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This Letter investigates the transition to synchronization of oscillator ensembles encoded by sim-
plicial complexes in which pairwise and higher-order coupling weights alter with time through a
rate-based adaptive mechanism inspired by the Hebbian learning rule. These simultaneously evolv-
ing disparate adaptive coupling weights lead to a phenomenon in which the in-phase synchronization
is completely obliterated; instead, the anti-phase synchronization is originated. In addition, the on-
sets of antiphase synchronization and desynchronization are manageable through both dyadic and
triadic learning rates. The theoretical validation of these numerical assessments is delineated thor-
oughly by employing Ott-Antonsen dimensionality reduction. The framework and results of the
Letter could help in the understanding of the underlying synchronization behavior of a range of
real-world systems, such as brain functions and social systems where interactions evolve with time.

Introduction. The inclusion of higher-order interactions
has not drawn much attention for so long while envis-
aging the underlying dynamics influencing distinct pro-
cesses taking place on a variety of complex systems rang-
ing from physical to biological systems. Nevertheless,
many complex systems, such as brain networks [1, 2]
and social interaction networks [3, 4], have the under-
lying structure of higher-order connections, which can
be exemplified by simplicial complexes [5, 6]. These
higher-order interactions can be encoded by simplicial
complexes, which are sets of n-simplexes, filled cliques of
n+ 1 nodes, viz., vertices (0-simplex), lines (1-simplex),
triangles (2-simplex), tetrahedrons (3-simplex), etc. An
n-simplicial complex comprises the n-simplexes and the
downward closure (n−1)-simplexes. Recently, the call
for simplicial complexes in encoding higher-order inter-
action in complex systems has led to a sudden increase in
untangling the reciprocation between network geometry
and dynamical processes [7–17]. One novel phenomenon
that naturally results from simplicial complex encoded
higher-order interactions is the abrupt transition to syn-
chronization and desynchronization [8, 11, 18]. Simpli-
cial complexes are a suitable candidate for capturing the
underlying geometry of complex systems; for instance,
they have been used to encode the topological map of
the environment’s geometrical features captured by the
hippocampus [19].

The role of adaptation is instrumental in the growth and
proper functioning of many physical and biological sys-
tems. For instance, it is a widespread perception in neu-
roscience that synaptic plasticity among the firing neu-
rons forms the basis for the learning process and memory
storage in the brain [20, 21]. It was Hebb [22] who first
put forth the concept that the simultaneous firing of the
interacting neurons strengthens the synaptic connectivity
between them [21, 23, 24]. Spike-timing-dependent plas-
ticity between the firing neurons is one popular approach
to understanding the impact of synaptic plasticity on
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FIG. 1. (Color online) Antiphase synchronization stems from
adaptive couplings: R1−λ (top row) and R2−λ (bottom row)
profiles corresponding to the static couplings (Aij=1 and
Bijk=1) and the adaptive couplings [Eq. (2)] with learning
rates α=β=1, respectively, in the random 2-simplicial com-
plex.

various processes transpiring in the brain [25–27]. Nev-
ertheless, the correlation between presynaptic and post-
synaptic spike-timings of the interacting neurons is also
encoded in phases of the oscillators to realize a neural
network with synaptic plasticity. Such rate-based mod-
els of synaptic plasticity between the interacting neurons
have divulged riveting structures and processes, for in-
stance, cluster synchronization [28–33] and abrupt syn-
chronization and desynchronization [34–38] in monolayer
and multilayer networks. In cluster synchronization, a
network is segregated into distinct clusters of nodes in
which the nodes of the same cluster are mutually syn-
chronized; still, the distinct clusters are not mutually syn-
chronized. A diverse range of real-world systems exists,
such as the cortical brain network [39], the power grid
network [40], consensus dynamics [41], and schools of fish
and swarms of birds [42], having cluster synchronization
as a key mechanism of their evolution or functioning.
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This Letter focuses on the impact of simultaneous adap-
tation of different simplex couplings on the transition to
synchronization and desynchronization in simplicial com-
plexes. Here the adaptation of 1-simplex (dyadic) and 2-
simplex (triadic) couplings in a simplicial complex is in-
spired by the Hebbian learning rule, i.e., the dyadic and
triadic weights are strengthened (weakened) if the dyad
and triad of the oscillators establishing the respective
connectivities are in phase (out of phase), respectively.
Such concurrent adaptation in simplicial complexes leads
to a fascinating phenomenon of abrupt antiphase syn-
chronization while the in phase synchronization is com-
pletely inhibited. Moreover, the proposed model allows
us to determine the onset of synchronization through the
learning parameters. The rigorous theoretical analysis
provided also validates these numerical findings.
Model. To begin with, the phase-evolution of N non-
identical Kuramoto oscillators [43] in a simplicial com-
plex under the impression of the rate-based learning of
the 1-simplex and 2-simplex couplings is given by

θ̇i = ωi +
λ1

〈k[1]〉

N∑

j=1

Aij sin(θj − θi) +
λ2

2!〈k[2]〉

N∑

j,k=1

Bijk sin(2θj − θk − θi),(1)

where θi(ωi) (i=1, . . . , N) denotes the instantaneous
phases (intrinsic frequencies) of the ith oscillator in
the simplicial complex and λ1 and λ2 are the coupling
strengths of 1-simplex and 2-simplex interactions, re-
spectively. We conserve the global coupling of the 1-
simplex and 2-simplex interactions in the complex by
setting λ = λ1 + λ2, irrespective of their topology as-
similated in A and B. This choice, for any given λ, al-
lows us to maintain the dominance of one-type of simplex
interaction over the other type through a propensity pa-
rameter p ∈ [0, 1] such that λ1 = (1 − p)λ = qλ and
λ2 = pλ. The number of edges or triangles in the com-
plex a node is part of is defined as 1- or 2-simplex degrees,

i.e., k
[1]
i =

∑N
j=1Aij or k

[2]
i = 1

2!

∑N
j,k=1Bijk, respectively,

where 〈k[1]〉 and 〈k[2]〉 denote mean 1- and 2- simplex
degrees, respectively. The 1- and 2- simplex coupling in-
teractions are rescaled by the respective mean degrees
so as to put the respective effective connectivities on an
equal footing and assist p in tuning the relative strengths
of 1- and 2- simplex interactions:

Ȧij = α cos(θj − θi)− µAij ,
Ḃijk = β cos(2θj − θk − θi)− νBijk. (2)

We construct a 2-simplicial complex by identifying
unique triangles and unique edges closing the trian-
gles from a random 1-simplicial network. The collec-
tive phase evolution and weight adaptation of the adap-
tive 2-simplicial complex are then governed by Eqs. (1)
and (2). To capture the formation of m clusters in
the network, we define an m-cluster order parameter

zm=Rme
iΨm= 1

N

∑N
j=1 e

imθj (m=1, 2), where Rm and
Ψm are the amplitude and argument, respectively, of
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FIG. 2. (Color online) Slow α=β and β>α prolong the onset
of transition: R2−λ synchronization profiles for the random
2-simplicial complex with adaptive couplings when α=β ≤ 1
and β>α (= 0.3).

the m-cluster order parameter. Thus R1 quantifies one-
cluster synchronization whereas R2 quantifies two-cluster
synchronization [44].

We numerically evolve Eqs. (1) and (2) to capture the mi-
croscopic dynamics of 1- and 2- simplex weights and the
route to synchronization. All the results presented for the
random 2-simplicial complex are for N=103, 〈k[1]〉=14,
and 〈k[2]〉=10 with uniform randomly drawn natural fre-
quencies ωi∼U(−∆,∆), where ∆=1. All the initial 1-
simplex (2-simplex) weights are equal and determined by
Aij(0)=1/L [Bijk(0)=1/T ], where L (T ) are the num-
ber of 1-simplex (2-simplex) connections in the complex.
At first, λ is adiabatically increased until a large λ and
then adiabatically decreased until λ = 0. The phase and
weight dynamics [Eqs. (1) and (2)] are then simultane-
ously simulated on the 2-simplicial complex and the order
parameters are computed for each λ.

We now discuss the nature of the transition when the
dyadic and triadic weights are static, i.e., only Eq. (1)
is evolved, taking Aij=1 and Bijk=1 into account. Such
static Aij and Bijk lead to a first-order (abrupt) transi-
tion to in-phase (single-cluster) synchronization R1 with
associated hysteresis, as shown in Fig. 1 (top row). The
dyadic interactions are known to promote synchroniza-
tion, while the triadic interactions do not. Hence when
p<0.5, the dominating dyadic interactions quickly over-
come the frustration induced by the triadic ones and
lead to synchronization at lower values of λ with rather
reduced hysteresis width. The hysteresis is lost when
dyadic interactions are much stronger than triadic ones
for lower values of p. For p>0.5, the triadic interac-
tions dominate, leading to significant frustration, even-
tually leading to abrupt synchronization at large λ with
broader hysteresis. For p=1, however λf→∞, as the only
interaction-type existing among the oscillators, is the tri-
adic one that does not lead to synchronization for any
λ > 0 [8].

Nevertheless, incorporating adaptive 1-simplex and 2-
simplex couplings [Eq. (2)] and the phase evolution
[Eq. (1)] results in the finding that the in-phase syn-
chronization R1 is completely subsided; instead, a first-
order antiphase (two-cluster) synchronization R2 em-



3

anates with an increase in λ [see Fig. 1 (bottom row)].
Although the nature of the abrupt R2 transition for dif-
ferent values of p is analogous to that of the abrupt R1

transition of the static case, the onset of the abrupt R2

occurs at larger values of λ than of R1. Not that the adap-
tive pure 2-simplex couplings (when p=1) do not lead to
either in-phase or antiphase synchronization with the in-
crease in λ [45], whereas the adaptive pure 1-simplex cou-
plings (when p=0) lead to a second-order anti-phase syn-
chronization while in-phase synchronization does not oc-
cur [45]. One remarkable feature of the emergent abrupt
antiphase synchronization and desynchronization is that
their respective onsets are entirely manageable through
the learning parameters α, β, µ, and ν. Further, the im-
pact of dyadic and triadic learning rates on the charac-
teristics of the R2 transition is illustrated in Fig. 2, which
shows that the slower learning rates α=β delay the out-
set of the abrupt transition to a higher λf . In addition,
β>α also triggers the abrupt transition at a higher λf .

Further, we shed light on the distribution of station-
ary phases and adaptive dyadic and triadic weights in
the incoherent and coherent states (see the left panels of
Fig. 3). In the coherent state for λ>λf , the stationary
Aij (Bijk) are segregated into two clusters. Hence the
distribution P (Aij) [P (Bijk)] manifests bimodal peaks
at −α/µ (-β/ν) and α/µ (β/ν), with a few Aij and Bijk
settling on approximately 0. The corresponding phases
are also set apart into bimodal peaks at a difference of π,
resulting in P (θi) exhibiting antiphase clusters. Never-
theless in the incoherent state for λ<λf , P (Aij) [P (Bijk)]
follows a β distribution with peaks at −α/µ (−β/ν)

and α/µ (β/ν) and dips at 0 (0). Moreover, Ȧij=0 and

Ḃijk=0 yield the dyadic and triadic stationary weights

Aij =
α

µ
cos(∆θij), Bijk =

β

ν
cos(∆θijk), (3)

where ∆θij=(θj−θi) and ∆θijk=(2θj−θk−θi). Equa-
tions (3) corroborate the numerical revelations of Fig. 3.
In the coherent state, the steady-state extrema Aij→±
α/µ and Bijk→ ±β/ν correspond to ∆θij→0, π and
∆θijk→0, π, respectively. Also the steady-state Aij→0
and Bijk→0 are associated with ∆θij→π/2, 3π/2 and
∆θijk→π/2, 3π/2, respectively. Nonetheless, in the inco-
herent state, the uniformly distributed stationary phases
require ∆θij and ∆θijk to draw the phases from the full
range [0, 2π). Thereby, the stationary Aij and Bijk ac-
quire the weights from the full intervals [−α/µ, α/µ] and
[−β/ν, β/ν], respectively.
Ott-Antonsen reduction: To seek analytical insight into
the underlying higher-order dynamics, we turn our focus
to an all-to-all connected 2-simplicial complex modeled
as

θ̇i = ωi +
qλ

N

N∑

j=1

Aij sin(θj − θi) +
pλ

N2

N∑

j,k=1

Bijk

sin(2θj − θk − θi). (4)

1 0 1
Aij

0.0

0.5

P
(A
ij
)

< f
> f

1 0 1
Bijk

0.0

0.5

P
(B
ij
k
)

< f
> f

0 1 2

i

0.0

0.5

P
(
i)

< f
> f

FIG. 3. (Color online) Steady state attributes: Distributions
P (Aij), P (Bijk) and P (θi) of the stationary Aij , Bijk and θi,
respectively, and Aij and Bijk plotted against ∆θij and ∆θijk,
respectively. All the results are carried out for the random 2-
simplicial complex with α=β=1 and µ=ν=1.

As per Ott and Antonsen [46], the long-time evolution of
the order parameter for a system involving adaptive cou-
pling obeys the single differential equation achieved using
the Ott-Antonsen ansatz [47] as the precise time depen-
dence of the adaptive coupling would not matter in this
analytical treatment. Hence we employ Ott-Antonsen
dimensionality reduction to the steady-state collective
dynamics of Eqs. (2) and (4). The steady-state collec-
tive dynamics can only be achieved when the phases and
dyadic and triadic weights simultaneously achieve their
respective steady states. The evolution of phases can
be described, after plugging into the steady-state expres-
sions for Aij and Bijk, as

θ̇i = ωi +
aqλ

2N

N∑

j=1

sin(2θj − 2θi) +
bpλ

2N2

N∑

j,k=1

sin(4θj − 2θk − 2θi), (5)

where a = α/µ and b = β/ν. Note that the footprints
of both Aij and Bijk are assimilated into Eq. (5) in the
form of higher modes of phases in the attractive dyadic
and triadic couplings, respectively. The phase evolution
can be reexpressed further in terms of the m-cluster order
parameters

θ̇i = ωi +
1

4i
[He−2iθ −H∗e2iθ],

H = aqλz2 + bpλz∗2z4. (6)

Considering the system in the continuum limit N→∞,
the collective state of the oscillators at a time t can be
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FIG. 4. (Color online) Analytical vs. numerical corroboration
of R2: R2−λ profiles of the all-to-all connected 2-simplicial
complex simulated for Lorentzian g(ω) with ∆=0.1, N=104,
µ=1, ν=1. Shown on the left are different values of p when
α=β=1 and on the right are different values of α=β when
p=0.9. The solid and dashed lines are the respective theoreti-
cal traces of R+

2 (stable) and R−2 (unstable) solutions obtained
using Eq. (18). The dotted lines are analytical predictions
[Eq. (13)] of λf .

delineated by a continuous density function ρ(θ, ω, t) such
that ρ(θ, ω, t)dθdω denotes the fraction of oscillators with
their phases and intrinsic frequencies lying in the ranges
of [θ, θ + dθ] and [ω, ω + dω], respectively. In addition,
the density function ρ(θ, ω, t) satisfies the normalization

condition
∫ 2π

0
ρ(θ, ω, t)dθ=1 and the continuity equation

∂tρ(θ, ω, t)+∂θ[ρ(θ, ω, t) v(θ, ω, t)]=0 as the number of os-
cillators remains conserved. Also, the m-cluster order pa-
rameter can be expressed as zm=

∫ ∫
dωdθeimθρ(θ, ω, t).

Since ρ(θ, ω, t) is a 2π-periodic function with respect to
θ, it can be expressed as a Fourier expansion of the form

ρ(θ, ω, t) =
1

2π

[
1 +

{ ∞∑

n=1

fn(ω, t)einθ + c.c.

}]
, (7)

where c.c. stands for the complex conjugate of the pre-
ceding terms. Ott and Antonsen pointed out that all
Fourier coefficients can be classified into Poisson kernels
of the form fn(ω, t) = [f(ω, t)]n, where |f(ω, t)| � 1 is
necessary for the convergence of the series. After plug-
ging into the expressions for v = θ̇ [Eq. (6)] and f(θ, ω, t)
[Eq. (7)], all Fourier modes then reduce to the same con-
straint for f , satisfying the single complex-valued differ-
ential equation

∂f2

∂t
+ 2iωf2 +

1

2
[Hf4 −H∗] = 0, (8)

zm = Gf∗m =

∫ ∞

−∞
dωg(ω)f∗m(ω, t), m=2, 4, (9)

where the integral operator G ≡
∫∞
−∞ dωg(ω).

Stability of the incoherent state: The trivial solution
f(ω, t)=0 always exists for Eq. (8), which corresponds to
an incoherent state ρ(θ, ω, t)= 1

2π in Eq. (7). Linearizing
Eq. (8) around f(ω, t)=0, we obtain the following linear
equation for the perturbed density η(ω, t):

∂η2

∂t
+ 2iωη2 =

aqλ

2
Gη2. (10)

Let γ be the eigenvalues of Eq. (10) such that η(ω, t) =
η0(ω) eγt. Then employing the integral operator G to
both sides of Eq. (10) reduces it to

1

λ
=
aq

4

∫ ∞

−∞
dω

g(ω)

γ + iω
. (11)

Since Re[γ]=0 at the critical coupling strength λ=λf , the
incoherent state loses stability for γ=0 + ε′ + iy, where
0 < ε′ � 1. Equation (11) now reads

1

λ
=
aq

4
lim
ε′→0

∫ ∞

−∞
dω

g(ω)

ε′ + iω + iy
. (12)

Solving Eq. (12) for g(ω)= ∆
π[ω2+∆2] results in

λf =
4∆

aq
=

4µ∆

α(1− p) . (13)

Equation (13) reveals that the transition to synchro-
nization is solely caused by the presence of dyadic
interactions through the parameter p and dyadic rates α
and µ and the triadic interactions do not play any role
in the onset of synchronization. Also, p=1 yields λf→∞,
i.e., the incoherence does not lose stability for any λ > 0
[45].

Solution of coherence: The expression for order pa-
rameter R2 can be worked out for a Lorentzian
distribution with mean ω0 and half-width ∆, i.e.,
g(ω)= ∆

π[(ω−ω0)2+∆2] . The order parameter in Eq. (8) can

be derived using Cauchy’s residue theorem by closing the
contour to an infinite-radius semi-circle in the negative-
half complex ω plane, resulting in z2=f∗2(ω0−i∆, t)
and z4=f∗4(ω0−i∆, t)=z2

2 . Next, assessing Eq. (8) at
ω=ω0−i∆ and then taking the complex conjugate, we
obtain

2ż2 − 4iω0z2 + 4∆z2 + λz2
2 [aqz∗2 + bpz2z

∗
4 ]

−λ[aqz2 + bpz∗2z4] = 0. (14)

Next, inserting z2 = R2e
iΨ2 and then equating real and

imaginary parts on both sides of the equation gives

2Ṙ2 + 4∆R2 + λR2(R2
2 − 1)(aq + bpR2

2) = 0, (15)

Ψ̇2 = 2ω0. (16)

Hence the dynamics of R2 and Ψ2 are decoupled; Ψ2

constantly evolves and is equal to twice the mean of g(ω).
The steady-state evolution of Eq. (15) yields an equation
that is cubic in R2. Thus, R2=0 is always an equilibrium
whose stability is not affected by the presence of higher-
order interaction. The nonlinear terms stemming from
higher-order interaction in

4∆

λ
= −bpR4

2 + (bp− aq)R2
2 + aq (17)
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FIG. 5. (Color online) Bistability domains: phase diagrams in
α−β, p−α and p−β planes depicting the regions of bistability
for the all-to-all connected 2-simplicial complex simulated for
Lorentzian g(ω), with ∆=0.1, N=103, µ=1, and ν=1. The
dotted region manifests nonbistability.

may give rise to one or two synchronous solutions with
the positive roots for R2

R±2 =

√√√√bp− aq ±
√(

bp− aq
)2

+ 4bp
(
aq − 4∆

λ

)

2bp
, (18)

where R+
2 (R−2 ) represents a stable (an unstable) branch

of the synchronous state. The validation of analytical
predictions for the order parameter R2 [Eq. (18)] with
its numerical estimations for different sets of parameters
is presented in Fig. 4.

In the case of a forward transition, in the incoherent state
R2=0 until λ=λf= 4∆

aq is reached. At λ=λf , R2 abruptly

jumps to R+
2 (λf )=

√
1− aq

bp [while R−2 (λf )= 0] and the

incoherent state (R2=0) loses its stability through sub-
critical pitchfork bifurcation. Nevertheless, for the set

of parameters {a, b, p} for which R+
2 (λf )=

√
1− aq

bp=0

at λ=λf , the incoherent state (R2=0) loses its stability
through supercritical pitchfork bifurcation and the tran-
sition to synchronization takes place via a second-order
route.

In the case of a backward transition, R−2 (saddle point)
and R+

2 (node point) exist in the hysteresis region. As
soon as the backward critical coupling strength λ=λb
is reached, R+

2 and R−2 collide and annihilate each
other through saddle-node bifurcation. Thus the sta-
bility of the coherent state is totally destroyed and the
only remaining solution is R2=0. Hence the constraint
dλ/dR2=0 is satisfied at λ=λb, which leads to R2(λb) =

√
1
2 (1− aq

bp ) from Eq. (17). Substituting the value of R2

back into Eq. (17) gives

λb =
16∆bp

[
aq + bp

]2 =
16∆pβνµ2

[
αν(1− p) + βµp

]2 . (19)

For that matter, the outset of abrupt desynchronization
is characterized by both the dyadic and triadic learning
rates.

In Fig. 5 we provide a broad picture of the regions
of bistability and nonbistability stretched over α−β,
p−α and p−β planes [48]. The regions illustrated by
the slanted green lines represent the bistability region.
Note that aq 6=bp and aq<bp are necessary for the
existence of bistable solutions sporting a hysteresis.
The yellow dotted region depicts the nonbistable region
corresponding to aq=bp. 1 For aq=bp, Eqs. (13) and
(19) furnish λf=λb, R

+
2 (λf )=0, and R2(λb)=0, which

conform to a second-order transition to synchronization.

Conclusion In this work, the nature of the transition to
synchronization was explored on 2-simplicial complexes
where the triadic couplings and the downward closing
dyadic couplings evolve in time according to the respec-
tive rate-based plasticity inspired by the Hebbian learn-
ing rule. Strikingly, such coevolving dyadic and triadic
couplings completely subside the single-cluster synchro-
nization and instead trigger two-cluster synchronization
in simplicial complexes. It was revealed that the on-
set of antiphase synchronization only depends on the
dyadic interaction (learning rate) and the higher-order
interaction has no role to play. On the other hand, both
dyadic and triadic interactions (learning rates) affect the
onset of antiphase desynchronization. Further, the nu-
merical findings related to the antiphase order parameter
and the forward and backward critical transition points
have been validated with the respective analytical pre-
dictions by employing the Ott-Antonsen ansatz. It was
also shown that the steady dyadic (triadic) weights in the
synchronous state form two clusters of equal and oppo-
site magnitudes along the lines of the oscillators forming
the antiphase clusters.

The simplicial structures involving simultaneous adapta-
tion of pairwise and higher-order interactions would help
elucidate the underlying mechanism of cluster formation
in the brain’s functional networks, such as, antiphase pat-
terns in the cortical neural network.
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Supplemental Material: First-order route to antiphase clustering in adaptive
simplicial complexes
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A. Stationary dyadic and triadic weights as a function of coupling strength

Fig. S1 depicts the stationary Aij (dyadic) and Bijk (triadic) as a function of coupling strength λ exhibiting forward
transitions in a random 2-simplicial complex. Both the steady dyadic and triadic weights are bounded within the
intervals [−α/µ, α/µ] and [−β/ν, β/ν], respectively, in both the incoherent and coherent states.

FIG. S1. (Color online) Stationary weights; Aij (dyadic) and Bijk (triadic) plotted against coupling strength λ exhibiting

transition to synchronization in a random 2-simplicial complex [with mean degrees 〈k[1]〉=14 and 〈k[2]〉=10] simulated for
uniform natural frequencies ωi ∼ U [−1, 1], N = 103, µ = 1 and ν = 1.

B. Bistability domains revisited

In Fig. S2, the hysteresis width |λf − λb| of transition transpiring in an all-to-all 2-simplicial complex are illustrated
in (α − β), (p − α) and (p − β) planes. The red area between the two black contour lines depicts zeros hysteresis
width, representing the occurrence of a second-order transition while the remaining parameter regions manifest an
abrupt transition associated with a hysteresis.
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FIG. S2. (Color online) Bistability domains: Phase diagrams in (α − β), (p − α) and (p − β) planes representing hysteresis
width |λf − λb| of transitions in the all-to-all connected 2-simplicial complex simulated for Lorentzian g(ω); ∆ = 0.1, N = 103,
µ = 1 and ν = 1.


