First-Order Theorem Proving and Vampire

Laura Kovács (Chalmers University of Technology)
Andrei Voronkov (The University of Manchester)

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

First-Order Logic: Exercises

Which of the following statements are true?

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.
6. One can axiomatise integers in first-order logic;

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.
6. One can axiomatise integers in first-order logic;
7. Compactness is the following property: a set of formulas having arbitrarily large finite models has an infinite model;

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.
6. One can axiomatise integers in first-order logic;
7. Compactness is the following property: a set of formulas having arbitrarily large finite models has an infinite model;
8. Having proofs is good.

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.
6. One can axiomatise integers in first-order logic;
7. Compactness is the following property: a set of formulas having arbitrarily large finite models has an infinite model;
8. Having proofs is good.
9. Vampire is a first-order theorem prover.

Future and Our Motivation

1. Theorem proving will remain central in software verification and program analysis. The role of theorem proving in these areas will be growing.
Theorem provers will be used by a large number of users who do not understand theorem proving and by users with very elementary knowledge of logic. Reasoning with both quantifiers and theories will remain the main challenge in practical applications of theorem proving (at least) for the next decade.

Future and Our Motivation

1. Theorem proving will remain central in software verification and program analysis. The role of theorem proving in these areas will be growing.
2. Theorem provers will be used by a large number of users who do not understand theorem proving and by users with very elementary knowledge of logic.
main challenge in practical applications of theorem proving (at
least) for the next decade.
3. Theorem provers will be used in reasoning with very large
theories. These theories will appear in knowledge mining and natural language processing

Future and Our Motivation

1. Theorem proving will remain central in software verification and program analysis. The role of theorem proving in these areas will be growing.
2. Theorem provers will be used by a large number of users who do not understand theorem proving and by users with very elementary knowledge of logic.
3. Reasoning with both quantifiers and theories will remain the main challenge in practical applications of theorem proving (at least) for the next decade.

natural language processing.

Future and Our Motivation

1. Theorem proving will remain central in software verification and program analysis. The role of theorem proving in these areas will be growing.
2. Theorem provers will be used by a large number of users who do not understand theorem proving and by users with very elementary knowledge of logic.
3. Reasoning with both quantifiers and theories will remain the main challenge in practical applications of theorem proving (at least) for the next decade.
4. Theorem provers will be used in reasoning with very large theories. These theories will appear in knowledge mining and natural language processing.

First-Order Theorem Proving. Example

Group theory theorem: if a group satisfies the identity $x^{2}=1$, then it is commutative.

First-Order Theorem Proving. Example

Group theory theorem: if a group satisfies the identity $x^{2}=1$, then it is commutative.
More formally: in a group "assuming that $x^{2}=1$ for all x prove that $x \cdot y=y \cdot x$ holds for all x, y."

First-Order Theorem Proving. Example

Group theory theorem: if a group satisfies the identity $x^{2}=1$, then it is commutative.
More formally: in a group "assuming that $x^{2}=1$ for all x prove that $x \cdot y=y \cdot x$ holds for all x, y."
What is implicit: axioms of the group theory.

$$
\begin{aligned}
& \forall x(1 \cdot x=x) \\
& \forall x\left(x^{-1} \cdot x=1\right) \\
& \forall x \forall y \forall z((x \cdot y) \cdot z=x \cdot(y \cdot z))
\end{aligned}
$$

Formulation in First-Order Logic

	$\forall x(1 \cdot x=x)$
Axioms (of group theory):	$\forall x\left(x^{-1} \cdot x=1\right)$
	$\forall x \forall y \forall z((x \cdot y) \cdot z=x \cdot(y \cdot z))$
	$\forall x(x \cdot x=1)$
Assumptions:	$\forall x \forall y(x \cdot y=y \cdot x)$

In the TPTP Syntax

The TPTP library (Thousands of Problems for Theorem Provers), http://www.tptp.org contains a large collection of first-order problems. For representing these problems it uses the TPTP syntax, which is understood by all modern theorem provers, including Vampire.

In the TPTP Syntax

The TPTP library (Thousands of Problems for Theorem Provers), http://www.tptp. org contains a large collection of first-order problems. For representing these problems it uses the TPTP syntax, which is understood by all modern theorem provers, including Vampire. In the TPTP syntax this group theory problem can be written down as follows:

```
%---- 1 * x = 1
fof(left_identity, axiom,
    ! [X] : mult (e,X) = X).
%---- i(x) * x = 1
fof(left_inverse, axiom,
    ! [X] : mult (inverse(X),X) = e).
%---- (x * y) * z = x * (y * z)
fof(associativity, axiom,
    ! [X,Y,Z] : mult (mult (X,Y), Z) = mult (X,mult (Y,Z))).
%---- X * X = 1
fof(group_of_order_2,hypothesis,
    ! [X] : mult (X,X) = e).
%---- prove x * y = y * x
fof(commutativity, conjecture,
    ! [X] : mult (X,Y) = mult (Y,X)).
```


Running Vampire of a TPTP file

is easy: simply use
vampire <filename>

Running Vampire of a TPTP file

is easy: simply use
vampire <filename>
One can also run Vampire with various options, some of them will be explained later. For example, save the group theory problem in a file group.tptp and try
vampire --thanks ReRiSE group.tptp

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

First-Order Logic and TPTP

- Language: variables, function and predicate (relation) symbols. A constant symbol is a special case of a function symbol.

First-Order Logic and TPTP

- Language: variables, function and predicate (relation) symbols. A constant symbol is a special case of a function symbol. Variable names start with upper-case letters.

First-Order Logic and TPTP

- Language: variables, function and predicate (relation) symbols. A constant symbol is a special case of a function symbol. Variable names start with upper-case letters.
- Terms: variables, constants, and expressions $f\left(t_{1}, \ldots, t_{n}\right)$, where f is a function symbol of arity n and t_{1}, \ldots, t_{n} are terms.

First-Order Logic and TPTP

- Language: variables, function and predicate (relation) symbols. A constant symbol is a special case of a function symbol. Variable names start with upper-case letters.
- Terms: variables, constants, and expressions $f\left(t_{1}, \ldots, t_{n}\right)$, where f is a function symbol of arity n and t_{1}, \ldots, t_{n} are terms. Terms denote domain (universe) elements (objects).

First-Order Logic and TPTP

- Language: variables, function and predicate (relation) symbols. A constant symbol is a special case of a function symbol. Variable names start with upper-case letters.
- Terms: variables, constants, and expressions $f\left(t_{1}, \ldots, t_{n}\right)$, where f is a function symbol of arity n and t_{1}, \ldots, t_{n} are terms. Terms denote domain (universe) elements (objects).
- Atomic formula: expression $p\left(t_{1}, \ldots, t_{n}\right)$, where p is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms.

First-Order Logic and TPTP

- Language: variables, function and predicate (relation) symbols. A constant symbol is a special case of a function symbol. Variable names start with upper-case letters.
- Terms: variables, constants, and expressions $f\left(t_{1}, \ldots, t_{n}\right)$, where f is a function symbol of arity n and t_{1}, \ldots, t_{n} are terms. Terms denote domain (universe) elements (objects).
- Atomic formula: expression $p\left(t_{1}, \ldots, t_{n}\right)$, where p is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms. Formulas denote properties of domain elements.
- All symbols are uninterpreted, apart from equality =.

First-Order Logic and TPTP

- Language: variables, function and predicate (relation) symbols. A constant symbol is a special case of a function symbol. Variable names start with upper-case letters.
- Terms: variables, constants, and expressions $f\left(t_{1}, \ldots, t_{n}\right)$, where f is a function symbol of arity n and t_{1}, \ldots, t_{n} are terms. Terms denote domain (universe) elements (objects).
- Atomic formula: expression $p\left(t_{1}, \ldots, t_{n}\right)$, where p is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms. Formulas denote properties of domain elements.
- All symbols are uninterpreted, apart from equality $=$.

FOL	TPTP			
\perp, T	\$false, \$true ${ }^{\sim}$ F			
$\neg F$				
$F_{1} \wedge \ldots \wedge F_{n}$		F1 \&	. \&	Fn
$F_{1} \vee \ldots \vee F_{n}$... \|	Fn
$F_{1} \rightarrow F_{n}$			$\Rightarrow \mathrm{Fn}$	
$\left(\forall x_{1}\right) \ldots\left(\forall x_{n}\right) F$!	[X1,	. ., Xn]	:
$\left(\exists x_{1}\right) \ldots\left(\exists x_{n}\right) F$?	[X1,	..., Xn]	:

More on the TPTP Syntax

```
%---- 1 * x = x
fof(left_identity,axiom,(
    ! [X] : mult(e,X) = X )).
%---- i(x) * x = 1
fof(left_inverse,axiom,(
    ! [X] : mult(inverse(X),X) = e )).
%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(
    ! [X,Y,Z] :
        mult(mult (X,Y),Z) = mult (X,mult (Y,Z)) )).
%---- x * x = 1
fof(group_of_order_2,hypothesis,
    ! [X] : mult (X,X) = e ).
%---- prove x * y = y * x
fof(commutativity,conjecture,
    ! [X,Y] : mult(X,Y) = mult(Y,X) ).
```


More on the TPTP Syntax

- Comments;

```
%---- 1 * x = x
fof(left_identity,axiom,(
    ! [X] : mult(e,X) = X )).
%---- i(x) * x = 1
fof(left_inverse,axiom,(
    ! [X] : mult(inverse(X),X) = e )).
%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(
    ! [X,Y,Z] :
        mult(mult (X,Y),Z) = mult (X,mult (Y,Z)) )).
%---- x * x = 1
fof(group_of_order_2,hypothesis,
    ! [X] : mult (X,X) = e ).
%---- prove x * y = y * x
fof(commutativity,conjecture,
    ! [X,Y] : mult(X,Y) = mult(Y,X) ).
```


More on the TPTP Syntax

- Comments;
- Input formula names;

```
%---- 1 * x = x
fof(left_identity,axiom,(
    ! [X] : mult(e,X) = X )).
%---- i(x) * x = 1
fof(left_inverse,axiom,(
    ! [X] : mult(inverse(X),X) = e )).
%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(
    ! [X,Y,Z] :
        mult(mult (X,Y),Z) = mult(X,mult (Y,Z)) )).
%---- x * x = 1
fof(group_of_order_2,hypothesis,
    ! [X] : mult (X,X) = e ).
%---- prove x * y = y * x
fof(commutativity,conjecture,
    ! [X,Y] : mult(X,Y) = mult(Y,X) ).
```


