RELCIWS |

FIRST ORDER SEMANTICS: A NATURAL
PROGRAMMING LOGIC FOR RECURSIVELY
DEFINED FUNCTIONS
by
Robert Cartwright, Jr.+

TR78-339

Department of Computer Science
Cornell University
Ithaca, N.Y. 14853

1:I‘his research has been partially supported by National Science
Foundation grant MCS76-14293.

1. Introduction

It is commonly believed that first order logic is too
limited a formalism for stating and proving the interesting
properties of recursively defined functions. Hitchcock and
park (7}, for example, claim that the termination (totality)
of a recursively defined function on a data domain D cannot
be expressed by a sentence in a first order theory1 of D
extended by the defining equations. As a result of this
criticism, most researchers developing programming logics for
recursive languages have rejected first order logic in favor
of mofe complex systems--notably least fixed point logiecs,
e.g. Milner [11, 12, 13], Park [14], DeBakker {4,15], Scott
and DeBakker [15], DeBakker and DeRoever [5]. Nevertheless,
in this paper we will show that a properly chosen, axiomati-
zable first order theory is a viable programming logic for
recursively defined functions. In fact, we will present
evidence which suggests that first order logic is a more
appropriate formalism for reasoning about specific recursive

programs than least fixed point logics.

lA theory is a set of sentences (closed formulas) closed under
logical implication.

-1~

2. Hitchcock and Park's Critique of First Order Logic

In (7], Hitchcock and Park consider the following

recursively defined function on the natural numbers N:z

zero(n) = if n=0 then 0 else zero(n-1). (=)

vhile they admit that it is very easy to informally prove by induction

that zero terminates on N, they claim that no sentence provable
from an axiomatization T of N augmented by (*) can state that
zero is total. Let N' denote the natural numbers extended to
include the zero function. N' is clearly a model for Tu{(*)}..
By the upward Lowenheim-Skolem theo;em, the theory (set of

true sentences) of N' has a non-standard model ﬁ' which is a
proper extension of N'. Hitchcock and Park assert that zero

PN

obviously does not terminate for all elements of N'. Given

this assertion, no sentence 8 provable from Tu{(*)} can state
zero is total since 6 must be true in &‘.

The flaw in Hitchcock's and Park's analysis is their
assumption that the interpretation of zero in a ncn-standard
model must be obtained by applying computation rules to (*).
In the example above, if we use a Peano style axiomatization for
the natural numbers (including an induction axiom schema) then

we can prove the sentence

¥n [zero(n)=0]

2(*) abbreviates the sentence:

vn | (n=Q)=zeto(n)=0) A (aln=0)>zero(n)=zero(n=-1))1.

FIRST ORDER SEMANTICS: A NATURAL PROGRAMMING
LOGIC FOR RECURSIVELY DEFINED FUNCTIONS

by
Robert Cartwright, Jr.

78-339

Department of Computer Science
Cornell University
Ithaca, N.Y. 14853

Abstract

Despite the widespread belief to the contrary, virtually
any interesting property of recursively defined total functions
on a data domain D can be stated and proved in a simple first
order logic for D, by using an approach we call "first order
_semantics“. In particular, it is easy to prove within this
formalism that common recursive functions (such as standard
LISP functions, McCarthy's 91-function, and Ackermann's function)

are total. The primary features of first-order semantics are:

1. The data domain D must be a well-founded set which
explicitly includes the undefined object (representing
non-termination) as well as ordinary data objects.

2. Recursive definitions of functions on D are inter-
preted as axioms augmenting the first order axiomatization

cf the data domain.

3. The interpretation of a system F of recursive
function definitions on D is simply the least fixed.point .
solution of F.

Since the data domain D is a well founded set, the first
order axiomatization of D includes a structural induction

axiom schema. This axiom schema serves as the fundamental

"proof rule” of first-order semantics.

The major weakness of first order semantics is its
failure to capture the notion of least fixed point. In fact, any
fixed point solution of a set of recursive function cefinitions
is consistent with the augmented axiomatization of the
data domain D. To alleviate this problen, we develop aﬂ
effective procedure for transforming any set of recursive
function definitions into an equivalent set of cefinitions
which has a unique fixed point. When augmented by this trans-
formation technique, first order semantics is sufficiently
powerful to prove virtually any extensional property of any

system of recursively defined functions.

Keywords: semantics, verification, program transforrmations,

programming logic, recursively defined functions.

-2-

from Tu((*)}3. Consequently, the function zero is identically
zero in every model of Tu{(*)}. Furthermore, since the models
of Tu{(*)} do not contain a special undefined element (usually
denoted 1), every model must, by definition, interpret every
function symbol by a (total) function. Hence, no recursion
equation augmenting T can define a non-total function.

The situation is more interesting if we axiomatize Nu{:}
(where 1 denotes the undefined object} instead of N. In this
case, the interpretation for an n-ary function f may be non-
total (in the sense that is maps some elements of the data
domain into t). We can assert (within the corresponding
first-order language) that f is total on N by simply stating:

Vxl,...,xn[(xlxl)A...A(xnzl) > f(xl,...,xn)zll. 7
Let T, be a "Peano-like" axiomatization (including an induction
axiom schema) for Nu{i}.

Given Tl, and the recursion equation (*), we can easily
establish that Hitchcock and Park's zero function is total on
N by proving the sentence ¥n[n=z:) > zero(n)zi]. The proof
(which appears in Appendix I) is a direct translation of the
informal structural induction proof that Hitchcock and Park
cite in their paper. One is forced to conclude that the totality
of recursively functions like zero is easily expressed and

proven within first order logic.

