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Abstract. This article deals with a first-order least-squares approach to the solution of
an optimal control problem governed by Stokes equations. As with our earlier work
on a velocity control by the Stokes flow in [S. Ryu, H.-C. Lee and S. D. Kim, SIAM
J. Numer. Anal., 47 (2009), pp. 1524-1545], we recast the objective functional as a H1

seminorm in the velocity control term. By introducing a velocity-flux variable and using
the Lagrange multiplier rule, a first-order optimality system is obtained. We show that
the least-squares principle based on L2 norms applied to this system yields the optimal
discretization error estimates for each variable in H1 norm, including the velocity flux.
For numerical tests, multigrid method is employed to the discrete algebraic system, so
that the velocity and flux controls are obtained.
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1 Introduction

Optimal control problems governed by partial differential equations (PDEs) can be re-
duced to a system of coupled PDEs by the Lagrange multiplier method [13, 14, 18, 25].
Such system of coupled PDEs and optimal control problems have been interesting sub-
jects because of not only their importance in the design process but also the needs of
efficient and numerical methods for implementations.
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There have been considerable attentions in first-order system least-squares (FOSLS)
approaches for Navier-Stokes or Stokes equations in many literatures [6, 9, 10, 12, 20–23].
These principles result in symmetric positive definite algebraic systems. Moreover, they
enable us to avoid using the finite elements satisfying the inf-sup condition. Some appli-
cations of least-squares finite element methods to optimization problem have been previ-
ously discussed in [3–5,7,8,15,24,27]. In particular, [8] developed an abstract form of the
FOSLS for optimal control problems governed by elliptic PDEs. Recently, [27] provides a
nice synthesis of optimal control by Stokes flows and FOSLS principles by drawing on [8]
and [12]. In [27], they only considered a velocity control using L2 norms in the objective
functional. In this work, as an improved version of [27], we consider a flux control using
the cost functional which has the H1 seminorm as a velocity control term.

From the Poincaré-Friedrichs inequality, the velocity control is also obtained by a flux
control. In a different way with the one in [27], the Lagrange multiplier method is used
after introducing a new variable U =∇ut, so that the value V is a Lagrange multiplier
and V 6=∇vt.

The objective functional we consider is

J (u,f)=
1

2

∫

Ω
|u−û|2+|∇ut−∇ût|2 dx+

σ

2

∫

Ω
|f|2 dx, (1.1)

where (·)t denotes the transpose, û is the given target velocity, σ is a positive penalty
parameter. The constraint is the Stokes equations such that






−ν∆u+∇p= f in Ω,

∇·u=0 in Ω,

u=0 on ∂Ω,
∫

Ω
p dx=0,

(1.2)

where u and p denote the velocity and pressure, respectively, ν the constant kinematic
viscosity, and f the control function. Here Ω⊂Rn(n =2 or 3) is a bounded convex poly-
hedron or has C1,1 boundary. The problem we study is to find an optimal state (u,p)
and an optimal control f which minimize the H1-norm distance between u and û satisfy-
ing the Stokes system (1.2). If Ω is connected and bounded at least in one direction and
û∈ [H1

0(Ω)]n, then there exists a constant C(Ω) such that

‖u−û‖<C(Ω)‖∇ut−∇ût‖, (1.3)

by the Poincaré-Friedrichs inequality (see [17]). From (1.3), the objective functional (1.1)
can be replaced by

J (u,f)=
1

2

∫

Ω
|∇ut−∇ût|2 dx+

σ

2

∫

Ω
|f|2 dx. (1.4)
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Hence, we consider the objective functional (1.4) instead of (1.1). Such a constrained
optimization problem can be converted to an unconstrained optimization problem by
the Lagrange multiplier rule [8, 13]. Before using the Lagrange multiplier rule, we take
the techniques in [12] by introducing the flux variable U=∇ut so that the Stokes system
is a first-order system. Then we can get the optimality system which consists of the state
system, an adjoint system and an optimality condition using the Lagrange multiplier rule.
This optimality system is a coupled first-order system.

We first consider the H−1-L2 norm based least-squares functional corresponding to
the first-order coupled system. Using the norm equivalence of this functional, we show
the H1 norm equivalence of the L2 based functional (see Section 3). Note that we impose
the same weight as the one in [27] on the least-squares functional to get desired numerical
results.

This paper is organized as follows. In Section 2, we present the first-order optimality
system from the given constrained optimal control problem using the Lagrange mul-
tiplier rule; in Section 3, two types of first-order systems least-squares functionals are
defined and then the existence and uniqueness of the solutions are shown. In Section 4,
optimal discretization error estimates in the H1 norm are proved. Some numerical results
are presented for a simple example in Section 5. Finally, concluding remarks are added
in Section 6.