More on the TPTP Syntax

- Comments;
- Input formula names;
- Input formula roles (very important);

```
%---- 1 * x = x
fof(left_identity,axiom,(
    ! [X] : mult(e,X) = X )).
%---- i(x) * x = 1
fof(left_inverse, axiom,(
! [X] : mult(inverse(X),X) = e )).
%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(
    ! [X,Y,Z] :
        mult(mult (X,Y),Z) = mult(X,mult (Y,Z)) )).
%---- x * x = 1
fof(group_of_order_2,hypothesis,
    ! [X] : mult (X,X) = e ).
%---- prove x * y = y * x
fof(commutativity,conjecture,
    ! [X,Y] : mult(X,Y) = mult(Y,X) ).
```


More on the TPTP Syntax

- Comments;
- Input formula names;
- Input formula roles (very important);
- Equality

```
%---- 1 * x = x
fof(left_identity,axiom,(
    ! [X] : mult(e,X) = X )).
%---- i(x) * x = 1
fof(left_inverse,axiom,(
! [X] : mult(inverse(X),X) = e )).
%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(
    ! [X,Y,Z] :
        mult(mult (X,Y),Z) = mult (X,mult (Y,Z)) )).
%---- x * x = 1
fof(group_of_order_2,hypothesis,
    ! [X] : mult (X,X) = e ).
%---- prove x * y = y * x
fof(commutativity,conjecture,
    ! [X,Y] : mult(X,Y) = mult(Y,X) ).
```


Proof by Vampire (Slightliy Modified)

Refutation found. Thanks to Tanya!
203. \$false [subsumption resolution 202,14]
202. sP1 (mult (sK, sK0)) [backward demodulation 188,15]
188. mult $(\mathrm{X} 8, \mathrm{X} 9)=$ mult $(\mathrm{X} 9, \mathrm{X} 8)$ [superposition 22,87]
87. mult (X2,mult (X1, X2)) = X1 [forward demodulation 71,27]
71. mult (inverse (X1),e) = mult (X2,mult(X1,X2)) [superposition 23,20]
27. mult (inverse (X2),e) $=\mathrm{X} 2$ [superposition 22,10]
23. mult (inverse(X4), mult (X4,X5)) = X5 [forward demodulation 18,9]
22. mult (X0,mult (X0,X1)) = X1 [forward demodulation 16,9]
20. e = mult (X0, mult (X1, mult (X0, X1))) [superposition 11,12]
18. mult (e, X5) = mult (inverse(X4), mult (X4, X5)) [superposition 11,10]
16. mult $(e, X 1)=$ mult (X0,mult $(X 0, X 1)$) [superposition 11, 12]
15. sP1 (mult(sK0,sK)) [inequality splitting 13,14]
14. ~sP1 (mult(sK,sKO)) [inequality splitting name introduction]
13. mult (sK,sKO) ! = mult (sKO,sK) [cnf transformation 8]
12. e $=$ mult (X0,X0) (0:5) [cnf transformation 4]
11. mult (mult (X0, X1), X2) =mult (X0,mult (X1, X2)) [cnf transformation 3]
10. $e=$ mult (inverse (X0), X0) [cnf transformation 2]
9. mult $(e, X 0)=X 0$ [cnf transformation 1]
8. mult(sK,sK0) != mult (sK0,sK) [skolemisation 7]
7. ? [X0, X1] : mult (X0, X1) ! = mult (X1, X0) [ennf transformation 6]
6. ~! [X0,X1] : mult (X0, X1) = mult (X1, X0) [negated conjecture 5]
5. ! [X0, X1] : mult (X0, X1) = mult (X1, X0) [input]
4. ! [X0] : e = mult (X0, X0) [input]
3. ! [X0, X1, X2] : mult (mult $(X 0, \mathrm{X} 1), \mathrm{X} 2)$ = mult $(\mathrm{X} 0, \mathrm{mult}(\mathrm{X} 1, \mathrm{X} 2)$) [input]
2. ! [X0] : e = mult (inverse (X0), X0) [input]

1. ! [X0] : mult (e, X0) = X0 [input]

Proof by Vampire (Slightliy Modified)

Refutation found. Thanks to Tanya!
203. \$false [subsumption resolution 202,14]
202. sP1 (mult (sK, sK0)) [backward demodulation 188,15]
188. mult $(\mathrm{X} 8, \mathrm{X} 9)=$ mult $(\mathrm{X} 9, \mathrm{X} 8)$ [superposition 22,87]
87. mult (X2,mult (X1, X2)) = X1 [forward demodulation 71,27]
71. mult (inverse (X1),e) = mult (X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse (X2),e) $=\mathrm{X} 2$ [superposition 22,10]
23. mult (inverse (X4), mult (X4, X5)) $=\mathrm{X} 5$ [forward demodulation 18,9]
22. mult (X0,mult (X0,X1)) $=$ X1 [forward demodulation 16,9]
20. e = mult (X0, mult (X1, mult (X0, X1))) [superposition 11, 12]
18. mult $(e, X 5)=$ mult (inverse(X4), mult (X4, X5)) [superposition 11,10]
16. mult $(e, X 1)=$ mult (X0,mult $(X 0, X 1)$) [superposition 11, 12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. ~sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult (sK,sKO) != mult (sK0,sK) [cnf transformation 8]
12. e $=$ mult (X0,X0) (0:5) [cnf transformation 4]
11. mult (mult (X0, X1), X2) =mult (X0,mult (X1, X2)) [cnf transformation 3]
10. $e=$ mult (inverse(X0), X0) [cnf transformation 2]
9. mult $(e, X 0)=X 0$ [cnf transformation 1]
8. mult(sK,sK0) != mult (sK0,sK) [skolemisation 7]
7. ? $[\mathrm{X0}, \mathrm{X1}]$: mult (X0, X1) ! = mult (X1, X0) [ennf transformation 6]
6. ~! [X0, X1] : mult (X0, X1) = mult (X1, X0) [negated conjecture 5]
5. ! [X0, X1] : mult $(\mathrm{X} 0, \mathrm{X} 1)=$ mult $(\mathrm{X1}, \mathrm{X} 0)$ [input]
4. ! [X0] : e = mult (X0, X0) [input]
3. ! $[\mathrm{X0}, \mathrm{X} 1, \mathrm{X} 2]$: mult (mult $(\mathrm{X} 0, \mathrm{X} 1), \mathrm{X} 2)=$ mult $(\mathrm{X} 0, \mathrm{mult}(\mathrm{X} 1, \mathrm{X} 2)$) [input]
2. ! [X0] : e = mult (inverse (X0), X0) [input]

1. ! [X0] : mult (e, X0) = X0 [input]

- Each inference derives a formula from zero or more other formulas;

Proof by Vampire (Slightliy Modified)

Refutation found. Thanks to Tanya!
203. \$false [subsumption resolution 202,14]
202. sP1 (mult (sK, sK0)) [backward demodulation 188,15]
188. mult $(\mathrm{X} 8, \mathrm{X} 9)=$ mult $(\mathrm{X} 9, \mathrm{X} 8)$ [superposition 22,87]
87. mult (X2,mult (X1, X2)) = X1 [forward demodulation 71,27]
71. mult (inverse (X1),e) = mult (X2,mult(X1,X2)) [superposition 23,20]
27. mult (inverse (X2),e) = X2 [superposition 22,10]
23. mult (inverse (X4), mult (X4, X5)) $=\mathrm{X} 5$ [forward demodulation 18,9]
22. mult (X0,mult (X0, X1)) = X1 [forward demodulation 16,9]
20. e = mult (X0, mult (X1, mult (X0, X1))) [superposition 11, 12]
18. mult $(e, X 5)=$ mult (inverse (X4), mult $(X 4, X 5)$) [superposition 11,10]
16. mult $(e, X 1)=$ mult (X0,mult $(X 0, X 1)$) [superposition 11, 12]
15. sP1 (mult (sK0,sK)) [inequality splitting 13,14]
14. ~sP1 (mult(sK,sK0)) [inequality splitting name introduction]
13. mult (sK,sKO) ! = mult (sK0,sK) [cnf transformation 8]
12. e $=$ mult (X0,X0) (0:5) [cnf transformation 4]
11. mult (mult (X0, X1), X2) = mult (X0, mult (X1, X2)) [cnf transformation 3]
10. $e=$ mult (inverse (X0), X0) [cnf transformation 2]
9. mult $(e, X 0)=X 0$ [cnf transformation 1]
8. mult (sK,sK0) ! = mult (sK0,sK) [skolemisation 7]
7. ? $[\mathrm{X0}, \mathrm{X1}]$: mult (X0, X1) ! = mult (X1, X0) [ennf transformation 6]
6. ~! [X0, X1] : mult $(X 0, X 1)=$ mult $(X 1, X 0)$ [negated conjecture 5]
5. ! $[\mathrm{X0} 0, \mathrm{X} 1]$: mult $(\mathrm{X} 0, \mathrm{X} 1)=$ mult $(\mathrm{X} 1, \mathrm{X} 0)$ [input]
4. ! $[\mathrm{XO}]: \mathrm{e}=\operatorname{mult}(\mathrm{X} 0, \mathrm{XO})$ [input]
3. ! [X0, X1, X2] : mult (mult (X0, X1), X2) = mult (X0,mult (X1, X2)) [input]
2. ! [X0] : e = mult (inverse (X0), X0) [input]

1. ! [X0] : mult (e, X0) = X0 [input]

- Each inference derives a formula from zero or more other formulas;
- Input, preprocessing, new symbols introduction, superposition calculus

Proof by Vampire (Slightliy Modified)

