
Mach Learn (2006) 64:149–182

DOI 10.1007/s10994-006-8713-9

First order random forests: Learning relational classifiers
with complex aggregates

Anneleen Van Assche · Celine Vens · Hendrik Blockeel ·
Sašo Džeroski

Received: 8 April 2005 / Revised: 24 February 2006 / Accepted: 29 March 2006 / Published online: 21 June
2006
Springer Science + Business Media, LLC 2006

Abstract In relational learning, predictions for an individual are based not only on its own

properties but also on the properties of a set of related individuals. Relational classifiers

differ with respect to how they handle these sets: some use properties of the set as a whole

(using aggregation), some refer to properties of specific individuals of the set, however, most

classifiers do not combine both. This imposes an undesirable bias on these learners. This

article describes a learning approach that avoids this bias, using first order random forests.

Essentially, an ensemble of decision trees is constructed in which tests are first order logic

queries. These queries may contain aggregate functions, the argument of which may again

be a first order logic query. The introduction of aggregate functions in first order logic, as

well as upgrading the forest’s uniform feature sampling procedure to the space of first order

logic, generates a number of complications. We address these and propose a solution for

them. The resulting first order random forest induction algorithm has been implemented and

integrated in the ACE-ilProlog system, and experimentally evaluated on a variety of datasets.

The results indicate that first order random forests with complex aggregates are an efficient

and effective approach towards learning relational classifiers that involve aggregates over

complex selections.

Editor: Rui Camacho

A. Van Assche (�) · C. Vens · H. Blockeel
Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A,
3001 Leuven, Belgium
e-mail: anneleen.vanassche@cs.kuleuven.be

C. Vens
e-mail: celine.vens@cs.kuleuven.be

H. Blockeel
e-mail: hendrik.blockeel@cs.kuleuven.be

S. Džeroski
Department of Knowledge Technologies, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
e-mail: saso.dzeroski@ijs.si

Springer

150 Mach Learn (2006) 64:149–182

Keywords Relational learning · Random forests · Aggregation · Decision tree learning

1. Introduction

In relational learning, an individual to be classified may be linked to a set of other objects.

Properties of this set, or of some of the objects it contains (or perhaps both) may be relevant

for the classification. Among the many approaches to relational learning that currently exist,

an important distinction can be made with respect to how they handle these one-to-many and

many-to-many relationships. Whereas propositionalisation approaches usually handle sets

by aggregating over them, inductive logic programming (ILP) (Muggleton, 1992) techniques

select specific elements. This imposes an undesirable bias on both kinds of learners (Blockeel

& Bruynooghe, 2003).

A combination of both would involve aggregating over a subset of elements fulfilling

specific conditions (“aggregating over a selection”). Such combinations might be expected

to naturally appear in certain patterns, but they are very difficult to construct for machine

learning systems, both because the feature space explodes and because it becomes more

difficult to search it in a structured and efficient way due to, e.g., non-monotonicity (Knobbe,

Siebes & Marseille, 2002).

In this article we present an approach based on random forests (Breiman, 2001) for

combining aggregates and selections. Random forest induction is a bagging method that

builds decision trees using only a random subset of the feature set at each node. In our

approach, the decision trees that are constructed contain tests with first order logic queries

that may involve aggregate functions. The argument of these aggregate functions may again

be a first order logic query.

The motivation for using random forests is based on two observations. First, random

forests seem to be very suitable to tackle the problems mentioned above. For example,

the problem of feature space explosion is handled by sampling the feature space for good

features, instead of exhaustively searching it, and by combining multiple trees built using

such random sampling. Also, because of the search strategy used by decision trees, problems

regarding an unstructured feature space disappear. Second, in propositional learning, random

forest induction has been shown to work well when many features are available (Breiman,

2001). Because ILP typically deals with large feature sets, it seems worthwhile to investigate

whether random forests perform well in this context.

The paper is organised as follows. Section 2 illustrates the problem of combining aggre-

gates with selection conditions in ILP. Section 3 discusses how aggregate functions can be

included in the search space of first order decision trees. Section 4 describes random forests

and how they can be upgraded to the first order case. In Section 5 we experimentally evaluate

our method on some well-known real world data sets and on an artificially generated data

set. Section 6 discusses related work. Finally, we formulate conclusions and some ideas for

future research in Section 7.

2. Aggregates and selection in ILP

In this section, we discuss the combination of aggregates and selection in ILP. We start by

stating the problem and describing a few attempts at combining selection and aggregation.

Then, we give some definitions that we use in a technical discussion afterwards. Finally, we

discuss the complexity of finding patterns that combine aggregation and selection.

Springer

Mach Learn (2006) 64:149–182 151

Fig. 1 ER-diagram of the Account example

2.1. Aggregates and selection

As mentioned in the introduction, in relational learning an individual may be linked to a set

of other objects, via one-to-many or many-to-many relationships. Properties of either the set

itself or of some of the objects it contains may be relevant for the classification.

Current relational learners either use aggregate functions, which reflect properties of the set

as a whole, or build patterns that express the existence of one or more elements with specific

properties in that set (Blockeel & Bruynooghe, 2003). They usually do not combine both.

Such a combination would involve aggregating over a subset of elements fulfilling specific

conditions (“aggregating over a selection”). For example, in the context of the database shown

in Fig. 1, a relevant criterion to determine whether a person is, for example, a good customer,

could be related to the sum (aggregation) of the balance on his savings (selection) accounts.

In terms of relational algebra, combining aggregation and selection boils down to con-

structing features of the form F(σC (R)) with F an aggregate function, σC (R) a selection

function based on a condition C , and R a set of tuples somehow connected to the tu-

ple we want to classify. From this viewpoint, ILP systems (inductive logic programming,

(Muggleton, 1992)) typically build a complicated selection condition C but the aggregate

function F is always the “there exists” function, returning true if at least one element of R
fulfills C , and false otherwise. Other relational learners use features of the form F(R), where

F is taken from a predefined set of aggregate functions. Examples of this approach include

probabilistic relational models (Koller, 1999) and relational probability trees (Neville et al.,

2003).

A few attempts at combining selection and aggregation exist. Knobbe, Siebes & Marseille

(2002) propose a method for aggregating over selections. The patterns they learn are repre-

sented as selection graphs. They can perform a general-to-specific search through a hypothesis

space, at the cost of disallowing refinement of certain aggregate functions (so-called non-

monotone functions, see further). Krogel and Wrobel (2003) propose a propositionalisation

approach, called RELAGGS, where features can be aggregates over selections, but the selec-

tion conditions have a limited complexity and are not refined during the search. Uwents and

Blockeel (2005) present a non-symbolic approach towards combining aggregates and selec-

tion. Their method is not constrained to using predefined aggregate functions. They train a

so-called relational neural network that reflects the structure of the relational database. Of

course, as in all non-symbolic approaches, the obtained model is not easily interpretable.

Perlich and Provost (2003) present a hierarchy of relational concept classes in order of

increasing complexity, where the complexity depends on that of any aggregate functions used.

Their “category 3 and 4” concepts rely on so-called multi-dimensional aggregation, which

corresponds to what we call “combining selection and aggregation”. Perlich and Provost’s

analysis is very similar to ours: They point out that ILP-like systems are the only ones that

can handle concepts of categories 3 or 4, but they have the disadvantage that they typically do

Springer

152 Mach Learn (2006) 64:149–182

not use numerical aggregation, and the latter is identified as a crucial weakness. It is exactly

that weakness that we try to eliminate with this work.

An important reason why few current systems combine aggregation and selection is that

this combination causes a substantial expansion of the feature space and at the same time

makes it more difficult to search that space in a structured and efficient way. In the following,

we will analyse the difficulties that arise with aggregation and selection in the context of

first order logic. We start with some terminology and definitions, which will be useful for

describing exactly what complications arise when learning first order logic clauses with

arbitrarily complicated aggregates.

2.2. Preliminaries

This section reviews refinement under theta-subsumption, coverage, and monotonicity, and

adapts these concepts to our context where needed.

2.2.1. θ -subsumption for clauses with aggregates

Many ILP systems perform a general-to-specific search by repeatedly refining an overly

general clause until its quality is sufficient. For this refinement, ILP systems typically use a

refinement operator based on θ -subsumption. The classical definition of the θ -subsumption

relation between clauses is as follows (Plotkin, 1969).

Definition 1. A clause c1 θ -subsumes a clause c2 (denoted c1 ≤θ c2) if there exists a substi-

tution θ such that c1θ ⊆ c2.

The kind of clauses that we are interested in are not pure logical clauses: they may contain

aggregate literals of the form F(V, Q, R) where F is an aggregate function (e.g., count), V
is an aggregate variable occurring in the aggregate query Q, and R is the result of applying

F to the set of all answer substitutions for V that Q results in (we will call this set the result
set of Q). We will use the term standard clauses to refer to clauses without aggregates.

As we are interested in learning classifiers with extended aggregate queries, it is useful to

be able to gradually refine aggregate queries, in a similar way as standard clauses would be

refined. We therefore define an extension of the classical θ -subsumption relation on clauses

with aggregation, and call it A-subsumption. A standard literal is any literal in a clause that

is not an aggregate literal and does not occur inside an aggregate query. The standard part of

a clause c, denoted S(c), is the clause consisting of all standard literals of c (and only those).

Definition 2. A clause c1 A-subsumes a clause c2 (denoted c1 ≤A c2) if and only if S(c1) ≤θ

S(c2), and for each aggregate literal F(V1, Q1, R1) ∈ c1, there exists an aggregate literal

F(V2, Q2, R2) ∈ c2 such that Q1θ ≤A Q2, and the latter A-subsumption only involves a set

of substitutions σ over locally defined variables in Q1, such that V1σ = V2.

In other words, a clause A-subsumes another clause if, after applying the right variable

substitutions to the standard part of the clause as well as to its aggregate queries, the standard

part of the first clause becomes a subset of the standard part of the second clause, and each

aggregate query becomes a subset of the corresponding aggregate query in the second clause.

Springer

Mach Learn (2006) 64:149–182 153

2.2.2. Specialisation and generalisation

We define the concepts of generalisation and specialisation of a clause in terms of its coverage.

Generally, we say that a clause covers an example if the body of the clause succeeds for the

example. Clause c1 is a specialisation (generalisation) of c2 if and only if the set of examples

it covers is a subset (superset) of the examples covered by c2.

For clauses without aggregates, it holds that whenever c1 ≤A c2 (or equivalently, c1 ≤θ c2),

the coverage of c1 must be a superset of the coverage of c2, i.e., c2 is a specialisation of c1. We

will see later that for clauses with aggregates and the A-subsumption relation, this property

is lost.

We will call a refinement valid if and only if it constitutes a specialisation.

2.2.3. Monotonicity

We will also use the concept of monotonicity. A condition on a set is monotone if and only if

whenever the condition holds on a set S, it holds also on all supersets of S. It is anti-monotone

if and only if whenever it holds on S, it holds also on all subsets of S. It is non-monotone

if it is neither monotone nor anti-monotone. The concept can easily be extended towards

bags (multi-sets), using definitions of subbag and superbag as follows: A is a subbag of B
(denoted A ⊆ B) if and only if each element of A is also in B and its multiplicity in B is at

least as high as in A; and A is a superbag of B if and only if B is a subbag of A.

In the context of aggregate functions, the concept of monotonicity can be specialised to

the following definitions, which we borrow from Knobbe, Siebes and Marseille (2002).

