
ARTICLE

First-order spatial coherence measurements
in a thermalized two-dimensional photonic
quantum gas
Tobias Damm1, David Dung1, Frank Vewinger 1, Martin Weitz1 & Julian Schmitt 1

Phase transitions between different states of matter can profoundly modify the order in

physical systems, with the emergence of ferromagnetic or topological order constituting

important examples. Correlations allow the quantification of the degree of order and the

classification of different phases. Here we report measurements of first-order spatial corre-

lations in a harmonically trapped two-dimensional photon gas below, at and above the critical

particle number for Bose–Einstein condensation, using interferometric measurements of the

emission of a dye-filled optical microcavity. For the uncondensed gas, the transverse

coherence decays on a length scale determined by the thermal de Broglie wavelength of the

photons, which shows the expected scaling with temperature. At the onset of Bose–Einstein

condensation, true long-range order emerges, and we observe quantum statistical effects as

the thermal wave packets overlap. The excellent agreement with equilibrium Bose gas theory

prompts microcavity photons as promising candidates for studies of critical scaling and

universality in optical quantum gases.
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D
ifferent states of matter are universally characterized by
the type of order, which is encoded in their correlation
properties1. A gas of massive particles at high tempera-

tures or low densities, for example, exhibits short-range spatial
first-order correlations as inherited by its classical single-particle
properties2–4. The latter are determined by the thermal de Broglie
wave describing a particle of (effective) mass m, which is defined
as λth¼h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πmkBT
p

, where T denotes the temperature, equaling
the de Broglie wavelength of a particle at an average thermal
velocity5. Quantum statistical effects emerge in a cold and dense
gas when the thermal de Broglie wavelength exceeds the mean
interparticle spacing. For massive bosonic particles, as atoms
with integer spin, as well as for two-dimensional gases of photons
or polaritons, Bose–Einstein condensation (BEC) into a macro-
scopically occupied ground state has been observed6–13. Upon
reaching BEC, the achieved macroscopic ground-state population
enhances the coherence length far beyond the thermal de Broglie
wavelength, essentially covering the complete sample size3, 5.
This has been strikingly confirmed both in the thermal and
condensed-phase regime for massive particles, as ultracold atomic
gases14–19.

For optical quantum gases as photons and exciton-polaritons,
an effective mass is established by tailoring the dispersion
relation of photons within optical microcavities20. Here, upon
condensation long-range order has also been revealed, similarly
indicating the spontaneous onset of a new phase9–12, 21–24. For
such two-dimensional systems at high phase-space densities, in
principle both BEC and Berezinskii–Kosterlitz–Thouless type
of phases may occur, where the former is associated with true
long-range order and the latter exhibits first-order correlations
decaying algebraically in space25–34. In previous exciton-polariton
experiments, however, the observed transverse coherence below
and partly also above the condensation threshold was limited by
the finite cavity linewidth21, 31. More recently, Marelic et al.24

reported on evidence for spatial coherence in a harmonically
trapped photon gas, without finding quantitative agreement
with Bose gas theory for all particle numbers, as attributed to the
finite spatial resolution of the used imaging system and the
nonequilibrium nature of the studied optical system far above the
condensation threshold. Indeed, the genuine thermal de Broglie
wavelength of such two-dimensional photonic gases so far has
remained elusive.

Here we report on a quantitative study of the first-order spatial
correlations of a two-dimensional harmonically trapped photon
gas at equilibrium conditions, both in the classical and in the
Bose–Einstein condensed phase using optical interferometry. For
this, we have developed an experimental platform excelling in
high sensitivity and spatial resolution of more than an order of
magnitude below the width of the condensate mode. In the
uncondensed phase, we directly observe the thermal de Broglie
wavelength through the correlation length of the photons, which
has both the expected absolute value and the expected tempera-
ture scaling. As the photon number is increased, long-range
order, as indicated by a significant increase of the transverse
coherence length, emerges when the mean distance between
the optical wave packets approaches the measured thermal
de Broglie wavelength. Our direct look at the coherence proper-
ties of the photons from the interferometrically measured
in-plane first-order correlations verifies the good applicability of
thermodynamic ideal Bose gas theory for the present photonic
quantum gas.