3Assuming the language of T includes for each arity n>0 a
countably infinite collection of function symbols a.b,...,x,2a,...
including zero. Otherwise, we must augment T by additional
instances (involving the new function symbol zero) of the
induction axiom schema.

-3-

3. Basic Concepts of First Order Semantics

As we hinted in the previous section, the undefined
object 1 plays a crucial role in first order semanties. In
order to use first order logic to define the meaning of
arbitrary recursively defined functions, we must include the
undefined object 1 in the data domain. Otherwise, recursive
definitions like

£{x) = £(x)+1 (**)
on the natural numbers are inconsistent with the axiomatization
of the data domaiA (the interpretation of f must be a (total)
function on the natural numbers, yet no such function exists).
If a set of recursion equations contains an inconsistent
definition like (**), then the axiomatization of the data
domain augmented by the equations is inconsistent (has no
model).

Fortunately, if we include the undefined object : in
the data domain, force all primitive functions to be ccn-
tinuous4, and slightly modify our treatment of conditional
and boolean expressions, then we can guarantee every set of
recursion equations F is consistent with the axiomatization
of the data domain. This property is an immediate consequence

of Kleene's fixed point theorem for continuous functionals.

4For a definition of continuity, see [Manna 74)}. All strict
functions and the standard if-then-else function are continuous

-g-

Under the stated assumptions, we can extend the model of the
data domain‘to include F by interpreting the functions defined
in Fas the least fixed points of their recursion equations.

To satisfy the éontinuity property required by Klecne's
theorem, we must replace the predicates of the data domain
by corresponding stricts boolean functions. If our data domain
D is divided into types (sorts in the terminology of first
order logic), then we can simply include a boolean type in D.
For the sake of simplicity, we will assume that the data do-
main consists of a single type. In this case, we embed boolean
values in the data domain D by partitioning D-{i} into two
non-empty subsets DT and DF consisting of the objects repre-
senting true and false respectively. For example, if our
data domain is simply the natural numbers N augmented by i,
then we could let Dp = {0} and DT = {xeN | x=0}. 1In LISP,

D, = {xIL} and D, = {xcS~-expressions | x=NIL}.

We augment the set of primitive functions on D by adding
the standard if-then-else function mapping D3 into D. While
if-then-else is not strict (since if true then x else 1 = X),
it is continuous.

Given these modifications to the data domain D and its

axiomatization, a recursive program F on D has the form:

sAn n-ary function is strict if it is undefined (i) whenever

any of its arguments is undefined (4.).

fl(xl,...,§n1)= T

.
fz(xl'“"xmz) =2

« e e

fh(xl"“'xmn)= Th

where fl,fz,...,fn are function symbols distinct from the
primitive function symbols of D and Tl'TZ""'rn are term
constructed from the primitive function symbols of D aug-
mented by fl,fz,...,fn such that Ti contains no variables
other than Xy,...,% i=1,2,...,n.
i

The meaning of the functions fi,fz,...,fn is the least
fixed solution over D of the system of recursion equations
comprising F. The corresponding deductive system for reasoning
about fl""'fn is simply standard first order implication
given the axiématization of D augmented by the equations in F
(which are ordinary first order formulas). Given any recursive
program F defining total functions fl""’fn' we can prove

virtually any interesting property of the functions £ £

1" a

totality by using ordinary first order deduction. Most proofs

strongly rely on structural induction.

4. A Sample Proof

As an illustration, consider the following simple example.

Let flat, and flatl be recursively defined functions over the

domain of S-expressions defined by the following

ecuations:
flat(x)=flatl (x,NIL).
flatl{x,y)=if atom x, then cons(x,y)
else flatl(car x,flatl(cdr x,y)).
The function flat returns a linear "in-order" list of the
atoms appearing in the S-expression x. For example
flat((A.3))= (A B)
flat ((A. (B.A))) = (A B A)

flat(A) = (a)
flat(({A.C).B)) = (A C B)

“e want to prove that flatl(x,y) terminates for arbitrary S-

exoressions x and y (obviously implying flat(x) terminates
for any S-expression x). Formally, we state the theorem in

the first order theory of S-expressions v{i} as follows:

X=z1 A y=x1 o flatl(x,y) =1

By using the unary predicate is-Sexpr (which is true for
elements of the domain except 1) we can restate the theorem in
the more readable form

is-Sexpr(x) A is-Sexpr(y) » is-Sexpr(flatl(x,y)),

“e prove the theorem by applying structural induction on x.

Base-case. x is an atom.

Then flatl(x,v) = cons(x,y) which must be an S-expression

since x and y are S-expressions.

Induction-step. Given
1) ¥y is-Sexpr(xl) A is-Sexpr(y) - is-Sexpr(flatl(xl,y)), and
2) ¥y is-Sexprix2} a is-Sexpr{y) = is-Sexpr(flatl(x2,y))

we must show

¥y is-Sexpr(cons(x1,<2)) a is-Sexpr(y) -

is-texpr(flatl{cons (x1,x%2),y))

-7e

In this case, flatl(cons(xl,x2),yl = flatl (xl,flatl, (x2,y)
Since cons(xl,x2) is an S-expression, x1 and x2 must be
S-expressions. Hence, by induction hypothesis 1, flatl(x2,y) is
an S-expression, Given this fact we can apply induction hy-
§othesis 2 to deduce that flatl(xl,flat(x2,y)) is an S-expressic
Q.E.D.

Some additional examples appear in Appendix I.

5. Incompleteness of First Order Semantics

Besides the inescapable Godel incompleteness of any
axiomatization of'a non-trivial data domain D, there is a
more fundamental kind of deductive incompleteness inherent
in first order semantics. The problem is that the axioma-
tization of the data domain augmented by a set of recursion
equations is satisfied by any model consisting of the data
domain augmented by a fixed point solution for the recursion
equations. The augmented axiomatization fails to capture
the concept of least fixed point.

