertical line, 0 < SU5(L) ≤ 1, indicate the
amount of U(5) mixing. For clarity, the values of SU5(L) at the U(5) DS limit (ρU(5) = 0),
the spinodal (ρ∗), the critical (ρc, ξc), and the anti-spinodal (ξ∗∗) points, and the SU(3) DS
limit (ξSU(3) = 1), are distinguished by a different (blue) color. To gain further insight, the
stationary and asymptotic values (Vsph, Vmax, Vdef , Vbar, Vsad, Vlim) of the relevant classical
potentials, are depicted by dashed black lines (compare with Fig. 3).

Starting on the spherical side of the QPT, at the U(5) DS limit (ρU(5) = 0), the U(5)

entropy, SU5(L) = 0, vanishes for all states. The spherical L = 01 ground state of Ĥ1(ρ)
maintains SU5(L = 01) = 0 throughout region I (0 ≤ ρ ≤ ρ∗) and in part of region II
(ρ∗ < ρ ≤ ρc), in accord with its U(5)-PDS property, Eq. (20a). As seen in Fig. 21, for
ρ > 0, all other L = 0, 2 eigenstates of Ĥ1(ρ) have positive SU5(L) > 0, reflecting their
U(5) mixing. SU5(L) attains small positive values at low energy, corresponding to spherical-
type of states, and changes to moderate and high values as the energy increases, indicating
stronger U(5) mixing. The departures of SU5(L) from zero value start to occur at lower
energy, as ρ approaches ρ∗. This behaviour is consistent with the Hénon Heiles type of
dynamics and the onset of chaos in this region. In region III (ξ∗∗ ≤ ξ ≤ 1) all states,
including the ground state of Ĥ2(ξ), have SU5(L) ∈ [0.7, 0.9], exhibiting weaker variation
with energy. These large values reflect the deformed nature of the underlying eigenstates,
which are arranged in rotational bands. In region II of phase coexistence (ρ∗ < ρ ≤ ρc and
ξc ≤ ξ < ξ∗∗), SU5(L) attains both low and high positive values, reflecting the presence of
both spherical- and deformed-type of states. This creates a zig-zag pattern, especially visible
in the triangular region bordered by the energies of the barrier (Vbar) and of the (deformed
or spherical) local minima (Vdef or Vsph).

In spite of the U(5) mixing present in the overwhelming majority of eigenstates, a subset
of low-lying states in regions I and II exhibit pronounced low-values of SU5(L), indicating an
enhanced purity with respect to U(5). Such states are members of U(5)-like multiplets, of
the form discussed in Fig. 19. Their wave functions are dominated by a single nd component,
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Figure 21: U(5) Shannon entropy SU5(L), Eq. (70a) for L = 0 (top) and L = 2 (bottom) eigenstates of the
intrinsic Hamiltonian (7), with h2 = 1, β0 =

√
2, N = 50, as a function of the control parameters (ρ, ξ).

Vertical dashed lines to the left (right) of each numbered control parameter, indicate the value SU5(L) = 0
[SU5(L) = 1]. Black dashed lines depict the stationary and asymptotic values of the relevant classical
potentials (compare with Fig. 3). SU5(L) ≈ 1 indicates an approximate U(5)-PDS.
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which has the largest (maximal) nd-probability, P
(Li)
nd , for a given (nd, L). These spherical

type of states thus exemplify the persistence of an (approximate) U(5) PDS.
The top panel of Fig. 22 displays the values of the SU(3) Shannon entropy SSU3(L = 0),

Eq. (70b), for the entire energy spectrum of L = 0 states. The notation of lines is the
same as in Fig. 21. Thus, states which are pure with respect to SU(3), are represented by
points on the vertical dashed line to the left of the given control parameter, corresponding to
SSU3(L = 0) = 0. Departures from this vertical line, 0 < SSU3(L) ≤ 1, indicate the amount
of SU(3) mixing. The bottom panel of Fig. 22 displays the values of the SU(3) correlation
coefficient CSU3(0−6), Eq. (71), correlating sequences of L = 0, 2, 4, 6, states, throughout the
entire spectrum. The energy E, listed on the vertical axis, corresponds here to the energy of
the L = 0 eigenstate in each sequence. The vertical dashed lines which embrace each control
parameter (ρ, ξ), correspond now to the value CSU3(0−6) = 0 (left) and CSU3(0−6) = 1
(right). Thus, a highly-correlated sequence of L = 0, 2, 4, 6 states, comprising a K = 0 band
and manifesting SU(3)-QDS, are represented by points lying on or very close to the vertical
dashed line to the right of the given control parameter, corresponding to CSU3(0−6) ≈ 1.
Even slight departures from this vertical line, CSU3(0−6) < 1, indicate a reduction of SU(3)
coherence.

Starting on the deformed side of the QPT, at the SU(3) DS limit (ξSU(3) = 1), the SU(3)
entropy, SSU3(L) = 0, vanishes for all states. In this case, the L-states in a given K-band
belong to a single SU(3) irrep, hence necessarily CSU3(0−6) = 1. As one departs from the
symmetry limit, (ξ < 1), SSU3(L = 0) > 0 acquires positive values, reflecting an SU(3)
mixing. The SU(3) breaking becomes stronger at higher energies and as ξ approaches ξc = 0
from above, resulting in higher values of SSU3(L = 0). A notable exception to this behavior is
the deformed ground state (L = 01) of Ĥ2(ξ), which maintains SSU3(L = 01) = 0 throughout
region III (ξ∗∗ ≤ ξ ≤ 1) and in part of region II (ξc ≤ ξ < ξ∗∗), in accord with its SU(3)-PDS
property, Eq. (25a). In contrast to the lack of SU(3)-purity in all excited L = 0 states, the
SU(3) correlation function maintains a value close to unity, CSU3(0− 6) ≈ 1. This indicates
that the SU(3) mixing is coherent and that these L = 0 states serve as bandhead states of
K = 0 bands with a pronounced SU(3) QDS. This band-structure is observed throughout
region III in extended energy domains. In particular, all such K = 0 bands show strong
coherence up to the energy of the saddle point Vsad, Eq. (54b), for ξ > ξ∗∗, or of the spherical
local minimum Vsph, Eq. (45), for ξ < ξ∗∗. This observation is consistent with the classical
analysis, which revealed a robustly regular dynamics in this region. Coherent K = 0 bands
can also be seen seen at high energy above Vsph in regions III and II of Fig. 22. One observes
here numerous sequences of points with CSU3(0−6) = 1, alternating with other points for
which CSU3(0−6) < 0.7. The former correspond to the regular states, identified by the Peres
lattices in Fig. 16, while the latter correspond to irregular (chaotic) states. In particular,
at energies below Vlim, Eq. (44), there is a very sharp distinction between the two families,
corresponding to the sharp distinction between the regular and chaotic states (dynamics)
observed in the Peres lattices (Poincaré surfaces). At very high energies, above Vlim, some
incoherence appears, consistent with the onset of chaos in region III.

In region I (0 ≤ ρ ≤ ρ∗), all states exhibit high values of SSU3(L = 0) ≈ 1 and
CSU3(0−6) < 1, indicating considerable SU(3) mixing and lack of SU(3) coherence. This
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Figure 22: As in Fig. 21, but for the SU(3) Shannon entropy SSU3(L = 0), Eq. (70b), (top panel) and the
SU(3)-correlation coefficient CSU3(0−6), Eq. (71), (bottom panel), as a function of the control parameters
(ρ, ξ) and the energy E of L = 0 states. Vertical dashed lines to the left (right) of each numbered control
parameter, indicate the value 0 (1) for both quantities. SSU3(L = 0) ≈ 1 indicates an enhanced SU(3)
purity, while CSU3(0−6) ≈ 1 indicates a K = 0 band exhibiting SU(3)-QDS.
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is in line with the presence of spherical states at low energy, and of more complex type of
states at higher energy, and the absence of rotational bands in this region. In region II
of phase coexistence (ρ∗ < ρ ≤ ρc and ξc ≤ ξ < ξ∗∗), one encounters both, points with
CSU3(0−6) ≈ 1, and points with CSU3(0−6) < 1. This reflects the presence of deformed
states arranged into regular bands, exemplifying SU(3) QDS and, at the same time, the
presence of spherical states and other more complicated type of states of a different nature.