Results
Preparation and characterizing measurements. To prepare a
two-dimensional photon gas, we use a microcavity setup filled

with a liquid dye solution (see the left-hand side of Fig. 1a).
Here the photons are confined by two highly reflective curved
mirrors spaced by a distance in the wavelength regime. The
correspondingly large free spectral range in the microcavity
restricts the dye molecules to, in good approximation, emit only
into transversal cavity modes belonging to one fixed longitudinal
mode number. The photon gas then becomes two-dimensional
with the lowest photon energy at ħωcutoff≃ 2.1 eV for the
transversal ground mode, introducing an effective mass of the
cavity photons in our experiment. The resulting quadratic
optical dispersion, see Eq. (1) below, is the same as for a massive
particle35. Figure 1b shows the measured energy–momentum
relation for the uncondensed two-dimensional photon gas
(see Methods section). The data follow a quadratic scaling
with the transverse wave vector kr with the dashed line
showing the expected dispersion for an effective photon mass
meff= ħωcutoff/c

2≃ 7.76(2) × 10−36 kg, where c= c0/n denotes
the speed of light in the medium with refractive index n, as
derived from the cavity parameters. The agreement with
the experimental data verifies the predictions for a quadratic
(non-relativistic) dispersion in the weak coupling regime36, 37.
Given the non-vanishing effective photon mass, the concept of a
thermal de Broglie wavelength can be extended to the cavity
photons. Spatially, the mirror curvature induces a harmonic
trapping potential of trapping frequency Ω for the photon gas,
yielding a photon energy in the cavity

E ’ meff c
2 þ �hkrð Þ2

2meff
þ 1

2
meffΩ

2r2: ð1Þ

To achieve thermalization, the photons are coupled to a dye
solution in the microcavity (Rhodamine 6 G solved in ethylene
glycol) by repeated absorption re-emission cycles. The two
transverse modal degrees of freedom thermalize to the (internal
rovibrational) temperature T of the dye, leading to Bose–Einstein
distributed photon energies of order ∼ kBT above the low-energy
cutoff provided that the thermalization is sufficiently fast35, 38. To
generate a photon gas of total particle number N and compensate
for optical losses from, for example, mirror transmission, the
dye microcavity is pumped by a laser beam (see Methods section).
In the presence of the harmonic trapping potential, the
two-dimensional photon gas exhibits a phase transition to a
Bose–Einstein condensate at non-vanishing temperatures or finite
particle numbers, correspondingly. Above a critical particle
number of Nc= π2/3 (kBT/(ħΩ))2≃ 94,000 photons at room
temperature (T= 300 K), with the harmonic trapping frequency
Ω/(2π)≃ 37 GHz, BEC has been observed12, 13, 39, and the
temporal evolution into equilibrium has been studied40, 41.

Interferometric setup and model. To investigate the coherence
properties of the photon gas, we employ the interferometric
measurement schematically depicted in Fig. 1a, see also Methods
section for details. The emission from the dye microcavity is
collimated and after passing a polarizer to lift the polarization
degeneracy sent to a Michelson interferometer with a movable
cat-eye retroreflector replacing one of the mirrors9, 31. The plane
mirror in the reference arm is slightly tilted leading to a fringe-
type interference pattern, which we read out with a camera, see
Fig. 1c for an example. As the retroreflector inverts the image,
each point r = (x,y) in the camera plane corresponds to the
interference of fields of the cavity emission at two points at
transverse positions r (reference path) and −r (cat-eye path) prior
to entering the interferometer. At the detector, we expect an
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interference pattern of the form

Id rð Þ ¼ 1

4
I rð Þ þ I �rð Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I rð ÞI �rð Þ
p

cos Δϕð Þ g 1ð Þ r;�r; τð Þ
�

�

�

�

h i

;