What are the implications of this form of incomplete-
ness? If the least fixed point solution for the recursion
equations is total on D-{i}, the problem does not exist be-
cause the equations have a unique fixed point solution. On
the other hand, if some function in the least fixed point
solution is partial, then we cannof prove any property of the
least fixed point which does not hold for all fixed points.
For example, we cannot prove anything interesting about the
function £ defined by

{{x) = f(x) (***)

—8-

since any interpretation for f over the data domain satisfies
(***), not just the ecverywhere undefined function.

There are several possible solutions to this problem.
John McCarthy [10] suggesis adding an axiom schema &g (con=-
taining a free furction symbol) for each function f defined
in the recursive program. The schema Of asseris that £ is
the least function satisfying the recursion equation for f.
Since McCarthy's approach verges on converting first order
semantics into a second order system, our inclination is to
follow a different approach employing the concept of complete
recursive programs.

Briefly, a set of recursion equations is a complete
recursive program if and only if it has a unigque fixed point
solutipn. In a subseguent section of the paper, we will prove
that evefy recursive program can be effectively transformed
into an equivalent complete recursive program (in the sense
that the two programs have identical leastvfixed point solutions).
As a result, we can reason about recursively defined partial
functions using first order semantics by first transforming
the recursive program into an equivalent complete recursive

program.

6. Reasoning about Call-By-Value Fixed Points

Computing the standard least fixed point of a recursively

defined function requires “call-by-name" evaluation.6 on the

6. . Coe s : : R
Assuming that the primitive functions meet certain mild re-
strictions. Otherwise a more sophisticated evaluation mechanism
is required. 3ee Manna [4].

-9

other hand, most practical programming languages (e.g. LISP,
PASCAL) employ "call-by-value" evaluation which has slightly
different semantics. Fortunately; first order semantics
readily adapts to call-by-value recursive programs. The only
changes required to handle call-by-value programs are:

1. The meaning of the functions defined in the program

is the least call-by-value fixed point7 solution of
the recursion equations.

2. For each recursion equation
XyrooesX = T
£(1° ' n)
we add the two axioms

XyZlAa.ooAx_ 2L > £(x.,...,x)=1
n ¢ 1’ ’ n)

1

=1V, VX =1 o f(%x,,...,%x_)=1
X xn (1’ 2 n)

1

to the data domain axiomatization instead of adding
the recursion equation itself.

The proof that the augmented data domain for a call-by-value
recursive program is a model for the augmented axiomatization
appears in [Cartwright 76b].

Least call-by-value fixed points are an attractive alter-~
native to standard least fixed points because they are easier
to compute and programmers seem more comfortable with their
semantics. In addition, we will show in the subsequent section
and Appendix II that the complete recursive program corresponding
to an arbitrary call-by-value recursive program is easier to

describe and to understand than the equivalent construction for

standard recursive programs,

7'I‘he call-by-value least fixed point of the recursion equaticn

£(x,,...,x_)}=T is the standard least fixed point of the modified
recirsion equation f(xl,...,xn)= if (x)A...Aa(xn) then 1
. else 1
where S is the primitive "is-defined" function with the
property: o(x) = true if x=.
8(1) = 41

~10~

7. Construction of Complete Recursive Programs

In this section, we will describe the procedure for con-
- structing the complete recursive program corresponding to an
arbitrary call-by-value recursive program, and prove that the
constructed program has the desired properties. We relegate
the analogoﬁs construction and proof for standard recursive
programs to Appendix II, since they are similar but somewhat
more complex.

The intuitive idea underlying the construction is to
define for each function f in the original program a cor-
responding function f* such that f*(xl,...,xn) constructs
the computation sequence for f(xl,...,xn). Constructing the
actual computation sequence really is not necessary; the
value of all elements in the sequence except for the final
one (the value of f(xl,...,xnn are irrelevant. It is the
structure of the sequence of the sequence which is significant,
since it prevents a fixed point solution from "looping back"
on itself.

For example, consider the trivial recursion equation

f(x) = if x equal 0 then 0 else f(g(x))
over the domain of LISP S-expressions where g is any
‘unary function with fixed points. If we define f* by

’ £*(x) = if x equal 0 then list(0)

. else cons{g(x),f*(g(x)))

then £* constructs a sequence containing an element for each

-11-

expansion of £ in the call-by-value evaluation of f(x), assuminc
£(x) terminates. If f(x) does not terminate, then every fixed
point solution for f£* must be undefined (1)} at x, Otherwise,
£* (x) would have to be infinitely long which is impossible (all
S-expressions are finite), The recursion equation

£'(x) = last{f*(x))
where last is the standard LISP function which extracts the
final element in a list, clearly definesa function identical to
f. Furthermore, the equations defining f* and f' form a com-
plete recursive program.

Before we can define the general form of the complete
recursive program construction, we need to introduce some
notation and terminology.

In the sequel, we will continually need to distinguish
between a function symbol f and its interpretation E. We
will use a circumflex sign ("~") over a function symbol to denot
its interpretation.

Let D* = D u {1} be a data domain with operations
'EE:Z;;;:;IEE and a collection G of strict primitive functions.
Let LD+ be the corresponding first order language. On'D+.
we define the partial ordering < on p* as follows:

xcy 1ff x=1 .
The set D' is clearly a complete partial ordef under the

partial ordering c.