7.4. Global features of U(5) PDS and SU(3) QDS as fingerprints of the QPT

The preceding discussion has demonstrated the relevance of U(5) PDS and SU(3) QDS
in characterizing the symmetry properties of individual quantum eigenstates of the intrinsic
Hamiltonian across the QPT. The related measures of these quasi-symmetries, the U(5)
Shannon entropy, SU5(L), Eq. (70a), and the SU(3) correlation coefficient, CSU3(0−6),
Eq. (71), quantify the U(5)-purity and SU(3)-coherence in these states, respectively. Con-
siderable interest is drawn to subsets of regular states which maintain a high degree of purity
or coherence amidst a complicated environment of other states. In particular, a small value
of SU5(L) signals an approximate U(5) PDS and identifies subsets of spherical-type of states
which reflect a surviving regular dynamics in the vicinity of the spherical minimum. On the
other hand, a large value of CSU3(0−6) ≈ 1 signals an SU(3) QDS and identifies rotational
K-bands, which reflect a persisting regular dynamics in the vicinity of the deformed mini-
mum. In the present Section, we wish to consider global features of these measures which
can shed light on the PDS and QDS content of the entire system as a whole, and monitor
its evolution across the the QPT.

The presence or absence in the spectrum of spherical or deformed type of regular states,
is intimately tied with the existence and depth of the corresponding spherical or deformed
wells in the classical potential. As seen in Figs. 21-22, the number of such regular states is
maximal at the DS limits and it reduces as the control parameters approach the values of
the anti-spinodal or spinodal points, where the respective local minimum disappears. The
evolution with (ρ, ξ) of the number of states having an approximate U(5) PDS or SU(3)
QDS reflects the change in the morphology of the underlying Landau potential and can,
therefore, serve as fingerprints of the QPT.

As a global measure of an approximate U(5) PDS, we consider the quantity νU5, which
denotes the number of L = 0 states satisfying SU5(L = 0) < 0.25. This quantity is an
indicator of the amount of enhanced U(5)-purity in the system. The choice of 0.25 as an
upper limit is somewhat arbitrary, and is close to the value of SU5(L = 0)=0.242 at ξ = 0.17

for which the maximal U(5) probability is P
(L=0)
nd=0 =0.8. Analogous quantities, νU5(L), can

be calculated for states with other angular momentum L. Henceforth, we continue to use
the shorthand notation, νU5 ≡ νU5(L = 0). In a similar spirit, as a global measure of
SU(3) QDS, we consider the the quantity νSU3, which denotes the number of K = 0 bands
whose L = 0, 2, 4, 6 members satisfy CSU3(0−6) > 0.995. This quantity is an indicator
of the amount of SU(3) coherence in the system. The choice of 0.995 as a lower limit
is again somewhat arbitrary. It is based on a detailed study of the SU(3) correlator for
the regular K = 0 bands in Fig. 22, which revealed a well-separated peak in the range
CSU3(0− 6) ∈ [0.995, 1]. It should be pointed out that the chosen cutoff values for νU5 and

51



Figure 23: Global measures of U(5) PDS [νU5: the number of L = 0 states with U(5) Shannon entropy
SU5(L = 0) < 0.25, Eq. (70a)] and of SU(3) QDS [νSU3: the number of K = 0 bands with SU(3) correlator
CSU3(0−6) > 0.995, Eq. (71)], as a function of (ρ, ξ). (a) Full evolution across the QPT. (b) A detailed
zoom. At the critical point (ρc, ξc), νU5 = 2 and νSU3 = 12, compared to a total of 234 L = 0 eigenstates of
the Hamiltonian (7) with β0 =

√
2 and N = 50.

νSU3 apply to eigenstates of the intrinsic Hamiltonian (7) with β0 =
√
2 and N = 50, and in

general these thresholds vary with N .
Fig. 23 displays the quantities νU5 and νSU3 as a function of the control parameters (ρ, ξ)

across the QPT. At the U(5) DS limit (ρU(5) = 0), all states are pure with respect to U(5)
and hence, as seen in panel (a) of Fig. 23, νU5 = 234 equals the total number of L = 0
states for N = 50. For ρ > 0, the quantity νU5 decreases, indicating a reduction in the
U(5) PDS of the system in region I. This reduction in the U(5) purity is accelerated for
larger values of ρ (stronger U(5) mixing), as the system enters region II of phase-coexistence
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(ρ∗ < ρ ≤ ρc and ξc ≤ ξ < ξ∗∗). Inside region II, νU5 attains smaller values, it vanishes as
ξ approaches the anti-spinodal ξ∗∗, where the spherical minimum disappears, and remains
νU5 = 0 in region III (ξ ≥ ξ∗∗). Similar trends are seen for νU5(L) involving states with
different angular momentum when scaled by the number of states for each L.

At the SU(3) DS limit (ξSU(3) = 1), all states are pure and coherent with respect to
SU(3), in particular, all L = 0 states serve as bandheads of K = 0 bands and hence
νSU3 = 234 in panel (a) of Fig. 23. For ξ < 1, the quantity νSU3 decreases, indicating a
reduction in the number of regular K = 0 bands with SU(3) QDS, as the deformed well
becomes less deep in region III. This reduction in SU(3) coherence continues inside region II
of phase coexistence where ‘spherical’ states and chaotic-type of states come into play. The
quantity νSU3 vanishes as ρ approaches the spinodal point ρ∗, where the deformed minimum
disappears, and remains νSU3 = 0 in region I (ρ ≤ ρ∗∗).

Panel (b) of Fig. 23 zooms in and provides more details on the evolution of νU5 and
νSU3. As shown, both quantities are non-zero throughout region II, indicating the presence
of both (approximate) U(5) PDS and SU(3) QDS inside the coexistence region. These
global measures of purity and coherence in selected eigenstates, thus trace the crossing of
the spherical and deformed minima in the Landau potential by monitoring the remaining
regular dynamics associated with each of them. The vanishing of νSU3 near ρ∗, appears to
be sharper and less gradual than the vanishing of νU5 which occurs even before ξ < ξ∗∗.
This reflects the more abrupt disappearance of the deformed minimum at ρ∗ compared to
the disappearance of the spherical minimum at ξ∗∗ [compare the behaviour of (Vbar − Vdef)
near ρ∗ with that of (Vbar − Vsph) at ξ ≤ ξ∗∗, in Fig. 3].

It is worthwhile emphasizing that both (approximate) U(5) PDS and SU(3) QDS are
present in region II of phase coexistence, including the critical point, imprinting in a trans-
parent manner, the evolution of the first-order QPT. A number of factors have facilitated
the exposure of such a simple pattern in the present study; (i) a high barrier, (ii) a wide
coexistence region, (iii) invoking the resolution of the Hamiltonian, Eq. (4), and performing
the analysis on its intrinsic part. The latter does not contain rotation-vibration terms that
can spoil the simple patterns observed. The effect of such collective kinetic terms will be con-
sidered in Section 8. The rich symmetry structure uncovered in region II and the coexistence
of PDS and QDS inside it, were not noticed in previous works because the Hamiltonians
employed did not meet the requirements (i)-(iii).