ð2Þ

where I(r) corresponds to the intensity distribution of the cavity
emission at transverse position r. Further, Δϕ= arg[g(1)(r,−r; τ)]
and τ=Δℓ/c0 denotes the time delay accumulated between arms
due to a path length difference Δℓ. The normalized first-order
spatial correlation is defined as42

g 1ð Þ r;�r; τð Þ¼ Eþ r; tð ÞE �r; t þ τð Þh i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E r; tð Þj j2
� �

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E �r; t þ τð Þj j2
� �

q ; ð3Þ

where E(r,t) denotes the quantized electric field operator
at transverse position r and time t and brackets account
for (ensemble) averaging under stationary statistics (see Supple-
mentary Notes 1–4). Experimentally, we use the fringe visibility
V= (Imax−Imin)/(Imax + Imin) as a measure for the correlation
function, where Imax (Imin) denote maximum (minimum)
intensities of the fringe pattern around the path difference Δℓ.

The visibility is related to the first-order coherence following

V r; τð Þ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I rð ÞI �rð Þ
p

I rð Þ þ I �rð Þ g 1ð Þ r;�r; τð Þ
�

�

�

�: ð4Þ

Correspondingly, when varying τ by changing the longitudinal
position of the cat-eye retroreflector with a piezo-driven stepper
motor translator, we can extract both longitudinal and transverse
coherence properties of the emission from the dye microcavity.
Intuitively, the interference signal at each point r corresponds to
the interference expected from a Young’s double slit experi-
ment21, 22 with a slit separation of 2|r|, as seen when inspecting
the optical paths in Fig. 1a. Figure 1c, f show spatial interference
fringes for a fixed path length difference (near Δℓ= 0) for the
case of a photon Bose–Einstein condensate, while Fig. 1d, e, g
show images along with a cut along their x axis at y= 0 recorded
far below the threshold for condensation. For the latter, two path
length differences have been selected that correspond to a phase
shift of π. The images indicate the large difference in the
transverse coherence length for the case above and below
threshold.

We find the expected correlation function Eq. (3) for the case
of the two-dimensional photon gas in a harmonic trap similar to
earlier work4, 43. Briefly, to find g(1)(r,−r; τ), we expand the
electric field operators in eigenfunctions of the harmonic

a
Pump beam

M
ir
ro

r

Heating

resistors kr

k

EMCCD

camera

Δ
  

 /
2

cb

4–4 0

E
–

m
e

ff
c

2
 (

m
e

V
)

–2 2

20

40

60

0

S
ig

n
a

l 
(a

rb
. 
u

n
it
s
)

0.1

10

1

0 10 20–10–20

Position, x (μm)

r

–r

0 10–10

x (μm)

5–5

Δ� ≈ 0
Δ� ≈ �

Polarizer

d

f

e

g

Dye solution (T = 295 – 370K)

kz (fixed)

kr (106 m–1)

Fig. 1 Experimental scheme. a The dye-filled optical microcavity confines photons between two highly reflecting mirrors spaced in the wavelength regime,

where they thermalize to the temperature of the dye solution by absorption re-emission processes. The ambient temperature of the apparatus can be

varied between 297 K (room temperature) and 370 K. The Michelson interferometer shown on the right is used to investigate the transverse and

longitudinal coherence of the photon gas. The sketched axial mirroring of transverse coordinates illustrates the actual point mirroring in the image plane

done by the cat-eye retroreflector. b Measured dispersion of the dye microcavity emission, showing photon energies vs. the transverse wave vector kr