Refutation found. Thanks to Tanya!
203. \$false [subsumption resolution 202,14]
202. sP1 (mult (sK, sK0)) [backward demodulation 188,15]
188. mult $(\mathrm{X} 8, \mathrm{X} 9)=$ mult $(\mathrm{X} 9, \mathrm{X} 8)$ [superposition 22,87]
87. mult (X2,mult (X1, X2)) = X1 [forward demodulation 71,27]
71. mult (inverse (X1),e) = mult (X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) $=\mathrm{X} 2$ [superposition 22,10]
23. mult (inverse(X4), mult (X4, X5)) $=$ X5 [forward demodulation 18,9]
22. mult (X0,mult (X0,X1)) $=$ X1 [forward demodulation 16,9]
20. e = mult (X0, mult (X1, mult (X0, X1))) [superposition 11, 12]
18. mult $(e, X 5)=$ mult (inverse (X4), mult $(X 4, X 5)$) [superposition 11,10]
16. mult $(e, X 1)=$ mult (X0,mult $(X 0, X 1)$) [superposition 11, 12]
15. sP1 (mult (sK0,sK)) [inequality splitting 13,14]
14. ~sP1 (mult(sK,sK0)) [inequality splitting name introduction]
13. mult (sK,sKO) ! = mult (sK0,sK) [cnf transformation 8]
12. $e=\operatorname{mult}(X 0, X 0)(0: 5)$ [cnf transformation 4]
11. mult (mult (X0, X1), X2) =mult (X0,mult (X1, X2)) [cnf transformation 3]
10. $e=$ mult (inverse (X0), X0) [cnf transformation 2]
9. mult $(e, X 0)=X 0$ [cnf transformation 1]
8. mult (sK, sK0) ! = mult (sK0,sK) [skolemisation 7]
7. ? [$\mathrm{X} 0, \mathrm{X1]}$: mult (X0, X1) ! = mult (X1, X0) [ennf transformation 6]
6. ~! [X0, X1] : mult $(X 0, X 1)=\operatorname{mult}(X 1, X 0)$ [negated conjecture 5]
5. ! [X0, X1] : mult (X0, X1) = mult (X1, X0) [input]
4. ! $[\mathrm{XO}]: \mathrm{e}=\operatorname{mult}(\mathrm{X} 0, \mathrm{XO})$ [input]
3. ! [X0, X1, X2] : mult (mult $(X 0, \mathrm{X} 1), \mathrm{X} 2)$ = mult $(\mathrm{X} 0, \mathrm{mult}(\mathrm{X} 1, \mathrm{X} 2)$) [input]
2. ! [X0] : e = mult (inverse (X0), X0) [input]

1. ! [X0] : mult (e, X0) = X0 [input]

- Each inference derives a formula from zero or more other formulas;
- Input, preprocessing, new symbols introduction, superposition calculus

Proof by Vampire (Slightliy Modified)

Refutation found. Thanks to Tanya!
203. \$false [subsumption resolution 202,14]
202. sP1 (mult (sK,sK0)) [backward demodulation 188,15]
188. mult $(\mathrm{X} 8, \mathrm{X} 9)=$ mult $(\mathrm{X} 9, \mathrm{X} 8)$ [superposition 22,87]
87. mult (X2,mult (X1, X2)) = X1 [forward demodulation 71,27]
71. mult (inverse (X1),e) = mult (X2,mult(X1,X2)) [superposition 23,20]
27. mult (inverse (X2),e) $=\mathrm{X} 2$ [superposition 22,10]
23. mult (inverse (X4), mult (X4, X5)) $=\mathrm{X} 5$ [forward demodulation 18,9]
22. mult (X0, mult (X0, X1)) $=\mathrm{X1}$ [forward demodulation 16,9]
20. e = mult (X0, mult (X1, mult (X0, X1))) [superposition 11, 12]
18. mult $(e, X 5)=$ mult (inverse (X4), mult $(X 4, X 5)$) [superposition 11,10]
16. mult $(e, X 1)=$ mult (X0, mult $(X 0, X 1)$) [superposition 11, 12]
15. sP1 (mult (sK0, sK)) [inequality splitting 13, 14]
14. ~sP1 (mult(sK,sK0)) [inequality splitting name introduction]
13. mult (sK,sKO) ! = mult (sK0,sK) [cnf transformation 8]
12. e $=$ mult (X0, X0) (0:5) [cnf transformation 4]
11. mult (mult (X0, X1), X2) = mult (X0, mult (X1, X2)) [cnf transformation 3]
10. $e=$ mult (inverse (X0), X0) [cnf transformation 2]
9. mult $(e, X 0)=X 0$ [cnf transformation 1]
8. mult (sK, sK0) ! = mult (sK0,sK) [skolemisation 7]
7. ? $[\mathrm{X0}, \mathrm{X1}]$: mult (X0, X1) ! = mult (X1, X0) [ennf transformation 6]
6. ~! [X0, X1] : mult $(X 0, X 1)=$ mult $(X 1, X 0)$ [negated conjecture 5]
5. ! [X0, X1] : mult $(\mathrm{X} 0, \mathrm{X} 1)=$ mult $(\mathrm{X1}, \mathrm{X} 0)$ [input]
4. ! $[\mathrm{XO}]: \mathrm{e}=\mathrm{mult}(\mathrm{X} 0, \mathrm{X} 0)$ [input]
3. ! [X0, X1, X2] : mult (mult $(X 0, X 1), \mathrm{X} 2)=\operatorname{mult}(\mathrm{X} 0, \operatorname{mult}(\mathrm{X} 1, \mathrm{X} 2)$) [input]
2. ! [X0] : e = mult (inverse (X0), X0) [input]

1. ! $[\mathrm{XO}]$: mult $(\mathrm{e}, \mathrm{XO})=\mathrm{X0}$ [input]

- Each inference derives a formula from zero or more other formulas;
- Input, preprocessing, new symbols introduction, superposition calculus

Proof by Vampire (Slightliy Modified)

Refutation found. Thanks to Tanya!
203. \$false [subsumption resolution 202,14]
202. sP1 (mult (sK, sK0)) [backward demodulation 188,15]
188. mult $(\mathrm{X} 8, \mathrm{X} 9)=$ mult $(\mathrm{X} 9, \mathrm{X} 8)$ [superposition 22,87]
87. mult (X2,mult (X1, X2)) = X1 [forward demodulation 71,27]
71. mult (inverse (X1), e) = mult (X2,mult (X1, X2)) [superposition 23, 20]
27. mult (inverse (X2), e) $=\mathrm{X} 2$ [superposition 22,10]
23. mult (inverse(X4), mult (X4, X5)) $=$ X5 [forward demodulation 18,9]
22. mult (X0,mult (X0, X1)) = X1 [forward demodulation 16,9]
20. $e=$ mult ($\mathrm{X0} 0$ mult $(\mathrm{X1}, \mathrm{mult}(\mathrm{X0}, \mathrm{X1}))$) [superposition 11,12]
18. mult $(e, X 5)=$ mult (inverse(X4), mult (X4, X5)) [superposition 11,10]
16. mult $(e, X 1)=$ mult (X0, mult $(X 0, X 1)$) [superposition 11, 12]
15. sP1 (mult (sK0,sK)) [inequality splitting 13,14]
14. ~sP1 (mult (sK, sK0)) [inequality splitting name introduction]
13. mult (sK,sKO) ! = mult (sKO,sK) [cnf transformation 8]
12. e $=$ mult $(X 0, X 0)(0: 5)$ [cnf transformation 4]
11. mult (mult (X0, X1), X2) = mult (X0, mult (X1, X2)) [cnf transformation 3]
10. e $=$ mult (inverse (X0), X0) [cnf transformation 2]
9. mult $(e, X 0)=X 0$ [cnf transformation 1]
8. mult (sK, sK0) ! = mult (sK0,sK) [skolemisation 7]
7. ? $[\mathrm{X0}, \mathrm{X1}]$: mult (X0, X1) ! = mult (X1, X0) [ennf transformation 6]
6. ~! [X0, X1] : mult $(X 0, X 1)=$ mult $(X 1, X 0)$ [negated conjecture 5]
5. ! [X0, X1] : mult $(\mathrm{X} 0, \mathrm{X} 1)=$ mult $(\mathrm{X1}, \mathrm{X} 0)$ [input]
4. ! $[\mathrm{XO}]: \mathrm{e}=\mathrm{mult}(\mathrm{X} 0, \mathrm{X} 0)$ [input]
3. ! [X0, X1, X2] : mult (mult $(X 0, X 1), \mathrm{X} 2)=\operatorname{mult}(X 0, m u l t(X 1, X 2))$ [input]
2. ! [X0] : e = mult (inverse (X0), X0) [input]

1. ! $[\mathrm{XO}]$: mult $(\mathrm{e}, \mathrm{XO})=\mathrm{X0}$ [input]

- Each inference derives a formula from zero or more other formulas;
- Input, preprocessing, new symbols introduction, superposition calculus

Proof by Vampire (Slightliy Modified)

Refutation found. Thanks to Tanya!
203. \$false [subsumption resolution 202,14]
202. sP1 (mult (sK,sK0)) [backward demodulation 188,15]
188. mult $(\mathrm{X} 8, \mathrm{X} 9)=$ mult $(\mathrm{X} 9, \mathrm{X} 8)$ [superposition 22,87]
87. mult (X2,mult (X1, X2)) = X1 [forward demodulation 71,27]
71. mult (inverse (X1), e) = mult (X2,mult (X1, X2)) [superposition 23, 20]
27. mult(inverse (X2),e) $=\mathrm{X} 2$ [superposition 22,10]
23. mult (inverse (X4), mult (X4, X5)) $=\mathrm{X} 5$ [forward demodulation 18,9]
22. mult (X0, mult (X0, X1)) $=\mathrm{X1}$ [forward demodulation 16,9]
20. e = mult (X0, mult (X1, mult (X0, X1))) [superposition 11, 12]
18. mult $(\mathrm{e}, \mathrm{X} 5)=$ mult (inverse (X4), mult $(\mathrm{X} 4, \mathrm{X} 5)$) [superposition 11,10]
16. mult $(e, X 1)=$ mult (X0,mult $(X 0, X 1)$) [superposition 11, 12]
15. sP1 (mult (sK0,sK)) [inequality splitting 13,14]
14. ~sP1 (mult (sK, sK0)) [inequality splitting name introduction]
13. mult (sK,sKO) ! = mult (sK0,sK) [cnf transformation 8]
12. $e=\operatorname{mult}(X 0, X 0)(0: 5)$ [cnf transformation 4]
11. mult (mult (X0, X1), X2) = mult (X0, mult (X1, X2)) [cnf transformation 3]
10. $e=$ mult (inverse (X0), X0) [cnf transformation 2]
9. mult $(e, X 0)=X 0$ [cnf transformation 1]
8. mult (sK, sK0) ! = mult (sK0,sK) [skolemisation 7]
7. ? [X0, X1] : mult (X0, X1) ! = mult (X1, X0) [ennf transformation 6]
6. ~! [X0, X1] : mult $(X 0, X 1)=\operatorname{mult}(X 1, X 0)$ [negated conjecture 5]
5. ! [X0, X1] : mult (X0, X1) $=$ mult $(\mathrm{X} 1, \mathrm{X} 0)$ [input]
4. ! $[\mathrm{XO}]: \mathrm{e}=\mathrm{mult}(\mathrm{X} 0, \mathrm{X} 0)$ [input]
3. ! $[\mathrm{X0}, \mathrm{X} 1, \mathrm{X} 2]$: mult (mult $(\mathrm{X} 0, \mathrm{X} 1), \mathrm{X} 2)=\operatorname{mult}(\mathrm{X} 0, \mathrm{mult}(\mathrm{X} 1, \mathrm{X} 2)$) [input]
2. ! [X0] : e = mult (inverse (X0), X0) [input]

1. ! $[\mathrm{XO}]$: mult $(\mathrm{e}, \mathrm{XO})=\mathrm{X0}$ [input]

- Each inference derives a formula from zero or more other formulas;
- Input, preprocessing, new symbols introduction, superposition calculus
- Proof by refutation, generating and simplifying inferences, unused formulas ...