8. Collective effects

The analysis presented so far, considered the evolution of the dynamics associated with
the intrinsic part of the Hamiltonian across the QPT. The intrinsic Hamiltonian determines
the Landau potential and the variation of its control parameters (ρ, ξ) induces the shape-
phase transition. In the present Section, we address the impact on the order and chaos
accompanying the QPT, of the remaining collective part of the Hamiltonian. For that
purpose, we examine the classical and quantum dynamics of the combined Hamiltonian

Ĥ = Ĥint(ρ, ξ) + Ĥcol(c3, c5, c6) . (72)
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Figure 24: Poincaré sections of the classical intrinsic Hamiltonian H1(ρ = 0), Eq. (26a), at the U(5)-DS
limit (ρ = 0), with h2 = 1 and β0 =

√
2 (left panel), and of additional collective terms, Eq. (32), with c6 = 1

and c5 = ±1, involving O(6) and O(5) rotations. The energy is E = Vlim/2 = 1. The potential surface
V1(ρ = 0), Eq. (38), is the same in all cases and is depicted in the ρU(5) = 0 column of Fig. 9.

The intrinsic Hamiltonian considered, Ĥint(ρ, ξ), is that of Eq. (7) with h2 = 1 and β0 =
√
2,

interpolating between the U(5) (ρ = 0) and SU(3) (ξ = 1) DS limits. The collective
Hamiltonian considered, Ĥcol(c3, c5, c6), is that of Eq. (6), composed of kinetic terms with
couplings c3, c5 and c6, associated with collective O(3), O(5) and O(6) rotations in the Euler
angles, γ and β degrees of freedom, respectively. By construction, Ĥ and Ĥint in Eq. (72)
have the same Landau potential which is not influenced by Ĥcol. The observed modifications
in the dynamics due to Ĥcol, are thus kinetic in nature, arising from momentum-dependent
terms which vanish in the static limit. For simplicity, the impact of these rotational ci-terms
are studied individually, by adding them one at a time to Ĥint(ρ, ξ), the latter taken at
representative values of (ρ, ξ) in regions I-II-III of the QPT. The results obtained indicate
that, although the collective Hamiltonian does not affect the Landau potential, it can have
dramatic effects on the onset of classical chaos, on the resonance structure and on the regular
features of the quantum spectrum.

8.1. Classical analysis in the presence of collective terms

As previously done, we constrain the classical dynamics to zero angular momentum and
visualize it by means of Poincaré sections. In such circumstances, the classical limit of the
quantum Hamiltonian of Eq. (72) is given by

H = Hint(ρ, ξ) +Hcol(c5, c6) , (73)

where the first term is the classical intrinsic Hamiltonian of Eq. (26) and the second term
is the classical collective Hamiltonian of Eq. (32). The O(3) c3-term is absent from the
latter since the classical dynamics is constraint to L = 0. The O(5) c5-term depends on
p2γ hence affects the γ motion, while the O(6) c6-term depends on T = p2β + p2γ/β

2, T 2 and
β2p2β, hence is the only collective term affecting the β motion. The plane of the Poincaré
section is chosen as before at y = 0 and its envelope at a given energy E is defined by
H(x, y = 0, px, py = 0) = E, resulting in the condition

Hint(x, y = 0, px, py = 0) + c6[(2− x2)p2x − p4x] = E . (74)
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Figure 25: Poincaré sections of the classical intrinsic Hamiltonian H1(ρ
∗), Eq. (26a), at the spinodal point

(ρ∗), with h2 = 1 and β0 =
√
2 (left panel), and of additional collective terms, Eq. (32), with c6 = 1

and c5 = ±1, involving O(6) and O(5) rotations. The energy is E = Vlim/10 = 0.2 (bottom row) and
E = Vlim/4 = 0.5 (top row). The potential surface, V1(ρ

∗), Eq. (28a), is the same for all cases and is
depicted in the ρ∗ = 0.5 column of Fig. 9.

As seen, the envelope of the full classical Hamiltonian H is modified with respect to that of
Hint, solely due to the O(6) c6-term.

Considering the classical dynamics of L = 0 vibrations in the stable spherical phase
(region I), the relevant classical intrinsic Hamiltonian in Eq. (73) is H1(ρ) of Eq. (26a), with
0 ≤ ρ ≤ ρ∗. Fig. 24 shows for ρ = 0 the Poincaré sections, at E = 1, of H1(ρ = 0) and of the
added c5 and c6 collective terms. The potential surface is V1(ρ = 0), Eq. (38), the same in all
panels. The c5-term turns the exact U(5) symmetry of the intrinsic Hamiltonian into a U(5)
dynamical symmetry of the combined Hamiltonian. The c6-term breaks the U(5) symmetry
but maintains the reduced symmetry of the O(5) subgroup. As a result, the system for ρ = 0
remains integrable in the presence of both terms. The main effect is that the trajectories are
no longer periodic but rather become quasi-periodic, start to precess and densely cover the
surfaces of the invariant tori. In the Poincaré sections, instead of a finite collection of points,
we now see smooth curves organized into two regular islands, forming a pattern typical of
an anharmonic (quartic) oscillator. Fig. 25 shows similar sections, at E = 0.2 (bottom) and
E = 0.5 (top), for the spinodal-point ρ = ρ∗. The relevant Landau potential is that depicted
in the bottom panel of the ρ∗ = 0.5 column in Fig. 9. In general, the added collective terms
maintain the characteristic features of the intrinsic classical dynamics, namely, a Hénon-
Heiles type of transition from regular dynamics at low energy to chaotic dynamics at higher
energy. The classical dynamics in the spherical region is, to a large extent, determined by
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Figure 26: Poincaré sections of the classical intrinsic Hamiltonian H1(ρc) = H2(ξc), Eq. (26), at the critical
point (ρc, ξc), with h2 = 1 and β0 =

√
2 (left panel), and of additional collective terms, Eq. (32), with

c6 = 1 and c5 = 1, involving O(6) and O(5) rotations. The energy is E = Vbar/2 = 0.134 (bottom row),
E = Vbar = 0.268 (middle row) and E = 2Vbar = 0.536 (top row). The potential surface V1(ρc) = V2(ξc),
Eq. (48), is the same for all cases and is depicted in the ξc = 0 column of Fig. 10.

the ρ-term in the intrinsic Hamiltonian, Eq. (26a).
The classical intrinsic Hamiltonian in Eq. (73), appropriate to the coexistence region

(region II), isH1(ρ) of Eq. (26a), with ρ∗ < ρ ≤ ρc, andH2(ξ) of Eq. (26b), with ξc ≤ ξ < ξ∗∗.
Fig. 26 displays the Poincaré surfaces for the critical point (ρc, ξc) with energies below, at,
and above the barrier, arising from H1(ρc) ≡ H2(ξc) and from the added c5 and c6 rotational
terms. The potential surface in all panels is that of Eq. (48), exhibiting a barrier separating
the degenerate spherical and deformed minima. The c5-term is seen to have a very little
effect on the Poincaré sections of the intrinsic Hamiltonian. On the other hand, the sections
with the c6-term have a smaller size, and are compressed for large |px|, in accord with the
properties of the envelope mentioned in Eq. (74). In addition, the regular island in the
region of the deformed minimum appears to be more elongated in the x-direction (see the
middle panel of the c6 = 1 column in Fig. 26). This distortion can affect the regular bands
built on the deformed minimum, as will be discussed in the subsequent quantum analysis.
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Figure 27: Poincaré sections of the classical intrinsic Hamiltonian H2(ξ = 1), Eq. (26b), at the SU(3)-DS
limit (ξ = 1), with h2 = 1 and β0 =

√
2 (left panel) and of additional collective terms, Eq. (32), with c6 = 1

and c5 = ±1, involving O(6) and O(5) rotations. The value of normal-mode frequency ratio R, Eq. (75), is
indicated for each choice of parameters. The energy is E = Vlim/4 = 0.75 (bottom row), E = Vlim/2 = 1.5
(middle row) and E = 3Vlim/4 = 2.25 (top row). The potential surface V2(ξ = 1), Eq. (28b), is the same in
all cases and is depicted in the ξSU(3) = 1 column of Fig. 11.