(derived from the angle of emission). The data were recorded for the uncondensed gas. c–g Camera images of the radiation transmitted by the

interferometer in the condensed (c) and in the uncondensed (d, e) phase regime, with N/Nc≈ 1.76 and N/Nc≈ 10−4, respectively. In the uncondensed

phase, the transverse coherence length of the microcavity emission is so short that it amounts to less than a fringe width. The two camera images

correspond to two different relative path lengths in the Michelson interferometer. The image size corresponds to 40 µm×40 µm (c) and 20 µm×20 µm (d,

e), respectively. The bottom plots (f) and (g) give cuts through the center of the corresponding fringe patterns (c) and (d, e), respectively
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oscillator and assume that the photon gas is in thermal
equilibrium at temperature T. The resulting equations can then
be solved numerically, where we use the eigenfunctions of the 700
lowest harmonic oscillator modes; details are summarized in the
Supplementary Information. Far below threshold, the distribution
function is well described by a Boltzmann distribution, which
allows for an analytic solution of the spatial correlation function
at equal times, g(1)(r,−r; 0)= exp(−4π|r|2/λth

2). Correspondingly,
a measurement of the spatial correlation length, defined as
‘c¼λth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 2=ð4πÞ
p

(full width half maximum (FWHM)), allows to
directly determine the thermal de Broglie wavelength. In our
numerical calculations, we account for the noise floor of the used
camera, which reduces the measured interference contrast
especially in regions with low intensities.

Temporal and transverse coherence. First, we have studied the
temporal coherence by scanning the longitudinal position of
the cat-eye retroreflector and studying the interference pattern
near r= 0. A corresponding temporal fringe pattern is displayed
in Fig. 2a (top), showing the signal detected by one camera pixel
vs. the temporal delay due to path length difference of the
Michelson interferometer. The bottom panel shows the corre-
sponding variation of the fringe visibility. The visibility reduces

for large path length differences, and from the decay we find a
coherence time in the uncondensed phase of τc≃ 129(6) fs at a
temperature of T= 297 K. This value exceeds the expected
coherence time of

ffiffiffi

3
p

�h= kBTð Þ ’ 44 fs, which we attribute to the
finite imaging resolution of our setup (see Supplementary
Note 5). Indeed, when including an averaging over an area given
by the point spread function in the numerical calculations, the
results agree much better with the measured data, demonstrating
qualitatively the strong influence of finite spatial resolution on the
measured temporal coherence data. In accordance with
theory predictions, the first-order correlation time of the
uncondensed photon gas is more than four orders of magnitude
shorter than values observed in the Bose–Einstein condensed
phase with heterodyne measurements23 and slightly smaller than
other reported results24.

To study the transverse coherence, Fig. 2b gives the observed
visibilities of the central fringes (Δτ≃ 0 in Fig. 2a) vs. transverse
position, directly providing a spatial map of the coherence of the
thermal photon gas. To extract the coherence length, we subtract a
visibility offset given by the noise characteristics of the camera
(see Supplementary Note 6) and radially average the visibility.
Figure 2c gives the corresponding variation vs. transverse distance
from the origin. The visible rapid decay with increasing distance is
understood in terms of the limited transverse coherence of the
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Fig. 2 Temporal and spatial correlations of thermal photon gas. a The top panel shows the variation of the camera signal detected by the camera pixel

closest to r= 0 in the image plane as a function of the time delay due to different interferometer path lengths for a thermal photon gas (N≪ Nc). The inset

gives a zoomed view into the central fringes. The bottom plot shows the corresponding variation of the fringe visibility along with a fit to |g(1)(τ)| (solid).

b Map of the observed fringe visibility (raw data) vs. transverse position in the camera plane. c Offset corrected fringe visibility vs. radial distance from the

center (red), along with a Gaussian fit (black). After correcting for the measured resolution of the imaging system, the curve directly maps the extent of the

thermal de Broglie wave packets. (T= 307 K, N/Nc≃ 10−4)
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thermal photon gas. After correcting for the spatial resolution of
the imaging system, measured using a SNOM-fiber of < 200 nm
aperture diameter placed in the cavity plane (see Methods
section), we can readily determine the spatial correlation length
of the two-dimensional, harmonically confined gas. From this,
we extract the corresponding thermal de Broglie wavelength
λth= 1.48(1) µm. This agrees well with theoretical value of
1.482(2) µm, obtained by using the above-quoted effective photon
mass and its uncertainty in the formula for the thermal de Broglie
wavelength. In contrast to a determination of the de Broglie
wavelength by momentum-resolved emission spectra31, we here
directly observe the spatial coherence of the photon wave packet.