3 :
A set S under the partial order ¢ is a complete partial
order iff
1Y v dea partial ordaring {(for a definttlion apce [A})

2) cvery ascending sequence x S X, € X has a

IR R

Teant upper bhound,

~12-

Let F be a set of recursion equations {fl(il) mtyececy

’

£ (x_) -=t_jwhere X, i i . ¢
n(n) t jwhere X; is a vector Qf.varlables xl,...,xmi

£ fn are new function symbols not in LD+; and tl""'tn are

vt
terms in the augmented language Lp = Lg4 U {fl,...,fn} such
that no variables other than §i appear in ti' i=1l,...,n.
The call-by-value least fixed point solution of F

(Cenoted [fl,...,fn]) is the least upper bound of the ascending

~

sequence of n-tuples of functions [fl ,...,fn] e [fl '
~ ~ ~ (0) () (1)
...,f_l } e vie e [f1 ,...,fn lc... where we have extended
(D) (x) (k)

the partial ordering ¢ ton-tuglesof functions in the usual way
((rl,...,rn] < [sl,...,sn] iff ri[d] < si[d] for all deD, i=1,...

A). We inductively define [fl ,...,fn l, k=0,1,... as
(k) (k)
follows:

£. (3) = 1 for all tuples d over D*.
o)

£. (@) = Moy 05 D [s] for all tuples & over D.

1 otherwise

where s is a state vector mapping the variables ii into 4;

and M Eti I [s], k20 is the interpretation of Y under s
when f,,...,f_are interpreted by f PRSI 3 , respectively,
1 n l(k) N (k)
and the functicn symbols and constants of LD+ are interpreted
by their meanings in D+. In informal terms, fi is the
(k)
call-by-value evaluation for fi to depth k.

Before we can define functions which construct computation

sequences, we must extend the data domain p* anad the augmented

-13-

language L. to accomodate sequences. Let SEQ(D) denote the

F
set of finite, non-empty sequences over D and D;EQ denote the
extended data domain D+u SEQ(D). We extend every function g G
to the domain D;EQ as follows: v
8(d) .. d) = 1 1if some d, ¢ D"
Oon D;eq we define the new binary function & (append) and unary
functions “Tast and §Ea\as follows:

[31""'321) [bl,...,bm] = (al""'ai’bl""'bm]'

for [al,....aE],[hl,...,qa] ¢ SEQ(D)
x®y = 1 if X SEQ(D) or yeSEQ(D)

’f;;? ([al""'all) = a, for [al,...,all ¢ SEQ(D)
’i:s\t (x) = &+ for x¢ SEQ(D)

4o} (@) = 4] for deD
’g;& (x) = 1 for x/D

Let L., denote the first order language Ly+ule, last,seq}
SEQ

corresponding to p*

SEQ”
Now we are finally ready to construct the complete

recursive program F' equivalent to F. Let t be an arbitrary
term in the language LF' The computation sequence term t
{(in the extended language LF.—= LD;, u{fl',...,fﬁ'})corresponding
to t is inductively defined as follows:
1. If t is a constant or a variable x,
t' = seq(x).
2. If t has the form g(ul,...um) where §¢G,
t' = ul' o...oum'oseq(g(last(ul'),...,last(um'))).
3. If t has the form fi(ul,...,um),

t' = ul'o...eume'fi(las:(ul'),,_,, last(um')),

' -1l4-

4. If t has the form if U then uy

1 1] T £ "’ A v
th= ug o(if last(uo) then uy else u,)e

The complete recursive program F' corresponding to F is the

else U,

£ : : L L = ' V(% Y=+ !
set of recursion equations (fl (xl) £y ,...,fn (xn) ty }.

Theorem., The (all-by-value) complete recursive mogram F' caastructed from
the set of recursion equations F has the following properties:

1. i;;?(f.'(a)) = Ei(a) for all m -tuples 3 over p*.

2. F' has a unique call-by-value least fixed point

‘solution.

Proof. Let Mi denote the call-by-value interpretation function
for F' analogous to Mk for F. Property 1 is an immediate con-
sequence of the following lemma.

+
Lemma L.For every term t in LF and every state s over D |

Mk Itl (s] = Mé [last(t')] (s], ¥Wk20.

Proof of Lemma. The proof proceeds by induction on the pair
[k,t]. By hypotheses, we may assume that the lemma holds for

all [ko.to] such that eitlrer k0<k, or k0=k and t, is a proper

4]
subterm of t.

Case 1. t is a constant or a variable x. Then t' has
the form seq(x) implying My Tlast(t")] [s] = My Ix] (s} = M, [tD[s]
for arbitrary k20.

Case 2. t has the form g(ul,...,um), QcGu{;,i;;2:§€E7.
Then t' = ul' e...oum'eseq(g(last(ui),...,last(um'))).

By hypothesis Mi Elast(ui)n[s] = Mk Huin[s], {or all s, i=1l,...,m.

If for some i, Mkﬂuints] = 1 then Mg [last(u;)] =1

~15-

implying My flast(t')](s] = 1+ (since §, %, and ﬁs\t &e strict}. Hence we
assume M, Euin [s) # 1 for all i. By the induction hypotheses

and the definition of’fggtT we conclude Mi ﬂn;k[s]zSEQ(D) for

all i, implying Mi[last(t')l[s] = Miﬂg(last(u;),...,last(um'))ﬂ[s]

= Mkﬂq(ul,...,um)l[s] (by induction)

Mth][s].

Case 3. t has the form fj(ul,...,um). 8y an argument
analogous to the one presented in the previous case, we can
assume Mkluil[s]#x and M*Eui][s]sSEQ(D) for all i. Conseguently,

Miﬂlast(tﬁn[s] = Mé ﬂlast(f;(last(ui),...,last(um')lﬂ[s]

4Mk'Hlast(ff(xl,...,xm))][s']
where s’ is a state vector binding x; to My Elas:(ui)ﬂ[s] = Hk!uills
i=1, ""mj' Since mxiis hound to 1, we may expand % 6-'1,.. . ,xm)
yielding Mé(last(t')][s'] = Mi_lllast(té)l[s'}
= Mk_lltj][s'] (by induction)
= Mg [fj(xl,...,xm)][s‘]
=M, [l {s].
Case 4. t has the form if uy then uy else u,. By definition

2

t'= Uy e (if last(ué) then ui else ué).