Proof by Vampire (Slightliy Modified)

Refutation found. Thanks to Tanya!
203. \$false [subsumption resolution 202,14]
202. sP1 (mult (sK, sK0)) [backward demodulation 188,15]
188. mult (X8,X9) = mult (X9,X8) [superposition 22,87]
87. mult (X2,mult (X1, X2)) = X1 [forward demodulation 71,27]
71. mult (inverse (X1), e) = mult (X2,mult (X1, X2)) [superposition 23, 20]
27. mult (inverse (X2),e) $=\mathrm{X} 2$ [superposition 22,10]
23. mult (inverse (X4), mult (X4, X5)) $=\mathrm{X} 5$ [forward demodulation 18,9]
22. mult (X0,mult (X0, X1)) = X1 [forward demodulation 16,9]
20. e = mult (X0, mult (X1, mult (X0, X1))) [superposition 11, 12]
18. mult $(e, X 5)=$ mult (inverse (X4), mult $(X 4, X 5)$) [superposition 11,10]
16. mult $(e, X 1)=$ mult (X0,mult $(X 0, X 1)$) [superposition 11, 12]
15. sP1 (mult (sK0,sK)) [inequality splitting 13,14]
14. ~sP1 (mult(sK,sK0)) [inequality splitting name introduction]
13. mult (sK,sKO) ! = mult (sK0,sK) [cnf transformation 8]
12. e $=$ mult (X0,X0) (0:5) [cnf transformation 4]
11. mult (mult (X0, X1), X2) = mult (X0, mult (X1, X2)) [cnf transformation 3]
10. $e=$ mult (inverse (X0), X0) [cnf transformation 2]
9. mult $(e, X 0)=X 0$ [cnf transformation 1]
8. mult (sK,sK0) ! = mult (sK0,sK) [skolemisation 7]
7. ? $[\mathrm{X0}, \mathrm{X1}]$: mult (X0, X1) ! = mult (X1, X0) [ennf transformation 6]
6. ~! [X0,X1] : mult (X0, X1) = mult (X1, X0) [negated conjecture 5]
5. ! [X0, X1] : mult $(X 0, X 1)=$ mult $(X 1, X 0)$ [input]
4. ! $[\mathrm{XO}]: \mathrm{e}=\operatorname{mult}(\mathrm{X} 0, \mathrm{XO})$ [input]
3. ! [X0, X1, X2] : mult (mult $(X 0, \mathrm{X} 1), \mathrm{X} 2)=\operatorname{mult}(\mathrm{X} 0, \operatorname{mult}(\mathrm{X} 1, \mathrm{X} 2)$) [input]
2. ! [X0] : e = mult (inverse (X0), X0) [input]

1. ! [X0] : mult (e, X0) = X0 [input]

- Each inference derives a formula from zero or more other formulas;
- Input, preprocessing, new symbols introduction, superposition calculus
- Proof by refutation, generating and simplifying inferences, unused formulas ...

Proof by Vampire (Slightliy Modified)

Refutation found. Thanks to Tanya!
203. \$false [subsumption resolution 202,14]
202. sP1 (mult (sK, sK0)) [backward demodulation 188,15]
188. mult $(\mathrm{X} 8, \mathrm{X} 9)=$ mult $(\mathrm{X} 9, \mathrm{X} 8)$ [superposition 22,87]
87. mult (X2,mult (X1, X2)) = X1 [forward demodulation 71,27]
71. mult(inverse (X1), e) = mult (X2,mult(X1,X2)) [superposition 23,20]
27. mult (inverse (X2),e) $=\mathrm{X} 2$ [superposition 22,10]
23. mult (inverse (X4), mult (X4, X5)) = X5 [forward demodulation 18, 9]
22. mult (X0, mult (X0, X1)) $=\mathrm{X1}$ [forward demodulation 16,9]
20. e = mult (X0, mult (X1, mult (X0, X1))) [superposition 11,12]
18. mult $(\mathrm{e}, \mathrm{X} 5)=$ mult (inverse (X4), mult $(\mathrm{X} 4, \mathrm{X} 5)$) [superposition 11,10]
16. mult $(e, X 1)=$ mult (X0,mult $(X 0, X 1)$) [superposition 11, 12]
15. sP1 (mult (sK0,sK)) [inequality splitting 13,14]
14. ~sP1 (mult (sK, sK0)) [inequality splitting name introduction]
13. mult (sK,sKO) ! = mult (sKO,sK) [cnf transformation 8]
12. $e=\operatorname{mult}(X 0, X 0)(0: 5)$ [cnf transformation 4]
11. mult (mult (X0, X1), X2) =mult (X0, mult (X1, X2)) [cnf transformation 3]
10. $e=$ mult (inverse (X0), X0) [cnf transformation 2]
9. mult $(e, X 0)=X 0$ [cnf transformation 1]
8. mult (sK, sKO) ! = mult (sK0,sK) [skolemisation 7]
7. ? $[\mathrm{X0}, \mathrm{X1}]$: mult (X0, X1) ! = mult (X1, X0) [ennf transformation 6]
6. ~! [X0, X1] : mult $(X 0, X 1)=\operatorname{mult}(X 1, X 0)$ [negated conjecture 5]
. ! [X0, X1] : mult $(X 0, X 1)=$ mult $(X 1, X 0)$ [input]
4. ! $[\mathrm{XO}]: \mathrm{e}=\mathrm{mult}(\mathrm{XO}, \mathrm{X} 0)$ [input]
3. ! $[\mathrm{X0}, \mathrm{X} 1, \mathrm{X} 2]$: mult (mult $(\mathrm{X0}, \mathrm{X} 1), \mathrm{X} 2)=\operatorname{mult}(\mathrm{X} 0, \mathrm{mult}(\mathrm{X} 1, \mathrm{X} 2)$) [input]
2. ! [X0] : e = mult (inverse (X0), X0) [input]

1. ! [X0] : mult (e, X0) = X0 [input]

- Each inference derives a formula from zero or more other formulas;
- Input, preprocessing, new symbols introduction, superposition calculus
- Proof by refutation, generating and simplifying inferences, unused formulas ...

Statistics

```
Version: Vampire 3 (revision 2038)
Termination reason: Refutation
Active clauses: 14
Passive clauses: 28
Generated clauses: 124
Final active clauses: 8
Final passive clauses: 6
Input formulas: 5
Initial clauses: 6
Splitted inequalities: 1
Fw subsumption resolutions: 1
Fw demodulations: 32
Bw demodulations: 12
Forward subsumptions: 53
Backward subsumptions: 1
Fw demodulations to eq. taut.: 6
Bw demodulations to eq. taut.: 1
Forward superposition: 41
Backward superposition: 28
Self superposition: 4
Memory used [KB]: 255
Time elapsed: 0.005 s
```


Vampire

- Completely automatic: once you started a proof attempt, it can only be interrupted by terminating the process.

Vampire

- Completely automatic: once you started a proof attempt, it can only be interrupted by terminating the process.
- Champion of the CASC world-cup in first-order theorem proving: won CASC 28 times.

Main applications

- Software and hardware verification;
- Static analysis of programs;
- Query answering in first-order knowledge bases (ontologies);
- Theorem proving in mathematics, especially in algebra;

Main applications

- Software and hardware verification;
- Static analysis of programs;
- Query answering in first-order knowledge bases (ontologies);
- Theorem proving in mathematics, especially in algebra;
- Verification of cryptographic protocols;
- Retrieval of software components;
- Reasoning in non-classical logics;
- Program synthesis;

Main applications

- Software and hardware verification;
- Static analysis of programs;
- Query answering in first-order knowledge bases (ontologies);
- Theorem proving in mathematics, especially in algebra;
- Verification of cryptographic protocols;
- Retrieval of software components;
- Reasoning in non-classical logics;
- Program synthesis;
- Writing papers and giving talks at various conferences and schools...

What an Automatic Theorem Prover is Expected to Do

Input:

- a set of axioms (first order formulas) or clauses;
- a conjecture (first-order formula or set of clauses).

Output:

- proof (hopefully).

Proof by Refutation

Given a problem with axioms and assumptions F_{1}, \ldots, F_{n} and conjecture G,

1. negate the conjecture;
2. establish unsatisfiability of the set of formulas $F_{1}, \ldots, F_{n}, \neg G$.

Proof by Refutation

Given a problem with axioms and assumptions F_{1}, \ldots, F_{n} and conjecture G,

1. negate the conjecture;
2. establish unsatisfiability of the set of formulas $F_{1}, \ldots, F_{n}, \neg G$.

Thus, we reduce the theorem proving problem to the problem of checking unsatisfiability.

Proof by Refutation

Given a problem with axioms and assumptions F_{1}, \ldots, F_{n} and conjecture G,

1. negate the conjecture;
2. establish unsatisfiability of the set of formulas $F_{1}, \ldots, F_{n}, \neg G$.

Thus, we reduce the theorem proving problem to the problem of checking unsatisfiability.

In this formulation the negation of the conjecture $\neg G$ is treated like any other formula. In fact, Vampire (and other provers) internally treat conjectures differently, to make proof search more goal-oriented.

General Scheme (simplified)

- Read a problem;
- Determine proof-search options to be used for this problem;
- Preprocess the problem;
- Convert it into CNF;
- Run a saturation algorithm on it, try to derive \perp.
- If \perp is derived, report the result, maybe including a refutation.

General Scheme (simplified)

- Read a problem;
- Determine proof-search options to be used for this problem;
- Preprocess the problem;
- Convert it into CNF;
- Run a saturation algorithm on it, try to derive \perp.
- If \perp is derived, report the result, maybe including a refutation.

Trying to derive \perp using a saturation algorithm is the hardest part, which in practice may not terminate or run out of memory.

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

Inference System

- inference has the form

$$
\frac{F_{1} \ldots F_{n}}{G},
$$

where $n \geq 0$ and F_{1}, \ldots, F_{n}, G are formulas.

- The formula G is called the conclusion of the inference;
- The formulas F_{1}, \ldots, F_{n} are called its premises.
- An inference rule R is a set of inferences.
- Every inference $I \in R$ is called an instance of R.
- An Inference system \mathbb{I} is a set of inference rules.
- Axiom: inference rule with no premises.

Inference System: Example

Represent the natural number n by the string

The following inference system contains 6 inference rules for deriving equalities between expressions containing natural numbers, addition + and multiplication .

$$
\begin{aligned}
& \overline{\varepsilon=\varepsilon}(\varepsilon) \quad \frac{x=y}{|x=| y}(\mid) \\
& \overline{\varepsilon+x=x}\left(+_{1}\right) \quad \frac{x+y=z}{|x+y=| z}\left(+_{2}\right) \\
& \overline{\varepsilon \cdot x=\varepsilon}\left(\cdot{ }^{1}\right) \quad \frac{x \cdot y=u \quad y+u=z}{\mid x \cdot y=z}\left(\cdot{ }^{2}\right)
\end{aligned}
$$

Derivation, Proof

- Derivation in an inference system \mathbb{I} : a tree built from inferences in \mathbb{I}.
- If the root of this derivation is E, then we say it is a derivation of E.
- Proof of E : a finite derivation whose leaves are axioms.
- Derivation of E from E_{1}, \ldots, E_{m} : a finite derivation of E whose every leaf is either an axiom or one of the expressions E_{1}, \ldots, E_{m}.

Examples

For example,

$$
\frac{\|\varepsilon+\mid \varepsilon=\| \| \varepsilon}{\|\varepsilon+\mid \varepsilon=\| \| \varepsilon}\left(+_{2}\right)
$$

is an inference that is an instance (special case) of the inference rule

$$
\frac{x+y=z}{|x+y=| z}(+2)
$$

Examples

For example,

$$
\frac{\|\varepsilon+\mid \varepsilon=\| \| \varepsilon}{\|\varepsilon+\mid \varepsilon=\| \| \varepsilon}\left(+_{2}\right)
$$

is an inference that is an instance (special case) of the inference rule

$$
\frac{x+y=z}{|x+y=| z}(+2)
$$

It has one premise $\| \varepsilon+|\varepsilon=|| | \varepsilon$ and the conclusion $|||\varepsilon+|\varepsilon=||| | \varepsilon$.

Examples

For example,

$$
\frac{\|\varepsilon+\mid \varepsilon=\| \| \varepsilon}{\|\varepsilon+\mid \varepsilon=\| \| \varepsilon}\left(+_{2}\right)
$$

is an inference that is an instance (special case) of the inference rule

$$
\frac{x+y=z}{|x+y=| z}(+2)
$$

It has one premise $\| \varepsilon+|\varepsilon=|| | \varepsilon$ and the conclusion $|||\varepsilon+|\varepsilon=||| | \varepsilon$.
The axiom

$$
\overline{\varepsilon+|||\varepsilon=|| | \varepsilon}\left(+_{1}\right)
$$

is an instance of the rule

$$
\overline{\varepsilon+x=x}\left(+{ }_{1}\right)
$$

Proof in this Inference System

Proof of $\|\varepsilon \cdot\| \varepsilon=\| \| \varepsilon$ (that is, $2 \cdot 2=4$).

Derivation in this Inference System

Derivation of $\|\varepsilon \cdot\| \varepsilon=\| \| \| \varepsilon$ from $\varepsilon+\|\varepsilon=\| \|$ (that is, $2+2=5$ from $0+2=3$).

Arbitrary First-Order Formulas

- A first-order signature (vocabulary): function symbols (including constants), predicate symbols. Equality is part of the language.
- A set of variables.
- Terms are built using variables and function symbols. For example, $f(x)+g(x)$.
- Atoms, or atomic formulas are obtained by applying a predicate symbol to a sequence of terms. For example, $p(a, x)$ or $f(x)+g(x) \geq 2$.
- Formulas: built from atoms using logical connectives $\neg, \wedge, \vee, \rightarrow$, \leftrightarrow and quantifiers \forall, \exists. For example, $(\forall x) x=0 \vee(\exists y) y>x$.

Clauses

- Literal: either an atom A or its negation $\neg A$.
- Clause: a disjunction $L_{1} \vee \ldots \vee L_{n}$ of literals, where $n \geq 0$.

Clauses

- Literal: either an atom A or its negation $\neg A$.
- Clause: a disjunction $L_{1} \vee \ldots \vee L_{n}$ of literals, where $n \geq 0$.
- Empty clause, denoted by \square : clause with 0 literals, that is, when $n=0$.

Clauses

- Literal: either an atom A or its negation $\neg A$.
- Clause: a disjunction $L_{1} \vee \ldots \vee L_{n}$ of literals, where $n \geq 0$.
- Empty clause, denoted by \square : clause with 0 literals, that is, when $n=0$.
- A formula in Clausal Normal Form (CNF): a conjunction of clauses.

Clauses

- Literal: either an atom A or its negation $\neg A$.
- Clause: a disjunction $L_{1} \vee \ldots \vee L_{n}$ of literals, where $n \geq 0$.
- Empty clause, denoted by \square : clause with 0 literals, that is, when $n=0$.
- A formula in Clausal Normal Form (CNF): a conjunction of clauses.
- A clause is ground if it contains no variables.
- If a clause contains variables, we assume that it implicitly universally quantified. That is, we treat $p(x) \vee q(x)$ as $\forall x(p(x) \vee q(x))$.

Binary Resolution Inference System

The binary resolution inference system, denoted by $\mathbb{B} \mathbb{R}$ is an inference system on propositional clauses (or ground clauses). It consists of two inference rules:

- Binary resolution, denoted by BR:

$$
\frac{p \vee C_{1} \neg p \vee C_{2}}{C_{1} \vee C_{2}}(\mathrm{BR}) .
$$

- Factoring, denoted by Fact:

$$
\frac{L \vee L \vee C}{L \vee C} \text { (Fact). }
$$

Soundness

- An inference is sound if the conclusion of this inference is a logical consequence of its premises.
- An inference system is sound if every inference rule in this system is sound.

Soundness

- An inference is sound if the conclusion of this inference is a logical consequence of its premises.
- An inference system is sound if every inference rule in this system is sound.
$\mathbb{B} \mathbb{R}$ is sound.
Consequence of soundness: let S be a set of clauses. If \square can be derived from S in $\mathbb{B} \mathbb{R}$, then S is unsatisfiable.

Example

Consider the following set of clauses

$$
\{\neg p \vee \neg q, \neg p \vee q, p \vee \neg q, p \vee q\}
$$

The following derivation derives the empty clause from this set:

$$
\begin{array}{cc}
\frac{p \vee q p \vee \neg q}{\frac{p \vee p}{p}(\text { Fact })} & \frac{\neg p \vee q) \neg p \vee \neg q}{\frac{\neg p \vee \neg p}{\neg p}(\mathrm{Bact})}(\mathrm{BR}) \\
\square & (\mathrm{BR})
\end{array}
$$

Hence, this set of clauses is unsatisfiable.

Can this be used for checking (un)satisfiability

1. What happens when the empty clause cannot be derived from S ?
2. How can one search for possible derivations of the empty clause?

Can this be used for checking (un)satisfiability

1. Completeness.

Let S be an unsatisfiable set of clauses. Then there exists a derivation of \square from S in $\mathbb{B} \mathbb{R}$.

Can this be used for checking (un)satisfiability

1. Completeness.

Let S be an unsatisfiable set of clauses. Then there exists a derivation of \square from S in $\mathbb{B} \mathbb{R}$.
2. We have to formalize search for derivations.

However, before doing this we will introduce a slightly more refined inference system.

Selection Function

A literal selection function selects literals in a clause.

- If C is non-empty, then at least one literal is selected in C.

Selection Function

A literal selection function selects literals in a clause.

- If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

$$
\underline{p} \vee \neg q
$$

Selection Function

A literal selection function selects literals in a clause.

- If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

$$
\underline{p} \vee \neg q
$$

Note: selection function does not have to be a function. It can be any oracle that selects literals.

Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal selection function σ.
The binary resolution inference system, denoted by $\mathbb{B}_{\mathbb{R}_{\sigma}}$, consists of two inference rules:

- Binary resolution, denoted by BR

$$
\frac{\underline{p} \vee C_{1} \quad \neg p \vee C_{2}}{C_{1} \vee C_{2}}(\mathrm{BR}) .
$$

Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal selection function σ.
The binary resolution inference system, denoted by $\mathbb{B}_{\mathbb{R}_{\sigma}}$, consists of two inference rules:

- Binary resolution, denoted by BR

$$
\frac{\underline{p} \vee C_{1} \quad \neg p \vee C_{2}}{C_{1} \vee C_{2}}(\mathrm{BR}) .
$$

- Positive factoring, denoted by Fact:

$$
\frac{\underline{p} \vee \underline{p} \vee C}{p \vee C} \text { (Fact). }
$$

Completeness?

Binary resolution with selection may be incomplete, even when factoring is unrestricted (also applied to negative literals).

Completeness?

Binary resolution with selection may be incomplete, even when factoring is unrestricted (also applied to negative literals).

Consider this set of clauses:
(1) $\neg q \vee r$
(2) $\neg p \vee \underline{q}$
(3) $\neg r \vee \neg q$
(4) $\neg q \vee \neg \underline{\neg p}$
(5) $\neg p \vee \underline{\neg r}$
(6) $\neg r \vee \underline{p}$
(7) $r \vee q \vee \underline{p}$

Completeness?

Binary resolution with selection may be incomplete, even when factoring is unrestricted (also applied to negative literals).

Consider this set of clauses:

$$
\begin{aligned}
& \text { (1) } \neg q \vee \underline{r} \\
& \text { (2) } \neg p \vee \underline{q} \\
& \text { (3) } \neg r \vee \neg q \\
& \text { (4) } \neg q \vee \neg \underline{\neg p} \\
& \text { (5) } \neg p \vee \underline{\neg r} \\
& \text { (6) } \neg r \vee \underline{p} \\
& \text { (7) } r \vee q \vee \underline{p}
\end{aligned}
$$

It is unsatisfiable:

(8)	$q \vee p$	$(6,7)$
(9)	q	$(2,8)$
(10)	r	$(1,9)$
(11)	$\neg q$	$(3,10)$
(12)	\square	$(9,11)$

Note the linear representation of derivations (used by Vampire and many other provers).

However, any inference with selection applied to this set of clauses give either a clause in this set, or a clause containing a clause in this set.

Literal Orderings

Take any well-founded ordering \succ on atoms, that is, an ordering such that there is no infinite decreasing chain of atoms:

$$
A_{0} \succ A_{1} \succ A_{2} \succ \cdots
$$

In the sequel \succ will always denote a well-founded ordering.

Literal Orderings

Take any well-founded ordering \succ on atoms, that is, an ordering such that there is no infinite decreasing chain of atoms:

$$
A_{0} \succ A_{1} \succ A_{2} \succ \cdots
$$

In the sequel \succ will always denote a well-founded ordering.
Extend it to an ordering on literals by:

- If $p \succ q$, then $p \succ \neg q$ and $\neg p \succ q$;
- $\neg p \succ p$.

Literal Orderings

Take any well-founded ordering \succ on atoms, that is, an ordering such that there is no infinite decreasing chain of atoms:

$$
A_{0} \succ A_{1} \succ A_{2} \succ \cdots
$$

In the sequel \succ will always denote a well-founded ordering.
Extend it to an ordering on literals by:

- If $p \succ q$, then $p \succ \neg q$ and $\neg p \succ q$;
- $\neg p \succ p$.

Exercise: prove that the induced ordering on literals is well-founded too.

Orderings and Well-Behaved Selections

Fix an ordering \succ. A literal selection function is well-behaved if

- If all selected literals are positive, then all maximal (w.r.t. \succ) literals in C are selected.

In other words, either a negative literal is selected, or all maximal literals must be selected.

Orderings and Well-Behaved Selections

Fix an ordering \succ. A literal selection function is well-behaved if

- If all selected literals are positive, then all maximal (w.r.t. \succ) literals in C are selected.

In other words, either a negative literal is selected, or all maximal literals must be selected.

To be well-behaved, we sometimes must select more than one different literal in a clause. Example: $p \vee p$ or $p(x) \vee p(y)$.

Completeness of Binary Resolution with Selection

Binary resolution with selection is complete for every well-behaved selection function.

Completeness of Binary Resolution with Selection

Binary resolution with selection is complete for every well-behaved selection function.

Consider our previous example:
(1) $\neg q \vee \underline{r}$
(2) $\neg p \vee \underline{q}$
(3) $\neg r \vee \neg q$
(4) $\neg q \vee \neg \underline{\neg p}$
(5) $\neg p \vee \neg \neg r$
(6) $\neg r \vee \underline{p}$
(7) $r \vee q \vee \underline{p}$

A well-behave selection function must satisfy:

1. $r \succ q$, because of (1)
2. $q \succ p$, because of (2)
3. $p \succ r$, because of (6)

There is no ordering that satisfies these conditions.

End of Lecture 1

Slides for lecture 1 ended here ...

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

How to Establish Unsatisfiability?

Completess is formulated in terms of derivability of the empty clause \square from a set S_{0} of clauses in an inference system \mathbb{I}. However, this formulations gives no hint on how to search for such a derivation.

How to Establish Unsatisfiability?

Completess is formulated in terms of derivability of the empty clause \square from a set S_{0} of clauses in an inference system \mathbb{I}. However, this formulations gives no hint on how to search for such a derivation.

Idea:

- Take a set of clauses S (the search space), initially $S=S_{0}$. Repeatedly apply inferences in \mathbb{I} to clauses in S and add their conclusions to S, unless these conclusions are already in S.
- If, at any stage, we obtain \square, we terminate and report unsatisfiability of S_{0}.

How to Establish Satisfiability?

When can we report satisfiability?

How to Establish Satisfiability?

When can we report satisfiability?
When we build a set S such that any inference applied to clauses in S is already a member of S. Any such set of clauses is called saturated (with respect to \mathbb{I}).

How to Establish Satisfiability?

When can we report satisfiability?
When we build a set S such that any inference applied to clauses in S is already a member of S. Any such set of clauses is called saturated (with respect to \mathbb{I}).

In first-order logic it is often the case that all saturated sets are infinite (due to undecidability), so in practice we can never build a saturated set.

The process of trying to build one is referred to as saturation.

Saturated Set of Clauses

Let \mathbb{I} be an inference system on formulas and S be a set of formulas.

- S is called saturated with respect to \mathbb{I}, or simply \mathbb{I}-saturated, if for every inference of \mathbb{I} with premises in S, the conclusion of this inference also belongs to S.
- The closure of S with respect to \mathbb{I}, or simply \mathbb{I}-closure, is the smallest set S^{\prime} containing S and saturated with respect to \mathbb{I}.

Inference Process

Inference process: sequence of sets of formulas S_{0}, S_{1}, \ldots, denoted by

$$
S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots
$$

$\left(S_{i} \Rightarrow S_{i+1}\right)$ is a step of this process.

Inference Process

Inference process: sequence of sets of formulas S_{0}, S_{1}, \ldots, denoted by

$$
S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots
$$

$\left(S_{i} \Rightarrow S_{i+1}\right)$ is a step of this process.
We say that this step is an \mathbb{I}-step if

1. there exists an inference

$$
\frac{F_{1} \ldots F_{n}}{F}
$$

in \mathbb{I} such that $\left\{F_{1}, \ldots, F_{n}\right\} \subseteq S_{i}$;
2. $S_{i+1}=S_{i} \cup\{F\}$.

Inference Process

Inference process: sequence of sets of formulas S_{0}, S_{1}, \ldots, denoted by

$$
S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots
$$

$\left(S_{i} \Rightarrow S_{i+1}\right)$ is a step of this process.
We say that this step is an \mathbb{I}-step if

1. there exists an inference

$$
\frac{F_{1} \ldots F_{n}}{F}
$$

in \mathbb{I} such that $\left\{F_{1}, \ldots, F_{n}\right\} \subseteq S_{i}$;
2. $S_{i+1}=S_{i} \cup\{F\}$.

An \mathbb{I}-inference process is an inference process whose every step is an \mathbb{I}-step.

Property

Let $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots$ be an \mathbb{I}-inference process and a formula F belongs to some S_{i}. Then S_{i} is derivable in \mathbb{I} from S_{0}. In particular, every S_{i} is a subset of the \mathbb{I}-closure of S_{0}.

Limit of a Process

The limit of an inference process $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots$ is the set of formulas $\bigcup_{i} S_{i}$.

Limit of a Process

The limit of an inference process $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots$ is the set of formulas $\bigcup_{i} S_{i}$.
In other words, the limit is the set of all derived formulas.

Limit of a Process

The limit of an inference process $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots$ is the set of formulas $\bigcup_{i} S_{i}$.

In other words, the limit is the set of all derived formulas.
Suppose that we have an infinite inference process such that S_{0} is unsatisfiable and we use a sound and complete inference system.

Limit of a Process

The limit of an inference process $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots$ is the set of formulas $\bigcup_{i} S_{i}$.

In other words, the limit is the set of all derived formulas.
Suppose that we have an infinite inference process such that S_{0} is unsatisfiable and we use a sound and complete inference system.

Question: does completeness imply that the limit of the process contains the empty clause?

Fairness

Let $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots$ be an inference process with the limit S_{∞}. The process is called fair if for every \mathbb{I}-inference

if $\left\{F_{1}, \ldots, F_{n}\right\} \subseteq S_{\infty}$, then there exists i such that $F \in S_{i}$.

Completeness, reformulated

Theorem Let \mathbb{I} be an inference system. The following conditions are equivalent.

1. II is complete.
2. For every unsatisfiable set of formulas S_{0} and any fair \mathbb{I}-inference process with the initial set S_{0}, the limit of this inference process contains \square.

Fair Saturation Algorithms: Inference Selection by Clause Selection

Fair Saturation Algorithms: Inference Selection by Clause Selection

Fair Saturation Algorithms: Inference Selection by Clause Selection

Fair Saturation Algorithms: Inference Selection by Clause Selection

Fair Saturation Algorithms：Inference Selection by Clause Selection

Fair Saturation Algorithms：Inference Selection by Clause Selection

Fair Saturation Algorithms: Inference Selection by Clause Selection

Fair Saturation Algorithms: Inference Selection by Clause Selection

Fair Saturation Algorithms: Inference Selection by Clause Selection

Fair Saturation Algorithms: Inference Selection by Clause Selection

Fair Saturation Algorithms: Inference Selection by Clause Selection

Fair Saturation Algorithms: Inference Selection by Clause Selection

Fair Saturation Algorithms: Inference Selection by Clause Selection

Fair Saturation Algorithms: Inference Selection by Clause Selection

Fair Saturation Algorithms: Inference Selection by Clause Selection

Saturation Algorithm

A saturation algorithm tries to saturate a set of clauses with respect to a given inference system.
In theory there are three possible scenarios:

1. At some moment the empty clause \square is generated, in this case the input set of clauses is unsatisfiable.
2. Saturation will terminate without ever generating \square, in this case the input set of clauses in satisfiable.
3. Saturation will run forever, but without generating \square. In this case the input set of clauses is satisfiable.

Saturation Algorithm in Practice

In practice there are three possible scenarios:

1. At some moment the empty clause \square is generated, in this case the input set of clauses is unsatisfiable.
2. Saturation will terminate without ever generating \square, in this case the input set of clauses in satisfiable.
3. Saturation will run until we run out of resources, but without generating \square. In this case it is unknown whether the input set is unsatisfiable.

Saturation Algorithm

Even when we implement inference selection by clause selection, there are too many inferences, especially when the search space grows.

Saturation Algorithm

Even when we implement inference selection by clause selection, there are too many inferences, especially when the search space grows.
Solution: only apply inferences to the selected clause and the previously selected clauses.

Saturation Algorithm

Even when we implement inference selection by clause selection, there are too many inferences, especially when the search space grows.
Solution: only apply inferences to the selected clause and the previously selected clauses.
Thus, the search space is divided in two parts:

- active clauses, that participate in inferences;
- passive clauses, that do not participate in inferences.

Saturation Algorithm

Even when we implement inference selection by clause selection, there are too many inferences, especially when the search space grows.
Solution: only apply inferences to the selected clause and the previously selected clauses.
Thus, the search space is divided in two parts:

- active clauses, that participate in inferences;
- passive clauses, that do not participate in inferences.

Observation: the set of passive clauses is usually considerably larger than the set of active clauses, often by 2-4 orders of magnitude (depending on the saturation algorithm and the problem).

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form $A \vee \neg A \vee C$, that is, it contains a pair of complementary literals. There are also equational tautologies, for example $a \nsim b \vee b \nsim c \vee f(c, c) \simeq f(a, a)$.

Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form $A \vee \neg A \vee C$, that is, it contains a pair of complementary literals. There are also equational tautologies, for example $a \nsim b \vee b \nsim c \vee f(c, c) \simeq f(a, a)$.
A clause C subsumes any clause $C \vee D$, where D is non-empty.

Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form $A \vee \neg A \vee C$, that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
$a \nsim b \vee b \nsim c \vee f(c, c) \simeq f(a, a)$.
A clause C subsumes any clause $C \vee D$, where D is non-empty.
It was known since 1965 that subsumed clauses and propositional tautologies can be removed from the search space.

Problem

How can we prove that completeness is preserved if we remove subsumed clauses and tautologies from the search space?

Problem

How can we prove that completeness is preserved if we remove subsumed clauses and tautologies from the search space?

Solution: general theory of redundancy.

Bag Extension of an Ordering

Bag $=$ finite multiset.
Let $>$ be any ordering on a set X. The bag extension of $>$ is a binary relation $>^{\text {bag }}$, on bags over X, defined as the smallest transitive relation on bags such that

$$
\begin{aligned}
& \left\{x, y_{1}, \ldots, y_{n}\right\}>^{\text {bag }}\left\{x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right\} \\
& \quad \text { if } x>x_{i} \text { for all } i \in\{1 \ldots m\},
\end{aligned}
$$

where $m \geq 0$.

Bag Extension of an Ordering

Bag $=$ finite multiset.
Let $>$ be any ordering on a set X. The bag extension of $>$ is a binary relation $>^{\text {bag }}$, on bags over X, defined as the smallest transitive relation on bags such that

$$
\begin{aligned}
& \left\{x, y_{1}, \ldots, y_{n}\right\}>^{\text {bag }}\left\{x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right\} \\
& \quad \text { if } x>x_{i} \text { for all } i \in\{1 \ldots m\}
\end{aligned}
$$

where $m \geq 0$.
Idea: a bag becomes smaller if we replace an element by any finite number of smaller elements.

Bag Extension of an Ordering

Bag $=$ finite multiset.
Let $>$ be any ordering on a set X. The bag extension of $>$ is a binary relation $>^{\text {bag }}$, on bags over X, defined as the smallest transitive relation on bags such that

$$
\begin{aligned}
& \left\{x, y_{1}, \ldots, y_{n}\right\}>^{\text {bag }}\left\{x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right\} \\
& \quad \text { if } x>x_{i} \text { for all } i \in\{1 \ldots m\},
\end{aligned}
$$

where $m \geq 0$.
Idea: a bag becomes smaller if we replace an element by any finite number of smaller elements.
The following results are known about the bag extensions of orderings:

1. $>^{\text {bag }}$ is an ordering;
2. If $>$ is total, then so is $>^{b a g}$;
3. If $>$ is well-founded, then so is $>^{\text {bag }}$.

Clause Orderings

From now on consider clauses also as bags of literals. Note:

- we have an ordering \succ for comparing literals;
- a clause is a bag of literals.

Clause Orderings

From now on consider clauses also as bags of literals. Note:

- we have an ordering \succ for comparing literals;
- a clause is a bag of literals.

Hence

- we can compare clauses using the bag extension $\succ^{\text {bag }}$ of \succ.

Clause Orderings

From now on consider clauses also as bags of literals. Note:

- we have an ordering \succ for comparing literals;
- a clause is a bag of literals.

Hence

- we can compare clauses using the bag extension $\succ^{\text {bag }}$ of \succ.

For simpicity we denote the multiset ordering also by \succ.

Redundancy

A clause $C \in S$ is called redundant in S if it is a logical consequence of clauses in S strictly smaller than C.

Examples

A tautology $A \vee \neg A \vee C$ is a logical consequence of the empty set of formulas:

$$
\models A \vee \neg A \vee C,
$$

therefore it is redundant.

Examples

A tautology $A \vee \neg A \vee C$ is a logical consequence of the empty set of formulas:

$$
\vDash A \vee \neg A \vee C,
$$

therefore it is redundant.
We know that C subsumes $C \vee D$. Note

$$
\begin{aligned}
& C \vee D \succ C \\
& C \models C \vee D
\end{aligned}
$$

therefore subsumed clauses are redundant.

Examples

A tautology $A \vee \neg A \vee C$ is a logical consequence of the empty set of formulas:

$$
\vDash A \vee \neg A \vee C,
$$

therefore it is redundant.
We know that C subsumes $C \vee D$. Note

$$
\begin{aligned}
& C \vee D \succ C \\
& C \models C \vee D
\end{aligned}
$$

therefore subsumed clauses are redundant.
If $\square \in S$, then all non-empty other clauses in S are redundant.

Redundant Clauses Can be Removed

In $\mathbb{B}_{\mathbb{R}_{\sigma}}$ (and in all calculi we will consider later) redundant clauses can be removed from the search space.

Redundant Clauses Can be Removed

In $\mathbb{B}_{\mathbb{R}_{\sigma}}$ (and in all calculi we will consider later) redundant clauses can be removed from the search space.

Inference Process with Redundancy

Let \mathbb{I} be an inference system. Consider an inference process with two kinds of step $S_{i} \Rightarrow S_{i+1}$:

1. Adding the conclusion of an \mathbb{I}-inference with premises in S_{i}.
2. Deletion of a clause redundant in S_{i}, that is

$$
S_{i+1}=S_{i}-\{C\},
$$

where C is redundant in S_{i}.

Fairness: Persistent Clauses and Limit

Consider an inference process

$$
S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow \ldots
$$

A clause C is called persistent if

$$
\exists i \forall j \geq i\left(C \in S_{j}\right) .
$$

The limit S_{ω} of the inference process is the set of all persistent clauses:

$$
S_{\omega}=\bigcup_{i=0,1, \ldots j \geq i} \bigcap_{j} .
$$

Fairness

The process is called \mathbb{I}-fair if every inference with persistent premises in S_{ω} has been applied, that is, if

is an inference in \mathbb{I} and $\left\{C_{1}, \ldots, C_{n}\right\} \subseteq S_{\omega}$, then $C \in S_{i}$ for some i.

Completeness of $\mathbb{B R}_{\succ, \sigma}$

Completeness Theorem. Let \succ be a simplification ordering and σ a well-behaved selection function. Let also

1. S_{0} be a set of clauses;
2. $S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow$... be a fair $\mathbb{B R}_{\succ, \sigma}$-inference process.

Then S_{0} is unsatisfiable if and only if $\square \in S_{i}$ for some i.

Saturation up to Redundancy

A set S of clauses is called saturated up to redundancy if for every II-inference

$$
\begin{array}{lll}
C_{1} \ldots C_{n} \\
C
\end{array}
$$

with premises in S, either

1. $C \in S$; or
2. C is redundant w.r.t. S, that is, $S_{\prec C} \models C$.

End of Lecture 2

Slides for lecture 2 ended here ...

Proof of Completeness

A trace of a clause C : a set of clauses $\left\{C_{1}, \ldots, C_{n}\right\} \subseteq S_{\omega}$ such that

1. $C \succ C_{i}$ for all $i=1, \ldots, n$;
2. $C_{1}, \ldots, C_{n} \models C$.

Lemma 1. Every removed clause has a trace.
Lemma 2. The limit S_{ω} is saturated up to redundancy.
Lemma 3. The limit S_{ω} is logically equivalent to the initial set S_{0}.
Lemma 4. A set S of clauses saturated up to redundancy in $\mathbb{B R}_{\succ, \sigma}$ is unsatisfiable if and only if $\square \in S$.

Proof of Completeness

A trace of a clause C : a set of clauses $\left\{C_{1}, \ldots, C_{n}\right\} \subseteq S_{\omega}$ such that

1. $C \succ C_{i}$ for all $i=1, \ldots, n$;
2. $C_{1}, \ldots, C_{n} \models C$.

Lemma 1. Every removed clause has a trace.
Lemma 2. The limit S_{ω} is saturated up to redundancy.
Lemma 3. The limit S_{ω} is logically equivalent to the initial set S_{0}.
Lemma 4. A set S of clauses saturated up to redundancy in $\mathbb{B R}_{\succ, \sigma}$ is unsatisfiable if and only if $\square \in S$.

Interestingly, only the last lemma uses rules of $\mathbb{B}_{\mathbb{R}_{\succ, \sigma}}$.

Binary Resolution with Selection

One of the key properties to satisfy this lemma is the following: the conclusion of every rule is strictly smaller that the rightmost premise of this rule.

- Binary resolution,

$$
\frac{\underline{p} \vee C_{1} \quad \neg p \vee C_{2}}{C_{1} \vee C_{2}}(\mathrm{BR}) .
$$

- Positive factoring,

$$
\frac{\underline{p} \vee \underline{p} \vee C}{p \vee C} \text { (Fact). }
$$

Saturation up to Redundancy and Satisfiability Checking

Lemma 4. A set S of clauses saturated up to redundancy in $\mathbb{B}_{\mathbb{R}_{\succ, \sigma}}$ is unsatisfiable if and only if $\square \in S$.

Saturation up to Redundancy and Satisfiability Checking

Lemma 4. A set S of clauses saturated up to redundancy in $\mathbb{B}_{\mathbb{R}_{\succ, \sigma}}$ is unsatisfiable if and only if $\square \in S$.

Therefore, if we built a set saturated up to redundancy, then the initial set S_{0} is satisfiable. This is a powerful way of checking redundancy: one can even check satisfiability of formulas having only infinite models.

Saturation up to Redundancy and Satisfiability Checking

Lemma 4. A set S of clauses saturated up to redundancy in $\mathbb{B}_{\mathbb{R}_{\succ, \sigma}}$ is unsatisfiable if and only if $\square \in S$.

Therefore, if we built a set saturated up to redundancy, then the initial set S_{0} is satisfiable. This is a powerful way of checking redundancy: one can even check satisfiability of formulas having only infinite models.

The only problem with this characterisation is that there is no obvious way to build a model of S_{0} out of a saturated set.

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

First-order logic with equality

- Equality predicate: =.
- Equality: $I=r$.

The order of literals in equalities does not matter, that is, we consider an equality $I=r$ as a multiset consisting of two terms I, r, and so consider $I=r$ and $r=I$ equal.

Equality. An Axiomatisation

- reflexivity axiom: $x=x$;
- symmetry axiom: $x=y \rightarrow y=x$;
- transitivity axiom: $x=y \wedge y=z \rightarrow x=z$;
- function substitution axioms:

$$
x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right), \text { for every }
$$ function symbol f;

- predicate substitution axioms:
$x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \wedge P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(y_{1}, \ldots, y_{n}\right)$ for every predicate symbol P.

Inference systems for logic with equality

We will define a resolution and superposition inference system. This system is complete. One can eliminate redundancy (but the literal ordering needs to satisfy additional properties).

Inference systems for logic with equality

We will define a resolution and superposition inference system. This system is complete. One can eliminate redundancy (but the literal ordering needs to satisfy additional properties).
Moreover, we will first define it only for ground clauses. On the theoretical side,

- Completeness is first proved for ground clauses only.
- It is then "lifted" to arbitrary clauses using a technique called lifting.
- Moreover, this way some notions (ordering, selection function) can first be defined for ground clauses only and then it is relatively easy to see how to generalise them for non-ground clauses.

Simple Ground Superposition Inference System

Superposition: (right and left)

$$
\frac{I=r \vee C \quad s[I]=t \vee D}{s[r]=t \vee C \vee D} \text { (Sup), } \frac{I=r \vee C \quad s[/] \nsucceq t \vee D}{s[r] \nsucceq t \vee C \vee D} \text { (Sup), }
$$

Simple Ground Superposition Inference System

Superposition: (right and left)

$$
\frac{I=r \vee C \quad s[I]=t \vee D}{s[r]=t \vee C \vee D} \text { (Sup), } \frac{I=r \vee C \quad s[/] \nsucceq t \vee D}{s[r] \nsucceq t \vee C \vee D} \text { (Sup), }
$$

Equality Resolution:

$$
\frac{s \nsim s \vee C}{C}(\mathrm{ER}),
$$

Simple Ground Superposition Inference System

Superposition: (right and left)

$$
\frac{I=r \vee C \quad s[I]=t \vee D}{s[r]=t \vee C \vee D} \text { (Sup), } \frac{I=r \vee C \quad s[/] \nsucceq t \vee D}{s[r] \nsucceq t \vee C \vee D} \text { (Sup), }
$$

Equality Resolution:

$$
\frac{s \nsim s \vee C}{C}(\mathrm{ER})
$$

Equality Factoring:

$$
\frac{s=t \vee s=t^{\prime} \vee C}{s=t \vee t \nsucceq t^{\prime} \vee C}(\mathrm{EF}),
$$

Example

$$
\begin{aligned}
& f(a)=a \vee g(a)=a \\
& f(f(a))=a \vee g(g(a)) \nsucceq a \\
& f(f(a)) \nsucceq a
\end{aligned}
$$

Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause $f(a)=a$ we can derive any clause of the form

$$
f^{m}(a)=f^{n}(a)
$$

where $m, n \geq 0$.

Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause $f(a)=a$ we can derive any clause of the form

$$
f^{m}(a)=f^{n}(a)
$$

where $m, n \geq 0$.
Worst of all, the derived clauses can be much larger than the original clause $f(a)=a$.

Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause $f(a)=a$ we can derive any clause of the form

$$
f^{m}(a)=f^{n}(a)
$$

where $m, n \geq 0$.
Worst of all, the derived clauses can be much larger than the original clause $f(a)=a$.
The recipe is to use the previously introduced ingredients:

1. Ordering;
2. Literal selection;
3. Redundancy elimination.

Atom and literal orderings on equalities

Equality atom comparison treats an equality $s=t$ as the multiset $\{s, t\}$.

- $\left(s^{\prime}=t^{\prime}\right) \succ_{\text {lit }}(s=t)$ if $\left\{s^{\prime}, t^{\prime}\right\} \succ \dot{\{ } s, t \dot{\}}$.
- $\left(s^{\prime} \nsim t^{\prime}\right) \succ_{\text {lit }}(s \neq t)$ if $\left\{s^{\prime}, t^{\prime}\right\} \succ\{s, t\}$.

Finally, we assert that all non-equality literals be greater than all equality literals.

Ground Superposition Inference System Sup $_{\succ, \sigma}$

Let σ be a literal selection function.
Superposition: (right and left)

$$
\frac{l=r \vee C \quad \underline{s[l]=t} \vee D}{s[r]=t \vee C \vee D}(\text { Sup }), \quad \frac{l=r \vee C \quad \underline{s[l] \nsucceq t \vee D}}{s[r] \nsucceq t \vee C \vee D} \text { (Sup), }
$$

where (i) $I \succ r$, (ii) $s[/] \succ t$, (iii) $I=r$ is strictly greater than any literal in C, (iv) $s[/]=t$ is greater than or equal to any literal in D.

Ground Superposition Inference System Sup $_{\succ, \sigma}$

Let σ be a literal selection function.
Superposition: (right and left)

$$
\frac{l=r \vee C \quad \underline{s[l]=t} \vee D}{s[r]=t \vee C \vee D}(\text { Sup }), \quad \frac{l=r \vee C \quad \underline{s[l] \nsucceq t \vee D}}{s[r] \nsucceq t \vee C \vee D} \text { (Sup), }
$$

where (i) $I \succ r$, (ii) $s[/] \succ t$, (iii) $I=r$ is strictly greater than any literal in C, (iv) $s[/]=t$ is greater than or equal to any literal in D.
Equality Resolution:

$$
\frac{s \nsucceq s \vee C}{C}(\mathrm{ER})
$$

Ground Superposition Inference System $\mathbb{S u p}_{\succ, \sigma}$

Let σ be a literal selection function.
Superposition: (right and left)

$$
\frac{I=r \vee C \quad \underline{s[I]=t \vee D}}{s[r]=t \vee C \vee D}(\text { Sup }), \frac{I=r \vee C \quad \underline{s[I] \nsucc t \vee D}}{s[r] \nsucceq t \vee C \vee D} \text { (Sup), }
$$

where (i) $I \succ r$, (ii) $s[I] \succ t$, (iii) $I=r$ is strictly greater than any literal in C, (iv) $s[/]=t$ is greater than or equal to any literal in D.
Equality Resolution:

$$
\frac{s \neq s \vee C}{C}(\mathrm{ER}),
$$

Equality Factoring:

$$
\frac{s=t \vee s=t^{\prime} \vee C}{s=t \vee t \not \approx t^{\prime} \vee C}(\mathrm{EF}),
$$

where (i) $s \succ t \succeq t^{\prime}$; (ii) $s=t$ is greater than or equal to any literal in C.

Extension to arbitrary (non-equality) literals

- Consider a two-sorted logic in which equality is the only predicate symbol.
- Interpret terms as terms of the first sort and non-equality atoms as terms of the second sort.
- Add a constant T of the second sort.
- Replace non-equality atoms $p\left(t_{1}, \ldots, t_{n}\right)$ by equalities of the second sort $p\left(t_{1}, \ldots, t_{n}\right)=T$.

Extension to arbitrary (non-equality) literals

- Consider a two-sorted logic in which equality is the only predicate symbol.
- Interpret terms as terms of the first sort and non-equality atoms as terms of the second sort.
- Add a constant T of the second sort.
- Replace non-equality atoms $p\left(t_{1}, \ldots, t_{n}\right)$ by equalities of the second sort $p\left(t_{1}, \ldots, t_{n}\right)=T$.
For example, the clause

$$
p(a, b) \vee \neg q(a) \vee a \neq b
$$

becomes

$$
p(a, b)=T \vee q(a) \nsim T \vee a \neq b .
$$

Binary resolution inferences can be represented by inferences in the superposition system

We ignore selection functions.

$$
\begin{gathered}
\frac{A \vee C_{1} \neg A \vee C_{2}}{C_{1} \vee C_{2}}(\mathrm{BR}) \\
\frac{A=T \vee C_{1} \quad A \not \approx T \vee C_{2}}{\frac{T \nsim T \vee C_{1} \vee C_{2}}{C_{1} \vee C_{2}}(\mathrm{ER})} \text { (Sup) }
\end{gathered}
$$

Exercise

Positive factoring can also be represented by inferences in the superposition system.

Simplification Ordering

The only restriction we imposed on term orderings was well-foundedness and stability under substitutions. When we deal with equality, these two properties are insufficient. We need a third property, called monotonicity.
An ordering \succ on terms is called a simplification ordering if

1. \succ is well-founded;
2. \succ is monotonic: if $I \succ r$, then $s[/] \succ s[r]$;
3. \succ is stable under substitutions: if $I \succ r$, then $I \theta \succ r \theta$.

Simplification Ordering

The only restriction we imposed on term orderings was well-foundedness and stability under substitutions. When we deal with equality, these two properties are insufficient. We need a third property, called monotonicity.
An ordering \succ on terms is called a simplification ordering if

1. \succ is well-founded;
2. \succ is monotonic: if $I \succ r$, then $s[/] \succ s[r]$;
3. \succ is stable under substitutions: if $I \succ r$, then $I \theta \succ r \theta$.

One can combine the last two properties into one:
2a. If $I \succ r$, then $s[l \theta] \succ s[r \theta]$.

End of Lecture 3

Slides for lecture 3 ended here ...