To test for the expected temperature scaling of the thermal de
Broglie wavelength, the cavity was heated using two electric
heaters placed on the side of the cavity mirrors. This allows us to
tune the temperature by some 70 K, as at higher temperatures the
solvent starts to noticeably evaporate. Figure 3 shows the
variation of the experimentally determined thermal de Broglie
wavelength with temperature of the dye microcavity. With
increasing temperature, the observed transverse coherence length
and correspondingly the extracted de Broglie wavelength short-
ens. The shown error bars give the size of the statistical
uncertainty and the gray line the systematic uncertainty due to
the correction for the point spread function of the imaging
system. A fit to the data yields a variation T−0.51(3), which is in
very good agreement with the predicted 1=

ffiffiffiffi

T
p

scaling.
In a next step, the variation of the transverse coherence of the

photon gas with increasing photon number was studied. At the
onset of BEC, we expect a sharp increase in coherence length, as is
qualitatively already visible from inspecting Fig. 1c, f. To quantify
this, we measured spatial maps of the fringe visibility for different
ratios of the total photon number N and critical photon number
Nc≃ 94,000, see Fig. 4a. The corresponding variation of the fringe
visibility with radial distance from the center is given in Fig. 4b,
demonstrating good agreement with numerical calculations for
corresponding values of N/Nc accounting for the detection noise
floor and uncertainties in the measured photon number (shaded
areas). In this parameter regime, continuous operation of the
photon gas is not feasible due to excitation of long-lived triplet
states of the dye molecules. We therefore use pump pulses of 600
ns temporal length, which is more than two orders of magnitude
above the thermalization timescale40. This pulsed operation has
not been observed to affect the degree of thermalization, but it
leads to a signal-to-noise ratio below that of the measurements of
the uncondensed gas (Fig. 2). From our data, we find the onset of
condensation at a phase-space density ~ncλth

2= 3.2(6) with the
critical central density ~nc (see Methods section), see Fig. 4c,
which corresponds within the uncertainties to the expected value
~ncλth

2= π2/3 at criticality27, 44. In the condensed phase, the
coherence length strongly increases and soon exceeds the
condensate diameter (FWHM, horizontal solid line in Fig. 4c).
For values N/Nc≪1, corresponding to the thermal regime, the
coherence length as expected approaches λth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 2=ð4πÞ
p

. When
comparing our data to the numerically derived coherence
function, we see a good agreement both below and above the
condensation threshold when we take the camera characteristics
into account (solid line in Fig. 4c).

Finally, we investigate the photon gas correlations in more
detail in a regime close to the condensation threshold where
quantum degeneracy is reached. Figure 5 gives the three
measured data sets with lowest photon numbers (from Fig. 4b)
in the condensed phase regime, fitted with numerically calculated
visibility curves using N/Nc as a fitting parameter. Our previous
discussion has identified two distinct regimes: first, we find
correlations in the uncondensed photon gas in good agreement
with a Gaussian decay on a length scale given by the thermal de

Broglie wavelength (Fig. 2), and second, coherence exceeds the
ground mode diameter in the Bose–Einstein condensed system
(Fig. 4). For the intermediate region, one analytically expects the
spatial correlations to consist of a Gaussian thermal contribution
exp(−4π|r|2/λth

2) at short length scales, as determined by the
population in highly excited transverse modes, and an exponen-
tially decaying quasi long-range contribution exp(−2|r|/ξ), which
results from the macroscopic population of the low-energy states
at quantum degeneracy2, 27. Here, ξ denotes the correlation
length. In the thermodynamic limit, the described bimodal
decay of correlations is expected only in the uncondensed phase
(N<Nc), while upon condensation directly true long-range order,
with ξ→∞, emerges. At photon numbers of order of 105 for the
here studied two-dimensional photon gas, however, finite-size
effects become important, leading to a softening of the phase
transition, which is associated with a continuous gradual increase
of the correlation length. Correspondingly, the bimodal behavior
is visible in our experimental and numerical data also for N>Nc,
as seen in Fig. 5. The corresponding expected population of
low-energy states is given in the spectral photon distributions
(inset).

From an exponential fit to the experimental data in Fig. 5
between 2 and 6 µm radial distance (dashed lines), we obtain
a correlation length ξ= 7.4(2) µm for a total photon number
of 95,000 (N/Nc= 1.01) and ξ= 9.6(5) µm for 96,000 photons
(N/Nc≃ 1.02). For both of these measurements, the correlation
length is of order of the size of the ground mode given by the
oscillator length σ0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h=ðmΩÞ
p

¼7:7 µm. Measurements closer to
the condensation threshold of Nc= 94,000 in the harmonically
trapped case would require a photon number precision on
the order of 0.1%. For N≲Nc, we cannot extract accurate
experimental values for g(1)(|r|) due to limited signal-to-noise
ratio in the here required pulsed pumping operational mode,
and correspondingly we only show results of our numerical
calculations. Nevertheless, our analysis reveals the predicted
emergence of (quasi) long-range order in the regime close to the
condensation threshold2, 27.

To conclude, we have determined spatial coherence properties
of a two-dimensional photon gas both in the thermal and the
Bose–Einstein condensed phase. The high spatial resolution of the
interferometric setup allows us to directly image the coherence
properties of the photon gas. In the uncondensed regime, our
measurements reveal that the extent of the photon wave packets is
determined by the thermal de Broglie wavelength. We find
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excellent agreement both in the absolute value as well as the
temperature scaling of the de Broglie wavelength with the
expectations. We observe that quantum statistical effects, as
indicated by long-range order, emerge when the thermal de
Broglie wave packets spatially overlap, a behavior so far only
verified for atomic gases. For the condensed phase, we find that
the coherence extends over the whole sample. Close to the phase
transition, the quantum degenerate gas exhibits thermal and
quasi-long-range contributions to the spatial correlations as
expected theoretically. To further explore this regime, it would be
beneficial to study the photon gas confined in a box potential at
large phase-space densities, which would allow a more quanti-
tative comparison with theory predictions due to the absence of
BEC in the homogeneous two-dimensional system17, 27, 45.

For the future, spatially resolved first-order coherence
measurements are expected to reveal possible long-lived phase
singularities from vortices in thermo-optically or Kerr
nonlinearity-induced photon superfluids46, 47. Other than atomic
condensates, optical quantum gases can be subject to grand
canonical statistics48, 49, which is expected to give rise to unusual
dynamics of the quantum fluid. Finally, our setup might be a tool
to study critical scaling at the phase transition.

Methods
Dye-cavity setup and characterization. The dye microcavity uses two spherically
curved high-reflecting dielectric mirrors (1 m radius), as typically used in cavity
ring-down spectroscopy with reflectivities >99.997% in the relevant wavelength
regime (530–585 nm). The mirrors are separated by D0= 1.63 µm, corresponding
to four optical wavelengths at 583 nm in the solvent (refractive index n(T=297(3)
K) = 1.431(3)), causing a large frequency gap between adjacent longitudinal optical
modes that is comparable to the emission bandwidth of the dye molecules. Thus
the resonator is populated only with photons of a fixed longitudinal mode (q= 8)
making the photon gas two dimensional. The cavity is filled with Rhodamine 6G
dye solved in ethylene glycol (dye concentration 10−3mol/l), acting as a heat bath
for the photon gas. Collisions of solvent and dye molecules (10−14 s timescale) here
suppress coherent energy exchange between photons and dye molecules, so that the
photon gas is operated in the weak coupling regime37. The dye microcavity is
pumped with a laser beam of ~ 100 µm diameter at 532 nm, exploiting a minimum
in the mirror reflectivity at 43° angle to the optical axis. In the uncondensed
regime, pumping is done continuously with a pump power of ~ 1 mW, yielding N
= 18(2) intracavity photons. However, as the optical pump power required to reach
the critical photon number for condensation favors excessive population of long-
lived triplet states and photo bleaching of the organic dye molecules, continuous
pumping is rendered unfeasible in the condensed phase. Therefore, using two
acousto-optic modulators, the beam is chopped into pulses of 600 ns length with a
50 Hz repetition rate. To allow for a heating of the dye microcavity above room
temperature, two electrical power resistors are glued to the cavity mount, allowing
for a 12W thermal output. Further, two thermo-resistive temperature detectors are
attached to the cavity mirror substrates from different cavity sides, and the quoted
temperatures of the dye microcavity apparatus denote the average reading of these
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below the threshold to a Bose–Einstein condensate, the transverse coherence length equals λth
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 2=4π
p

(dashed-dotted line), and upon reaching

Bose–Einstein condensation the ensemble becomes transversally coherent, with correlation lengths exceeding the 12.7 µm FWHM of the condensate mode

(blue solid line). The error bars represent the uncertainty (s.d.) in the determination of N/Nc
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detectors with the error bar (Fig. 3), reflecting the difference between the two
readings.

The imaged dispersion shown in Fig. 1b corresponds to a momentum-resolved
spectrum of the cavity emission. For this, only the central ~ 30 µm (diameter) of the
cavity emission is transmitted through an iris aperture in the image plane, which
effectively reduces the relative intensity contribution of the higher energy modes.
The light subsequently passes a narrow slit in the momentum plane, before it is
sent onto an optical grating (2400 lines/mm) and imaged onto the camera.

Interferometer setup. To characterize the first-order coherence of the photon gas,
the emission on one side of the microcavity is collimated with a long working
distance objective (Mitutoyo M Plan Apo 10×) and sent onto a Michelson-type
interferometer. After passing a polarizer, the beam here is split up equally into two
partial beams with a non-polarizing beam splitter, which are reflected by a plane
mirror and a hollow cat-eye retroreflector, respectively. The latter is mounted on a
piezo-driven stepper motor translator allowing for a steady variation of the path
length difference of the interfering paths. The beams are recombined in the beam
splitter following the usual Michelson interferometer arrangement and then
imaged on an EMCCD camera. The hollow mirror cat-eye retroreflector inverts the
two transversal spatial coordinates (transverse with respect to the optical axis) and
is illuminated off-center to bypass imperfections at the internal contacting edges of
the device. Correspondingly, a slight tilt of the plane mirror back reflector is needed
to match the two beams in the image plane. To observe interference fringes, we
sample images for different delay times, typically scanning the cat-eye retroreflector
over a longitudinal distance of roughly 90 µm, corresponding to a variation of the
total time delay of 180 µm/c0≈600 fs. During such a scan, 2500 images are acquired,
corresponding to time steps in the path difference near 0.2 fs.

The obtained fringe visibility recorded for each of the camera pixels allows to
generate a two-dimensional map of the correlation function g(1)(r,−r; τ), where
τ=Δℓ/c0, denotes the time delay accumulated due to the path length difference
Δℓ. The transverse coherence length of the photon gas (Figs. 2b, c and 4) is
obtained by evaluating fringe data with a path length difference much below the
longitudinal coherence length, yielding effectively g(1)(r,−r; τ)≡g(1)(r,−r). The
reduced maximal visibility in Fig. 2c is attributed to the influence of detector noise
floor (see Supplementary Note 6). As the transverse coherence length of the

uncondensed photon gas is of the same order of magnitude as the imaging
resolution of the objective used to collimate the microcavity emission, the
point spread function of the whole imaging system was carefully determined
in preliminary measurements. To simulate the emission of a point source, the
< 200 nm diameter aperture of a SNOM fiber tip (LovaLite EM50 SMF28) was
placed in the emission plane of the cavity, the latter replaced by a non-reflecting
cavity dummy of same shape and size, using a drop of ethylene glycol for index
matching purposes. The resulting image of the fiber emission (utilizing a dye laser
at 583 nm) is used to characterize the complete imaging system. Both the spatial
decay of the experimentally observed visibility data vs. transverse position for a
thermal photon gas, see Fig. 2c, as well as the imaging system point spread function
can be well approximated by Gaussian curves, with the latter exhibiting a width of
σPSF≃ 0.658(2) μm. A deconvolution of the measured Gaussian correlation signal
of width σ with the point spread function can thus readily be performed, and the
true correlation length is obtained by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 � σ2PSF

p

. The finite spatial resolution of
the imaging system also implies that the temporal interference signal shown in
Fig. 2a corresponds to data averaged over a spatial area corresponding to the
imaging resolution noted above, which is larger than the ~200 nm × 200 nm size of
one camera pixel in the imaging plane.

Measurement details. The measured absolute value of the coherence time of
τc≃ 129(6) fs at T = 297 K temperature corresponds to τc= κħ/(kBT) with
κ= 4.90(3), which is larger than the expected κ¼

ffiffiffi

3
p

for the case of perfect imaging
resolution (see Supplementary Note 3). This results from the finite spatial reso-
lution, which mixes spatial correlations at different positions to yield the observed
temporal correlation data (see Supplementary Note 5). The data shown in Figs. 2
and 3 were recorded at typical photon numbers in the dye microcavity apparatus of
N = 18(2), which is more than three orders of magnitude below the critical photon
number
Nc = 94,000.

The experimental data shown in Fig. 4 investigates the condensed phase regime
of the photon gas with condensate fractions ranging from 1% up to 55%,
corresponding to ratios N/Nc of up to 2.2(3). At the used total photon numbers, we
find no evidence for a spatial broadening of the condensate, so that thermo-optic
interaction effects are considered to be small. In comparison with ref.12, we
attribute this behaviour to the here used longer spacing between successive pump
pulses. The quoted values for N/Nc in Fig. 4 are determined from a spectroscopic
measurement of the cavity emission using a spectrometer in 4f configuration,
equipped with a motorized slit for wavelength selection and a photomultiplier. To
allow for a comparison of the numerically obtained visibilities with the results
extracted from the experimental data, we have accounted for the noise
characteristics of the used detector, with an intrinsic noise floor present in the
taken images. This effect reduces the resolvable visibility in the outer parts of the
wings of the Gaussian condensate mode as the mean noise floor here becomes
comparable to the expected cavity emission intensity, which reduces the obtained
value for the coherence length. For details and a more elaborated discussion of the
performed numerical simulations on correlations in a thermalized two-dimensional
photon gas confined in a harmonic trap, see Supplementary Notes 1–4.

The absolute photon number at criticality is found by evaluating spatial images
of the emission recorded with a calibrated EMCCD camera. By considering the
cavity characteristics (mirror transmission, round trip time, energy cutoff and pulse
length), the transmission of all optical elements in the beam path and the detector
characteristics (quantum efficiency, gain, electrons per count and detected areal
fraction of the emission) with respective uncertainties, we experimentally find the
critical intracavity particle number Nc = 90(18)×103 to be in good agreement with
the theoretically expected value. We determine the critical phase-space density
~ncλth

2= 3.2(6) from the central density ~n =N/[π(Δr)2], see refs. 27, 44, with the
thermal cloud radius Δr¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBT=ðmeffΩ
2Þ

p

. Note that the expected critical phase-
space density ~ncλth

2= π2/3≈ 3.3 differs from the value ζ(2)= π2/6 of the Riemann
zeta function ζ for a two-dimensional system in a harmonic potential due to the
intrinsic twofold polarization degeneracy of the photonic system.

Data availability. The data that support the findings of this study are available
from the authors upon reasonable request.
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