Subcase a. Mk[uoﬂis] = 1. By induction Mﬂ[last(ué)n=1.
Since & and i;:l are strict, and’T;::;;;:;TEE is strict in its
first argument, Myflast(t')]{s] = L and M [t0{s] = 1.

Subcase b. Mkﬂuoﬂ[s] e D, If Mkﬂuoﬂts] is a "true” elemen: of

D then Mkﬁtﬂ[s] = MkKuI][s)‘ By induction,
Mkluol(s]

Méﬂlast(uo')n[s] implying

Mi[t'n[s) = di[last(ul')](s]

Mkﬂulﬂls](hy induction)

Mkﬂtﬂ[s]_

-16~

An aralogous argument proves the "false" case. Q.E.D.
We prove property 1 of the theorem as follows. By lemma 1:

Mkﬁfi(xl,,f.,xmi)llsl = Mi[last(SEQ(xl)O---Oseq(xm1)°
f'(last(seq(xl)),...,last(seq(xn))))ﬂlsl

for all k20, all state vectors s over D*. Property 1 trivially

holds for mi-tuples d where some element of & is 1 since the functions

AN

fi’ f; and”last are all strict. So we can restrict our attention to

~

state vectors $ that bind x cee X to values in D. Simplifying

1’
the right hand side of the equation above yields

X £ = U *

.1kﬂ.i(xi,.--.>§mi)l[sl My [last(f (xy,.-.,x)1 [s]
for state vectors s binding XyreeosX to values in D. Since

i ~ A

o* arc D;eq are both flat domains, the functions f; and f! have the
following property, For any m,-tuple 4 over D there exists k, such that
£, (&) = £.(3) and £! (@) = £:(3). Let & be an arbitrary

i (ko) 1 l(ko) 1

mi~tup1e over D and s Le a state mapping ii into 4.

Then R "
fi(d) = fi(ko)(d) = Mko[fi(xl,...,xmiﬂls] =
My last(f](x ,-..,x_))](s) =®EE @) =®(E:<an
0 * i k) *

proving property 1.

To prove property 2, we must introduce some new definitions.

Let H be a set of strict functions hi' i=1,...,n,over D;DQ cor-
responding to the function symbols fi,...,fg. We define Mﬁ
H

k>0 as the meaning function for terms of L_identical to M except

k
that M’ interprets £y i=l,...,n by f; where £.'

H Ky 1(k)ﬂ

19~

is inductively defined by
£: =h,
i i
(0)H _
~ ~ 1 if 1
' -) N .
fi(k) (a) %}i-l [tlnlsd] otherwise
H H
Qhere sd maps %, into 4&. Informally,lff is the call-
i i,
(k)H
by-value evaluation of the recursion equation for fi

where hj, j=1,...,n,interprets fj in calls of depth 2 k. 1If

all the functions hj in H are everywhere undefined fi = fi
(k) (k)
H

Property 2 is a simple consequence of the following lemma.

Lemma 2. Let t be any term in Lé. Let H be a set of strict

functions hl,...,hn corresponding to fi,...,f;. Then

for any k20 and any state vector s over °§°o
M;ﬂtﬁ[sl = . implies either My ft J[s)} = 1 oc
H

e~
/ig:;;E~(Mk [t 1(s]) 2 k where/Iength is the function mapping
H

+

Dseq into the extended natural members (Nu{i}) defined by

TN
“length (1)

[

e
\
Aongth™(d) = 0 for ded

@(rdl,...,dzl) =% for [d),...,d,] ¢ SEQ(D).

Proof of lemma 2. The proof proceeds by induction on [k,t].
In the course of the proof, we will use the following lemmas

which are easily proven by structural induction on t:

Lemma 3a. For any term t in LF', M*[t][s) # 1 implies

Mlth(s) = M Tt (s).

-]18~

Lemna 3b. For any term &t in LF' not containing any recursive

1+ =2 .
qu'j 1, 0]
The proo:t of lemma 2 breaks down into two cases.

function symbol £!, ¥
i

Case 1. k=0. The lemma in this ca%%_ig_i trivial consequence
of the definition of lengtn.
Case 2. k>0. We perfcrm a case split on t.

. Subcase a. t is a constant or variable x. Then t = seq(x),
implying

My Tt'1(s] = u) Eseq(01(s] = W iseq(x)1(s] =®Mkl{x][s]).

Consequently, if Mk!x][s} = i, then Mj Iseq(x)] [s] = 1.
H

Subcase b. t has the form g(ul,...,um) where geG. In

this case, t' = uie...ouéoseq(g(last(ui),...,1ast(u&))).
If Mk[ujﬂ[s] = 1 for some j, then by induction Mi Euj'] = 1

H
— T . . A .
or length (M; iuiﬂ{s]) 2 ksimplying the lemma holds (since
ST

® is strict). On the other hand, if Mkﬂujnls]#L for all j;
then by lemmas 1 and 3a, ¥' fu.l{s] = M'Tu.l[s] ¢ SEQ(D) for
. kq 3 k"3

all j. Consequently,

#

M ('l (s] = My ﬂuie...euéeseq(g(last(ui),...,last(ué)))ﬂ[sl
u Xy m

1]

Mi[uio...ué@seq(g(last(ui),...,last(u&)))](s]