Definition 3. An aggregate condition is a pair (f, o) where f is an aggregate function and o
is a comparison operator.

Definition 4. An aggregate condition (f, o) is monotone if and only if for any sets (bags) S
and S′ such that S′ ⊆ S, and for any value v in the range of f , f (S′) o v ⇒ f (S) o v.

Definition 5. An aggregate condition (f, o) is anti-monotone if and only if for any sets (bags)

S and S′ such that S′ ⊆ S, and for any value v in the range of f , f (S) o v ⇒ f (S′) o v.

Definition 6. An aggregate condition is non-monotone if and only if it is neither monotone

nor anti-monotone.

It is easy to see that the following aggregate conditions are monotone: (count, ≥),

(max, ≥), and (min, ≤). Anti-monotone conditions are (count, ≤), (max, ≤) and (min, ≥).

The aggregate conditions (mode, =), (sum, ≤), (sum, ≥), (avg, ≥) and (avg, ≤) are non-

monotone.1

2.3. Refining clauses with aggregates

We can now discuss in what way refinement of clauses with aggregates is more complicated

than refinement of standard clauses.

1 The aggregate functions count , max , min, sum, and avg are defined as in SQL. The function mode returns
the most frequent value of a set.

Springer

154 Mach Learn (2006) 64:149–182

In the context of standard clauses, whenever a clause c1 θ -subsumes a clause c2, c2 must

be a specialisation of c1. Hence, by using a refinement operator ρ that, given a clause c, yields

only clauses θ -subsumed by c, a general-to-specific search through the hypothesis space is

obtained. Such a refinement operator typically employs one of the following basic operations

on a clause:

– apply a substitution to the clause, and

– add a literal to the body of the clause.

Our definition of A-subsumption is syntactically very similar to the original θ -subsumption

definition, but the property that c1 ≤A c2 implies that c2 is a specialisation of c1, is lost.

Refinement under A-subsumption may yield a specialisation or a generalisation, or even

none of both.

To some extent, this behaviour can be related to the monotonicity properties of the ag-

gregate conditions, an observation also made by Knobbe, Siebes and Marseille (2002) in

the context of refining selection graphs. But it turns out that in the first order logic context,

monotonicity is not the only factor. Also the semantics of the aggregate conditions plays a

role. We discuss these two issues in more detail.

Take the following example clause (see Fig. 1 for the Account database).

person(PersID, pos) ←
count(AccID, account(PersID, AccID, Type, Balance), C), C ≥ 4

Applying a substitution to the aggregate query gives the following refinement

person(PersID, pos) ←
count(AccID, account(PersID, AccID, savings, Balance), C), C ≥ 4

which must have at most the same coverage (people with at least four savings ac-

counts must be a subset of people with at least four accounts), so the refinement is

valid.

However, if we consider the following query

person(PersID, pos) ←
count(AccID, account(PersID, AccID, Type, Balance), C), C < 4

and its refinement

person(PersID, pos) ←
count(AccID, account(PersID, AccID, savings, Balance), C), C < 4

then the result yields a generalisation (people with less than four savings accounts may have

more than four accounts).

The fact that the refinement operator yields a specialisation in the first case, and a generali-

sation in the second case, is related to the first clause having a monotone aggregate condition,

and the second clause having an anti-monotone one. Indeed, applying a substitution to the

aggregate query causes the count to go down, which may cause the C ≥ 4 condition to fail

when it was true for the original clause (hence, we obtain a more specific clause), and may

cause the C < 4 condition to become true when it was false for the original clause (hence,

we obtain a more general clause).

The situation becomes more complex, however, when we add literals to the aggre-

gate query (instead of just applying substitutions). For example, consider the following

refinement:

Springer

Mach Learn (2006) 64:149–182 155

Table 1 Extension of the
Account and Transaction tables
of the Account database

Account PersID AccID Type Balance

John 123456 Checkings 100

John 987654 Checkings 200

John 789123 Savings 200

Transaction Acc TransID Type Amount

123456 tr090 Withdrawal 50

123456 tr091 Deposit 30

987654 tr098 Deposit 70

789123 tr100 Withdrawal 100

789123 tr101 Deposit 80

person(PersID, pos) ←
count(AccID, (account(PersID, AccID, Type, Balance),

transaction(AccID, TransID, Type, Amount)),
C), C < 4

The count aggregate function counts the number of times the aggregate query succeeds, which

may be larger than the number of accounts if there are multiple transactions per account,

or smaller if some accounts have no transactions. In other words, this refinement may lead

to generalisation or specialisation, or none of both, even though the aggregate condition is

anti-monotone. The reason for this is that the count function computes the cardinality of the

bag, rather than the set, of AccID values returned by the aggregate query. While the set of

AccID values returned by the refined query must be a subset of the set returned by the original

one, the bag of AccID values returned by the refined query is not guaranteed to be a subbag

or superbag of the original one: some accounts may have disappeared, others may have been

duplicated.

The situation is similar to what one would get with a SQL query for relational databases

along the lines of

SELECT COUNT(A.AccID)

FROM account AS A, transaction AS T

WHERE A.AccID = T.AccID

A solution in the relational database case is to use the COUNT DISTINCT construct. This is

semantically meaningful if AccID is a key attribute for the Account relation.

In general, there are thus two possible outcomes for an aggregate function: applying the

function to the bag or to the set of variable substitutions returned by the aggregate query. For

example, consider the simple extension of the Account database in Table 1. The query

sum(Balance, (account(PersID, AccID, Type, Balance),

transaction(AccID, TransID, Type, Amount)), C)

leads to two possible results:

– 100 + 100 + 200 + 200 + 200 = 800 (when aggregating over the bag of balances)

– 100 + 200 = 300 (when aggregating over the set of balances).

However, taking the set over the balance values is often not intuitive. Instead, one most

likely wants to take the set of the account objects and then take the sum of the balances.

More generally, this corresponds to taking the set over the first predicate in the aggregate

Springer

156 Mach Learn (2006) 64:149–182

query, and applying the aggregate function to the corresponding aggregate variable values.

This leads to a third possible result:

– 100 + 200 + 200 = 500 (when aggregating over the set of accounts)

These solutions correspond to the following queries in relational algebra (where � denotes

the natural join operator):

– FSU M(Balance)(account � transaction)

– FSU M(Balance)(πBalance(account � transaction))

– FSU M(Balance)(πAccount I d,Balance(account � transaction))

In our system, we chose not to include the second interpretation (note that when aggregat-

ing over a key attribute, the second and third interpretation are the same). Next to aggregating

over the bag of balances (or equivalently, the bag of accounts), we provide the possibility to

aggregate over the set of accounts, the latter being consistent with the way of executing ag-

gregates by Knobbe, Siebes and Marseille (2002). Therefore, we introduce in our approach a

number of “distinct” versions of aggregate functions, which correspond to this set semantics:

count dist, avg dist, sum dist, and mode dist. As the minimum (maximum) over a set is the

same as the minimum (maximum) over a bag defined over the set, there is no need to have a

min dist (max dist).
We can summarise all this as follows. (Anti-)monotonicity guarantees that a condition that

is true for some set of examples is also true for its supersets (subsets). Refining an aggregate

query under A-subsumption causes the result set of the aggregate query to decrease (to

become a subset of what it originally was), but may have any effect on the result bag of the

aggregate query. Hence, for the set semantics we can say that refining an aggregate query

inside a (anti-)monotone aggregate condition can only yield a specialisation (generalisation),

but for the bag semantics no such statements are possible.

A consequence of this is that searching the hypothesis space in a general-to-specific

manner becomes more complicated. There is no obvious refinement strategy for aggregate

queries that guarantees that the refinement will yield a specialisation, unless we limit the

hypothesis space to patterns involving refinements of monotone aggregate functions only,

and use a set semantics. This is essentially what Knobbe, Siebes and Marseille (2002) do.

In our system, we choose not to exclude any aggregate conditions from being refined,

but instead use a search method that ensures valid refinements. Our approach is based on

decision trees. While rule induction is more common in ILP than tree induction, ILP tree

learners have been around for several years now. Because of the divide and conquer search

strategy used by tree induction methods, a refined aggregate condition can not become true

when the original condition failed. Hence, bag-defined aggregate conditions can only yield

valid refinements. Considering the aggregate functions defined over sets, we know that anti-

monotone aggregate conditions will always yield refinements with the same coverage as the

original condition, and as such, these refinements will never be chosen by a decision tree

inducer. Discarding these anti-monotone conditions leads to a reduction in size of the search

space, while its expressiveness remains the same. Therefore, we can dispose of the following

aggregate conditions: (count dist,≤), (max,≤), (min,≥).2 The aggregate conditions that are

used in our system are listed in Table 2.

2 In decision trees, to dispose of (max,≤) and (min,≥) while being equally expressive, ≤ and ≥ need to be
equivalent up to switching branches. Therefore, it is necessary to define the aggregate functions over empty
sets. We define min(∅) = +∞ and max(∅) = −∞.

Springer

Mach Learn (2006) 64:149–182 157

Table 2 Aggregate conditions included in our system. For each condition, the monotonicity is given

bag-based set-based

aggr. cond. mon. aggr. cond. mon. aggr. cond. mon.

(min,≤) mon. (count,≥) mon. (count dist,≥) mon.

(max,≥) mon. (count,≤) anti-mon. (avg dist,≤) non-mon.

(avg,≤) non-mon. (avg dist,≥) non-mon.

(avg,≥) non-mon. (sum dist,≤) non-mon.

(sum,≤) non-mon. (sum dist,≥) non-mon.

(sum,≥) non-mon. (mode dist,=) non-mon.

(mode,=) non-mon.

2.4. The complexity of finding patterns that combine aggregation and selection

ILP systems explore large search spaces. They often do this in a greedy manner: from the

current best clause, they generate a number of refinements, take the best among these, and

continue the process. The computational complexity of this process depends on the branching

factor of the search (how many refinements are generated from a clause).

By introducing aggregates in clauses, and allowing the aggregate queries to be refined as

well, the branching factor is multiplied. Assume that a standard clause can be refined in C
ways by adding a standard literal to it, and we now also allow the addition of an aggregate

literal with any of those C literals as aggregate query, and any variable occurring in the new

literal as the aggregate variable. If the new literal has V variables and we consider N possible

aggregate functions, the branching factor increases with V · N · C . The multiplication factor

V · N can easily be one or two orders of magnitude (Table 2 already lists 15 aggregate

functions). Greedy searches slow down with the same factor.

A natural way to avoid the explosion of the feature space in a decision tree context is to

use random forests. Random forests are collections of trees, where each tree has been built

by considering in each node only a random sample of the possible tests for that node. In our

ILP setting, this boils down to making a random selection of the refinements of a query. This

compensates for the increase of the branching factor. Hence, the exploration of first order

random forests as a means of learning classifiers with aggregations seems a natural choice.

3. First order decision trees with complex aggregates

This section describes how selection and aggregation are combined in first order decision

trees. First, an introduction to first order decision trees is given (Section 3.1). Next, we

continue by explaining how (complex) aggregate conditions are added to the feature space

(Section 3.2).

3.1. First order decision trees

We consider the use of aggregates in TILDE (Blockeel & De Raedt, 1998), which is included

in the ACE-ilProlog data mining system (Blockeel et al., 2002). TILDE is a relational top-

down induction of decision trees (TDIDT) instantiation, and outputs a first order decision

tree.

Springer

158 Mach Learn (2006) 64:149–182

Table 3 TILDE algorithm for first
order logical decision tree
induction (Blockeel & De Raedt,
1998)

procedure GROW TREE (E : examples, Q: query):

candidates := ρ(← Q)

← Qb := OPTIMAL SPLIT(candidates, E)

if STOP CRIT (←Qb, E)

then

K := PREDICT(E)

return leaf(K)

else

conj := Qb − Q
E1 := {e ∈ E |←Qb succeeds in e ∧ B}
E2 := {e ∈ E |←Qb fails in e ∧ B}
le f t := GROW TREE (E1, Qb)

right := GROW TREE (E2, Q)

return node(conj, le f t, right)

A first order decision tree (Blockeel & De Raedt, 1998) is a binary decision tree that

contains conjunctions of first order literals in the internal nodes. Classification with a first

order tree is similar to classification with a propositional decision tree: a new instance is sorted

down the tree. If the conjunction in a given node succeeds (fails), the instance is propagated

to the left (right) subtree. The predicted class corresponds to the label of the leaf node where

the instance arrives. A given node n of the tree may introduce variables that can be reused

in the nodes of its left subtree, which contains the examples for which the conjunction in n
succeeds (with certain bindings for these variables).

In TILDE, first order decision trees are learned with a divide and conquer algorithm similar

to C4.5 (Quinlan, 1993). The main point where it differs from propositional tree learners is

the computation of the set of tests to be considered at a node. The algorithm to learn a first

order decision tree is given in Table 3.

The OPTIMAL SPLIT procedure returns a query Qb, which is selected from a set of candi-

dates generated by the refinement operator ρ, by using a heuristic, such as information gain

for classification problems, or variance reduction for regression. The refinement operator

typically operates under θ -subsumption and generates candidates by extending the current

query Q (the conjunction of all succeeding tests from the root to the leaf that is to be ex-

tended) with a number of new literals that are specified in the language bias.3 The conjunction

put in the node consists of Qb − Q, i.e., the literals that have been added to Q in order to

produce Qb. In the left branch, Qb will be further refined, while in the right branch Q is

to be refined. When the stop criterion holds (typically, this is when a predefined minimum

number of examples is reached), a leaf is built. The PREDICT procedure returns the most fre-

quent class of the examples in E in case of classification, or the mean target value in case of

regression.

3.2. First order decision trees with complex aggregates

TILDE was modified to include (complex) aggregate conditions. The feature set considered at

each node in the tree was expanded to consist of the original features, augmented with aggre-

gate conditions (both simple and complex ones). A simple aggregate condition is an aggregate

that is constructed directly from the language bias, without having selection conditions. In

3 See Section 3.2 for more details about the language bias.

Springer

Mach Learn (2006) 64:149–182 159

Table 4 Language bias for the Account example. The arguments of the account
and transaction relations correspond to the attributes in the Account and Transaction
tables specified in Table 1. Lists of constants can be provided by the user, or can be
generated using a discretization procedure

% prediction

predict(person(+persid,-class)).

% types

typed language(yes).

type(account(persid, accid, acctype, balance)).

type(transaction(accid, trans, transtype, amount)).

type(person(persid,class)).

% rmodes

rmode(account(+PersID, -AccID, -Tp, -Bal)).

rmode(account(+PersID,+-AccID, #[“savings”,“checkings”],-Bal)).

rmode((account(+PersID, +-AccID, -Tp,Bal), Bal ≤ #[500,2000,5000,10000])).

rmode(transaction(+AccID, -Tr, -Tp, -Am)).

rmode(transaction(+AccID, +-Tr,#[“deposit”,“withdrawal”], -Am)).

rmode((transaction(+AccID, +-Tr, -Tp, Am), Am ≤ #[500,1000,2000])).

% aggregates

aggcondition([max], account(+PersID, -AccID, -Tp, -Bal), Bal, [≥],[2000,5000]).

aggcondition([min], account(+PersID, -AccID, -Tp, -Bal), Bal, [≤],[-100,0,100]).

aggcondition([sum], account(+PersID, -AccID, -Tp, -Bal), Bal, [≥,≤],[0,5000]).

aggcondition([count dist],account(+PersID, -AccID, -Tp, -Bal), AccID, [≥],[2,5]).

aggcondition([count dist],transaction(+AccID, -Tr, -Tp, -Am), Tr, [≥],[5,10,50]).

aggcondition([mode dist],transaction(+AccID, -Tr, -Tp, -Am), Tp, [=],

[“deposit”,“withdrawal”]).

terms of relational algebra, it would be denoted byF(R), withF an aggregate function and R
a set of tuples connected to the tuple under consideration. By complex aggregate conditions,

we mean aggregate conditions that have been refined with selection conditions. In relational

algebra, these would be expressed as F(σC (R)) with σC (R) a non-empty selection condition

on R. It is practically impossible to declare the complex aggregate conditions as intensional

background knowledge, if the relevant ones are not known in advance. The main difficulty

is that the aggregate queries themselves are the result of a search through some hypothesis

space, hence we want to learn them.

To illustrate how our method works, an example language bias for the Account example

is given in Table 4. The language bias consists of two important constructs, namely rmode
and aggcondition, to specify the candidates that can be generated. In the language bias, ‘+’

in front of a variable means that the variable is an input variable; i.e., it has to be bound when

adding this literal. To this end, the variable is unified with a variable already occurring in the

query. ‘−’ means this is a new variable; no unification is performed with already existing

variables (though variables that are introduced later on may be unified with this variable).

‘+−’ means that the variable can, but does not need to be bound (unification with other

variables is possible but not mandatory). In the rmodes the #-sign is always a placeholder

for a constant. When it is followed by a list, the # symbol will be replaced by one element of

the list. When it stands alone, it will be replaced by any constant that appears in that place

Springer

160 Mach Learn (2006) 64:149–182

anywhere in the data. To include aggregate conditions next to the original features, the user

needs to specify the basic ingredients in the aggcondition construct: the aggregate functions,

the aggregate query, aggregate variables, and comparison operators. A number of values to

compare the result with can be provided by the user, or can be obtained using discretization

(Blockeel & De Raedt, 1997).

The system then constructs simple aggregate conditions, using these components. The

refinement operator ρ includes the aggregate conditions in the set of candidate queries it

generates. A simple aggregate condition that will be generated from the first aggcondition
construct in Table 4 is for instance:

max(Balance, account(PersID, AccID, Type, Balance), Max),

Max ≥ 2000,

with PersID bound to PersID in person(PersID, Class). This query states that the maximum

balance of the accounts of a person exceeds 2000.

When also considering complex aggregates, a local search has to be conducted within

the aggregate condition. Therefore, ρ constructs an inner refinement operator ρinn , which

generates candidates by extending the current aggregate query with all features specified

in either the rmode or aggcondition constructs. Each candidate generated by ρinn is in-

cluded in an aggregate condition, which is then considered as a candidate of ρ. This

adapted operator ρ is now operating under A-subsumption. Note that it allows to refine

an aggregate condition with an aggregate condition. An example is given by the following

query

max(Bal, (account(PersID, AccID, AType, Balance),

count dist(TransID,

transaction(AccID, TransID, TType, Am),

Cnt), Cnt ≥ 5),

Max), Max ≥ 2000,

which states that the maximum balance of the accounts that have more than 5 transactions

associated, exceeds 2000.

There are two ways to use complex aggregate functions. The first one is to refine a (simple

or complex) aggregate condition, occurring in the current query Q. For example, if the current

query at a given node n is

person(P, Cl), count dist(A,account(P, A, Tp, B), C), C ≥ 5

then one of the refinements generated by ρ might for example be

person(P, Cl), count dist(A,account(P, A, Tp, B), C), C ≥ 5,

count dist(AccID, (account(P, A, Tp, B),

transaction(A, Tr, TrTp, Am)), C ′), C ′ ≥ 5

This query states that a person has at least five accounts that have a transaction associated

with it. If the query above is chosen by the OPTIMAL SPLIT procedure, then

count dist(A, (account(P, A, T p, B),

transaction(A, T r, T rT p, Am)), C ′), C ′ ≥ 5

is the conjunction added in the left child node of n.

The second way to build complex aggregates is based on lookahead (Blockeel & De Raedt,

1997), a technique commonly used in ILP to make the learner look ahead in the refinement

Springer

Mach Learn (2006) 64:149–182 161

lattice. In most cases, the refinement operator ρ adds only one literal (i.e., the new node

contains only one literal—not a conjunction). In some cases, however, it is interesting to add

more literals at once, e.g., if the first literal yields no gain, but introduces interesting variables

that can be used by other literals. If the refinement operator adds up to k + 1 literals, one says

that it performs a lookahead of depth k. We extend this mechanism to be directly applied to

the aggregate query. When the aggregate lookahead setting is turned on in the language bias

description, ρinn is called and aggregate queries are built with up to a predefined depth of

literals. This way, the query

count dist(A, (account(P, A, T p, B),

transaction(A, T r, T rT p, Am)), C ′), C ′ ≥ 5

could immediately be inserted, without having the query

count dist(AccI D,account(P, A, T p, B), C), C ≥ 5

in one of its ancestor nodes. Obviously, this technique is computationally expensive, but it

may yield significant improvements.

4. First order random forests with complex aggregates

4.1. Random forests

Random forest induction (Breiman, 2001) is an ensemble method. An ensemble learning

algorithm constructs a set of classifiers, and then classifies new data points by combining

the predictions of each classifier. A necessary and sufficient condition for an ensemble of

classifiers to be more accurate than each of its individual members, is that the classifiers

are accurate and diverse (Hansen & Salamon, 1990). An accurate classifier does better than

random guessing on new examples. Two classifiers are diverse if they make different errors

on new data points.

There are different ways to construct ensembles: bagging (Breiman, 1996a) and boosting

(Freund & Schapire, 1996) for instance, introduce diversity by manipulating the training set.

Several other approaches attempt to increase variability by manipulating the input features

or the output targets, or by introducing randomness in the learning algorithm (Dietterich,

2000).

Random forests increase diversity among the classifiers by changing the feature sets over

the different tree induction processes, and additionally by resampling the data. The exact

procedure to build a forest with k trees is as follows:

– for i = 1 to k do:

• build training set Di by sampling (with replacement) from data set D
• learn a decision tree Ti from Di using randomly restricted feature sets

The part of the algorithm where random forests differ from the normal bagging procedure is

emphasized. Normally, when inducing a decision tree, the best feature is selected from a fixed

set of features F in each node. In bagging, this set of features does not vary over the different

runs of the induction procedure. In random forests however, a different random subset of

size f (|F |) is considered at each node (e.g., f (x) = 0.1x or f (x) = √
x , . . .), and the best

feature from this subset is chosen. This obviously increases variability. Assume for instance

that f (x) = √
x , and that two tests t1 and t2 are both good features for the root of each tree,

Springer

162 Mach Learn (2006) 64:149–182

say t1 is the best and t2 is the second best feature on all the training bags considered. With a

regular bagging approach t1 is consistently selected for the root, whereas with random forests

both t1 and t2 will occur in the root nodes of the different trees, with frequency 1/
√|F | and

1/
√|F | − 1/|F | respectively. Thus t2 will occur with a frequency only slightly lower than

t1.

Consider now a classification problem where a new example is to be assigned one of the

m possible classes (ω1,. . . , ωm). Each decision tree Ti from the random forest gives a class

label Ci to the new example. The label given by the random forest to the new example will

then be

C∗ = arg max
ω j

k∑
i=1

I (Ci = ω j)

where I (x) = 1 if x is true and I (x) = 0 otherwise. Hence the majority vote of the predicted

class labels of the set of k trees in the random forest is the label predicted.

An advantage of using bagging is that out-of-bag error estimates (Breiman, 1996b) can

be used to estimate the generalisation errors. This removes the need for a set-aside test set or

cross-validation. Out-of-bag error estimation proceeds as follows: each tree is learned on a

training set Di drawn with replacement from the original training set D. For each example

d in the original training set, the predictions are aggregated only over those classifiers Ti for

which Di does not contain d . This is the out-of-bag classifier. The out-of-bag error estimate is

then the error rate of the out-of-bag classifier on the training set. Note that in each resampled

training set, about one third of the instances are left out (actually 1/e in the limit). As a result,

out-of-bag estimates are based on combining only about one third of the total number of

classifiers in the ensemble. This means that they might overestimate the error rate, certainly

when a small number of trees is used in the ensemble.

Random forests have some other interesting properties (Breiman, 2001). They are efficient

since only a sample of f (|F |) features needs to be tested in each node, instead of all features.

They do not overfit as more trees are added. Furthermore, they are relatively robust to outliers

and noise, and they are easily parallelised.

The efficiency gain makes random forests especially interesting for relational data mining,

which typically has to deal with a large number of features, many of which are expensive to

compute. On the other hand, relational data mining offers an interesting test suite for random

forests, exactly because the advantage of random forests is expected to become more clear for

very large feature spaces. In relational data mining, data sets with very large feature spaces

abound. Moreover, using random forests allows us to enlarge the feature set by including

aggregate functions, possibly refined with selection conditions, as discussed in the previous

section.

4.2. First order random forests with complex aggregates

In order to upgrade TILDE with complex aggregates to a first order random forest (FORF), we

proceeded as follows. First, we built a wrapper around the algorithm in order to get bagging.

We made some adaptations to get out-of-bag error estimates.

Next, we built in a filter that allows only a random subset of the tests to be considered

at each node.4 As a result, constructing a new node proceeds as follows: first all possible

4 This actually differs from the definition in Breiman (2001) where a random subset of the attributes, instead
of the tests, is chosen. Note that one attribute may yield different tests.

Springer

Mach Learn (2006) 64:149–182 163

Table 5 Algorithm for first order random forest induction. The parts of
the algorithm that are in boxes show the differences with the algorithm
GROW TREE from Table 3

procedure GROW FOREST (N : nb of trees, f : function, E: examples):

for i = 1 to N
Ei := SAMPLE(E)

Ti := GROW TREE 2(Ei , true, f)

return forest(T1, T2, ..., TN)

procedure GROW TREE 2 (E : examples, Q: query, f : function):

candidates := ρ(← Q)

subsetsi ze := f (|candidates|)
candidates subset := SUBSET(candidates, subsetsi ze)

← Qb := OPTIMAL SPLIT(candidates subset , E)

if STOP CRIT (←Qb, E)

then

K := PREDICT(E)

return leaf(K)

else

conj := Qb − Q
E1 := {e ∈ E |←Qb succeeds in e ∧ B}
E2 := {e ∈ E |←Qb fails in e ∧ B}
le f t := GROW TREE 2 (E1, Qb, f)

right := GROW TREE 2 (E2, Q, f)

return node(conj, left, right)

refinement candidates ρ(← Q) from the current query Q are generated, then a random

subset of approximate size f (|ρ(← Q)|) (where f (x) is a function given by the user, e.g.,

f (x) = 0.1x or f (x) = √
x , . . .) is chosen. For each query in this subset, a heuristic is

computed and the optimal split is placed in the new node. Consequently, only a part of all

generated queries needs to be executed on the examples to calculate the heuristics, which

obviously results in an efficiency gain.

To summarise, we provide an overview of the resulting algorithm in Table 5. The procedure

GROW FOREST takes the number of trees to grow as one of its input parameters. For each tree,

it first builds a new set of examples, sampled with replacement from the original set E .

Then the procedure GROW TREE 2 is called, which is an adaptation of GROW TREE (see Table 3),

differences with this algorithm are denoted in boxes. The refinement operator ρ includes

(complex) aggregate conditions in the set of candidate splits it generates, as discussed in

Section 3.2. The SUBSET procedure generates a random subset of the candidate set. The size of

the subset is a function f of the number of candidates. Hence, each candidate has probability
f (|ρ(←Q)|)
|ρ(←Q)| to be selected. The OPTIMAL SPLIT procedure returns the optimal split among a set

of candidate splits.

4.3. Forf: A more efficient approach

An important difference between propositional random forests and first order random forests

is the generation of tests at each node. In a propositional tree the possible tests are the same

at each node. In first order trees however, a node may introduce variables that can be reused

Springer

164 Mach Learn (2006) 64:149–182

in the nodes of its left subtree. Hence, the number of candidate tests depends on the number

of variable bindings in the conjunction of all succeeding tests on the path from the root to

the node that is to be extended (this conjunction was called the current query in Section 3.1).

Query sampling reduces the time used for query evaluation in random forests. Still, in

FORF, query generation also takes a substantial amount of time, certainly when lookahead

within the aggregate queries is performed and a huge amount of queries needs to be generated.

In that case, a lot of time is spent on generating queries that may not be evaluated in the end.

As such, the algorithm described in Table 5 is still performing a lot of redundant actions. A

more efficient version of the GROW TREE 2 procedure would directly generate a random sample

of queries, instead of generating them all. This is not trivial since the number of queries in

the sample is a function of the total number of possible queries, which is hard to calculate in

advance. Moreover, if we iteratively take a random literal5 from the language bias to produce

a random candidate query, the resulting sample will not be drawn from a uniform distribution

over all possible candidates, as the number of candidates a literal from the language bias

produces depends on the current query. Therefore, such an efficient sample generator would

consist of two steps. First, for each literal in the language bias, the number of candidates that

can be generated from it would have to be determined (without generating them all). Second,

using the uniform distribution over candidates, obtained from the first step, the query sample

could be randomly generated.

In TILDE, the refinement operator ρ is implemented as follows: for each literal in the

language bias, variable instantiation is performed and for each of these variable instantiations

all possible constants are generated (in case of lookahead, these are again refined in the same

way). Let us illustrate this with an example where we use the same example database from

Fig. 1. A possible language bias for this database is given in Table 4.

Suppose we want to refine a node where the current query Q is

person(P, C), account(A1, P, T1, B1), account(A2, P, checkings, B2).

Then TILDE will generate all candidate refinements for this query according to the tree in

Fig. 2. We only used the standard literals for simplicity (the aggregate conditions are simply

too large to fit in Fig. 2 and are not treated differently by the sampling procedure). At depth 1

of the tree all literals that occur in the language bias (so both the ones specified by the rmode
constructs as those specified by the aggcondition constructs) are added, at depth 2 variable

instantiations with respect to query Q are performed and at depth 3 possible constants are

filled in. If lookahead is used, some leaves of this tree are again expanded as if they were the

root of the tree.

In order to count, in an efficient way, the number of candidate tests an rmode (or aggregate

condition) produces, we proceeded as follows. The tree from Fig. 2 is only built partially, in the

sense that each instantiated literal of depth two only has a single child node, representing the

constants for that literal. Hence, in case of lookahead (or in case of complex aggregates), the

corresponding candidates are generated only once, instead of once per available constant. We

can assign probabilities to each literal in the language bias by counting how much offspring

it yielded, thereby multiplying each node representing the constants with the number of

constants available for that literal (this number can be obtained from the language bias). For

example, for the last rmode in Fig. 2 we find in the language bias from Table 4 that there are

three constants. While generating the search tree, we find two instantiations for this rmode.

5 Such literals correspond to the literals that are specified by the rmode and aggcondition constructs in the
language bias. See Table 4.

Springer

Mach Learn (2006) 64:149–182 165

Fig. 2 Generation of candidates to refine the query Q: person(P, C), account(A1, P, T1, B1),
account(A2, P, checkings, B2) in TILDE. At depth 1 all literals occurring in the language bias from Table 4
are added, at depth 2 variables are instantiated and at depth 3 constants are added

Thus, a total of 6 refinements are obtained from this rmode. Doing this for all rmodes we

get a distribution over the different rmodes. Using this distribution a sample of queries is

randomly generated.

This approach will be especially rewarding if the tree of Fig. 2 contains many levels, e.g.,

because of the use of lookahead or complex aggregates, and if its branching factor can be

largely reduced (i.e. when a lot of constants need to be filled in). The largest gain over the

naive algorithm will occur when using small sample ratios. Obviously, when one would use

a ratio of, say 90%, the extra work for counting the number of candidates will not pay off.

5. Experiments

In this section we experimentally evaluate our method. We first describe what we want to learn

from the experiments and how we will assess this. Then experimental results are reported

Springer

166 Mach Learn (2006) 64:149–182

on different real world applications and one artificially generated data set. Afterwards, we

discuss conclusions that can be drawn from the experiments.

5.1. Experimental setup

We want to investigate the strength of first order random forests (FORF) in a setting where the

feature set is expanded with aggregates, both simple and complex ones. The precise questions

we want to answer are the following:

1. Does the use of aggregates (both simple and complex ones) improve the performance?

2. How do first order random forests perform compared to first order decision trees?

3. What is the influence of the number of trees in a random forest?

4. What is the influence of the size of the sample of features that is taken in each node of

the random forest? And related, is the optimal sample ratio (i.e., the minimal sample ratio

that does not hurt the performance of FORF) influenced by the size of the feature space?

5. How does the performance of FORF relate to other available relational learners?

For each of these five questions, we describe the methodology used in the experiments:

1. We have investigated the performance of first order random forests according to different

levels of aggregation. In the first level, we did not use any aggregates (afterwards, this set-

ting is called FORF-NA). In the second level, simple aggregate conditions were introduced

(FORF-SA). The third level includes refinement of aggregate queries (FORF-RA) and the

fourth level allows lookahead up to depth 1 within the aggregate queries (FORF-LA). We

do not allow to refine aggregate queries with new aggregate conditions, since otherwise

the search space becomes too large for some of our experimental settings. For FORF-LA

we were not able to show results with the TILDE algorithm since it required too much

memory (in the tables this will be denoted with ‘out of memory’ or ‘O.O.M.’). We report

accuracy as well as complexity of the trees in FORF and the time needed to refine the

nodes.

2. For all experiments we ran both FORF and TILDE and compared their predictive accuracies.

The trees output by TILDE were pruned using C4.5’s post-pruning method. In FORF no

pruning was used, since pruning decreases the diversity among the trees in our random for-

est. For the two-class data sets we also compared the ROC behaviour (Provost & Fawcett,

2001) of FORF (with 33 trees and a sample ratio of 25%) to that of its base classifiers and

that of TILDE. Area under the ROC-curve (AUC) is reported.

We obtain a ROC-curve for a single tree in the standard way: a prediction is positive if the

proportion of positives in the leaf of the instance being predicted is above some threshold;

by varying this threshold a ROC-curve is obtained. For a forest, it is the mean proportion

found in the different trees that is compared to the (varying) threshold. For both FORF and

TILDE we obtain the ROC-curves by doing fivefold cross-validation with the same folds.

3. We examined the influence of the number of trees in the random forests, experimenting

with 3, 11, and 33 trees.

4. We considered random subsets of 100%, 75%, 50%, 25%, 10%, and the square root of

the number of tests at each node in the trees to test the influence of the size of the feature

sample. We report accuracy, but also the complexity of the trees and the time needed to

refine one node in a tree.

5. We compare the performance of FORF on the real world data sets to that of other systems

available in the literature.

Springer

Mach Learn (2006) 64:149–182 167

We now discuss the error assessment for the different questions. In all experiments where

the different parameter settings of FORF are compared (questions 1, 3 and 4) and where

FORF is compared to TILDE (question 2), the accuracy of FORF was computed using out-

of-bag estimation and this was carried out five times and averaged, in order to obtain a

more reliable estimate of the performance. The predictive performance of TILDE in this

comparison is obtained by averaging five full threefold cross-validations with different folds.

We use threefold cross-validation for TILDE since this error assessment approach is closest to

out-of-bag estimation, as out-of-bag estimation also uses about 66% of the data as training

data. The accuracy results concerning the questions 1, 2 and 4 are reported together in one

table for each of the application domains.

To compare FORF to other available systems (question 5) on the other hand, we reran FORF

with one particular parameter instantiation using tenfold cross-validation and did this five

times with different folds to get more reliable estimates. We follow this approach since the

results of the other systems were also obtained by doing five times tenfold cross-validation.

In the next sections, we present results for these experiments on three well-known real

world data sets: Mutagenesis (Srinivasan, King & Bristol, 1999), Diterpenes (Džeroski et al.,

1998), and Financial (Berka, 2000). The first two data sets contain complicated structures

and have been widely used as ILP benchmarks. The latter is a business domain data set with

high degree of non-determinacy. We also performed some experiments on artificially gener-

ated Trains data (Michalski, 1980) with a predefined concept containing complex aggregate

functions (Section 5.3). We discuss the results, related to the questions formulated above, in

Section 5.4.

5.2. Real world data

5.2.1. Mutagenesis

For our first experiment we used the Mutagenesis data set. This ILP benchmark data set, in-

troduced to the ILP community by Srinivasan, King and Bristol (1999), consists of structural

descriptions of 230 molecules, of which 188 are called “regression-friendly”. The molecules

are to be classified as mutagenic (60%) or not. The description consists of the atoms and the

bonds that make up the molecule, i.e., the so called background B1. The aggregate functions

used were count, count dist, mode, mode dist, and min. Predictive accuracies on the full data

set related to the questions 1, 2 and 4 from Section 5.1 are shown in Table 6. As can be seen

from this table the use of aggregates is clearly beneficial: the accuracy increases by adding

(more and more complex) aggregates. Performance tends to decrease slightly when consid-

ering fewer features. But still, a sampling of, for instance, 25% is not significantly worse than

sampling of 100% and comes with a substantial efficiency gain. FORF also outperforms TILDE.

An example of a test that was frequently found at high levels in the different trees was the

following aggregate condition (with the range of Mol bound to a molecule)

count(Bnd, (bond(Bnd, Mol, At1, At2, T p)), C), C > 28.

with the following refinement in its left child

count(Bnd,(bond(Bnd, Mol, At1, At2, T p),

atom(Mol, At1, carbon, Ch)), C ′), C ′ > 28.

The first part of the example represents the set of all molecules that have at least 28 bonds.

This aggregate was also found to be a good test by Knobbe, Siebes and Marseille (2002). The

refinement of the aggregate describes all molecules that have at least 28 bonds connected

Springer

168 Mach Learn (2006) 64:149–182

Table 6 Accuracy results on the full Mutagenesis data set. The rows indicate the sample ratio
at each node. The columns compare predictive accuracies for the different aggregation levels
(LA, RA, SA, and NA) for FORF with 33 trees and TILDE. The standard deviation is indicated
between parentheses. Results for FORF are obtained by averaging over 5 runs of out-of-bag
estimation, while results for TILDE are computed by averaging over 5 full threefold cross-
validations. Averages over the different aggregate settings (LA left out, because of ‘O.O.M’
for sampling 1 and 0.75) and different sample ratios (1 and 0.75 left out because of ‘O.O.M’
for LA setting) are also provided for FORF

Sample ratio FORF-LA FORF-RA FORF-SA FORF-NA avg

1 O.O.M. 0.770 (0.016) 0.773 (0.012) 0.729 (0.013) 0.757

0.75 O.O.M. 0.771 (0.025) 0.757 (0.014) 0.723 (0.012) 0.750

0.50 0.795 (0.010) 0.760 (0.013) 0.762 (0.014) 0.710 (0.022) 0.744

0.25 0.793 (0.012) 0.756 (0.012) 0.768 (0.015) 0.717 (0.014) 0.747

0.10 0.790 (0.013) 0.751 (0.017) 0.743 (0.017) 0.677 (0.026) 0.724

sqrt 0.797 (0.013) 0.739 (0.010) 0.757 (0.016) 0.702 (0.012) 0.733

avg 0.794 0.752 0.758 0.702

TILDE-LA TILDE-RA TILDE-SA TILDE-NA

1 O.O.M. 0.731 (0.029) 0.733 (0.005) 0.690 (0.021)

Table 7 Complexity and timing
results on the full Mutagenesis
data set. The top table shows the
average complexity (number of
nodes) of one tree in a forest. The
bottom table shows the average
time needed to refine a single
node in a tree of the forest

Complexity

FORF-LA FORF-RA FORF-SA FORF-NA

1.0 16.6 21.4 21.8 18.4

0.75 19.8 19.4 16.2 16.4

0.50 18.8 20.4 19.6 14.2

0.25 23.2 18.2 13.6 15.8

0.10 20.2 15.0 9.6 11.4

sqrt 19.2 9.4 6.8 6.8

Time per node

FORF-LA FORF-RA FORF-SA FORF-NA

1.0 15549.952 211.907 70.294 17.272

0.75 25684.434 295.340 56.222 15.195

0.50 12973.660 162.569 35.102 12.746

0.25 5411.500 64.088 22.382 11.038

0.10 2096.267 27.200 11.042 7.526

sqrt 117.969 28.702 12.882 2.118

to an atom of type carbon. Unfortunately, we cannot compare our accuracy results to those

given by Knobbe, Siebes and Marseille (2002), since they only report predictive accuracies

for one best rule, covering only a part of the positive examples.

Table 7 shows the average complexity (number of nodes) of one tree in the random forests.

To get the average number of nodes in the forest, these results need to be multiplied by the

number of trees in the forest, which is 33 in this case. Complexity of the trees seems to

decrease slightly when taking smaller samples. The bottom of Table 7 shows the average

time that is used to refine one node in a tree. Sampling up to the square root of the number of

Springer

Mach Learn (2006) 64:149–182 169

Table 8 Accuracy results on the “regression-friendly” Mutagenesis data
set compared to other systems. The results for FOIL, PROGOL are obtained
from Srinivasan, Muggleton and King (1995), TILDE from Blockeel &
De Raedt (1998) and ROLLUP from Knobbe, de Haas and Siebes (2001).
All results were obtained by averaging over five tenfold cross-validations

FORF-LA FOIL PROGOL TILDE ROLLUP

0.860 (0.014) 0.610 (0.060) 0.760 (0.030) 0.750 0.860

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
P

Muta NA

single trees, avg AUC: 0.644

FORF, AUC: 0.753

Tilde, AUC: 0.730

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
P

Muta SA

single trees, avg AUC: 0.720

FORF, AUC: 0.802

Tilde, AUC: 0.758

Fig. 3 ROC-curves for Mutagenesis obtained by fivefold cross-validation. The left figure shows results without
using aggregates, the right figure with using simple aggregates. FORF is built using 33 trees and a sample ratio
of 25%

features seems to give an efficiency gain of one order of magnitude for FORF-NA up to two

orders of magnitude for FORF-LA.

Figure 3 provides the ROC-curves for FORF, all its base classifiers and TILDE. As shown

in the figure, the AUC of FORF is considerably higher than the average AUC of its base

classifiers or that of TILDE.

Table 8 shows predictive accuracies of FORF compared to other systems (Srinivasan,

Muggleton & King, 1995; Blockeel & De Raedt, 1998). These results though, were ob-

tained using tenfold cross-validation only on the “regression-friendly” part of the Mutagen-

esis data set. FOIL (Quinlan, 1990) induces concept definitions represented as function-free

Horn clauses, from relational data. PROGOL (Muggleton, 1995) is an ILP learner capable of

learning in structurally very complex domains. ROLLUP (Knobbe, de Haas & Siebes, 2001) is

a propositionalisation approach that makes use of aggregates. We used the LA-setting since

it gives clear improvements over the other aggregate levels. As a sample function we used

sqrt(x). From Table 8, we see that FORF performs at least as good as the other systems.

5.2.2. Diterpenes

In our second experiment we used the Diterpenes data set (Džeroski et al., 1998). The data

contains information on 1503 diterpenes with known structure. The red(Mol, Mult, Freq)

relation stores the measured NMR-Spectra. For each of the 20 carbon atoms in

the diterpene skeleton, it contains the multiplicity and frequency. The prop(Mol,

Springer

170 Mach Learn (2006) 64:149–182

Table 9 Accuracy results on the Diterpenes data set. The rows indicate the sample ratio at each node.
The columns compare predictive accuracies for the different aggregation levels (LA, RA, SA, and NA) for
FORF with 33 trees and TILDE. The standard deviation is indicated between parentheses. Results for FORF

are obtained by averaging over 5 runs of out-of-bag estimation, while results for TILDE are computed by
averaging over 5 full threefold cross-validations. Averages over the different aggregate settings (LA left out,
because of ‘O.O.M’ for sampling 1) and different sample ratios (1 left out because of ‘O.O.M’ for LA setting)
are also provided for FORF

FORF-LA FORF-RA FORF-SA FORF-NA avg

1 O.O.M. 0.829 (0.011) 0.849 (0.003) 0.768 (0.003) 0.815

0.75 0.859 (0.003) 0.840 (0.002) 0.849 (0.004) 0.769 (0.002) 0.819

0.50 0.856 (0.006) 0.839 (0.004) 0.850 (0.001) 0.766 (0.004) 0.818

0.25 0.856 (0.004) 0.849 (0.007) 0.847 (0.004) 0.763 (0.004) 0.820

0.10 0.853 (0.004) 0.823 (0.012) 0.842 (0.002) 0.739 (0.007) 0.801

sqrt 0.844 (0.005) 0.806 (0.004) 0.824 (0.006) 0.716 (0.004) 0.782

avg 0.854 0.832 0.843 0.751

TILDE-LA TILDE-RA TILDE-SA TILDE-NA

1 O.O.M. 0.827 (0.006) 0.834 (0.004) 0.723 (0.008)

Satoms, Datoms, T atoms, Qatoms) relation counts the atoms that have multiplicity s,

d , t , or q respectively. Additional unary predicates describe to which of the 23 classes a

compound belongs. Several learning settings are defined on this data set: using prop only,

using red only, and using both prop and red . In our experiments with FORF, only the red-

relation was used, since we expect that by allowing aggregate functions FORF should be able

to construct the prop-relation by itself if necessary. The aggregate functions used are min,

max and avg for the frequencies, mode for the multiplicities, and count for the different

values of multiplicities.

Table 9 gives predictive accuracies of experiments using 33 trees. These results are used to

evaluate questions 1, 2 and 4 from Section 5.1. For efficiency reasons, we changed the minimal

number of examples a leaf has to cover from 2 to 20, both for FORF and for TILDE. As a result,

the numbers in the table do not compare favourably with earlier published results (Džeroski

et al., 1998), but the experimental setting is also different; especially the minimal leaf size of

20 seems to have a detrimental effect. From this table we can see that using simple aggregates

leads to a large performance improvement. Refining aggregates or using lookahead does not

improve accuracy further though. Taking both accuracy and efficiency into account, again

sampling at 25% or even 10% of the number of features seems to be advisable.

Table 10 shows the average complexity (number of nodes) of one tree in the random

forests. As can be seen from this table, the jump in performance from FORF-NA to FORF-SA

(visible in Table 9) can also be found in the complexity results: there is a significant drop

in complexity when using simple aggregates. This suggests that aggregates are necessary to

learn the concept in this data set. At the bottom it shows the average time that is used to refine

one node in a tree. Again sampling is more beneficial when the aggregation level is higher. The

table also shows that, at least for the NA-setting and a little less for the SA-setting, the time

to refine one node increases when going from no sampling to sampling 75% of the features.

As was explained in Section 4.3, the extra work for counting the number of candidates will

not pay off if both the sample ratio is too large and the number of features is too small.

To allow a good comparison with previously published results (question 5 from

Section 5.1), we performed a single experiment where, just like in Džeroski et al. (1998),

Springer

Mach Learn (2006) 64:149–182 171

Table 10 Complexity and
timing results on the Diterpenes
data set. The top table shows the
average complexity (number of
nodes) of one tree in a forest. The
bottom table shows the average
time needed to refine a single
node in a tree of the forest. ‘X’
indicates that these timing results
are not comparable to the others
due to memory swapping

Complexity

FORF-LA FORF-RA FORF-SA FORF-NA

1.0 X 10.2 10.8 16.4

0.75 X 11.2 12.4 18.0

0.50 X 11.8 13.0 17.2

0.25 10.8 13.8 13.6 18.6

0.10 9.2 12.8 14.4 15.0

sqrt 13.0 12.4 16.8 15.4

Time per node

1.0 X 424.353 190.593 56.024

0.75 X 347.357 197.016 109.111

0.50 X 214.881 95.185 74.651

0.25 44302.000 116.899 49.015 33.538

0.10 18070.609 52.750 26.236 19.120

sqrt 479.785 29.355 12.726 9.234

Table 11 Accuracy results on the Diterpenes data set compared
to other systems. The results for FOIL, RIBL, ICL, and TILDE are
obtained from Džeroski et al. (1998) All results were obtained by
averaging over five tenfold cross-validations (no standard devia-
tions were available for these results)

FORF-SA FOIL RIBL ICL TILDE

red 0.928 (0.006) 0.465 0.865 0.816 0.653

red+prop 0.783 0.912 0.860 0.904

results of five tenfold cross-validations are averaged. The minimal leaf size of trees was reset

to 2; and we used the FORF-SA setting with 33 trees and a sampling ratio of 25%, which,

judging from Table 9, are good parameter values. The result of this experiment is compared

with published results for other first order systems in Table 11. RIBL (Emde & Wettschereck,

1995) is a relational instance based learning algorithm. The ICL system (De Raedt & Van Laer,

1995) uses exactly the same representation as TILDE, but induces rule sets instead of trees.

We only used the red-relation for FORF, since it should be able to construct the prop
relation by itself, but we compared it to the other systems both using only red and using

red and prop. It was already found that combining propositional (aggregate) features with

relational information yielded the best results (Džeroski et al., 1998). Comparing with those

best results, we see that FORF is at least competitive with the best of the other approaches

and can construct the aggregates that other systems need to be given.

5.2.3. Financial

Our last real world experiment deals with the Financial data set, originating from the discovery

challenge that was organised at PKDD’99 and PKDD’00 (Berka, 2000). This data set involves

learning to classify expired bank loans into good and bad ones. Since 86% of the examples

is positive, the data distribution is quite skewed. The data set consists of 8 relations. For each

of the 234 loans, customer information and account information is provided. The account

Springer

172 Mach Learn (2006) 64:149–182

Table 12 Accuracy results on the Financial data set. The rows indicate the sam-
ple ratio at each node. The columns compare predictive accuracies for the different
aggregation levels (LA, RA, SA, and NA) for FORF with 33 trees and TILDE. The
standard deviation is indicated between parentheses. Results for FORF are obtained
by averaging over 5 runs of out-of-bag estimation, while results for TILDE are com-
puted by averaging over 5 full threefold cross-validations. Averages over the different
aggregate settings (LA left out, because of ’O.O.M’ for sampling 1 and 0.75) and
different sample ratios (1 and 0.75 left out because of ’O.O.M’ for LA setting) are
also provided for FORF.

FORF-LA FORF-RA FORF-SA FORF-NA avg

1 O.O.M. 0.992 (0.002) 0.995 (0.004) 0.850 (0.004) 0.946

0.75 O.O.M. 0.994 (0.005) 0.995 (0.004) 0.847 (0.007) 0.945

0.50 0.997 (0.005) 0.996 (0.006) 0.998 (0.002) 0.843 (0.008) 0.946

0.25 0.998 (0.004) 0.997 (0.004) 0.993 (0.002) 0.852 (0.002) 0.947

0.10 0.997 (0.004) 0.995 (0.006) 0.995 (0.004) 0.855 (0.007) 0.948

sqrt 0.983 (0.009) 0.989 (0.007) 0.990 (0.008) 0.857 (0.006) 0.945

avg 0.994 0.994 0.994 0.852

TILDE-LA TILDE-RA TILDE-SA TILDE-NA

1 O.O.M. 0.962 (0.010) 0.985 (0.009) 0.847 (0.009)

information includes permanent orders and several hundreds of transactions per account. This

problem is thus a typical business data set which is highly non-determinate. The aggregate

functions used apply to the orders and transactions and include all the functions mentioned

in Table 2.

Predictive accuracies are shown in Table 12. Again we see that it is very beneficial to add

simple aggregates to our language. We find an average improvement of 14%. Refinement of

aggregates or lookahead within the aggregates does not give any further gain.

Table 13 shows the average complexity (number of nodes) of one tree in the random forests.

Again we see a clear drop in complexity corresponding to the increase in performance when

adding simple aggregates to the language. At the bottom the table shows the average time that

is used to refine one node in a tree. For the NA-setting sampling does not seem to improve

efficiency. The reason is that the number of non-aggregate features for this data set is quite

small, which causes the overhead of determining the number of features in the sampling

procedure (see Section 4.3) to be higher than the resulting efficiency gain for the NA-setting.

Once aggregates are introduced this is no longer the case. For the LA-setting, for instance,

we again find a gain of two orders of magnitude.

Figure 4 shows the ROC analysis on this data set. As can be seen from the right figure, for

the SA setting the ROC-curve for FORF coincides with the Y-axis since its AUC is 1. This

means that this forest is able to rank all examples correctly, but since its accuracy is lower

than 1, the threshold for classification is too low. If we would increase the usual threshold of

0.5 for classification to the optimal one, which corresponds to moving from the point with

coordinates (1,0.16) in ROC-space to the point (1,0), the forest would correctly classify all

examples.

Table 14 shows predictive accuracies compared to other systems (Krogel & Wrobel, 2001).

DINUS-C (Lavrač & Džeroski, 1994) is a propositionalisation technique using only determi-

nate features and using C4.5 rules as propositional learner. RELAGGS (Krogel & Wrobel,

2001) was discussed in Section 2. For the random forest, we used the SA setting, since

Springer

Mach Learn (2006) 64:149–182 173

Table 13 Complexity and
timing results on the Financial
data set. The top table shows the
average complexity (number of
nodes) of one tree in a forest. The
bottom table shows the average
time needed to refine a single
node in a tree of the forest

Complexity

FORF-LA FORF-RA FORF-SA FORF-NA

1.0 6.2 6.6 6.2 18.6

0.75 7.4 3.8 6.8 21.0

0.50 6.6 7.6 6.0 20.6

0.25 3.8 5.2 3.8 22.6

0.10 5.2 5.6 5.6 12.2

sqrt 7.6 7.2 6.8 14.8

Time per node

1.0 65430.323 870.758 867.097 1.656

0.75 14709.946 1171.789 746.441 2.381

0.50 11280.939 392.368 530.267 2.087

0.25 10542.789 292.231 392.632 1.584

0.10 2096.731 156.107 125.429 1.738

sqrt 152.316 42.000 48.000 1.743

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
P

Fina NA

single trees, avg AUC:0.566

FORF, AUC: 0.652

Tilde, AUC: 0.497

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
P

Fina SA

single trees, avg AUC: 0.944

FORF , AUC: 1.000

Tilde, AUC: 0.967

Fig. 4 ROC-curves for the Financial data set. The left figure shows results without using aggregates, the right
figure with using simple aggregates. FORF is built using 33 trees and a sample ratio of 25%

neither LA nor RA yielded significantly better results for this data set. The forest contained

33 trees and a sampling ratio of 25%.

5.3. Artificial data

As can be seen from Tables 6, 9 and 12, the use of simple aggregates yields quite a large

performance improvement on all data sets. Refinement of the aggregate conditions, on the

other hand, increased accuracy only in a few cases, and in general the use of lookahead

within the aggregate query also added only a slight performance improvement. The reason

for these small improvements could be that the target concept simply does not require a

combination of selection and aggregation. To test this conjecture and to know whether

complex aggregates can add any improvements when the target concept does contain

Springer

174 Mach Learn (2006) 64:149–182

Table 14 Accuracy results on the Financial data set compared to
other systems. The results for DINUS-C, RELAGGS, and PROGOL are
obtained from (Krogel & Wrobel, 2001). FORF-SA is built using
33 trees and a sample ratio of 25%. All results were obtained by
averaging over five tenfold cross-validations. The standard deviation
is indicated between parentheses

FORF-SA DINUS-C RELAGGS PROGOL

0.993 (0.005) 0.851 (0.103) 0.880 (0.065) 0.863 (0.071)

complex aggregates, we conducted experiments on artificially generated data where the

target concept was defined to involve these complex aggregate functions. We used the

Random Train Generator from Muggleton6 for generating random “Michalski-style” train

examples (Michalski, 1980) according to a specified concept. We used the following

concept:

eastbound(T) ←sum(W, (car (T, C), wheels(C, W)), SumW), SumW > 7,

count(C, (car (T, C), roof (C, none),

load(C, rectangle, N), NbC),

NbC > 1, !.

westbound(T) ← sum(W, (car (T, C), wheels(C, W)), SumW), SumW > 7, !.

westbound(T) ← sum(L , (car (T, C), load(C, circle, L)), SumL), SumL > 1, !.

eastbound(T).

This concept states that if a train has more than 7 wheels and there is more than one car

without a roof and with a rectangular load, the train goes east, else if only the first condition

holds or if the train has at least 2 circular loads, it goes west. In all other cases it goes east.

Table 15 gives an overview of predictive accuracies for different settings of the sample size

and different aggregate levels. The aggregate functions used include counting the number of

cars, and taking the sum over the number of wheels and the number of loads. In this table we

report an average over the results of training on 5 randomly generated training sets of 500

examples and testing on test sets of 500 examples, half of the examples being positive and

half negative. Note that for this data set each level of aggregation brings about a considerable

accuracy increase. This suggests that when the concept indeed involves complex aggregates,

it is very useful to use higher levels of aggregation.

Table 16 shows the average complexity (number of nodes) of one tree in the random

forests. Where for the Diterpenes and Financial data sets the complexity dropped only when

adding simple aggregates, we now see a further clear drop when refining the aggregates,

especially when using lookahead within the aggregates. This decrease of complexity when

adding higher levels of aggregation again corresponds to an increase in performance as could

be seen from Table 15. The lower half of Table 16 shows the average time that is used to

refine one node in a tree. As for the Financial data set, sampling does not seem to improve

efficiency for the NA-setting. For the other levels of aggregation the efficiency gain is also

lower than for the real world data sets because the number of features is considerably smaller.

For instance, the maximum size of the number of generated features (LA-setting) is 123005

for the Financial data set while for the Trains data set only 2594.

6 The train generator is available at http://www-users-csyork. ac.uk/∼stephen/progol.html.

Springer

Mach Learn (2006) 64:149–182 175

Table 15 Accuracy results on the Trains data set. The rows indicate the sample ratio at each node. The
columns compare predictive accuracies for the different aggregation levels (LA, RA, SA, and NA) for FORF

with 33 trees and TILDE. The standard deviation is indicated between parentheses. Averages over the different
aggregate settings (LA left out, because of ‘O.O.M’ for sampling 1) and different sample ratios (1 left out
because of ‘O.O.M’ for LA setting) are also provided for FORF

FORF-LA FORF-RA FORF-SA FORF-NA avg

1.0 O.O.M. 0.911 (0.010) 0.915 (0.008) 0.749 (0.010) 0.858

0.75 0.964 (0.007) 0.946 (0.003) 0.915 (0.006) 0.746 (0.009) 0.869

0.50 0.959 (0.011) 0.940 (0.006) 0.908 (0.005) 0.742 (0.006) 0.863

0.25 0.962 (0.009) 0.952 (0.010) 0.904 (0.011) 0.739 (0.012) 0.865

0.10 0.965 (0.006) 0.925 (0.012) 0.849 (0.003) 0.719 (0.010) 0.831

sqrt 0.954 (0.009) 0.909 (0.014) 0.853 (0.009) 0.720 (0.012) 0.827

avg 0.961 0.934 0.886 0.733

TILDE-LA TILDE-RA TILDE-SA TILDE-NA

1 O.O.M. 0.908 (0.023) 0.889 (0.024) 0.707 (0.032)

Table 16 Complexity and
timing results on the Trains data
set. The top table shows the
average complexity (number of
nodes) of one tree in a forest. The
bottom table shows the average
time needed to refine a single
node in a tree of the forest

Complexity

FORF-LA FORF-RA FORF-SA FORF-NA

1.0 O.O.M. 25.1 26.3 53.1

0.75 9.7 24.2 29.3 53.5

0.50 10.4 26.0 31.3 54.2

0.25 11.2 27.0 32.6 51.9

0.10 13.7 28.6 25.0 37.9

sqrt 21.9 28.2 25.0 41.8

Time per node

1.0 O.O.M. 7.420 4.735 2.831

0.75 564.305 9.530 5.611 3.913

0.50 407.321 7.183 4.402 3.202

0.25 206.340 5.251 3.258 2.435

0.10 72.702 4.469 2.847 2.033

sqrt 16.670 4.121 2.881 2.141

Figure 5 shows the ROC analysis for FORF, all its base classifiers and TILDE. Here we do

show the ROC-curves for all different aggregate levels since on this data set FORF-LA gives

a large improvement over FORF-SA, as can be seen from the figure.

5.4. Discussion of the results

In this section we summarise the conclusions drawn from our experiments, and relate them

to the five questions formulated in Section 5.1.

5.4.1. No aggregates vs. aggregates

The results on the real world data sets (see Tables 6, 9 and 12) make clear that the use of

aggregates is really beneficial for the performance of both TILDE and FORF. Especially using

Springer

176 Mach Learn (2006) 64:149–182

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
P

Trains NA

single trees, avg AUC:0.664

FORF, AUC: 0.766

Tilde, AUC: 0.659
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
P

Trains SA

single trees, avg AUC:0.880

FORF, AUC: 0.954

Tilde, AUC: 0.903

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FP
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
P

Trains RA

single trees, avg AUC: 0.904

FORF, AUC: 0.969

Tilde, AUC: 0.910
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
P

Trains LA

single trees, avg AUC: 0.983

FORF, AUC: 0.995

Fig. 5 ROC-curves for the Trains data set. From left to right and top to bottom: the results without aggregates,
using simple aggregates, using refined aggregates and aggregates with lookahead. For this last setting no
results were available for TILDE due to memory restrictions. FORF is built using 33 trees and a sample ratio of
25%

simple aggregates yields a large performance boost on all data sets. Refining those aggre-

gates or using lookahead to construct aggregate conditions only gives a slight improvement

on the real world data sets considered. Hence, the experiments suggest that in these data sets,

complex aggregates are often not necessary to describe the target concept. Experiments on

artificially generated data sets however, show large improvements when using these settings

on target concepts with complex aggregates (see Table 15 and Fig. 5). Especially using looka-

head within the aggregate query is very rewarding with respect to predictive performance in

that context. We also found that the use of aggregates often decreases the complexity of the

trees (see Tables 10, 13 and 16) .

5.4.2. Trees vs. random forests

Throughout all the experiments first order random forests in general outperformed TILDE

with respect to predictive accuracy. Although ensemble methods are quite computationally

Springer

Mach Learn (2006) 64:149–182 177

0.7

0.75

0.8

0.85

0.9

0.95

1.0

3 11 33 3 11 33 3 11 33 3 11 33 3 11 33 3 11 33 3 11 33 3 11 33 3 11 33 3 11 33 3 11 33 3 11 33nb of trees

LA RA SA NA LA RA SA NA LA RA SA NAFORF

MUTAGENESIS DITERPENES FINANCIALDATASET

Fig. 6 Accuracy for random forests using 25% of the features. Results are shown for FORF-LA, FORF-RA,
FORF-SA and FORF-NA for different tree sizes on the three different real world data sets

expensive, since different models are built and combined, FORF is able to considerably reduce

this cost by sampling the feature space, as such also decreasing the memory cost. Especially

when the feature space becomes very large, and traditional ILP systems run into problems,

this seems to be very beneficial. More concretely, in the case of Mutagenesis for instance,

sampling up to the square root of the number of features gives an efficiency gain of one order

of magnitude for the NA setting up to two orders of magnitude for the LA setting.

We have also investigated the ROC behaviour of FORF with respect to its base classifiers

and to TILDE (see Figs. 3, 4 and 5). We found again that FORF outperformed TILDE regarding

their area under the ROC-curve (AUC). Even when the accuracy of TILDE is not significantly

different from the accuracy of FORF (e.g., for SA in the Financial data set), we can still

conclude that FORF is doing a better job than TILDE in ranking the examples from positive to

negative, since its AUC is higher. A drawback of FORF compared to TILDE is of course the

model complexity. Since it consists of several trees, a random forest is very hard to interpret.

5.4.3. Number of trees

As is to be expected and can be seen from Fig. 6, adding more trees to the forest clearly

increases the performance in all experiments. Of course, more trees means longer runtimes,

so there is still a trade-off between efficiency and accuracy.

5.4.4. Sample size

We observe that for all experiments, using only a random part of the features (certainly

down to 25%) to select the best test seems to be advisable, since there is no significant

difference in accuracy and we profit from the efficiency gain by testing fewer features in each

node. Breiman (2001) on the other hand, obtained improvements with even much smaller

Springer

178 Mach Learn (2006) 64:149–182

proportions of the feature set in the propositional case, in fact choosing a random sample of

one single feature seemed to work well. This setting was also tested in FORF, but did not

yield good results (these results are not reported here). This difference is probably due to the

fact that in our approach a random subset of tests is taken, while Breiman takes a random

subset of the attributes, and selects the best test using these attributes.

When looking at the increase in size of the feature space resulting from using aggregation,

random forests indeed seem to profit from a large feature space, which is certainly present

when using lookahead in the aggregate queries. To illustrate, the maximum size of the feature

space that was observed for the Financial data set was 110 for the NA setting, versus 123005

for the LA setting. While for FORF-NA, FORF-SA and FORF-RA accuracy tends to slightly

decrease when using sample ratios smaller than 25%, this is less the case for FORF-LA.

Hence, for experiments where the feature space becomes very large (e.g., for FORF-LA), we

can even sample smaller sets of features (e.g., taking the square root of the number of tests)

without sacrificing performance, and by doing so gain efficiency.

As could be seen from Tables 7, 10, 13 and 16 the efficiency gain, obtained by sampling

the feature space, also increases when using higher levels of aggregation.

5.4.5. Comparison to other systems

We compared the results of FORF on the real world data sets to available results of a number of

other relational systems. FORF clearly outperformed these systems on the data sets considered

(see Tables 8, 11 and 14).

6. Related work

In this section we discuss some related work. Since our contributions are situated in two

different topics, this is reflected in our discussion. Section 6.1 covers the combination of

selection and aggregation. Related work on random forests is presented in Section 6.2.

6.1. Aggregates and selection

Whereas traditional propositionalisation approaches to ILP such as Linus or Dinus (Lavrač

& Džeroski, 1994) handle only constrained or determinate clauses, Krogel & Wrobel

(2001) present a system called RELAGGS where simple aggregation is used to represent

non-determinate relationships in summary features. Simultaneously, Knobbe, de Haas &

Siebes (2001) propose the system ROLLUP, another system that uses simple aggregates

to propositionalise a multi-relational database. The feature sets of ROLLUP and RELAGGS

overlap but do not coincide. Krogel and Wrobel (2003) present a comparative evaluation

of approaches to propositionalisation, where they compare RELAGGS to logic-oriented

transformation approaches.

Other systems employ simple aggregate functions directly in their model representations.

For example, Neville et al. (2003) use aggregate functions to construct splits in relational

probability trees. Probabilistic relational models (Koller, 1999) use aggregates to specify

non-deterministic relations in a dependency structure and in conditional probability tables.

Several authors argue in favour of including selection conditions into the aggregate func-

tions. Perlich and Provost (2003) provide a detailed examination of aggregation for relational

learning. They define various classes of relational learning problems with respect to aggrega-

tion. On their domain of interest the results demonstrate that aggregation operators of higher

Springer

Mach Learn (2006) 64:149–182 179

complexity can significantly improve generalisation performance. Blockeel & Bruynooghe

(2003) discuss the bias that is imposed on relational learners that either use aggregates or use

selections of specific elements and provide some ideas to remove it. One of these ideas is to

use relational neural networks. Also, Krogel et al. (2003), when comparing logic-oriented

and database-oriented methods for propositionalisation, conclude that a combination of the

features produced by both groups of methods seems a valuable venture.

A few combinations of aggregation and selection have been proposed in the literature.

Krogel and Wrobel (2003) (when presenting an extended version of the system RELAGGS)

introduce in their propositionalised table aggregate functions that apply not only to single

attributes, but also to pairs of attributes, one of which has to be nominal and serves as a group

by condition. Hence, they include aggregates over selections, but the selection conditions are

of limited complexity and are not refined during the search. Knobbe, Siebes and Marseille

(2002) introduce aggregate functions into the selection graph pattern language and allow

them to be refined. However, in order to obtain a valid refinements, only monotone aggregate

conditions are considered to be refined. A non-symbolic approach towards combining aggre-

gates and selections was proposed by Uwents and Blockeel (2005). They describe so called

relational neural networks. Their approach is not constrained to using predefined aggregate

functions and does not make a distinction between searching for aggregate functions and

searching for complex conditions.

6.2. Random forests

Although ensemble methods have proven to be very useful in propositional learning, in

relational learning, and in ILP in particular, not much attention has been paid to it. Some

exceptions are the initial work on relational boosting of Quinlan (1996) and Hoche and

Wrobel (2001). Quinlan (1996) used the ideas of boosting from the propositional context for

the first time in ILP, by boosting FFOIL (a first order rule induction system). There are two

drawbacks of this approach. On the one hand, understandability of the learned hypothesis

drops significantly, since the result is a large set of rules with weighted votes connected to

each rule. On the other hand, boosting standard ILP systems is very time consuming due to

the high effort already expended by a typical ILP system. Hoche and Wrobel (2001) address

these problems by using a method called constrained confidence-rated boosting (based on the

work by Schapire and Singer (1999)) on a fast but weak ILP learner. This method improves

the understandability of the boosted learning results by restricting the kinds of rule sets

allowed.

Apart from this work about boosting, de Castro Dutra et al. (2002) performed an empirical

evaluation of bagging in the context of ILP. This work confirms the advantages of using

ensemble methods in ILP, achieving an interesting improvement in performance. On the

other hand, resulting theories are more complex and thus harder to understand.

7. Conclusions and future work

Our paper makes two main contributions to the field of relational learning, more specifically

to the induction of first-order logical decision trees. First, it introduces the capability to

use aggregate-based tests in the internal nodes of the trees. Second, it uses the random

forest approach to generate ensembles of first-order logical decision trees. Furthermore, the

synergy between these two dimensions is exploited. The utility of the proposed developments

is evaluated on three real-world and a synthetic dataset.

Springer

180 Mach Learn (2006) 64:149–182

The capability of using aggregates brings clear performance improvements. The largest

improvements are due to the use of simple aggregates and can be observed for both the real-

world and the artificial datasets. The use of complex aggregates (aggregates with selection

conditions) is only useful if the target concept is complex and clearly involves complex

aggregates, as was the case for the artificial datasets.

First order random forests perform better than single trees, as could be expected. Moreover,

as random forests only consider a randomly chosen fraction of the possible tests that can

go into an internal node, they can even address datasets that are just out of reach of single

tree induction. These are datasets where possible tests abound, as is definitely the case

when we allow the use of aggregates (especially complex ones). In this context, an important

contribution of our paper is the approach where only a random fraction of the tests is generated,

rather than being selected from the completely generated set of possible tests (in both cases,

the best of the tests is selected afterwards).

aggregates was shown to yield advantages when the target concept involves complex

aggregates, it is not known to what extent this kind of concepts occur in real life datasets.

Therefore, additional ILP datasets should be investigated.

In this article, the use of complex aggregates was shown to be beneficial in the relational

decision tree setting. We believe that in general any relational approach would benefit from

the use of aggregates. As Perlich and Provost (2003) show, the choice of aggregation operator

can have a much stronger impact on the resulting model’s generalisation performance than

the choice of the model induction method. Therefore, we believe it is worth investigating the

use of complex aggregates in, e.g., systems as ICL (De Raedt & Van Laer, 1995) or ALEPH

(Srinivasan, 2003). In the context of such rule learners however, attention should be paid to

the refinement of aggregates which will not be automatically valid anymore, indeed, a local

bottom-up search could interleave the top-down search strategy.

For first order learning, more than for propositional learning, one of the most important

benefits of the use of random forests is the efficiency gain resulting from the sampling that

is performed at each node of the trees. This allows to search through a larger hypothesis

space. Nevertheless, the optimal boundary of the sample ratio needs to be explored further.

Since the number of possible tests increases with the depth of the tree, one might want to

vary the sample function throughout the tree building process, such that the number of tests

in the sample is not increasing linearly with the number of tests in the nodes. Next to the

square root, other sample functions such as logarithmic or even constant functions could be

explored.

Another interesting direction for further work is to investigate the analogue of random

forests for rule sets, which has to our knowledge not been studied extensively.

Acknowledgments Anneleen Van Assche is supported by the Institute for the Promotion of Innovation by
Science and Technology in Flanders (I.W.T.-Vlaanderen). Celine Vens is supported by the FWO-project on
Probabilistic-Logical Learning. Hendrik Blockeel is Postdoctoral Fellow of the Fund for Scientific Research—
Flanders (Belgium) (F.W.O.-Vlaanderen). Sašo Džeroski is supported by the Slovenian Research Agency
through the research programme P2-103 “Knowledge Technologies”.

We would like to thank Maurice Bruynooghe, for some useful discussions that have led to a number of
important improvements to the text. We also owe our thanks to the reviewers for their valuable comments and
suggestions.

References

Berka, P. (2000). Guide to the financial data set. In: A. Siebes & P. Berka (Eds.), The ECML/PKDD 2000
Discovery Challenge.

Springer

Mach Learn (2006) 64:149–182 181

Blockeel, H., & Bruynooghe, M. (2003). Aggregation versus selection bias, and relational neural networks.
In: IJCAI-2003 Workshop on Learning Statistical Models from Relational Data, SRL-2003, Acapulco,
Mexico.

Blockeel, H., & De Raedt, L. (1997). Lookahead and discretization in ILP. In: Proceedings of the Seventh Inter-
national Workshop on Inductive Logic Programming, vol. 1297 of Lecture Notes in Artificial Intelligence
(pp. 77–85), Springer-Verlag.

Blockeel, H., & De Raedt, L. (1998). Top-down induction of first order logical decision trees. Artificial
Intelligence, 101(1–2), 285–297.

Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., & Vandecasteele, H. (2002) . Improving the
efficiency of inductive logic programming through the use of query packs. Journal of Artificial Intelligence
Research, 16, 135–166.

Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2), 123–140.
Breiman, L. (1996b). Out-of-bag estimation. ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
de Castro Dutra, I., Page, D., Costa, V., & Shavlik, J. (2002). An empirical evalutation of bagging in in-

ductive logic programming. In: Proceedings of the 12th International Conference on Inductive Logic
Programming, vol. 2583 of Lecture Notes in Computer Science (pp. 48–65).

De Raedt, L., & Van Laer, W. (1995). Inductive constraint logic. In: K. P. Jantke, T. Shinohara, & T. Zeugmann
(Eds.), Proceedings of the Sixth International Workshop on Algorithmic Learning Theory, vol. 997 of
Lecture Notes in Artificial Intelligence (pp. 80–94), Springer-Verlag.

Dietterich, T. (2000). Ensemble methods in machine learning. In: Proceedings of the 1th International Work-
shop on Multiple Classifier Systems, vol. 1857 of Lecture Notes in Computer Science (pp. 1–15).

Džeroski, S., Schulze-Kremer, S., Heidtke, K. R., Siems, K., Wettschereck, D., & Blockeel, H. (1998). Diter-
pene structure elucidation from 13C NMR spectra with inductive logic programming. Applied Artificial
Intelligence, 12(5), 363–384.

Emde, W., & Wettschereck, D. (1995). Relational instance based learning. In: Proceedings of the 1995 Work-
shop of the GI Special Interest Group on Machine Learning.

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In: L. Saitta (Ed.), Proceed-
ings of the Thirteenth International Conference on Machine Learning (pp. 148–156), Morgan Kaufmann.

Hansen, L., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12, 993–1001.

Hoche, S., & Wrobel, S. (2001). Relational learning using constrained confidence-rated boosting. In: C.
Rouveirol, & M. Sebag (Eds.), Proceedings of the Eleventh International Conference on Inductive Logic
Programming, vol. 2157 of Lecture Notes in Artificial Intelligence (pp. 51–64), Springer-Verlag.

Knobbe, A., de Haas, M., & Siebes, A. (2001). Propositionalisation and aggregates. In: L. De Raedt, & A.
Siebes (Eds.), Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge
Discovery, vol. 2168 of Lecture Notes in Artificial Intelligence (pp. 277–288), Springer.

Knobbe, A., Siebes, A., & Marseille, B. (2002). Involving aggregate functions in multi-relational search. In:
Principles of Data Mining and Knowledge Discovery, Proceedings of the 6th European Conference (pp.
287–298), Springer-Verlag.

Koller, D. (1999). Probabilistic relational models. In: Proceedings of the Ninth International Workshop on
Inductive Logic Programming, vol. 1634 of Lecture Notes in Artificial Intelligence (pp. 3–13), Springer-
Verlag.

Krogel, M.-A., Rawles, S., Železný, F., Flach, P., Lavrač, N., & Wrobel, S. (2003). Comparative evaluation
of approaches to propositionalization. In: Proceedings of the 13th International Conference on Inductive
Logic Programming, vol. 2835 of Lecture Notes in Artificial Intelligence (pp. 194–217), Springer-Verlag.

Krogel, M.-A., & Wrobel, S. (2001). Transformation-based learning using multi-relational aggregation. In:
Proceedings of the Eleventh International Conference on Inductive Logic Programming (pp. 142–155).

Krogel, M.-A., & Wrobel, S. (2003). Facets of aggregation approaches to propositionalization. In: T. Horváth,
& A. Yamamoto (Eds.), Proceedings of the Work-in-Progress Track at the 13th International Conference
on Inductive Logic Programming (pp. 30–39).

Lavrač, N., & Džeroski, S. (1994). Inductive Logic Programming: Techniques and Applications. Ellis Horwood.
Michalski, R. (1980). Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2, 349–361.
Muggleton, S. (Ed.) (1992). Inductive Logic Programming. Academic Press.
Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, Special issue on Inductive

Logic Programming, 13(3–4), 245–286.
Neville, J., Jensen, D., Friedland, L., & Hay, M. (2003). Learning relational probability trees. In: Pro-

ceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining.

Springer

182 Mach Learn (2006) 64:149–182

Perlich, C., & Provost, F. (2003). Aggregation-based feature invention and relational concept classes. In:
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (pp. 167–176), ACM Press.

Plotkin, G. (1969). A note on inductive generalization. Machine Intelligence, 5, 153–163.
Provost, F. J., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine Learning,

42(3), 203–231.
Quinlan, J. (1990). Learning logical definitions from relations. Machine Learning, 5, 239–266.
Quinlan, J. (1996). Boosting first-order learning. In: Algorithmic Learning Theory, 7th International Workshop

(ALT ’96).
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann series in Machine Learning.

Morgan Kaufmann.
Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions.

Machine Learning, 37(3), 297–336.
Srinivasan, A. (2003). The aleph manual. http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.
Srinivasan, A., King, R., & Bristol, D. (1999). An assessment of ilp-assisted models for toxicology and the

PTE-3 experiment. In: Proceedings of the Ninth International Workshop on Inductive Logic Programming,
vol. 1634 of Lecture Notes in Artificial Intelligence (pp. 291–302), Springer-Verlag.

Srinivasan, A., Muggleton, S., & King, R. (1995). Comparing the use of background knowledge by Inductive
Logic Programming systems. In: L. De Raedt (Ed.), Proceedings of the Fifth International Workshop on
Inductive Logic Programming (pp. 199–230). Department of Computer Science, Katholieke Universiteit
Leuven.

Uwents, W., & Blockeel, H. (2005). Classifying relational data with neural networks. In: Proceedings of 15th
International Conference on Inductive Logic Programming, Bonn, Germany, vol. 3625 of Lecture Notes
in Artificial Intelligence (pp. 384–396), Springer.

Springer