2 Coupled first-order system formulations

In this paper, the standard Sobolev space notation is used; Hs(Ω) with their associated
inner products (·,·)s and norms ‖·‖s ,s≥0 will be used. For example, H0(Ω) is the usual
L2(Ω) with the norm ‖·‖0 = ‖·‖ and inner product (·,·). The L2

0(Ω) is the subspace of
all square integrable functions with zero mean. The space H−1(Ω) denotes the dual of
H1

0(Ω) equipped with norm ‖φ‖−1 = sup0 6=v∈H1
0(Ω)(φ,v)/‖v‖1. Finally, the standard div

space H(div;Ω) and curl space H(curl;Ω) will be used (see [1, 17]).
For first-order formulations, we use velocity-velocity gradient-pressure formulation

in [12] by introducing the state velocity flux variable U =∇ut = (∇u1,··· ,∇un). Then
the system (1.2) and (1.4) may be the following minimization problem: minimize the
objective functional

J (U,f)=
1

2
|U−∇ût|21+

σ

2
‖f‖2, (2.1)

subject to 




−ν(∇·U)t +∇p= f in Ω,

U−∇ut =0 in Ω,

∇·u=0 in Ω,

u=0 on ∂Ω,
∫

Ω
p dx =0,

(2.2)
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where |·|1 denotes the H1(Ω) seminorm.
By introducing the Lagrange multipliers v,V and q, the constrained optimization

problem (2.1) and (2.2) may be converted as the following equivalent coupled system
(see [13]): 





−ν(∇·U)t +∇p= f in Ω,

U−∇ut =0 in Ω,

∇·u=0 in Ω,

u=0 on ∂Ω,

(∇·V)t+∇q=0 in Ω,

V−ν∇vt+U=∇ût in Ω,

∇·v=0 in Ω,

v=0 on ∂Ω,

(2.3)

and

−
1

σ
v= f. (2.4)

We can get rid of the control f from the state system in (2.3) by the relation of the control
and the adjoint variable in (2.4). Following the results in [12], we obtain the extended
optimality system for (2.3) and (2.4):






−ν(∇·U)t +∇p+
v

σ
=0 in Ω,

U−∇ut =0 in Ω,

∇·u=0 in Ω,

∇×U=0 in Ω,

∇(trU)=0 in Ω,

(∇·V)t+∇q=0 in Ω,

V−ν∇vt+U=∇ût in Ω,

∇·v=0 in Ω,

∇×V=0 in Ω,

∇(trV)=0 in Ω,

(2.5)

with u=v=0, n×U=n×V=0 on ∂Ω and
∫

Ω
p dx=

∫

Ω
q dx=0.

Remark 2.1. As a more general case, one can regard the nonhomogeneous velocity bound-
ary condition problem: find (w,p,f)∈ [H1(Ω)]n×L2

0(Ω)×[L2(Ω)]n minimizing the func-
tional

J (w,f)=
1

2
‖w−ŵ‖2

1+
σ

2
‖f‖, (2.6)
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subject to 




−ν∆w+∇p = f in Ω,

∇·w=0 in Ω,

w=g on Γ :=∂Ω,

(2.7)

where g∈ [H1/2(Γ)]n such that
∫

Γ
g·n ds =0. It is well known that if w is the solution of

Stokes equations (2.7) then it can be expressed as w=u0+u (see [17]), where u∈[H1
0 (Ω)]n

is the velocity solution of (1.2) with f+ν∆u0 in a forcing term and u0 ∈ [H1(Ω)]n is a
function such that

∇·u0 =0 in Ω, u0 =g on Γ.

Then, the minimizing objective functional and the state system will be

J (u,f)=
1

2
‖u−û‖2

1+
σ

2
‖f‖,

and 




−ν∆u+∇p= f+ν∆u0 in Ω,

∇·u=0 in Ω,

u=0 on Γ,

where, û = ŵ−u0. Similarly, by introducing a velocity flux variable U = ∇ut and the
Lagrange multiplier method, one can induce the first optimality system. In this case, one
may have

−ν(∇·U)t+∇p+
v

σ
=ν∆u0

and
(∇·V)t+∇q+u= û

instead of the first line and the sixth line in Eq. (2.5), respectively. Since the latter equation
is the same one in [27], one can easily modified the above case using the results in this
paper and [27]. If û := ŵ−u0∈ [H1

0(Ω)]2, then only the first line in (2.5) is changed into

−ν(∇·U)t+∇p+
v

σ
=ν∆u0.

In this sense, it is enough to consider a homogeneous velocity boundary condition for
our optimal control problem.

3 Norm equivalences of first-order least-squares functionals

In this section we consider two types of least-squares functionals using different norms,
one of which employs H−1-L2 norms based on the system (2.3) and the other of which
employs only L2 norms for (2.5). The weight ν2 will be given for the residuals of state
flux variable U and ∇ut and for the residual for the state continuity equation ∇·u as
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suggested in [12]. Accordingly, the weight 1
σ2 is used to adjoint system for balancing the

weights between the residuals from the state and adjoint systems (see [27]). In this sense,
the first least-squares functional is defined for the system (2.3) as

L1(U,u,p,V,v,q;û)

=
∥∥∥ν(∇·U)t−∇p−

v

σ

∥∥∥
2

−1
+ν2‖U−∇ut‖2+ν2‖∇·u‖2

+
ν2

σ2
‖(∇·V)t+∇q‖2

−1+
1

σ2
‖V−ν∇vt+U−∇ût‖2+

ν2

σ2
‖∇·v‖2,

and the second functional for the extended system (2.5) is defined as

L2(U,u,p,V,v,q;û)

=
∥∥∥ν(∇·U)t−∇p−

v

σ

∥∥∥
2
+ν2‖U−∇ut‖2+ν2‖∇·u‖2+ν2‖∇×U‖2

+ν2‖∇tr(U)‖2+
ν2

σ2
‖(∇·V)t +∇q‖2+

1

σ2
‖V−ν∇vt +U−∇ût‖2

+
ν2

σ2
‖∇·v‖2+

ν2

σ2
‖∇×V‖2+

ν2

σ2
‖∇tr(V)‖2.

For the proof of a product H1 norm equivalence of the L2 functional, we first show the
coercivity of the L1 functional in a product L2-H1 norm as a vehicle. Then we show the
existence of solution minimizing the quadratic functionals L2(U,u,p,V,v,q;û) over the
proper solution spaces W×W , which will be defined later. In other words, we want to
find (U,u,p,V,v,q)∈W×W such that

(U,u,p,V,v,q)=arg inf
(Ũ,ũ, p̃,Ṽ,ṽ,q̃)∈W×W

L2(Ũ,ũ, p̃,Ṽ,ṽ,q̃;û). (3.1)

Let
W1 = H(div;Ω)n×H1

0(Ω)n×(L2
0(Ω)∩H1(Ω)).

Lemma 3.1. For any (U,u,p,V,v,q)∈W1×W1, there exists a positive constant C such that

‖p‖≤C

(∥∥∥ν(∇·U)t−∇p−
v

σ

∥∥∥
−1

+ν‖U‖+
1

σ
‖v‖−1

)
, (3.2)

and
‖q‖≤C

(
‖(∇·V)t+∇q‖−1+‖V‖

)
. (3.3)

Proof. Since one may modify the proof of Lemma 3.1 in [27], we omit the proof.

For convenience, we denote M1 and M2 as the following norms:

M1(U,u,p,V,v,q)=‖U‖2+‖u‖2
1+‖p‖2+‖V‖2+‖v‖2

1+‖q‖2,
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and

M2(U,u,p,V,v,q)=‖U‖2
1+‖u‖2

1+‖p‖2
1+‖V‖2

1+‖v‖2
1+‖q‖2

1.

In order to show the existence and uniqueness of the solution for (3.1), we show the
equivalence of M2 and L2, where the equivalence on this norm is dependent on the vis-
cosity ν and the penalty parameter σ. In order to provide such validity of equivalence,
we need to define the proper solution spaces

W1 = L2(Ω)n2
×H1

0(Ω)n×L2
0(Ω) and W =V0×H1

0(Ω)n×(H1(Ω)∩L2
0(Ω)),

where V0 = {V∈ H1(Ω)n2
: n×V = 0 on ∂Ω}. From now on, we assume that the penalty

parameter σ is in the range 0<σ≤1 because the small values of σ are required for good
control (see Section 5). The following theorem shows the equivalence of M1 and L1.

Theorem 3.1. There are two positive constants C1 and C2 dependent on ν and σ such that for
any (U,u,p,V,v,q)∈W1×W1, we have

C1M1(U,u,p,V,v,q)≤L1(U,u,p,V,v,q;0)≤C2M1(U,u,p,V,v,q). (3.4)

Proof. One may easily show the upper bound using the triangle, Cauchy-Schwarz in-
equalities and definition of H−1 norm. Also, by modifying the proof of Theorem 3.1
in [12], one may have

‖U‖2+‖∇ut‖2+‖V‖2+ν2‖∇vt‖2+
1

σ
‖v‖2

≤Cmax{1+
1

ν2
,σ2+σν2}L1(U,u,p,V,v,q;0). (3.5)

Combining Lemma 3.1 and (3.5) yields the low bound of (3.4) with a positive constant C1

dependent on ν and σ.

For the norm equivalence of L2(U,u,p,V,v,q;0) with M2(U,u,p,V,v,q), we need to
establish the H2- regularity estimates of the following coupled equations:






−∆u+∇p/ν+
v

σν
=0 in Ω,

∆(v−u)+∇q=∇ût in Ω,

∇·u=0 in Ω,

∇·(v−u)=0 in Ω,

and

{
u=0 on ∂Ω,

v=0 on ∂Ω.
(3.6)

For uncoupled Stokes-like equations, its H2-regularity was provided in [21] by ap-
pealing ADN theory (see [2]). Now, in Appendix we provide the H2-regularity of (3.6)
for a reader’s purpose.
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Proposition 3.1. Suppose that the domain Ω is a bounded convex polyhedron or has C1,1 bound-
ary. Then, for u,v∈ H2(Ω)n∩H1

0(Ω)n and p,q ∈ H1(Ω), the coupled Stokes equations (3.6)
satisfies the H2 regularity estimate

‖u‖2+‖v−u‖2+‖p‖1+‖q‖1

≤Cr

(∥∥∥ν∆u−∇p−
v

σ

∥∥∥+‖∆(v−u)+∇q‖+‖∇·u‖1 +‖∇·(v−u)‖1

)
, (3.7)

where Cr depends on ν,σ and Ω.

Proof. See Appendix 6.

We summarize some results from [17] for the next theorem. The following inequalities
are from Theorems 3.7-3.9 and Lemmas 3.2, 3.6 in [17], respectively. Assume that the
domain Ω is a bounded convex polyhedron or has C1,1 boundary. Then for any vector v

in either H0(div)∩H(curl) or H(div)∩H0(curl) it follows that

‖v‖2
1≤C

(
‖v‖2+‖∇·v‖2+‖∇×v‖2

)
. (3.8)

If, in addition, the domain is simply connected, then

‖v‖2
1 ≤C

(
‖∇·v‖2+‖∇×v‖2

)
. (3.9)

Now it is ready to prove the norm equivalence for the least-squares functional L2 with
the norm M2.

Theorem 3.2. Assume that the domain Ω is a bounded convex polyhedron or has C1,1 boundary.
Then there are two constants C1 and C2 dependent on σ and ν such that for any (U,u,p,V,v,q)∈
W×W , we have

C1M2(U,u,p,V,v,q)≤L2(U,u,p,V,v,q;0)≤C2M2(U,u,p,V,v,q). (3.10)

Proof. The upper bound in (3.10) is straightforward from the triangle and Cauchy-Schwarz
inequalities. Since W⊂W1, we have L1≤L2 on W×W . By Theorem 3.1,

M1(U,u,p,V,v,q)≤CL1(U,u,p,V,v,q;0)≤CL2(U,u,p,V,v,q;0).

From the inequality (3.8) and the standard Poincaré-Friedrichs inequality, we have

‖U‖2
1+‖p‖2

1 +‖V‖2
1+‖q‖2

1

≤C
(
‖U‖2+‖(∇·U)t‖2+‖∇×U‖2+‖∇p‖2

+‖V‖2+‖(∇·V)t‖2+‖∇×V‖2+‖∇q‖2
)

.
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It thus suffices to show that

C(‖(∇·U)t‖2+‖∇p‖2+‖(∇·V)t‖2+‖∇q‖2)

≤
∥∥∥ν(∇·U)t−∇p−

v

σ

∥∥∥
2
+|trU|21+‖∇×U‖2+‖U+V−ν∇vt‖2

+‖(∇·V)t +∇q‖2+|trV|21+‖∇×V‖2. (3.11)

If (3.11) is satisfied for simply connected Ω, then, by the similar arguments in the proof
of Theorem 3.7 in [17], it is also satisfied for Ω whose boundary ∂Ω is C1,1. Hence it
is enough to assume that the domain Ω is simply connected with connected boundary.
Also we will prove (3.11) only for three dimensional case because its proof can be reduced
to two dimensional case. Since U and V are in V0, there exist r, w, Φ and Ψ satisfying
Corollary 3.4 in [17] such that

U=∇rt+∇×Φ, and U+V=∇wt+∇×Ψ, (3.12)

with
∆r=(∇·U)t and ∆(w−r)=(∇·V)t .

By taking the curl of both sides of decomposition (3.12), it is easy to see that

‖∆Φ‖=‖∇×U‖ and ‖∆(Ψ−Φ)‖=‖∇×V‖. (3.13)

Hence,

‖(∇·U)t‖2+‖∇p‖2 +‖(∇·V)t‖2+‖∇q‖2

=‖∆r‖2 +‖∇p‖2+‖∆(w−r)‖2 +‖∇q‖2

≤Cr

(∥∥∥ν∆r−∇p−
w

σ

∥∥∥
2
+‖∇·r‖2

1 +‖∆(w−r)+∇q‖2 +‖∇·(w−r)‖2
1

)
(3.14)

≤C

(∥∥∥ν∆r−∇p−
w

σ

∥∥∥
2
+|∇·r|21 +‖∆(w−r)+∇q‖2 +|∇·(w−r)|21

)
(3.15)

≤C
(∥∥∥ν∆r−∇p−

w

σ

∥∥∥
2
+|∇·r+tr∇×Φ|21+‖∆Φ‖2

+‖ν∆(w−r)+∇q‖2 +|∇·(w−r)+tr∇×(Ψ−Φ)|21+‖∆(Ψ−Φ)‖2
)

(3.16)

=C
(∥∥∥ν(∇·U)t−∇p−

w

σ

∥∥∥
2
+|trU|21+‖∇×U‖2

+‖(∇·V)t +∇q‖2+|trV|21+‖∇×V‖2
)

. (3.17)

The inequalities (3.14), (3.15) and (3.16) are from (3.7), Lemma 3.1 and Lemma 3.2 in [12]
respectively. The equality (3.17) is from (3.13). Using triangle inequality, we have

∥∥∥ν(∇·U)t−∇p−
w

σ

∥∥∥
2
≤C

(∥∥∥ν(∇·U)t−∇p−
v

σ

∥∥∥
2
+‖v−w‖2

)
.
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Using Poincaré-Friedrichs inequality and (3.12), it follows that

‖v−w‖≤C‖∇vt−∇wt‖2 =C
(
‖∇vt−U−V+∇×Ψ‖2

)
. (3.18)

Then applying triangle inequality and (3.9) to the right hand side of (3.18) with ∇×Ψ,
and using (3.13), we have

‖ν∇vt−U−V+∇×Ψ‖2 ≤C(‖ν∇vt−U−V‖2+‖∇×Ψ‖2
1)

≤C(‖ν∇vt−U−V‖2+‖∇·∇×Ψ‖2 +‖∇×∇×Ψ‖2)

=C(‖ν∇vt−U−V‖2+‖∆Ψ‖)

=C(‖ν∇vt−U−V‖2+‖∇×(U+V)‖2)

≤C(‖ν∇vt−U−V‖2+‖∇×U‖2+‖∇×V‖2).

This proves (3.11) for simply connected Ω. Hence, we have the conclusion.

4 Finite element approximations

For the finite element approximation, let Th be a partition of the Ω into finite elements
with h=max{diam(K) :K∈Th}. Assume that the triangulation Th is a quasi-uniform, i.e.,
it is regular and satisfies the inverse assumption (see [11]). Let W h :=Vh×U h×Qh be a
finite dimensional subspace of W with the following approximation properties : for any

(U,u,p)∈W∩(Hr+1(Ω)n2
×Hs+1(Ω)n×Hk+1(Ω)) (r,s,k≥1),

there exist a constant C and a pair (Uh,uh,ph)∈W h such that

inf
Uh∈ V h

{‖U−Uh‖0+h‖U−Uh‖1}≤Chr+1‖U‖r+1, (4.1)

inf
uh∈ U h

{‖u−uh‖0+h‖u−uh‖1}≤Chs+1‖u‖s+1, (4.2)

inf
ph∈ Qh

{‖p−ph‖0+h‖p−ph‖1}≤Chk+1‖p‖k+1. (4.3)

For convenience, let the state variables and adjoint variables be Φ:={U,u,p}∈W and
Λ:={V,v,q}∈W , respectively. Then, the variational problem equivalent to (3.1) is to find
(Φ,Λ)∈W×W such that

A((Φ,Λ),(Φ̃,Λ̃))= F((Φ̃,Λ̃);û) ∀(Φ̃,Λ̃)∈W×W , (4.4)
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where

A((Φ,Λ),(Φ̃,Λ̃))

=

(
ν(∇·U)t−∇p−

v

σ
,ν(∇·Ũ)t−∇ p̃−

ṽ

σ

)

+ν2(U−∇ut,Ũ−∇ũt)+ν2(∇·u,∇·ũ)+ν2(∇×U,∇×Ũ)

+ν2(∇tr(U),∇tr(Ũ))+
ν2

σ2
((∇·V)t+∇q, (∇·Ṽ)t+∇q̃)

+
1

σ2
(V−ν∇vt+U,Ṽ−ν∇ṽt+Ũ)+

ν2

σ2
(∇·v,∇·ṽ)+

ν2

σ2
(∇×V,∇×Ṽ)

+
ν2

σ2
(∇tr(V),∇tr(Ṽ)),

and

F((Φ̃,Λ̃);û)=
1

σ2
(∇û,Ṽ−ν∇ṽt+Ũ).

The corresponding finite element discretization of (4.4) is to find (Φh,Λh) ∈W h×W h

satisfying

A((Φh,Λh),(Φ̃h,Λ̃h))=F((Φ̃h,Λ̃h);û) ∀(Φ̃h,Λ̃h)∈W h×W h. (4.5)

Then, the established ellipticity and continuity in a product H1 norm may yield the fol-
lowing optimal discretization error estimates in the finite element space W h×W h.

Proposition 4.1. Let (Φ,Λ) be the solution of the minimization of L2 over W×W and (Φh,Λh)
the unique minimizer of L2 over Wh×Wh. Then

M2(Φ−Φh,Λ−Λh)≤C inf
(Φ̃h,Λ̃h)∈Wh×Wh

M2(Φ−Φ̃h,Λ−Λ̃h). (4.6)

Proof. Theorem 3.2, the orthogonality of the error (Φ−Φ̃h,Λ−Λ̃h) to Wh×Wh with re-
spect to the bilinear form A(·,·), and the Cauchy-Schwarz inequality imply (4.6).

Theorem 4.1. Assume that (Φ,Λ)∈ [W∩(Hs+1(Ω)n2
×Hs+1(Ω)n×Hs+1(Ω)]2, where s≥1,

is the solution of the minimization problem for L2 and (Φh,Λh) is the unique minimizer of L2

over Wh×Wh. Then

M2(Φ−Φh,Λ−Λh)

≤Ch2s
(
‖U‖2

s+1+‖u‖2
s+1+‖p‖2

s+1+‖V‖2
s+1+‖v‖2

s+1+‖q‖2
s+1

)
.

Proof. It can be induced by Proposition 4.1 and the approximation properties (4.1)-(4.3).
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5 Numerical experimentations

For numerical implementations corresponding to bilinear form (4.5), we take the unit
square Ω :=(0,1)×(0,1)⊂R2 as a computational domain.

We use the single approximating space of continuous piecewise linear functions on
a triangulations Th with mesh size h for the approximations of all unknowns to repre-
sent the matrix corresponding to (4.5). Let W h :=Vh×U h×Qh be such a finite element

space. Let us choose bases {Vj(x)}4J
j=1, {Uj(x)}2J

j=1, and {Qj(x)}J
j=1 for Vh, U h and Qh,

respectively, so that one may have

Uh =
4J

∑
j=1

UjVj , uh =
2J

∑
j=1

ujUj , ph =
J

∑
j=1

pjQj ,

Vh =
4J

∑
j=1

VjVj , vh =
2J

∑
j=1

vjUj , qh =
J

∑
j=1

qjQj

for some sets of coefficients {U}4J
j=1, {uj}

2J
j=1, {pj}

J
j=1, {Vj}

4J
j=1, {vj}

2J
j=1, and {qj}

J
j=1 that

are determined by solving (5.1). Hence the discrete problem has a matrix equation,

[
A1 Bt

B A2

][
~Φ
~Λ

]

=

[
~F1

~F2

]
, (5.1)

where

A1 =




K1 Ct

1 Ct
2

C1 K2 0

C2 0 K3



, A2 =




K4

1
σ2ν

Ct
1 − ν

σ2 Ct
2

1
σ2ν

C1 K5 0

− ν
σ2 C2 0 ν2

σ2 K3



, B=




C3 0 0

C4 0 C5

0 0 0



,

and

~Φ=




~U
~u
~p



, ~Λ=




~V
~v
~q



, ~F1 =




~g1

~0
~0



, ~F2 =




~g1

~g2

~0



.

In (5.1), we have ~U =(U1,··· ,U4J),··· ,~q=(q1,··· ,qJ),

(K1)ij =ν2((∇·Vj)
t,(∇·Vi)

t)+(ν2+
1

σ2
)(Vj,Vi)

+ν2(∇×Vj,∇×Vi)+ν2(∇tr(Vj),∇tr(Vi)) for i, j=1,··· ,4J,

(K2)ij =ν2(∇U t
j ,∇U t

i )+ν2(∇·Uj,∇·Ui) for i, j=1,··· ,2J,

(K3)ij =(∇Qj,∇Qi) for i, j=1,··· , J,
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(K4)ij =
ν2

σ2
((∇·Vj)

t,(∇·Vi)
t)+

1

σ2
(Vj,Vi)

+
ν2

σ2
(∇×Vj,∇×Vi)+

ν2

σ2
(∇tr(Vj),∇tr(Vi)) for i, j=1,··· ,4J,

(K5)ij =
1

σ2
(Uj,Ui)+

ν2

σ2
(∇U t

j ,∇U t
i )+

ν2

σ2
(∇·Uj,∇·Ui) for i, j=1,··· ,2J,

(C1)ij =−ν(Vj,∇U t
i ) for i=1,··· ,2J, j=1,···4J,

(C2)ij =−ν((∇·Vj)
t,∇Qi) for i=1,··· , J, j=1,···4J,

(C3)ij =
1

σ2
(Vj,Vi) for i, j=1,··· ,4J,

(C4)ij =−
ν

σ
((∇·Vj)

t,Ui)−
ν

σ2
(Vj,∇U t

i ) for i=1,··· ,2J, j=1,···4J,

(C5)ij =
1

σ
(∇Qj,Ui) for i=1,··· ,2J, j=1,··· J,

and

~g1 =
1

σ2
(∇ût,Vj) for j=1,··· ,4J, ~g2 =−

ν

σ2
(∇ût,∇Uj) for j=1,··· ,2J.

We note that the matrix in (5.1) from L2 functional is symmetric and positive definite.
The positivity is dependent on the viscosity ν and the penalty parameter σ. The imple-
mentation of a model problem shows the given target velocity û and the velocity flux
∇ût can be reached by the finite element solution uh and Uh, respectively, as h→0. Also,
to show the role of the penalty parameter σ, we report the L2 errors between the target
states û, ∇ût and the controlled states uh, Uh as σ→0.

Since the product H1-norm equivalence of L2-functional is shown in Theorem 3.2, it
is possible to use the multigrid V-cycle preconditioner to solve the linear system (5.1).
For terminating the V(1,1)-cycle with the Gauss-Seidel smoothing iteration, the relative
residual tolerance ‖Rm‖/‖R0‖<ǫ :=10−5 is used with maximum iteration 300, where Rm

is the mth residual of the system (5.1). For the linear system (5.1), the five-points Gaussian
quadrature is used on each triangle for all integrals of ~gℓ(ℓ= 1,2) and set to be zeros as
the initial state variables and the adjoint variables for our computations. As a target state,
we take the example in [16] as û(x,y)=(û1(x,y),û2(x,y)), where

û1(x,y)=
1

27
(φ(x)φ′(y)) and û2(x,y)=−

1

27
(φ′(x)φ(y)) (5.2)

with φ(z) = (1−cos(3πz))(1−z)2. With this divergence free û, we examine L2 errors
between the finite element solutions Uh, uh and the target variables ∇ût, û respectively,
varying the penalty parameter σ for fixed ν=1. The penalty parameter is taken as σ≤1
because small value of σ yields a good control result (see [13, 16, 27]).

To show the effects of σ as σ→0, we report the L2 errors between the target variables
and the controlled variables, and the L2 norm of control fh with the value of the functional
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Table 1: Numerical results.

h σ ‖Uh−∇ût‖ ‖uh−û‖ ‖fh‖ J (Uh,fh)
1 8.0662e−1 6.6910e−2 6.5519e−2 4.3849e−3

10−1 7.5195e−1 6.2137e−2 6.0841e−1 2.0438e−2
1
32 10−2 3.3257e−1 2.7469e−2 2.6409e+0 3.5250e−2

10−3 3.8343e−2 4.4055e−3 3.0704e+0 4.7232e−3
10−4 8.9246e−3 2.2023e−3 5.1072e+0 1.3066e−3
10−5 7.3180e−3 2.0383e−3 2.8993e+1 4.2299e−3

1 8.0654e−1 6.6898e−2 6.6543e−2 3.2747e−1
10−1 7.5807e−1 6.2503e−2 6.2173e−1 3.0666e−1

1
64 10−2 4.3348e−1 3.4767e−2 3.4510e+0 1.5350e−1

10−3 6.9981e−2 5.7931e−3 5.4945e+0 1.7543e−2
10−4 7.8282e−3 9.7505e−4 6.0307e+0 1.8491e−3
10−5 1.9550e−3 5.3648e−4 9.5394e+0 4.5691e−4

J (Uh,fh) for the target velocity (5.2). Table 1 shows the L2 errors between the target
variables (flux and velocity) and approximated controlled variables, respectively plus
with the L2 norm of control f. In Table 1, the values of corresponding objective functional
are presented with mesh size h=1/32 or h=1/64. We can see the distances ‖Uh−∇ût‖,
‖uh−û‖ and the values of objective functional are all decreasing and the magnitude of
control fh is increasing as σ→ 0. Also, in Table 1, it is observed that the L2 distances of
fluxes are always lager than the ones of velocities as predicted by (1.3). Fig. 1 shows the
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Figure 1: Target flow and controlled flows for σ=1,10−1,10−2,10−3 when h=1/16.
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Figure 2: Target velocity flux and controlled fluxes for σ=1,10−1,10−2,10−3 when h=1/16 and ν=1.
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Figure 3: Sectional graphs for the target flux and controlled fluxes at different σ values for fixed x-axis (x=0.25)
when h=1/32 and ν=1.

behaviors of target velocity and controlled velocities when σ = 1,0.1,0.01,0.001. In these
table and figure, we see that the controlled velocity and the controlled flux converge to
the target velocity and the target flux, respectively, as σ→0.

In Fig. 2, it is presented that the elements of the target flux and the elements of the
controlled flux U11,U21,U12 and U22 when σ = 1,0.1,0.01,0.001. To compare the flux so-
lutions in Fig. 2, sectional each flux element is plotted in the same figure for different σ
and fixed x-axis (x = 0.25) in Fig. 3. In these figures, we can see the velocity flux is also
controlled well for small σ values. Table 2 exhibits the values ‖Uh−∇ût‖ and ‖uh−û‖
when σ = 10−5 as mesh size h is decreasing. Through the values of Table 2, we may say
that Uh and uh are controlled well for small σ and h. Note that in Table 2, the convergence
rates are like O(h2) for σ=10−5.

Table 2: The L2 errors ‖Uh−∇ût‖ and ‖uh−û‖ when σ=10−5.

h ‖Uh−∇ût‖ ρ ‖uh−û‖ ρ
1
4 4.2600e−1 5.7187e−2
1
8 1.4140e−1 1.6 2.5142e−2 1.2
1

16 3.1636e−2 2.2 7.7234e−3 1.7
1

32 7.3180e−3 2.1 2.0383e−3 1.9
1

64 1.9550e−3 1.9 5.3648e−4 1.9

6 Concluding remarks

The FOSLS finite element approach for an optimal control problem governed by the
Stokes flows is discussed. The objective functional we consider has H1 seminorm dis-
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tance in the velocity control term. After reformulating the system to a first-order con-
strained optimal control problem, we have the first-order optimality system using the
Lagrange multiplier rule. We impose some weights presented in [27] on least-squares
functional and then show the main least-squares functional is equivalent to H1 product
norms. We obtain that the discrete algebraic system induced from L2 norm based func-
tional is symmetric and positive definite. As a computational result, we observed the
velocity flux and the velocity which are controlled as σ→0.

Appendix: Proof of regularity estimates (3.7)

The ADN theory [2] can be used to prove estimates for the coupled optimality equations
(3.6) defined on a domain Ω prescribed. The proof is almost the same as the one in [27]
so that we provide a concise proof in this section. First, we define the uniform ellipticity
of the systems (3.6) following ADN [2] and introduce the conditions that are necessary
for the a priori estimates of [2] to hold.

Proof. We provide n=3 dimensional case. Let l ={lij}, for 1≤ i, j≤2n+2 and B={Bµj},
for 1≤µ≤2n, 1≤ j≤2n+2 denote the differential operator and boundary operator corre-
sponding to (3.6). Then we have

l =





−∆ 0 0 1
σν 0 0 ∂1 0

0 −∆ 0 0 1
σν 0 ∂2 0

0 0 −∆ 0 0 1
σν ∂3 0

−∆ 0 0 ∆ 0 0 0 ∂1

0 −∆ 0 0 ∆ 0 0 ∂2

0 0 −∆ 0 0 ∆ 0 ∂3

∂1 ∂2 ∂3 0 0 0 0 0

−∂1 −∂2 −∂3 ∂1 ∂2 ∂3 0 0





, U =





u1

u2

u3

v1

v2

v3

p/ν

q





,

and

F=
[
0 0 0 ∇ût

1 ∇ût
2 ∇ût

3 0 0
]t

, Bµj =δµj,

where δµj is the Kroneker delta.
Following the developments and notations in [2], we assign a system of integer in-

dices {si},si ≤0, for the equations and {tj}, tj ≥0, for the unknown functions. Then, for
the system (3.6), we choose Sobolev norms based on the scales

si =0 (1≤ i≤2n), s2n+1 = s2n+2 =−1

for the equations and
tj =2 (1≤ j≤2n), t2n+1 = t2n+2 =1
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for the variables. Next, the principal part l′(∂) of the interior operator l(∂) can be chosen
by taking any term (i, j) whose order is (si+tj) as

l′(∂)=





−∆ 0 0 0 0 0 ∂1 0

0 −∆ 0 0 0 0 ∂2 0

0 0 −∆ 0 0 0 ∂3 0

−∆ 0 0 ∆ 0 0 0 ∂1

0 −∆ 0 0 ∆ 0 0 ∂2

0 0 −∆ 0 0 ∆ 0 ∂3

∂1 ∂2 ∂3 0 0 0 0 0

−∂1 −∂2 −∂3 ∂1 ∂2 ∂3 0 0





.

Next, replacing ∂j by ξ j (1≤ j≤n), respectively, the determinant of the principal part can

be shown as L(ξ):= det(l′(ξ))=|ξ|12. In general, we can calculate L(ξ):=(−1)n−1|ξ|4n 6=0
(n = 2,3) for all ξ 6= 0, where |ξ|2 = ξ2

1+···+ξ2
n. Hence the ellipticity of (3.6) is shown so

that the uniform ellipticity condition

A−1|ξ|2m ≤|L(ξ)|≤A|ξ|2m

holds with m = 2n and A = 1. It is easy to see that l′ also satisfies the Supplementary
Condition.

For complementing boundary conditions, note that the matrix for the boundary operator
consists of Bµη where 1≤µ≤2n, 1≤η≤2n+2 (n=2,3). If we take rµ =−2 for µ=1,··· ,2n,
then Bµη ≤ rµ+tη. The principal boundary operator B′ is the same as B. At any point x of

∂Ω, let n denote the outward unit normal, τ 6=0(real) any tangent unit vector to ∂Ω, l̂(ξ)
the stencil of the interior operator l, and l̂′(ξ) the stencil of the principal interior operator
l′, where ξ=τ+γn. Note that the stencil matrix corresponding to the boundary operator
B is B because it is the constant matrix. It is easy to show the only root of L(τ+γn)= 0
with positive imaginary part is i with multiplicity 2n = m. To show the complementing
boundary conditions we must show that

m

∑
µ=1

Cµ

2n+1

∑
η=1

B′
µη(x,τ+γn)adj(l̂′(τ+γn))ηk≡0 (mod M+(γ)), (A.1)

if and only if the constants Cµ all vanish, where M+(γ) = (γ−i)m. We will show the
condition (A.1) only for n = 3 because its proof is similar to the case n = 2. Note the
inverse of l̂′(ξ) is

l̂′−1(x,ξ)=





M3×3 03×3 C3×1 03×1

M3×3 −M3×3 C3×1 C3×1

C t
1×3 01×3 1 0

01×3 C t
1×3 0 −1





8×8

,
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where

M=
1

ρ2




−(ξ2

2+ξ2
3) ξ1ξ2 ξ3ξ1

ξ1ξ2 −(ξ2
1+ξ2

3) ξ2ξ3

ξ3ξ1 ξ2ξ3 −(ξ2
1+ξ2

2)



, C=
1

ρ




ξ1

ξ2

ξ3



, ρ= |ξ|2.

From now on, we may assume that n = (0,0,1) and τ = (a,b,0), where a, b are arbitrary
constants satisfying a2+b2 =1. Note that ξ =τ+γn=(a,b,γ). Then, since

L(ξ)=ρ6, M+(γ)=(γ−i)6, ρ=(1+γ2),

it follows that

B′(x,τ+γn)adj(l̂′(τ+γn))=(γ2+1)4

[
M̂3×3 03×3 ∗3×1 03×1

M̂3×3 −M̂3×3 ∗3×1 ∗3×1

]
, (A.2)

where

M̂=




−(γ2+b2) ab aγ

ab −(γ2+a2) bγ

aγ bγ −1





and ∗3×1 stands for a matrix that does not affect row independency. Due to the structure
of the matrix in (A.2), it is enough to show that

(γ2+1)4(−(γ2+b2)C1+j+abC2+j+aγC3+j)= A1(γ−i)6, (A.3)

where j = 0,3 has all zero coefficients C1 = C2 = C3 = C4 = C5 = C6 = 0 for the row in-
dependency of the matrix in (A.1) where A1 is a polynomial for γ. By straightforward
calculations, this can be easily verified. Applying Theorem 10.5 and following remark
in [2], we have (3.7).
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