Mi[t'][S]-
1f M (td(s] = L, then bylemmal_xﬁﬂt'n[sl = 1 implyiéq MEHHﬁBISI = L.
Subcase c¢. t has the form fi(ul,...,um). If Mklujﬂls] = 1

i
for some j, the proof is identical to the analogous section

of the previous case. On the other hand, when Mkﬂujn[s] # L
for all j,

Miﬂﬂt'](s] = Miﬂui][s)é...éﬂiﬁuéin[slé

" o~
B (Tast (aplur HKSI),...,ﬁst\(Mkﬂu';‘iBISI))
H

M Lo.ex o et!l(s’)
Mk_luﬂxla ®¥mi 1_]]

where 3' maps xj into ML“"S“{SL

-19-

/\
By induction Mi_lﬂﬂti][s'] = | or length (Mi—lﬂ[t;n[s'] 2 k-1,

Hence the lemma clearly holds (since each xj has length 2 1).
Subcase d. t has the form if Uy then vy else U, 1f
Mk[uon[s] = 1, the proof is identical to the analogous section

of subcase b. On the other hand, when Mkﬂuoﬂ{s] # L, either
Mk[uol[s] is a "true" element of D or a "false” one. In the
former case, Mth][s] = Mk[uln[s] and MiHEt'][s] = Miq[uiﬂ[sl-

By induction, M fu.] = 1 implies either M! [uj] = 1 or
k"1 kHI

)

length (Mi Eui])z k. Hence the lemma holds in this case.
H

An analogous argument holds for the "false" case. Q.E.D.

We prove that Property 2 follows from lemma 2 as follows.
Let H = {ﬂl,...,ﬁn) be any call-by-value fixed point solution
of the set of recursive equations F, i.e. for i=l,...,n
[[v = ' .
MOH[fi(xi)ﬂ MOHHtiB.
By induction on [k,t7 we can easily show for all k20 and all

v i 1 ' - 1
terms t' in Lg :MkHIIt] MoHlt]

Now assume H is not the least call-by-value fixed point

solution of F} i.e. f‘i(a)

- - -
L but hi(d) 2z 1 for some i, some d<D cp,

Then ¥k20 MiH[fi(xi)][sd] Maq[fi(xi)}[sd] where sS4 binds

X5 to d. Hence the length of hi(a), i.e.“length (Ma ﬂfi(ii)ﬂ[sdl)
]

is greater than any positive k, which is impossible since all

+

s . cos
equences in DSBQ are finite. Q.E.D,

-20~

A similar construction generates a complecte reccursive program

corcesponding to an arbitrary set of call-by-name recursion
equations. This construction and a sketch of the corresponding

proof are presented in Appendix II.

8. A Sample Proof Involving Complete Recursive Programs

To illustrate how complete programs can be used to prove
theorems about recursively defined partial functions, we pre-
sent the following example. Let f be the partial function on
the natural numbers defined by the recursion equation:

£(x) = f(x+1)

Although £ isbeverywhere undefined in the standard model, we
can not establishvthis property of using ordinary first order
semantics since f is total in numerous non-standard models.
However, we can prove the equivalent property for the cor-
responding complete recursive program

£'(x) = seg(x+l)ef'(x+1).
By the complete recursive program theorem proved in the pre-
ceding section, the statement

Vx(xeN)> last(f'(x)) = 1 ($9)]
is true in the standard model for f' if and only if the statement

¥x(xeN)o f{x) = ¢ (2)
is true in the standard model for £.

We prove statement (1) as follows. Since last is strict,
statement (1) is an immediate consequence of the lemma

Vx(xeN) > £'(x) = 1 (3)

We prove lemma (3) by structural induction on £ (x).

-21-

Base case f'(x) = 1. Trivial.

Induction step. £'(x) # i. By hypothesis, the lemma holds
for all Xq such that f'(xo) is a proper tail of £'(x). Since
xeN, £'(x) = seq(x)e f'(x+1l). By hypothesis, f£'(x+l) = 1.

Hence £'(x) = 1. Q.E.D.

9. Advantages of First Order Semantics

While first order semantics is more limited in scope
than least fixed point logics, we believe it is a simple,
intuitively appealing formalism which is well-suited for
reasoning about programs written in applicative languages.
Unlike proofs in least fixed point logics, proofs in first-
order semantics closely correspond to their informal counter-
parts. As an illustration, consider the sample proof pre-
sented in section 4. The proof using first order semantics
is a straightforward formalization of the obvious informal proof.
In constrast, a proof of the same theorem in a least fixed
point logic requires introducing a retraction characterizing
the domain of S-expressions and simulating a structural in-
duction by performing fixed point induction on the retraction.
The first order semantics proof is significantly shorter and
more direct.

Besides facilitating simpler formal proofs, first order
semantics avoids the admissibility problem plaguing least fixed
point logics. To ensure the soundness of fixed point induction
a least fixed point logic must either severly restrict the

syntax of formulas (banning negation and general quantication

-22-

as in Stanford LCF([ll]) or restrict the application of fixed
point induction to formulas satisfying a complex admissibility

criterion (as in Edinburgh LCF [6]).

For the reasons cited above, we believe that first order
semantics~~rather than a least fixed point logic--is the ap-
propriate formal system for verifying programs in recursive
languages like LISP. Both [Cartwright 76ab] and {[Boyer and
Moore 75] have successfully applied first order semantics to
prove the correctness of moderately complex LISP programs
with relative ease. On the other hand, the feasibility of
using first order semantics to formally reason about non-
trivial partial functions (such as interpreters) has yet to
be investigated. We believe, however, that both NMcCarthy's
minimization schema and complete recursive program construction

. described in this paper show considerable promise as methods

for reasoning about partial functions.