The different impact of the two collective terms on the classical dynamics can be attributed
to the fact that in the coexistence region the barrier at the saddle point is in the β-direction,
and hence is more sensitive to the β motion. As mentioned, the latter motion is affected by
the O(6) term but not by the O(5) term. In general, throughout region II, the presence of the
collective terms in the Hamiltonian does not destroy the simple pattern of robustly regular
dynamics confined to the deformed region and well-separated from the chaotic dynamics
ascribed to the spherical region.

The classical intrinsic Hamiltonian in Eq. (73), relevant to the stable deformed phase
(region III), is H2(ξ) of Eq. (26b), with ξ ≥ ξ∗∗. For ξ = 1, the intrinsic Hamiltonian has
SU(3) symmetry and the system is completely integrable. As seen in Fig. 27, the inclusion
of the c5- and c6- rotational terms leads to substantial modifications in the phase space

57



Figure 28: Poincaré sections of the classical intrinsic Hamiltonian H2(ξ), Eq. (26b), with h2 = 1 and
β0 =

√
2 in region III, without and with a c5-term, Eq. (32). The energies are E = Vlim(ξ)/4 (bottom row),

E = Vlim(ξ)/2 (middle row), and E = 3Vlim(ξ)/4 (top row), where Vlim(ξ) = (2 + ξ)h2. Note the similarity
of surfaces in Figs. 27-28, with different values of (ξ, c5), but with the same value of normal mode frequency
ratio R, Eq. (75).

portrait, showing chaotic layers and additional islands.
Both the O(5) and O(6) symmetries are incompatible with the SU(3) symmetry, hence

the corresponding added rotational terms break the integrability of the intrinsic Hamiltonian
at ξ = 1. This can lead to the occurrence of chaotic regions. The latter are more pronounced
for the O(5) term (see the panels for c5 = ±1 in Fig. 27), which can be attributed to the
fact that in region III, the saddle point accommodates a barrier in the γ-direction (see the
contour plot in Fig. 2). It should be stressed that, in this case, the onset of chaos is entirely
due to the kinetic terms of the collective Hamiltonian, since the intrinsic Hamiltonian is
integrable for ξ = 1 and its Landau potential, which has a single-deformed minimum, is
kept intact in all panels of Fig. 27. This is a clear-cut demonstration that in the deformed
side of the QPT, chaos can develop from purely kinetic perturbations, without a change in
the morphology of the Landau potential.
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The phase space portrait of the integrable intrinsic Hamiltonian at the SU(3) limit,
shows the same pattern of two regular islands at any energy (see the ξ = 1 column in
Figs. 27 and 11). The inclusion of the collective terms modifies this pattern. As discussed in
Section 5.3, the pattern of islands is affected by the presence of resonances which, in turn,
occur at low energy when the ratio R of normal mode frequencies is a rational number.
These resonance effects are influenced by the presence of the collective Hamiltonian. As
seen in Eq. (12), both the c5- and c6- terms contribute to the normal-mode frequencies and
hence change the ratio R of Eq. (59), to

R ≡ ǫβ
ǫγ

=
h2β

2
0(2ξ + 1) + c6

(9h2 + c5)β2
0(1 + β2

0)
−1 + c6

. (75)

In the current study, we adapt the values h2 = 1 and β0 =
√
2, for which the above expression

simplifies to R = [2(2ξ + 1) + c6]/(6 + 2c5/3 + c6).
For ξ = 1, the intrinsic Hamiltonian (with β0 =

√
2) has R = 1. The inclusion of the

O(6) rotational term does not alter this value, but it stabilizes an additional family of orbits
circulating around, instead of passing through, the deformed minimum (see the unstable
orbit of H2(ξ) for R = 1 in Fig. 12). As a result, two additional regular islands develop in
the Poincaré sections shown in the c6 = 1 column Fig. 27, compared to the SU(3) limit. The
inclusion of the O(5) term changes the ratio to R = 9/(9+ c5), leading to R < 1 (R > 1) for
c5 > 0 (c5 < 0). The γ-motion, with px ≈ 0, is stable for R < 1 and is unstable for R > 1. In
the latter case, the center of the Poincaré section exhibits a hyperbolic fixed point and chaos
develops in its vicinity as the energy increases (see the column with c5 = −1 in Fig. 27). On
the other hand, the β-motion, with large |px|, is stable for R > 1 and is unstable for R < 1.
In the latter case, chaos develops at the perimeter of the Poincaré section (see the column
with c5 = 1 in Fig. 27).

For ξ < 1, the integrability associated with the SU(3) limit is broken due to the presence
of the (ξ−1)P †

0P0 in the intrinsic Hamiltonian, Eq. (24). The effect of adding the rotational
c5-term on the classical dynamics, is similar to that of varying the control parameter ξ in the
intrinsic Hamiltonian. This is illustrated in Fig. 28, where different combinations of ξ and c5,
which yield the same ratio R, give rise to similar Poincaré surfaces. Specifically, the surfaces
obtained with (ξ = 0.85, c5 = −0.9;R = 1) are similar (but not identical) to the surfaces at
the SU(3) limit (ξ = 1, c5 = 0;R = 1), (compare the panels of the R = 1 columns in Fig. 28).
Similarly, the surfaces with (ξ = 0.85, c5 = 0;R = 0.9) in Fig. 28 resemble the surfaces with
(ξ = 1, c5 = 1;R = 0.9) in Fig. 27, and the surfaces with (ξ = 1.1875, c5 = 0;R = 1.125)
in Fig. 28, resemble the surfaces with (ξ = 1, c5 = −1;R = 1.125) in Fig. 27. The slight
differences are due to anharmonic effects beyond the normal-mode approximation.

8.2. Quantum analysis in the presence of collective terms

The collective Hamiltonian Ĥcol(c3, c5.c6) of Eq. (6), is composed of the two-body parts
of the Casimir operators, ĈG, of the groups G = O(3), O(5), O(6). In studying their role in
the quantum spectrum, ĈO(3) can be replaced by its eigenvalue L(L+1), and has no effect on
the structure of wave functions. For that reason, in the quantum analysis presented below,
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we focus on the effect of the collective O(5) and O(6) terms, when added to the intrinsic
Hamiltonian in various regions of the QPT. As previously done, the regular and irregular
nature of the quantum states is revealed through the use of Peres lattices. Their symmetry
properties are examined by means of Shannon entropies, Eq. (70), and the Pearson-based
SU(3) correlator, Eq. (71). The former indicate the purity with respect to U(5) and SU(3),
and the latter indicates the SU(3) coherence. These measures highlight the (approximate)
U(5)-PDS and SU(3)-QDS content of the quantum eigenstates, across the QPT.

Figs. 29-32 portray the properties of quantum eigenstates of the full Hamiltonian,
Eq. (72). The intrinsic Hamiltonian Ĥint(ρ, ξ), Eq. (7), has h2 = 1 and β0 =

√
2, and

the control parameters (ρ, ξ) are taken at representative values in regions I-II-III of the
QPT. These values, as well as those of the coupling strengths, c5 and c6, of the added collec-
tive terms, are identical to the ones used for the classical analysis in Figs 24-27. The middle
(third) column in each of the Figures 29-32, displays the Peres lattices {xi, Ei}, Eq. (66),
of eigenstates |i〉 with N = 50 and L = 0, 2, 4, 6, which are overlayed on the correspond-
ing classical potentials V (x, y = 0), Eq. (31). These potentials are unchanged when the
collective terms are included in the Hamiltonian. As before, ordered (disordered) meshes
of lattice points, identify regular (irregular) type of states. The first, second and fourth
columns from the left, display for each energy eigenstate Ei, the U(5) Shannon entropy
SU5(Li), Eq. (70a), for L = 0, 2, and the SU(3) Shannon entropy SSU3(Li), Eq. (70b) for
L = 0, respectively. The range in these quantities is 0 ≤ SG(Li) ≤ 1, with SG(Li) = 0
(SG(Li) > 0) indicating purity (mixing) with respect to G = U(5), SU(3). The right-most
column displays the values of the SU(3) correlation coefficient 0 ≤ CSU3(0−6) ≤ 1, Eq. (71),
correlating sequences of L = 0, 2, 4, 6 states for each eigenstate L = 0i with energy Ei.
The value CSU3(0−6) ≈ 1 indicates a highly-correlated sequence, comprising a K = 0 band
and manifesting SU(3)-QDS. Slight departures, CSU3(0−6) < 1, indicate a reduction in the
SU(3) coherence.

The intrinsic Hamiltonian in region I of the QPT is Ĥ1(ρ), Eq. (7a), with 0 ≤ ρ ≤ ρ∗.
For ρ = 0, it has U(5) DS and a solvable spectrum, Eq. (17). The added collective c5-
term conforms with the dynamical symmetry, the eigenstates remain the U(5) basis states,
|N, nd, τ, n∆, L〉 Eq. (1a), and hence satisfy SU5(Li) = 0. The combined spectrum becomes
Ei =2h̄2[2N−1 − nd]nd + c5[τ(τ+3) − 4nd], which explains the observed spreading in the
Peres lattice with c5 = 1 in Fig. 29. The energies of the lowest L = τ = 0 states still
follow the potential curve V1(ρ = 0), Eq. (38). The c6-term breaks the U(5) symmetry,
inducing considerable ∆nd = ±2 mixing, but retains the O(5) symmetry and quantum
number τ . Accordingly, the U(5) Shannon entropies are non-zero, as seen for c6 = 1 in
Fig. 29. Nevertheless, a few low-lying (as well as high-lying) states exhibit a low value of
SU5(L), indicating the persistence of an (approximate) U(5)-PDS in the presence of the
O(6) term. The energies of the lowest L = τ = 0 states in the Peres lattice deviate now
from V1(ρ = 0). In all cases considered in Fig. 29, with and without the collective terms,
the eigenstates in question are spherical in nature, hence exhibit considerable SU(3) mixing
(SSU3(L = 0) ≈ 1) and lack of SU(3) coherence (CSU3(0−6) < 1).

For ρ > 0, the intrinsic Hamiltonian Ĥ1(ρ) itself breaks the U(5) symmetry. Most of
its eigenstates are mixed with respect to U(5) except for the U(5)-PDS states of Eq. (20),
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Figure 29: U(5) Shannon entropy SU5(L = 0) and SU5(L = 2), Eq. (70a), Peres lattices {x,Ei}, Eq. (66),
overlayed on the classical potential, SU(3) Shannon entropy SSU3(L = 0), Eq. (70b), and SU(3) correlation
coefficient CSU3(0−6), Eq. (71). The L = 0, 2, 3, 4, 5, 6 eigenstates are those of the intrinsic Hamiltonian,
Eq. (7), with h2 = 1, β0 =

√
2, N = 50, at the U(5) DS limit (ρ = 0, top row), and of added O(6) (c6 = 1,

middle row) and O(5) (c5 = 1, bottom row) collective terms, Eq. (6).
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Figure 30: Same as in Fig. 29, but at the spinodal point (ρ∗ = 1/2).

with nd = τ = L = 0, 3. The U(5)-PDS property still holds when the c5-term is included,
but is violated by the c6-term. This can be seen in Fig. 30 for the spherical ground state,
L = 01, which has SU5 = 0 (SU5 > 0) for the c5 (c6) term. In general, the added collective
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Figure 31: Same as in Fig. 29, but at the critical point (ρc = 1/
√
2, ξc = 0).

terms maintain the characteristic features of the intrinsic quantum dynamics in region I,
namely, the presence of spherical-type of states at low energy, with an approximate U(5)-
PDS, of more complex-type of states at higher energy, and the absence of rotational bands,
hence SSU3(L = 0) ≈ 1 and CSU3(0−6) < 1 for all states. The quantum dynamics in the
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Figure 32: Same as in Fig. 29, but at the SU(3) DS limit (ξ = 1).

spherical region is, to a large extent, determined by the O(5)-breaking ρ-term in the intrinsic
Hamiltonian, Eq. (19). These observations are exemplified in Fig. 30 by the Peres lattices,
Shannon entropies and SU(3) correlator at the spinodal point ρ∗, and are consistent with
the classical analysis of Fig 25, showing the Hénon-Heiles scenario for the onset of chaos in
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this region.
The intrinsic Hamiltonian in region II is Ĥ1(ρ), Eq. (7a), with ρ∗ < ρ ≤ ρc, and Ĥ2(ξ) of

Eq. (7b), with ξc ≤ ξ < ξ∗∗. As discussed in Section 7, the new element entering the intrinsic
quantum dynamics in the shape-coexistence region, is the occurrence of deformed-type of
states forming rotational K-bands, associated with the deformed minimum, coexisting with
low-energy spherical-type of states, associated with the spherical minimum, in the back-
ground of more-complicated type of states at higher-energies. The regular rotational K-
bands exhibit coherent SU(3) mixing, and for K = 0 bands are signaled by CSU3(0−6) ≈ 1.
As shown for the critical point (ξc = 0) in Fig 31, the inclusion of the collective c5-term
maintains these features. In contrast, the regular band-structure is disrupted by the in-
clusion of the c6-term. The number of quasi-SU(3) bands for which CSU3(0−6) > 0.995,
is now reduced from 12 to 6. Thus, most of the reduction of SU(3)-QDS is due to the
collective O(6) rotations which couple the deformed and spherical configurations and mix
strongly the regular and irregular states. This disruption of band-structure is consistent
with the β-distortion of the regular island, observed in the classical analysis of Fig. 26. It
highlights the importance for QPTs of the coupling of the order parameter fluctuations with
soft modes [90].

The intrinsic Hamiltonian in region III is Ĥ2(ξ) of Eq. (7b), with ξ ≥ ξ∗∗. For ξ = 1,
it has SU(3) DS and a solvable spectrum, Eq. (22). The added collective c5- and c6 terms
both break the SU(3) symmetry and consequently, as seen in Fig. 32, the SU(3) Shannon
entropy in both cases is positive, SSU3(L) > 0. At low and medium energies, (E ≤ 3 for
the c5 term and E ≤ 4.5 for c6 term), the SU(3) mixing is coherent and the L-states are
still arranged in rotational bands. The number of such regular K = 0 bands is smaller for
the c5-term, consistent with the classical analysis of Fig. 27, showing a more pronounced
onset of chaos in the γ-motion due to the O(5) rotational term. At higher energies, the
SU(3)-QDS property is dissolved due to mixing with other types of states. In general, there
are no spherical-type of states in region III, and the U(5) entropy is positive, SU5(L) > 0,
in all panels of Fig. 32. This is in line with the fact that the classical Landau potential has
a single deformed minimum in this region.

9. Height of the barrier

All calculations presented so far, were performed at a fixed value of β0 =
√
2, ensuring

a high barrier Vbar/h2 = 0.268, Eq. (52), at the critical point (ξc = 0). For this choice,
the intrinsic Hamiltonian Ĥ2(ξ; β0 =

√
2), Eq. (24), attains the SU(3) limit for ξ = 1

and exhibits SU(3)-PDS for states in the ground and selected gamma bands of Eq. (25),
throughout the deformed region, ξ ≥ ξc. A variation of the parameter β0 in the intrinsic
Hamiltonian, Eq. (7), affects the symmetry properties of quantum states and the morphology
of the classical potential, in particular, the height of the barrier. In the present Section we
examine the implied changes in the dynamics in the coexistence region of the QPT, reflecting
the impact of different barrier heights.

Focusing the discussion to the intrinsic dynamics at the critical point (ρc, ξc), the Poincaré
sections for the classical Hamiltonian H1(ρc) = H2(ξc), Eq. (26), with β0 = 0.35, 1.5, 1.87,
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Figure 33: Poincaré sections of critical-point HamiltoniansH1(ρc;β0) = H2(ξc;β0), Eq. (26), with h2 = 1 and
β0 = 0.35, 1.5, 1.87, corresponding to different barrier heights Vbar/h2 = 0.0018, 0.322, 1.257, respectively.
The value at the domain boundary is Vlim/h2 = 2. The bottom row displays the corresponding classical
potentials V1(ρc;x, y = 0) = V2(ξc;x, y = 0), Eq. (31). The five energies at which the sections were calculated
consecutively, are indicated by horizontal lines. Note the different vertical and horizontal scales for the panels
in the β0 = 0.35 column.

are displayed in the left, center and right columns of Fig. 33, respectively. The three cases
correspond to potential barriers Vbar/h2 = 0.0018, 0.322, 1.257, compared to the value at
the domain boundary, Vlim/h2 = 2. The bottom row depicts the corresponding classical
potentials Vcri(β, γ = 0) = Vcri(x, y = 0), Eq. (48). Apart from an energy scale, the three
cases display similar trends, namely, a Hénon-Heiles type of transition, with increasing
energy, from regular to chaotic motion in the vicinity of the spherical well, and regular
dynamics in the vicinity of the deformed well. The extremely low-barrier case displayed in
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Figure 34: Quantum Peres lattices {xi, Ei} for L = 0 eigenstates |i〉 of Ĥcri (11), with h2 = 1, N = 80 and
β0 = 0.35, 1.5, 1.87. The lattices are overlayed on the same classical potentials as in Fig. 33, accommodating
different barrier heights. Note the different vertical and horizontal scales for the panel with β0 = 0.35.

the left column of Fig. 33, is obtained for β0 = 1
2
√
2
, which is the value of the equilibrium

deformation for the critical-point Hamiltonian, Eqs. (13)-(14), with χ = −
√
7
2
. The small

energy scale explains why the simple pattern of coexisting but well-separated regular and
chaotic dynamics in the coexistence region, has escaped the attention in all previous works
which employed the Hamiltonian of Eq. (13). This highlights the benefits gained by using
the intrinsic-collective resolution of the Hamiltonian, Eq. (4), and the ability to construct
Hamiltonians accommodating a high-barrier, in order to uncover in a transparent manner
the rich dynamics in the coexistence region of the QPT.

In spite of the overall similarity, some differences can be detected between the classical
dynamics with β0 < 1 and β0 > 1. In the former case, the onset of chaos occurs at a lower
energy, as demonstrated in Fig. 33. This can be attributed to the different relative weights
of the harmonic term, β2

0β
2, and the chaos-driving term, β0

√

2− β2β3 cos 3γ in the Landau
potential, Vcri(β, γ), Eq. (48). The value of β0 affects also the ratio R of normal-mode
frequencies of oscillations about the deformed minimum, Eq. (59). As noted in Section 5.3,
the number of islands in a Poincaré Brikhoff chain is 2/R, hence decreases with R ∝ (1 +
β2
0). Accordingly, the island chains are more visible and the resonance structure is more

pronounced for larger values of β0 (see the column for β0 = 1.87 in Fig. 33).
Fig. 34 presents the quantum Peres lattices calculated for (N = 50, L = 0, 2, 3, 4) eigen-

states of the critical-point intrinsic Hamiltonian, Eq. (11), with β0 = 0.35, 1.5, 1.87, the
same values used for the classical Poincaré sections in Fig. 33. In each case, one can clearly
identify regular sequences of K = 0, 2, 4 bands localized within and above the respective
deformed wells, and persisting to energies well above the barriers. The number of such
K-bands is larger when the potential is deeper (larger β0 values). To the left of the barrier
towards the spherical minimum, one observes a number of low-energy U(5)-like multiplets,
Eq. (18). This spherical multiplet-structure is very pronounced for β0 = 1.5, 1.87 (high
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Figure 35: SU(3) probability distribution P
(L)
λ,µ), Eq. (69b), for (N = 50, L = 0, 2, 4, 6) states, members of

the ground band of the intrinsic critical-point Hamiltonian Ĥ1(ρc;β0) = Ĥ2(ξc;β0), Eq. (7), with β0 = 1
(top) and β0 = 1.5 (bottom). Each panel lists the SU(3) Shannon entropy SSU3(L = 0), Eq.(70b), and the
SU(3) correlator CSU3(0−6), Eq. (71), indicating the extent of SU(3) mixing and coherence, respectively.

barriers) and only part of it survives for β0 = 0.35 (extremely low barrier).
For β0 6=

√
2, the intrinsic Hamiltonian, Ĥ2(ξ; β0), Eq. (7b), no longer posses the SU(3)

PDS property, Eq. (25). All eigenstates are mixed with respect to SU(3), including member
states of the ground and gamma bands. Nevertheless, by construction, Ĥ2(ξ; β0) still satisfies
Eq. (5), and hence the states with L = 0, 2, 4, . . . , 2N , projected from the condensate,
Eq. (3), with [βeq =

√
2β0(1 + β2

0)
−1/2, γeq = 0], span a solvable (but SU(3)-mixed) ground

band. In general, the SU(3) mixing is stronger for larger deviations,
∣

∣β0 −
√
2
∣

∣, and the
mixing is coherent for the L-states in the same K-band. This is illustrated in Fig. 35, which
shows the SU(3) decomposition in the solvable ground band of the critical-point intrinsic
Hamiltonian Ĥ2(ξc; β0), for two values of β0. For β0 = 1, the L = 0 bandhead state of the
ground band has a high-value for the SU(3) Shannon entropy, SSU3(L = 0) = 0.33, hence
is less pure compared to its counterpart with β0 = 1.5, for which SSU3(L = 0) = 0.03. In
both cases, the ground bands exhibit SU(3) coherence (L-independent mixing), with SU(3)
correlation coefficients CSU3(0−6) = 1, exemplifying SU(3)-QDS.
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10. Summary and conclusions

We have presented a comprehensive analysis of the dynamics evolving across a generic
(high-barrier) first-order QPT, with particular emphasis on aspects of chaos, regularity,
and symmetry. The study was conducted in the framework of the IBM, a prototype of an
algebraic model, whose phases are associated with dynamical symmetries (DSs) and the
transition between them exemplify QPTs in an interacting many-body system. The specific
model Hamiltonian employed, describes a shape-phase transition between spherical [U(5)
DS] and deformed [SU(3) DS] quadrupole shapes, a situation encountered in nuclei. The
resolution of the Hamiltonian into intrinsic (vibrational) and collective (rotational) parts has
allowed us to disentangle the effects due to terms affecting the Landau potential, from effects
due to kinetic terms. The separate treatment of the intrinsic dynamics highlights simple
features by avoiding distortions that may arise in the presence of large rotation-vibration
coupling. The availability of IBM Hamiltonians accommodating a high barrier in a wide
range of control parameters, made it possible to uncover a previously unrecognized pattern
of competing order and chaos, which echoes the QPT in the coexistence region.

A classical analysis of the intrinsic part of the Hamiltonian revealed a rich mixed dy-
namics with distinct features in each structural region of the QPT. On the spherical side of
the QPT, the system is integrable at the U(5) DS limit. Near it, the phase space portrait
resembles that of a weakly perturbed anharmonic (quartic) oscillator. In other parts of re-
gion I, where the Landau potential has a single spherical minimum, the phase space portrait
is similar to the Hénon-Heiles system, with regular dynamics at low energy and chaos at
higher energy. The non-integrability here is due to the O(5)-breaking term in the Hamil-
tonian. On the deformed side of the QPT, the system is integrable at the SU(3) DS limit.
Away from it, the integrability is lost by a different mechanism of breaking the SU(3) sym-
metry. The dynamics, however, remains robustly regular throughout region III, where the
Landau potential supports a single deformed minimum. The Poincaré sections in this region
are dominated by regular trajectories forming a single island. Additional chains of regular
islands show up, occasionally, due to resonances in the normal-mode oscillations. The fact
that the classical dynamics evolves differently, is attributed to the different topology of the
Landau potential in the vicinity of the two minima. In spite of the abrupt structural changes
taking place, the dynamics in the phase coexistence region (region II), exhibits a very simple
pattern where each minimum preserves, to a large extent, its own characteristic dynamics.
The robustly ordered motion is still confined to the deformed minimum, in marked sepa-
ration from the chaotic behaviour ascribed to the spherical minimum. The coexistence of
well-separated order and chaos persists in a broad energy range, even above the barrier,
throughout region II, and is absent outside it. The simple pattern of mixed dynamics thus
traces the crossing of the two minima, a defining feature of a first-order QPT. Simply divided
phase spaces are known to occur in billiard systems [91, 92], where the amount of chaoticity
in the motion of a free particle is governed by the geometry of the cavity. Here, however,
they show up in a many-body interacting system undergoing a QPT, where the onset of
chaos is governed by a variation of coupling constants in the Hamiltonian.

The quantum manifestations of the classical inhomogeneous phase space structure have
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been analyzed via Peres lattices. The latter distinguish regular from irregular quantum
states by means of ordered and disordered meshes of points. A choice of Peres operator
whose classical limit corresponds to the deformation, allowed us to overlay the lattices on
the classical potentials and thus associate the indicated states with a given region in phase
space. The results obtained reflect adequately the mixed nature of the classical dynamics.
The distribution of lattice points agrees with the location of regular and chaotic domains
in the classical Poincaré sections. The quantum analysis has disclosed a number of regular
low-energy spherical-vibrator U(5)-like multiplets, associated with the spherical minimum
and regular SU(3)-like rotational K-bands in the vicinity of the deformed minimum. The
latter bands persist to energies well above the barrier, extend to high values of angular
momenta, and their number is larger for deeper deformed wells. These two kinds of regular
subsets of states retain their identity amidst a complicated environment of other states, and
both are present in the coexistence region.

An important clue on the nature of the surviving regular sequences of selected states,
comes from a symmetry analysis of their wave functions. A U(5) decomposition has shown
that the above mentioned regular U(5)-like multiplets consist of spherical type of states,
with wave functions dominated by a single nd component. As such, they exhibit U(5) partial
dynamical symmetry [U(5)-PDS], either exactly or to a good approximation. This enhanced
U(5) purity is signaled by a low value of the U(5) Shannon entropy, Eq. (70a). In contrast,
the deformed type of states exhibit a broad nd-distribution. An SU(3) decomposition of the
states in the regular K-bands shows a coherent (L-independent) SU(3) mixing, exemplifying
SU(3) quasi-dynamical symmetry [SU(3)-QDS]. This pronounced coherence is signaled by
a high value of the Pearson-based SU(3) correlation coefficient, Eq. (71). The persisting
regular U(5)-like [SU(3)-like] multiplets reflect the geometry of the Landau potential, as
they are associated with the different spherical (deformed) minimum. Accordingly, their
total number νU5 (νSU3) can be used both as a global measure of the U(5)-PDS [SU(3)-
PDS] present in the system, and as a mirror which captures the structural evolution of the
first-order QPT. This is demonstrated in Fig. 23, showing the change in these quantities
as a function of the control parameters (ρ, ξ). The quantity νU5 (νSU3) is maximal at the
U(5)-DS [SU(3)-DS] limit and vanishes towards the anti-spinodal (spinodal) point, where
the spherical (deformed) minimum disappears.

The collective part of the Hamiltonian consists of kinetic terms associated with O(3),
O(5) and O(6) rotations. When added to the intrinsic part of the Hamiltonian they lead
to rotational splitting and mixing. Although these kinetic terms do not affect the Landau
potential, the mixing induced by the O(5) and O(6) terms, can affect the onset of classical
chaos and the regular features of quantum states. An analysis of the classical and quantum
dynamics has shown that in region I, the added collective terms being O(5)-invariant, main-
tain the Hénon-Heiles type of dynamics; the onset of chaos being largely determined by the
intrinsic Hamiltonian. The O(6) rotational term, being associated with the β degree of free-
dom, was found to be significant in the coexistence region. Its presence disrupts the regular
K-bands built on the deformed minimum and reduces their coherence property related to
SU(3)-QDS. The simple pattern of well-separated regular and chaotic dynamics ascribed to
each minimum, however, is not destroyed. The O(5) rotational term, being associated with
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the γ degree of freedom, was found to be significant in region III. Its presence modifies the
regular intrinsic dynamics associated with the single deformed minimum and leads to signif-
icant chaoticity. The SU(3)-QDS property here is completely dissolved at higher energies.
It is important to note that chaos can develop from purely kinetic perturbations, without a
change in the Landau potential, as vividly demonstrated in Fig. 27. This illustrates that a
criterion for the onset of chaos cannot be based solely on the geometry of the potential.

The study of first-order QPTs conducted in this work, considered a finite system, whose
mean-field potential involved two asymmetric wells, one dominated by chaotic dynamics
the other by regular dynamics. A parameter β0 in the Hamiltonian governed the height
of the barrier between them. The ramifications of divided phase space and Hilbert space
structure, e.g., simple patterns of dynamics and intermediate symmetries (PDS and QDS),
are observed at any β0 > 0, but are more pronounced for higher barriers (larger β0). It will be
interesting to see in future studies of first-order QPTs, whether simply divided spaces occur
also when both wells accommodate regular or chaotic motion but with distinct characteristic
features, e.g., different phase space portraits and dissimilar symmetry structure. Other
issues which deserve further attention are finite-size effects and scaling behavior. Although
there are initial indications that the simple pattern of mixed dynamics characterizing the
QPT, occurs also at moderate values of N , a systematic study is called for. The large-N
scaling behavior should be considered, in analogy to what has been done in second-order
(continuous) QPTs. An interesting question to address is whether the global measures of
U(5)-PDS and SU(3)-QDS, νU5 and νSU3, shown in Fig. 23, converge to a particular curve
for large N .

Returning to the key questions posed in the Introduction, we end with some pertinent
remarks. Based on the results obtained in the present paper, we conclude that the interplay
of order and chaos accompanying the first-order QPT can reflect its evolution, provided the
underlying phase-space is simply divided and each minimum maintains its own characteristic
dynamics. If these conditions are met, then the resulting simple pattern of mixed dynamics
can trace the modifications in the topology of the Landau potential inside the coexistence
region. The pattern of mixed but well-separated dynamics is particularly transparent when
considering the intrinsic dynamics, and appears to be robust. Deviations are largely due
to kinetic collective rotational terms, which may lead to strong rotation-vibration coupling,
breakdown of adiabaticity and an onset of chaos due to purely kinetic perturbations. The
present work suggests that the remaining regularity in the system, associated with differ-
ent minima at the classical level, and with different regular subsets of eigenstates, at the
quantum level, amidst a complicated environment, can be assigned particular intermediate
symmetries, PDS or QDS. Both the classical and quantum analysis indicate a tendency
of a system undergoing a QPT, to retain some “local” regularity far away from integrable
limits and some partial- or quasi- form of symmetries far way from symmetry limits. Is
this linkage between persisting regularities and persisting symmetries a general result or
an observation valid for specific algebraic models? What are the general conditions for a
dynamical system to have these local regions of regularities and effective symmetries for sub-
sets of states? Can one incorporate the notions of quasi- and partial dynamical symmetries
in attempts [93, 94, 95] to formulate quantum analogs of the KAM and Poincaré-Birkhoff

71



theorems? Quantum phase transitions in many-body systems and their algebraic modeling
provide a fertile ground for addressing these deep questions. The present work is only a first
step towards accomplishing this goal.
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Appendix A: the IBM potential surface

The normal-order form of the most general IBM Hamiltonian with one- and two-body
interactions is given by

ĤIBM = ǫs s
†s+ ǫd d

† · d̃+ u0 (s
†)2s2 + u2 s

†d† · d̃s+ v0

[

(s†)2d̃ · d̃+H.c.
]

+v2

[

s†d† · (d̃d̃)(2) +H.c.
]

+
∑

L=0,2,4

cL (d
†d†)(L) · (d̃d̃)(L) , (76)

where H.c. means Hermitian conjugate. As noted in Section 2, a potential surface V (β, γ),
Eq. (2), is obtained by the expectation value of the Hamiltonian in an intrinsic state |β, γ;N〉,
Eq. (3), where (β, γ) are quadrupole shape variables. For the general IBM Hamiltonian (76)
the surface reads

V (β, γ) = N(N − 1)
{

E0 +
1
2
β2

[

a− b1
2
β
√

2− β2 cos 3γ + (c− a)1
2
β2

]}

. (77)

The coefficients E0, a, b, c, involve particular linear combinations of the Hamiltonian’s pa-
rameters [53]

a = u2 + 2v0 − 2u0 + ǭ , b = 2
√

2
7
v2 , c =

1
5
c0 +

2
7
c2 +

18
35
c4 + ǭ , E0 = u0 + ǭs ,

ǭ = ǭd − ǭs , ǭi = ǫi/(N − 1) . (78)

In analyzing properties of the IBM potential surface, it is convenient to use a different
parameterization, β̃, instead of β, where the two variables are related by Eq. (39). The
intrinsic state in the new parameterization reads [60, 61]

|β̃, γ;N〉 = (N !)−1/2[ Γ†
c(β̃, γ) ]

N |0〉 , (79a)

Γ†
c(β̃, γ) = (1 + β̃2)−1/2

[

β̃ cos γd†0 + β̃ sin γ(d†2 + d†−2)/
√
2 + s†

]

, (79b)

and the potential surface has the form

V (β̃, γ) = N(N − 1)[E0 + f(β̃, γ)] , (80a)

f(β̃, γ) = (1 + β̃2)−2β̃2
[

a− bβ̃ cos 3γ + cβ̃2
]

. (80b)

72



The extremum equations, ∂V/∂β̃ = ∂V/∂γ = 0, always have β̃ = 0 as a solution. It is a
local minimum for a > 0 and a global minimum if in addition, c − b2/4a > 0. For b 6= 0,
a deformed extremum (β̃∗ 6= 0, γ∗), has γ∗ = 0 (prolate) or γ∗ = π/3 (oblate), mod(2π/3).
For γ = 0, β̃∗ 6= 0 is a real solution of the following equation

2a− 3bβ̃ + 2(2c− a)β̃2 + bβ̃3 = 0 . (81)

For γ = π/3, the sign of b in Eq. (81) is reversed. This equation has one real root for D > 0;
all roots real and unequal for D < 0; and all roots real and at least two are equal for D = 0,
where

D = −(1 + ζ2)3 +

(

3

2
ζ + ζ3 +

a

b

)2

, ζ =
2(2c− a)

3b
. (82)

In a local minimum, γ∗ = 0 (π/3) for b > 0 (b < 0) and bβ̃∗(3 + β̃2
∗) − 4a > 0. In a global

minimum, bβ̃∗ − 2a > 0.
Given an Hamiltonian Ĥ(λ) describing a QPT, its potential surface coefficients, a(λ),

b(λ) and c(λ), Eq. (78), depend on the control parameter λ. In case of a first-order QPT
between a spherical and prolate-deformed shape, the value of the control parameter at the
critical point (λc), which defines the critical-point Hamiltonian Ĥ(λc), is determined by the
condition

b2 = 4ac , a > 0, b > 0 , f(β̃, γ = 0) = c(1 + β̃2)−2β̃2
(

β̃ − β̄
)2

. (83)

The corresponding potential surface shown, has degenerate spherical and deformed minima
at β̃ = 0 and (β̃ = β̄, γ = 0), where β̄ = 2a/b. The value of the control parameter at
the spinodal point (λ∗), where the deformed minimum disappears, is obtained by requiring
D = 0, with D given in Eq. (82). The value of the control parameter at the anti-spinodal
point (λ∗∗), where the spherical minimum disappears, is obtained by requiring a = 0.

The potential surface coefficients for the first-order intrinsic Hamiltonian of Eq. (7), are
given by

Ĥ1(ρ)/h̄2 : a = 2β2
0 , b = 4β2

0ρ , c = 2 , E0 = 0 , (84a)

Ĥ2(ξ)/h̄2 : a = 2β2
0 [1− ξ(1 + β2

0)] , b = 4β0 , c = 2 + ξ(1− β2
0) , E0 = ξβ4

0 . (84b)

The values of the control parameters at the critical (ρc, ξc), spinodal (ρ
∗), and anti-spinodal

(ξ∗∗) points, given in Eqs. (33)-(35), were obtained by the conditions mentioned above. The
energy surface coefficients of the collective Hamiltonian, Eq. (6), all vanish.

Appendix B: Linear correlation coefficients

The extent to which two n-dimensional vectors, X and Y , with components Xm and Ym

respectively, support a linear relation, can be measured by the standard Pearson correlation
coefficient, defined as

π(X, Y ) =
1

n− 1

n
∑

m=1

(Xm − X̄)

sX

(Ym − Ȳ )

sY
. (85)
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Here X̄, Ȳ and sX , sY are the mean values and standard deviations of the vector components,
respectively. The values of the Pearson coefficient lie in the range 1 ≤ π(X, Y ) ≤ 1, with
π(X, Y ) = 1, π(X, Y ) = −1, and π(X, Y ) = 0 indicate a perfect correlation, perfect anti-
correlation and no linear correlation, respectively.

In the present work, we apply the Pearson indicator to estimate the amount of corre-
lations between two eigenstates of an IBM Hamiltonian, |Li〉 and |L′

j〉. For that purpose,
we expand both states in the SU(3) basis as in Eq. (68), and identify their SU(3) prob-

ability distributions P
(Li)
(λ,µ) and P

(L′

j)

(λ,µ), Eq. (69b), with the components of the vectors Xm

and Ym in Eq. (85). To ensure an equal number of components, we assign a value zero to

the component, P
(L′

j)

(λ,µ) = 0, if the angular momentum L′ is not contained in a particular

SU(3) irrep (λ, µ) that does accommodate the angular momentum L. To associate a band
of states with a given state |Li〉, we scan the entire spectrum of states |L′

j〉, with angular
momentum L′ 6= L, and choose the state that maximizes the Pearson correlation coefficient
maxj{π(Li, L

′
j)}, Eq. (85). This identifies among the ensemble of states with angular mo-

mentum L′, the most correlated state with |Li〉, which is the favored candidate to be its
member in the same band. This procedure, adapted from [81], was used in Eq. (71) to
identify K = 0 bands, composed of sequences of rotational states with L = 2, 4, 6, built on
a given |L = 0i〉 bandhead state.
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