1]

2]

[3]

(4]

(5]

{6]

(71

(8]

9]

{10)

{11}

[12]

-23-
References

R. Boyer and J. Moore. Proving Theorems about LISP
Functions, JACM 22, 1 (January 1975), pp. 129-144.

R. Cartwright. User-Defined Data Types as an Aid to
Verifying LISP Programs., Automata, Languages, and
Programming, S. Michaelson and R. Milner, eds. Edinburgh
Press, Edinburgh, 1976, pp. 228-256.

R. Cartwright. A Practical Formal Semantic Definition
and Verification System for TYPED LISP, Stanford A. I.
Memo AIM-296, Stanford University, Stanford, California,
1976.

J.W. DeBakker. The Fixed Point Approach in Semantics:
Theory and Applications, Mathematical Centre Tracts 63,
Free University, Amsterdam, 1975.

J.W. DeBakker and W.P. DeRoever. A Calculus for Recursive
Program Schemes. Automata, Languages, and Programming,
M. Nivat, ed. North-Holland, Amsterdam, 1973, pp. 167-196.

M. Gordon, R. Milner, and C. Wadsworth. EDinburgH LCF.
Edinburgh Technical Report CSR-11-77, University of
Edinburgh, Edinburgh, 1977.

P. Hitchcock and D.M.R. Park. Induction Rules and Proofs
of Program Termination. Automata, Languages, and Pro-
gramming, M. Nivat, ed. North-Holland, Amsterdam, 1973,
PP. 225-251.

%. Manna. Introduction to the Mathematical Theory of
Computation, McGraw-Hill, New York, 1974.

2. Manna and J. Vuillemin. Fixpoint Approach to the
Theory of Computation, CACM 15 (1972), pp. 528-536.

J. McCarthy. Representation of Pecursive Programs in
First Order Logic, unpublished draft, Stanford University,
Stanford, California, 1977.

R. Milner. Logic for Computable Functions--Description
of a Machine Implementation, Starnford A.I. Memo AIX-169,
Stanford University, Stanford, California, 1272.

R. Milner. Models of LCF, Stanford A.I. Memo AIM-126,
Stanford University, Stanford, California, 1973.

-24-

{13}] R. Milner, L. Morris, and M. Newey. A Logic for Com-
putable Functions with Reflexive and Polymorphic Types.

Proceddings Conference on Proving and Improving Programs,
Arc-et-Senons, 197S5.

[14] pPark, D.M.R. Fixpoint Induction and Proff of Pro-
gram Semantics, in Machine Intelligence 5, B. Meltzer
and D. Michie (eds.), Edinburgh Press, 1970, pp. 59-78.

[15] Sscott, D. and J.W. DeBakker. A Theory of Programs,
unpublished notes, IBM seminar, Vienna, 1969.

-25=-

APPENDIX I

Sample Proofs in the Logic of First Order Semantics

Example 1l: Termination of the countdown function.
Let the (partial) function zero over the natural numbers
N be defined by the call-by-name.xecursion equation:
zero(n) = if n equal 0 then 0 else zero(n-1).
We will prove that the function zero equals 0 on N, everywhere
i.e.
¥n [n#1 > zero(n) = 0].

The proof proceeds by induction on n.

Base case. n=0. 1In this case,

zero(n) .= if 0 equal 0 then 0 else zero(n-l)
= 0.
Induction step. n>0. By hypothesis, the theorem holds

for all n'<n. Since n>0,

zero(n). = if n equal 0 then 0 else zero (n-1l)
= zero(n-1)
which is 0 by hypothesis.

Q.E.D.
Example 2: Termination of an Ackermann function-

Let the (partial) function ack over the natural rurbers
N be defined by the call-by-value recursion eguation:
ack(x,y) = if x equal 0 then suc(y)
else if y equal 0 then ack(pred(x),l)
else ack(pred(x), ack(x,pred(y))).
We will prove that ack is total on N, i.e.
¥x,y k#l A y#L > ack(x,y)#i].

The proof proceeds by induction on the pair (x,y]l.

-26~

Base case. x=0. By assumption, y¥i. In this case,
ack(x,y) = suc(y) #i.

Induction step. x>0. By hypothesis, we assume the
theorem holds for all x', y' such that either x'<x or x'=x
and y'<y. Since y#1 by assumption, '

ack(x,y) = if y equal 0 then ack(pred({x),l)

else ack(pred(x), ack(x,pred(y)))

Subcase a. y=0. 1In this case, ack(x,y) = ack(pred(x),1)
which by hypothesis is a natural number (not :t).
Subcase b. y>0. In this case,

ack(x,y) = ack{pied(x), ack(x,pred{y)).
By hypothesis, ack(x,pred(y)) is a natural number implying
(by the induction hypothesis) that ack(pred(x), ack(x,predly))
is a ratural number.
Q.E.D.

- Example 3: McCarthy's 91-function.

Let the (partial) function £91 over the integers be
defined by the call-by-name recursion equation

£91(n) = if n>100 then n-10

else £91(£91(n+l))

We will prove the following theorem (implying £91 is total)

¥n n#: > £31(n) = if n>100 then n-10 else 91.
The procf proceeds by induction on 1018n where the binary
operator 9 (funny minus) is defined by the eguation

»8y = if (x-y) >0 then x-y

else 0,

-27-

Base case. 1.018n = 0, i.e. n>100. In this case,
£91(n) = n-10
"which is exactly what the theorem asserts.

Induction step. 1016n>0, i.e. ns100. By hypothesis,
we assume the theorem holds for n' such that 10len'<l01len,
i.e. n'>n. 1In this case,

£91(n) = £91(£91(n+1l1))

= £91(if n+l11>100 then n+l else 91)
(by induction since n+ll>n).
Subcase a, n+l1>100, i.e. n>83%. In this case,
£91(n) = £91(n+l)
= if n+1>100 then n-9 else 91
= 91 (since ns<100}.
Subcase b. n+11<100, i.e. ns89. 1In this case,

f9l(n) = £91(91)

if 91>100 then 91-10 else 91
(by induction since 91>n)

= 91.

-28-

APPENDIX II
Call-by-name Complete Recursive Programs

The call-by-value recursive program construction described
in Section 7 exploited the idea of defining a new function fi

for each function fi in the original program such that fi

constructs the call-by-value computation sequence for fi' We
will utilize essentially the same idea in the call-by-name
complete recursive program construction.

Unfortunately, call-by-name computation sequences have
a more complex structure than the corresponding call-by-value
computation sequences. The chief complication is that the
set of arguments evaluated in a recursive call fi(E) in the
original program depends on the particular values of the
arguments. The solution is to adopt the convention that the
new fuscéions fi take computation sequences for aryuments
of £ as input instead of the arguments themselves. Consequently,
the body of each new function fi is free to-incorporate in
the final result only the computation seguences for arguments
of fi which are actually evaluated.

As a result of this complication, the original functions
fl,...,fn are related to the constructed functions fi,...,fn'
by the eguations:

fi(xl,...,xmi) = last(fi(seq(xl),.‘.,seq(xm‘)))

i
instead of the simpler relationship

fi(xl""'xmi) = last(fi(xl,...,xmi))

=20

which holds for call-by-value cohplete recursive programs.

Let D', L+, F, Ly, £, (i=1,...,n), M (k=0,1,2,...),

q&n (including @, f;:?, §ga), and LP be defined as in

section 7 with the single exception that [fl,...,fn],is the

standard call-by~name (rather than call-by-value) least

fixed solution over D+ of the system of recursion equations

F, i.e. that (f

~

ascending sequence of function n-tuples [fl
(k)

where

£. (3) = 1 for all m,-tuples d over D .

i i

(0)
£, (@ =mn ft.0 [s.]
l(k) k-1 i d

IS

reee ek

R k)

l,...,fn] is the least upper bound of the

]I k.o'l;o-.

where sgq is a state binding §i to d and Mk is defined in

terms of fi , i=1,...,n exactly as in section 7.

(k)

We construct the call-by-name complete recursive pro-

gram F' corresponding to F as follows. Let t be an arbitrary

term in the language L

F* The call-by-name computation seguence

termt' (in the extended language L ‘) corresponding to t is

inductively defined by:

1. If t is a variable v, t'=v,

2. If t is a constant symbol ¢, t'=seq(c).

3. If t has the form g(u;,...,u) where 3G,

t'= uj @...8u @ seqlg(last(uj),...,last(ur))).

4. If t has the form fi(ulp...,um),
= 1 1
t seq(d')e fi(ul,...,um)

where d' is any element of D.

5. If t has the form if ug then uy else u

t' = ué ® (if last (ué) then ui

27

else ui).

-30-~

The complete recursive program F' corresponding to F is the

el 3 V(e P— Tl) = ¢
set of recursion equations {fl(xl) tl""’fn(xn) tn}.

Theorem, The call-by-name complete recursive program F'
constructed from the set of recursion equations F has the
following properties:

_~

N A, PAa

1. Tast (8] (QZEYal),...,seq(dmi)) - fitay gy)
for all mi-tuples [dl""'dm.] over D+.

2. F' has a unique {call-by-name) least fixed point

solution.

Proof. The proof follows the same outline as the corresponding

call-by-value proof in Section 7. Let Mi

call-by-name meaning function for F' analogous to Mk for F,

denote the

x=0,1,... . To prove property 1, we first prove the lemma:

-Lemma 1'. For every term t in LF and every state s over D*,
MOt [s] = Millast{t")] [Sseq]

where s_ is the state mapping each variable x into-éza(s(x)).

Proof of lemma. Since the proof of lemma 1' follows the same
lines as the proof of lemma 1 in section 7, it is omitted.
Property 1 follows immediately from lemma l1' by the

following argument. For any mi—tuple a=[dl,...,dm] over
+

D’ there exists k.>0 such that £ (d) = £, (d) and
0 i i
o) :
e Ay oy :
£, (sez{dy),...,seg{d_) = f!(feqi(d,),...,sed(d_)).
l(kc) 1 my i 1’ m

2 st2te mapping ¥; into d and sseq be the state

Sl x into Seqis(x)).

-31-

e)

ik

= Mioﬂlast(seq(d‘)affi(xi))B(sseq]
= M'k E;ast(fi(xinﬂisseql
=Tast (! (Bagia),....E&E@ 1)
i 1 ™,
(ko) i

= fast (Ei'(éa?(dl),...,(s;(ami))).

o

To prove property 2 we must utilize the definitions
introduced for the analogous proof in Section 7. Let H,

Mi (k=0,1,...), £ (k=0,1,...; i=1,...,n) be defined
" i

(k) g
exactly as in Section 7, except that f! and :i'y are defined
k) g “n

using call~by-name semanties instead of call-by-value.semantics,
i.e.

£2 = h,

i i
(0)H
= N -
fi (d) Mk-l ﬂti][sd] for all k>0, all my tuples
(x)y H

d over DS+EQ where sy maps ;‘i into 4.

The critical lemma for proving property 2 is lemma 2'
which is identical to lemma 2 in Section 7 (although the
definitions of f!, £! , M', and V' are different). Since

i 1) k Ky

the proof of lemma 2' is very similar to the proof of lemma 2,
it is omitted.

Property 2 follows immediately from lemma 2' by the same
argument used to prove property 2 from lemma 2 in Section 7.

Q.E.D.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif

