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1. Introduction and preliminaries 

Let <D, U > be the semilattice of degrees of recursive unsolvability. 
The main result of this paper is that the first-order theory of <D, U > is 
recursively isomorphic to the truth set of second-order arithmetic (Corollary 
5.6). We also obtain a strong result concerning first-order definability in 
<D, U, j> where j is the jump operator (Theorem 3.12). 

The structure of <D, U > has been investigated strenuously by Kleene 
and Post [12], Spector [29], Sacks [20], Lerman [15] and a host of others. 
The first-order theory of <D, U > has been commented upon from time to 
time by various authors including Jockusch and Soare [10], Miller and 
Martin [17], Rogers [19], Shoenfield [24], [26] and Stillwell [30]. Our main 
result can be regarded as a refinement of the theorem of Lachlan [13] that 
the first-order theory of <D, U > is undecidable. Like Lachlan we use initial 
segments, but we combine them with the jump operator (Theorem 2.1). Our 
curiosity about the subject of this paper was first awakened in 1969 by 
Gerald E. Sacks who asked whether the first-order theory of <D, U> is 
hyperarithmetical (see also Problem 70 in [5]). We are also grateful to 
Carl G. Jockusch, Jr. for timely expressions of interest in this work. 

We use c to denote the set of nonnegative integers {0, 1, 2, ... }. Letters 
such as i, j, k, m, n denote elements of co. We write 20 for the set of totally 
defined, {0, 1}-valued functions on w. Letters such as f, g, h denote elements 
of 20. We write f 0 g for the unique function h such that h(2n) = f(n) and 
h(2n + 1) = g(n) for all n e w. The jump of f e 20 is f* which is again an 
element of 2w. Finite iterates of * are defined by f(') = f and f(nPl) = (f (n))* 

1 This research was partially supported by NSF grant MSP 75-07408. 
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122 STEPHEN G. SIMPSON 

for n e a. The woth iterate of * is defined by 

f 'w)(2m(2n + 1) - 1) = f(r)(n). 
Boldface letters such as a, b, c, d, e denote degrees, i.e., degrees of re- 

cursive unsolvability. The degree of f is written deg(f). The degree of 
recursive functions is denoted 0. If a = deg(f) then we write a' = deg(f*), 
a(n) = deg(f (a), and a(') = deg(f (w)). The jump operator j: D D is defined 
by j(a) = a'. If a = deg(f) and b = deg(g) then we write a U b = deg(f 03 g), 
and a ? b if and only if f is recursive in g. 

Some of our detailed proofs will be a presented in terms of strings. A 
string is a finite sequence of elements of {0, 1}. Letters such as Pa, V9, p, 9, T 

denote strings and ? is the set of all strings. The length of a string is a 
nonnegative integer lh(u). The empty string 25 has length 0. The strings 
of length 1 are written 0 and 1. We write a 0) r for the unique string p of 
length 

min{2. lh(a), 2. lh(z) + 1} 

defined by p(2i) = a(i), p(2i + 1) = z(i). We write a C z if a is extended by 
z, i.e., av = - for some string v where as usual concatenation of strings is 
denoted by juxtaposition. An element of 2w is sometimes treated as a "string 
of length co." We use the recursive relation [mrn](n) i which means that 
the mth algorithm with oracle information a applied to input n halts with 
output i e {O, 1} in at most lh(c) steps. We write [mJg(n) = i if and only if 
[mJn](n) - i for some a c g. Thus f is recursive in g if and only if 

Hm Vn[nmJ(n) = f(n) . 

Furthermore f *(n) = 1 if and only if [n]f(n) is defined. 
Our main technical tool is the notion of a perfect tree (cf. Sacks [211). A 

perfect tree is a mapping P: ? ? such that P(a) _ P(z) if and only if a C Z. 
Letters such as P, Q denote perfect trees. The identity mapping of ? onto 
I is a perfect tree called the identity tree. If P is a perfect tree and f e 2D 
then we write P(f) = g where g is the unique element of 2w such that P(a)cg 
whenever a C f. We also write 

[PI = {P(f) If e2w}. 

Thus [P1 is a perfect closed subset of 2w in its usual topology. We write 
PC Q if and only if [PI C [QJ. If P is a perfect tree and a is a string, then 
there is a perfect tree P0 c P defined by Po(v) = P(av) for all v e ?. Note 
that [PI = [PI] U [PI] and [PI] n [PJ] = 0. If D is a set of perfect trees 
then we write 
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DEGREES OF RECURSIVE UNSOLVABILITY 123 

[DI = U{[PJIPeD}. 

Strings are G6del numbered so that we may identify perfect trees with 
certain number-theoretic functions. Thus it makes sense to say that P is 
recursive, etc. For any degree c we denote by 9J(c) the set of perfect trees 
recursive in c. 

2. The Main Lemma 

The purpose of this section is to prove the following theorem. 

THEOREM 2.1 (The Main Lemma). Let <b">1?n6t be a sequence of degrees 
such that 0" < bi < * a b_ < *b.. Then there exists a sequence of degrees 
<a">1<"e, such that 0 < a1 < ... < an < ... and, for each n > 1, a" = 

a. U 0" = b, and {0, al, ..., an} is an initial segment of the degrees. 

The machinery which we shall develop for the proof of Theorem 2.1 will 
not be needed in later parts of this paper. However, we believe that the 
machinery has independent interest (see Yates [321 and Remark 2.14 below). 

A degree b is minimal if 0 < b and 0 is the unique degree less than b. 
Let a be any degree. A minimal cover of a is a degree b such that a < b 
and there is no degree c such that a < c < b. A strongly minimal cover of 
a is a degree b such that {d I d < a} = {d I d < b}. Clearly a strongly minimal 
cover of a is a minimal cover of a, but the converse is false by Remark 2.13 
below. Note that in Theorem 2.1, a,+1 is required to be strongly minimal 
over an. 

We assume that the reader is familiar with the arithmetical hierarchy 
(see ?? 7.5, 7.6 of Shoenfield [251 or Chapters 14,15 of Rogers [181). The fol- 
lowing lemma will be useful in verifying that certain relations are ? in a 
degree a (cf. proofs of Lemmas 3.4 and 3.8 in [91). 

LEMMA 2.2. Let A C= Go x 2w x 2w be 1i in a. Define B C o x 20 by 

B(m, f ) (Vg e 2'0)A(m, f, g) . 

Then B is H1 in a. 

Proof. Immediate from the Corollary on page 187 of Shoenfield [251. 

Note that 9>(a) is ?? in a. Let C be a nonempty subset of i'(a) which is 
3? in a. A subset D of C is said to be dense in C if for every P e C there 

exists P' e D such that P' _ P. We shall use the following special case of a 
notion due to Yates [321. A set X C 2w is said to be (C, a")-comeager if there 
exists a sequence of sets KDn>nee such that: 

(i) each Do is a dense subset of C; 
(ii) the relation {<n, P> I P e Dj} is ? in a; 
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124 STEPHEN G. SIMPSON 

(iii) X- flne [DfJ It is easy to see that every (C, a")-comeager set is 
nonempty and in fact has elements of degree < a". 

LEMMA 2.3. For any degree a, the set of g e 2w such that a U deg(g) is 
minimal over a is ((a), a")-comeager. 

Proof. For notational simplicity was assume that a = 0. (The easy 
relativization to arbitrary a is left to the reader.) Put ? = 9(0). Let D, be 
the set of Pe C such that (i), (ii) or (iii) holds: 

(i) Jm Vg(g e [PI - [n]9(m) is undefined); 
(ii) Vg, h, mn (g, h e [PI - [n]9(m) = [n]h(mn)); 

(iii) Vg, h 3m(g, h G [PI A g # h [n]9(m) # [nJh(m)). 
Clearly if g e [DJ] then either (i) [nJ9 is not totally defined, or (ii) [nJ9 is 
recursive, or (iii) g is recursive in [nJ9. Hence if g e fl. [DJ] we see that 
deg(g) is minimal. By Lemma 2.2 the Do are uniformly E, so it remains 
only to show that Do is dense in C. 

Let P e ? be given. Case I: there exist m and a such that [n]PJr'(m) is 
undefined for all 7: ra. Then we choose such a a and define P' ( P by 
Pf(v) = P(av). Then clearly (i) holds for P'. Case II: otherwise. Then we 
define P' P recursively so that [nJP'('a(lh(a)) is defined for all a. Let us 
say that a and z disagree if [nJo(m) and [nJr(m) are defined and unequal for 
some m. Case II(a): there exists a such that for no rz, z-,2 a do P'(z-1) and 
P'(z2) disagree. Then we choose such a a and define P" ( P' by P"(v)= 
P'(nv). Then (ii) holds for P". Case II(b): otherwise. Then we define P" z P' 
so that for all a, P"(uO) and P"(al) disagree. Then (iii) holds for P". Thus 
Do is dense in 9 and Lemma 2.3 is proved. 

LEMMA 2.4. Let Xc 2w be (59(a), a")-comeager. Then for all c > a" 
there exists b = a U deg(g), g e X such that bY = b U a" = c. 

Proof. Again we assume a = 0 and write 9i = 9i(0). Let DI be the set 
of P e ? such that Vf, m(f e [PI [n~f(m) is defined). Let D' be the set of 
P e 9P such that 3m Vf(f e [PI [nJf(m) is undefined). The proof of Lemma 
2.3 shows that DI U D' is dense in C. By Lemma 2.2 the D' are uniformly 
?3. Since X is (9, O")-comeager, we also have XD nf [E.] where the En are 
dense in P and uniformly E'. Let c > O", c = deg(h) be given. We shall 
construct a nested sequence of perfect trees <PnXe co, P" e i. Let PO be the 
identity tree. Choose P2n,1 C P2n so that P2n+1 A DI U D. Choose P21+2 P2n+1 
so that P2n+2 e E,. Finally let b = deg(g), g e nfl[Pi. The entire construc- 
tion is recursive in O" using h(n) only at stage 2n + 2. Thus b" < c since b" 
is the degree of the set 
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DEGREES OF RECURSIVE UNSOLVABILITY 125 

{n I [n]9 is totally defined} = {n I g e [D} e 

On the other hand h(n) = m if and only if g e [Pm+J, so c < b U 0". Clearly 
g e X so Lemma 2.4 is proved. 

COROLLARY 2.5. If c > a" then there exists b such that b" = b U a" = c 
and b is minimal over a. 

Proof. Immediate from Lemmas 2.3 and 2.4. 
Remark 2.6. Lemma 2.3 is essentially well-known (cf. Sacks [21] and 

Yates [32]). Cooper [1] has shown that Corollary 2.5 remains true if double 
jump(") is replaced throughout by jump('). Cooper's proof is an infinite injury 
priority argument and so is much more difficult than the proof of 2.5. Never- 
theless we conjecture that Theorem 2.1 also remains true if double jump is 
replaced by jump. 

Let 9i = 9i(0), the set of recursive perfect trees. Note that ? is E. If 
P e 9s, a subset S of the range of P is said to be dense open in P if each 
string in the range of P is extended by an element of S, and every string 
in the range of P which extends an element of S belongs to S. A useful 
fact is that the intersection of finitely many dense open subsets of P is again 
dense open in P. 

DEFINITION 2.7. A subset C of 9i is said to be adequate if it is nonempty 
and ? and has the following properties: 

(i) Let P e C and let a be a string. Then there exists P' _ P such that 
P' e C and P'(0) Q P(a). 

(ii) Let Pe, C and let < be a recursive sequence of recursively 
enumerable, dense open subsets of P. Then there exists P' c P such that 
P' e C and P'(a) e So, for all a and n < lh(a). 

(iii) Let P e C. Then there exists a recursive function p: o co such that 
if i is an index for a recursive sequence < of recursively enumerable 
subsets of the range of P, then p(i) is an index for a partial recursive func- 
tion P' from Y into A, such that: (a) P'(a) e So, provided S, is dense open in 
P for all n < lh(a); (b) P' _ P and P' e C provided So, is dense open in P for 
all n e w. 

The prime example of an adequate set is of course IP itself. Further 
examples occur in Lemma 2.10 and Remark 2.14 below. The definition of 
adequacy is an attempt to isolate properties which are useful in "local forcing" 
and "splitting" arguments (cf. pp. 350-351 of Sacks [21]). The basic idea of 
adequacy is embodied in clauses 2.7 (i) and (ii). Clause (iii) is merely an 
elaboration of (ii) which we seem to need for the proofs of Lemmas 2.10 and 
2.11. 
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126 STEPHEN G. SIMPSON 

LEMMA 2.8. Let C be adequate and let A _ Go x 2W be W'. Let D be the 
set of P e C such that either (i) or (ii) holds: 

(i) 3n Vf(f e [PI -l 1A(n, f)); 
(ii) Vn Vf(f e [PI -- A(n, f)). 

Then D is ? and dense in C. 
Proof. That D is ? is immediate from Lemma 2.2. It suffices to prove 

density in the special case when A is ?. Say 
A(n, f)< (3 Ca f)B(n, a) 

where B is recursive and B(n, z-) if B(n, a), a _ z-. Let P e C be given. We 
seek P' _ P such that P' e D. Case I: there exist n and a such that B(n, P(Z-)) 
for no z- D a. By 2.7 (i) let P' _ P be such that P' e C and P'(s0) D P(a). 
Clearly 2.8 (i) holds for P'. Case II: otherwise. Then for each n the set 
of P(p) such that B(n, P(pt)) holds is dense open in P. Thus by 2.7 (ii) there 
is P' C P such that P' e C and B(n, P'(a)) for all a and n ? lh(a). Thus 2.8 
(ii) holds for P' and the lemma is proved. 

If P, Q e ? we say that Q is P-based if there exists an integer i such that 

[P]J--{If I [iJf: Y > I is a perfect tree} 
and 

[QJ = [P, il = {f Eg I f e [P] and g e [[itf]}. 
If C is adequate, let C+ be the set of all Q e 9i such that Q is P-based for 
some P e C. By Lemma 2.2 C+ is again a ? subset of 9s. If Y - 2w and f e 2'0 
we write Yf = {g I f g e Y} and 

Y= {If I Yf is (9>(a), a")-comeager where a = deg (f)}. 
The next lemma embodies an "iterated forcing" argument which links 

the definitions of C+ and Y-. The method of "iterated forcing" has been 
studied in the context of transitive models of ZF set theory by Solovay and 
Tennenbaum [28] and in the context of admissible sets by Sacks [22]. 

LEMMA 2.9. Let C be adequate. Suppose that Y ( 2w is (Ce+, O")-comeager. 
Then Y" is (C, O")-comeager. 

Proof. Let YD nfl[DJ] where the D, are dense in C+ and uniformly 3. 
For each n and i, using Lemma 2.8 and the density of D, in C+, we can 
effectively find Dai a dense Y3 subset of C, such that for each P e D;- either 
(i) or (ii) holds: 

(i) Vf(f e [P] [ijf is not a perfect tree); 
(ii) Vf(f e [P] [i]f is a perfect tree) and there exists a P-based Q e D, 

such that [Q] C [P, i]. 
It is then easy to check that Y- :D ni[D- I so Y- is (C, O")-comeager. 
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DEGREES OF RECURSIVE UNSOLVABILITY 127 

We define 91 = ? and 9ih1' = (?"n)+ for all n ? 1. 

LEMMA 2.10. If C is adequate, then C+ is adequate. Hence, for each 
n > 1, 'p is adequate. 

Proof. Let Q e C+, C adequate, and let <T">n6c. be a recursive sequence 
of recursively enumerable, dense open subsets of Q. We seek Q' _ Q such 
that Q' e C and Q'(p) e Tr for all p and n ? lh(p). This will prove 2.7 (ii) for 
C+. Let Q be P-based, P e C. Our Q' will be P'-based with P' _ P, P' e C, 
and P' obtained as in 2.7 (ii) from a sequence <S.>,,:,, of dense open subsets 
of P. 

Let i be an integer such that [Q] = [P, i]. Let R be the partial mapping 
from Y x Y into I defined by Rj(z) = [iJPr0(z-). There will exist a mapping 
R: Y x A - such that Q'(a (0 r) = P'(a) 0D Ro(r) whenever lh(z) < lh(a). 
Using 2.7 (iii) and the recursion theorem, we may define the S., P', and R' 
simultaneously as follows. Let S, be the set of P(,p) such that P(P) (0 R,(V) e 
T, n T, for some v. The dense openness of S, in P follows from the dense 
openness of T, n T, in Q. Choose P'(0) e So and R'0() so that P'(s0) 0 RX'0) e To. 
Assume inductively that Si, P'(a) and R'(r) have been defined for i < n, 
lh(r) < lh(u) < n. Two strings are said to be incompatible if neither extends 
the other. Let S, be the set of P(p) such that for all o, r of length n, if 
P()Q P'(u) then there exist vi, i < 4 such that the P(p) 0 R,(v,) extend 
P'(u) ? R'(r) and are pairwise incompatible and belong to T2+2 fn T2n+3 The 
dense openness of S, in P follows from the dense openness of T2n+2 n T2,+3 
in Q. Now for a, r of length n and i, j e {10 1} define P' and R' so that the 
P'(ai) &) R"(z-j) are pairwise incompatible and belong to T2n+2 n T2,+3. This 
completes the proof of 2.7 (ii) for C+. The proof of the other clauses is left 
to the reader. 

The special case C = C of the next lemma goes back to D. Titgemeyer 
(cf. ?11 of Sacks [20]). 

LEMMA 2.11. Let C be adequate. Then {f & g deg(f E g) is strongly 
minimal over deg(f)} is (Ce+, O")-comeager. 

Proof. For each n let D. be the set of Q e C+ such that either (i), (ii) or 
(iii) holds: 

(i) rm Vh (h e [Q] [nJh(m) is undefined); 
(ii) Vf, g19 g29 M(f 0 g9, f 0 g2 G [Q] [njfG91(m) = [nJfi92(m)); 

(iii) Vh1, h2 3M(h1, h2 C [Q] A hl # h2 [n] hl(m) # [nPh2(M)). 

If f 0 g e [D.] then either (i) [nJf89 is not totally defined, or (ii) [n]'f8 is re- 
cursive in f, or (iii) f 0 g is recursive in [nJfi9. Hence if f ( g e nf[D.] it 
follows that deg(f 0 g) is strongly minimal over deg(f). Moreover the D. are 
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128 STEPHEN G. SIMPSON 

uniformly Z by Lemma 2.2, so it remains only to show that D, is dense in Ce. 
Let Q e Ce be given. We seek Q' C Q such that Q' e Do. If 2.11 (i) holds 

for some Q' C Q, Q' e C+ then we are done. If not, then by 2.10 and 2.8 we 
may assume that Vh, m(h e [Q] [n]h(m) is defined). Let Q be P-based, P e, 
and proceed as in the proof of Lemma 2.10. We say that strings a and z 
disagree if [nJ'7(m) and [nlr(m) are defined and unequal for some m. Case I: 
there exist a, 7 such that lh(a) = lh(z) and for no a' D- at 7' z, 72 7 7 do 

P(a') D3 R,,(z-) and P(a') (D R,,(z-) disagree. Then we choose such a, z and by 
2.10 and 2.7 (i) we can find Q' C Q such that Q' e Ce and Q'(0) D P(a) E3 R,(z-). 
Then 2.11 (ii) holds for this Q'. Case II: otherwise. In this case we shall 
imitate the proof of Lemma 2.10 to obtain Q' C Q such that Q're C+ and 2.11 
(iii) holds for Q'. Define S,, P'(0) and R'(0) arbitrarily. Assume inductively 
that Si, P'(a), R'(z-) have been defined for i < n, lh(z-) < lh(a) < n. Let 
Sn+ be the set of P(,u) such that for all a, z- of length n, if P(p) _ P'(a) then 
there exist vi, i < 4, such that the P(4A) (D R,(vi) extend P'(a) ( R'(z-) and 
disagree pairwise. The dense openness of S"+, in P follows from the fact 
that we are not in Case I. For a, z of length n and i, j e {0. 1} define P', R' 
so that P'(ai) i] R'i(z-j) disagree pairwise for i, j C {0. 1}. This completes the 
proof of Lemma 2.11. 

COROLLARY 2.12. Let C be adequate. Then {f I deg(f) has a strongly 
minimal cover} is (C, O")-comeager. 

Proof. Immediate from Lemmas 2.11 and 2.9. 

Remark 2.13. The theorem that every degree has a minimal cover is due 
to Spector [29] who in the same paper raised the following problem: Which 
degrees have strongly minimal covers? Corollary 2.12 is a new, positive 
result on Spector's problem. For interest's sake we list here the other 
known results on Spector's problem. First, the theorem of Lachlan and 
Lebeuf [14] implies that for any countable upper semilattice L with greatest 
and least elements, there exists a degree a such that {d I d < a} is isomorphic 
to L and a has a strongly minimal cover. There is also a surprising result 
of Cooper [2] which says that there exists a nonzero recursively enumerable 
degree which has a strongly minimal cover. On the negative side, there is 
the well-known theorem of Friedberg [4] which immediately implies that no 
degree >0' is a strongly minimal cover. A related theorem of Jockusch [8] 
implies that {If I no degree > deg(f) is a strongly minimal cover} is comeager 
in 20). An open question of long standing is whether every minimal degree 
has a strongly minimal cover. 

Remark 2.14. The notion of adequacy (Definition 2.7) appears to be con- 
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DEGREES OF RECURSIVE UNSOLVABILITY 129 

venient in that it permits formulation of strong results. For instance, the 
construction of Yates [31, ?31 can be adapted to show that, for any finite 
distributive lattice L, there exists an adequate set CL such that 

{If I L is isomorphic to {d I d < deg(f)}} 

is (CL, 0")-comeager. (The set 59n of 2.10 is essentially CL where L is a linear 
ordering of size n + 1.) In another direction, ideas of Jockusch [7], Miller 
and Martin [17], and Sasso [23] can be combined with the proof of Lemma 
2.8 to show that if C is adequate, then {f I a = deg(f) is bi-immune free and 
hyperimmune free and a' > a U O'} is (C, 0")-comeager. Finally, the proof 
of Lemma 2.4 can be combined with Lemma 2.8 to yield the following result. 
Let C be adequate, and let X C 2w be (C, 0")-comeager. Then for all b > 0" 
there exists a = deg(f), f e X such that a" = a U 0" = b. We shall not prove 
these results here. 

LEMMA 2.15. There exists a sequence of sets < Yn>1?n,, such that 
(i) Y, is (HP, 0")-comeager; 
(ii) Y1 C {If I deg(f) is minimal}; 
(iii) for each n > 1, Yf-- YnQ,; 
(iv) for each n > 1, Ynl, C {If (D g I deg(f (D g) is strongly minimal over 

deg(f)}. 

Proof. Let X1 be the set of f such that deg(f) is minimal. For n > 2 
let X, be the set of f (D g such that deg(f D g) is strongly minimal over 
deg(f). Lemmas 2.4 and 2.11 imply that Xn is (59%n 0")-comeager. We put 
Y f = niX-i where X' = X., Xi+1 = (X4+1)-. By Lemma 2.9 each X,' is 
(),n 0")-comeager. Furthermore, the uniformity of the proof of Lemma 2.9 
implies that the X,, are uniformly (9n, 0")-comeager, i.e.,xi D fj [DRni ] where 

Dnij is dense in 59n and {<P, n, i, j> P e Dnij} is E?. Properties (i)-(iv) are 
immediate. 

Proof of Theorem 2.1. Let Ye, 1 ? n e c be as in Lemma 2.15. By 
2.15 (i) and 2.4 we can find a, = deg(f1), f1 eC Y1 with a"' = a, U 0" = b1. By 
2.15 (ii) a, is minimal. Assume inductively that a. = deg(f") has been defined, 
fi e Yn, a" = an U 0" = by. Then of course a" < b,+1 so by 2.15 (iii) and 2.4 
we can find an+1 = deg(f,+1), f.?1 fnED3gn e Yn, such that a"1 =a,+ U 0" =n 

By 2.15 (iv) an+, is strongly minimal over an. This completes the proof. 

3. First-order definability with jump 

By analysis we mean second-order arithmetic, i.e., the second-order 
theory of <K, -, *> or equivalently the first-order theory of the 2-sorted 
structure 
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( = <2,% , +, ,E> 

where E: 20 x o -* co is defined by E(f, n) = f(n). General information on 
analysis can be found in the textbooks of Rogers [18, ?16.21 and Shoenfield 
[25, ?8.5J. Let 

) = <D, U, i> 
where <D, U > is the semilattice of degrees and j is the jump operator. The 
purpose of this section is to prove the following theorem which says that the 
first-order languages associated with a and 9P have roughly the same ex- 
pressive power. 

MAIN THEOREM. Let S be a set of degrees such that S C {d I d > 0@'}. 
Then S is first-order definable in ?D if and only if 

{If Ideg(f) e S} 2 
is first-order definable in a. 

The proof of the Main Theorem will involve a certain translation of the 
language of analysis into the language of degree theory with jump. In this 
translation, the integer n will be interpreted as the degree O'n). The relations 
{<m, n, k> I m + n = k} and {<m, n, k> I ma n = k} on co will be interpreted as 
the corresponding relations on Q - {0(n) I n e Go}. A function g e 2w will be 
interpreted non-uniquely as a degree a such that for all n, g(n) = 1 if and 
only if 0") < a U O'n) Theorem 3.7 below says that there exists a faithful 
translation with the features just mentioned. Then Lemma 3.11 sets the 
stage for Theorem 3.12 which generalizes the Main Theorem to n-ary relations. 

A nonempty subset I of D is called an ideal if 
(i) c < d, d e Iimply ceI; 
(ii) c, deIimply c U deI. 

This terminology is standard (cf. Gritzer [6, ?6]). Given two degrees a, b 
it is easy to check that 

I(a, b) = {dId ] ! < a and d < b} 

is a countable ideal. The next lemma says that all countable ideals are of 
this form. 

LEMMA 3.1. For any countable ideal I there exist degrees a, b such 
that I = I(a, b). 

Proof. This follows from Theorem 3 of Spector [29]. See also Sacks 
[20, ?2]. 

Lemma 3.1 is very useful because it tells us that the first-order language 
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of <D, U > is strong enough to express quantification over all countable ideals. 
This idea will be exploited in the proof of the next lemma, where mention 
of a countable ideal I is to be tacitly replaced by mention of degrees a, b 
such that I(a, b) = I. Further exploitation of Lemma 3.1 has occurred in [9]. 

LEMMA 3.2. The set of degrees 

- {=0"' nG 6} 
is first-order definable in C). 

Proof. By the Main Lemma (Theorem 2.1) there exists a countable ideal 
I = {a In e n}o of order type co, such that an U 0(2) = 0("?2) for all n. If I is 
any such ideal then we have b e Q if and only if b = 0 or b = 0(11 or b = a U 0(2) 
for some a C I. Therefore by Lemma 3.1 it suffices to show that the set of 
all such I is first-order definable in A. Well, I is such an ideal if and only if 
I is linearly ordered, every element of I has a minimal cover in I, every 
proper subideal of I has top element, and (c U 0(2))P = d U 0(2) whenever c, d 
are consecutive elements of I. By Lemma 3.1 all of these conditions on I are 
first-order, so Lemma 3.2 is proved. 

LEMMA 3.3. Let m be a positive integer and let 0(2m) < b, < * <bin be 
given. Then there exists an initial segment 0 < a, < ... < am such that 

ai U 0(2m-2i) < ai U 0(2m-2i+2) = ai U 0(2m) = b 

for 1 < i < m. 

Proof. The special case m = 1 is essentially just Corollary 2.5. Assume 
inductively that m > 1 and that Lemma 3.3 holds with m - 1 instead of m. 
Relativizing this statement to 0(2) we obtain degrees 0(2) < Cl < ... K C< _ 

such that 

ci U 0(2m-2i) < ci U 0(2m-2i+2) = ci U 0(2m) = b 

for 1 < i < m. Then the Main Lemma (Theorem 2.1) yields an initial segment 
0<a1< ... < a. 1<asuchthatai U 0'2'=ci for 1?i<mandan U 0(2?=bm. 
From this it follows easily that the a1 satisfy the conclusion of Lemma 3.3. 

LEMMA 3.4. The ternary relations {<0(m), 0(n), Ok)> Im + n = k} and 
{<0(m), 0(,) 0()> I m * n = k} of "addition" and "multiplication" on Q are first- 
order definable in C). 

Proof. A slight modification of the proof of Lemma 3.2 shows that 

2Q {0= 2 n60} 

is first-order definable in ID. To define addition and multiplication on Q it 
suffices to define them on 2Q. We define + on 2Q as follows: 2m ? 2n and 
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2m + 2n = 2k if and only if 2m < 2n and there exists a degree d such that 
the following holds. Use d to define a binary relation R = Rd on 2Q by 

R(0'2i'y 0(2j)) if and only if 

3a < d(a U 0(2i-2) < a U 0(2i) = a U 0(2m) = 0(2j) and a > 0) . 

Then R is an order-reversing one-one correspondence between {0(2i) 1 < i ? m} 
and {0(2j) n n < j ? k}. The correctness of this definition follows from Lemma 
3.3. Now armed with + we define multiplication on 2Q as follows: 2m < 2n 
and 2m . 2n = 4k if and only if 2m < 2n and there exists a degree d such that 
Rd is the order-reversing one-one correspondence between {0(2i) I1 ? i < m} 
and {0(7i)I 1 ? < i ? m} and Rd(0(2) 0(4k)) holds. Again we are justified by Lemma 
3.3. This completes the proof of Lemma 3.4. 

We define a special mapping F: D - 2?' by 

{l if 0,+1') < a U 0('n) F(a)(n) =1 ifY? 
0 otherwise. 

LEMMA 3.5. F is onto, i.e., given g e 2W we can find a degree a such that 

F(a)= g. 

The proof of Lemma 3.5 is based on the following sublemma. 

SUBLEMMA 3.6. Suppose P es 9(c). Then we can find PO', P1' C P such 
that PO, P, es P(c') and 

(i) c' f a U c whenever a deg(f), f e [PO']; 

(ii) c' < a U c whenever a- deg(f), f e [P']. 

Proof. Let c= deg(h). Let So be the set of P(p) such that either 

[n]P'41'h(n) is defined, or [n]P (k)h(n) is undefined for all v z P. Clearly the S" 
are uniformly recursive in c' and dense open in P. Hence we can find PO' C P 

recursive in c' such that PO'(a) eC Sn whenever lh(u) = n. Thus (f D h)* is 
recursive in f ( h* for all f e [P,'], so (i) holds a fortiori. Define P, C P by 
P11(u) = P(a (D h *) for all a. Then P1' is recursive in c', and clearly h* is 
recursive in f D h for all f e [P,'], so (ii) holds. This proves the sublemma. 

Now to prove Lemma 3.5, let g e 2W be given. We shall define a nested 

sequence <P,>,,,, such that P, e P(0(n)) for all n. Let PO be the identity tree. 
If g(n) = 0 choose P,+, C P, by 3.6 (i). If g(n) = 1 choose P,+, z P, by 3.6 
(ii). Finally let a = deg(f), f e nfl, [PJ. By construction 0(n+') < a U O'n) if 

and only if g(n) = 1 so we are done. 

THEOREM 3.7. Let q be a formula in the language of analysis contain- 
ing i free function variables and j free number variables. Then we can 
effectively find a formula q* in the language of degree theory with jump, 
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such that for all d,, * * *, di C D and n,, * * *, nj C co, 
A t *[.(dj ., F(dj, n1, *nj] 

if and only if 

9) t *[dj,* .., di, 0(ni), . .. 0(ni)] 

Proof. Straightforward using Lemmas 3.2, 3.4, and 3.5. 
The next lemma is a useful variant of 3.5. Note that if a is any degree 

then deg(r(a)) < a"?'. 

LEMMA 3.8. For any degree b > 0(') there exists a degree a such that 

deg(F(a)) = a(') = a U 0(") = b . 

SUBLEMMA 3.9. Suppose Q e C1(c). Then for any i e co we can find P C Q, 
P e 9(c""), and m e {0, 1} such that [PI C {f f("')(i) = m}. 

Proof. This is easily seen by a "local forcing" argument. See Lemma 
3.1 of Sacks [21]. 

Now to prove Lemma 3.8, let b = deg(g) be given. We shall construct 
a nested sequence of perfect trees <Pk>kcW. There will also be a recursive 
sequence of integers <nk>kcC such that Pk e 91(0fk)). Put no = 0 and let P0 be 
the identity tree. If k = 2i, put nk~l = nk + i + 85 and use Sublemma 3.9 
to find Pk, ' Pki') and m e {0, 1} such that [Pk+i] C {f ( f- i) - m}. If k = 2i + 1, 

put nk~l = nk + 1 and use Sublemma 3.6 as in the proof of Lemma 3.5, i.e., 
Pk1l C Pk insures that 0(nk+1) < a U O(nk) if and only if g(i) = 1 where of course 
a = deg(f), fef nk [Pk]. The entire construction is recursive in 0(OW with the 
use of g(i) only at stages 2i + 1 and 2i + 2. Thus aw' < b. On the other 
hand g(i) = m if and only if f e [P,-i I so b < a U 0?). Finally g(i) = F(a)(n~ij 
so b < deg(F(a)). This completes the proof. 

LEMMA 3.10. The binary relation {<a, b> I a(') b} is first-order defin- 
able in L. 

Proof. Immediate from Lemma 3.1 and the following theorem of Sacks 
[21]: a('O is the smallest degree of the form d(2' such that d is an upper bound 
of {a()I n e o}. 

LEMMA 3.11. The binary relation {<a, b> I deg(F(a)) = b > 0(w)} is first- 
order definable in 0. 

Proof. By Lemma 3.8 a degree b > 0(') can be characterized as the 
largest degree of the form deg(F(a)) where a(w) = b. The relation {K<1, f2> f A 

is recursive in f2} is of course definable in analysis, so by Theorem 3.7 the 
relation {<al, a2> I F(a1) is recursive in F(a2)} is first-order definable in ID. These 
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observations plus Lemma 3.10 are easily combined to yield Lemma 3.11. 
We are now ready for the principal theorem of this section. 

THEOREM 3.12. Let n be a positive integer and let R be a set of n-tuples 
of degrees >?0(w). Suppose that 

R* = {<f1, * * *, f.> I R(deg(f1), ** , deg(f.))} 

is definable in analysis. Then R is first-order definable in LI. 

Proof. Immediate from Theorem 3.7 and Lemma 3.11. 

COROLLARY 3.13. Each of the following relations is first-order definable 
in C): 

(i) {<a, b> I a is hyperarithmetical in b}; 
(ii) {<a, b> I a is ramified analytical in b}; 
(iii) {<a, b> I a is constructible from b}; 
(iv) for each n > 2, {<a, b> I a is A' in b}. 

COROLLARY 3.14. Assume that 0 exists. Then the degree of 0# is first- 
order definable in 9). 

Remark 3.15. Corollaries 3.13 and 3.14 are somewhat unsatisfying be- 
cause the first-order definitions provided by their proofs look extremely 
artificial from the viewpoint of degree theory. It is desirable to replace 
these definitions by degree-theoretically natural ones. In [9] we exhibited 
degree-theoretically natural definitions of 3.13 (i) and (ii) and of the degree 
of Kleene's 0. It is also possible to exhibit a degree-theoretically natural 
definition of 3.13 (iii). It would be interesting and worthwhile to do the same 
for 3.13 (iv) and other relations of hierarchy theory, and for the degree of 0*. 

4. Inhomogeneity with jump 

We begin this section by reviewing the background of the so-called 
homogeneity problem. Suppose that we have a theorem of the form )D t T 
where )D = <D, U, j> and q is a sentence in the language of degree theory 
with jump. If the proof of this theorem uses only "standard methods," then 
it is usually possible to generalize the theorem in a routine way by relativ- 
ization. This means that for any fixed degree c = deg(h) we can insert h at 
appropriate places in the proof of ID -T to obtain a proof of a new theorem 
LD, ct q where ID, is the substructure of ED whose universe is {a a > cl. For 
example, the existence of a minimal degree is expressed by LD 0 , where , is 
a certain first-order sentence. Relativization to c yields LID P , which ex- 
presses the existence of a minimal cover of c. (See also Rogers [18, ?9.3].) 

More examples are provided by the results of Sections 2 and 3, all of 
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which relativize straightforwardly. Thus for any degree c there is a faithful 
translation of analysis into the first-order theory of 0,C in terms of the set 

QC = {c'%' I n C co} 

and the mapping 

FC: {a a > c} , 2w 

defined by 

{1 if c(%+) < a U C~n) 

) otherwise. 

It is important to note that the same translation works for all c. 

The literature of degree theory contains many more examples of rela- 
tivization. In fact, we can make a blanket claim that all theorems in the 
literature of the form 0D t q relativize to OJc t q for all c. This phenomenon 
led Rogers [18, p. 261] to formulate the strong homogeneity conjecture which 
says that for any c the structures 0D and Oc are isomorphic. 

Unfortunately, the strong homogeneity conjecture is false. It was 
shown by Feiner [3] that 0D is not isomorphic to DO(6. A slight extension of 
Feiner's argument shows that if Da and 0D, are isomorphic then a < bV6) and 
b < a(6' so in particular a(') = b(w). (See also Yates [31, ?5] and Jockusch and 
Solovay [111].) 

Since strong homogeneity fails, it is natural to propose the homogeneity 
conjecture: for any degree c the structures 0D, and 0D are elementarily equi- 
valent, i.e., have the same first-order theory. This conjecture is refuted by 
the next theorem. 

THEOREM 4.1. There exists a degree b such that 0Db is not elementarily 
equivalent to C). 

Proof. Let b be any degree such that b(w) > 0(w) and b is definable in 
analysis (e.g., we may take b = 0(')). By the relativized version of Theorem 
3.7, there is a formula +(x) such that for all a and c, OJc t 4[a] if and only 
if deg(Fc(a)) = b(w). By the relativized version of Lemma 3.10, there is a 
formula 0(x) such that for all a and c, Dc t 0[a] if and only if a > c and 
a(w) = C(W). Let q be the sentence 3x(*(x) A 0(x)). The relativized version 
of Lemma 3.8 yields a degree a > b such that deg(Fb(a)) = a(') = bw). Hence 
gb p (. On the other hand 0D T 7 q since deg(F(a)) < a(') for all a. This com- 
pletes the proof. 

A slight modification of this proof yields the following result: 

THEOREM 4.2. Assume V= L. If Oa and 0b are elementarily equi- 
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valent, then a(w) = b(w). 

In contrast to this result, we have the following easy consequence of a 
lemma of Martin [16]: 

THEOREM 4.3. Assume PD. Then there exists a degree a such that 0. is 
elementarily equivalent to ODb for all b > a. 

5. First-order theory without jump 

In this section we translate analysis into the first-order theory of <D, U >. 
The rough idea behind the translation is as follows. By Theorem 3.7 we have 
the desired result for <D, U, j>. In the proof of 3.7, j was used only to 
establish the existence of certain configurations of degrees which encode 
analysis. But once we know that such configurations exist, we can list their 
essential properties and speak about them in the language of <D, U > via 
Lemma 3.1. 

We say that b is n-minimal over a if {d I a < d < b} is a linear ordering 
of size n + 1. An a-tower is a sequence of degrees < such that 

a = a0 < a, < ... < a. < ... 

and an is n-minimal over a for each n. A k-ary relation R C Dk is said to 
be weakly definable if it is first-order definable in <D, U > allowing para- 
meters from D. An a-tower <a,>n,,, is good if 

(i) the relations {<am, a,, ak> Im + n} and {<am, an, ak> man = k} are 
weakly definable; 

(ii) there exists a degree c such that the relation {<an, d> d is n-minimal 
over c} is weakly definable. 

LEMMA 5.1. There exists a good 0-tower. 
Proof. By the Main Lemma (Theorem 2.1), let A = <an>new be a 0-tower 

such that an U 0(2) = 0(2n?+2) for all n. We claim that A is good. The set 
{a, n e w} is a countable ideal and so by Lemma 3.1 is weakly definable. 
Hence the one-one correspondence {<an, 0(2n)> > n e A} is weakly definable. Now 
part (i) of goodness is immediate from Lemma 3.4. For part (ii) put c = 0'() 
and use Lemma 3.3 to justify the following definition: d is n-minimal over 
c if and only if d > c and there exists a degree e such that the following 
holds. Use e to define a binary relation R by R(0'2i', b) if and only if 

3a < e(a U 0(2i-2) < a U 0(2i) = a U 0(2?&) = b and a > 0) . 

Then R is an order-reversing one-one correspondence between {0(2i) 1 <i < n} 

and {b I c < b < d}. This completes the proof of Lemma 5.1. 

If A = <a,>,,,, is an a-tower, we define FA: D -o 2w by 
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rFA(b)(n) = 1 if an+1 < b U a., 
l otherwise. 

LEMMA 5.2. For all f e 2w there exists a 0-tower A and a degree b such 
that FA(b) = f. 

Proof. Let A = <a,>,,,, be as in the proof of Lemma 5.1. By Lemma 
3.5 we can find c such that for all n, 0(27?+4) < c U 0'27?+2) if and only if f(n) = 1. 
Put b c U 0(2). It follows that an+1 < b U an if and and only if f(n) = 1, i.e., 
FA(b) f. 

THEOREM 5.3. Let q be a sentence in the language of analysis. Then 
we can effectively find a sentence * in the first-order language of semilat- 
tices, such that CT t q' if and only if <D, U > t A. 

Proof. We abbreviate <D, U > t ... as t D ** * . By Lemma 5.1 let ac, a 

be first-order formulas such that there exist a 0-tower <an>new and degrees 
c, d, *. such that 

(i) {<e1, e2, e3> ID c[e1, e2, e3, d, ... *} {<am, an, ak> I m + n = k1; 
(ii) {<e1, e2, e3> k D S[el, e2, e3, d, ... *} = {<am, an, ak> I men = k}; 
(iii) {<e1, e2> I D (A[e1, e2, C, d, ... **} ={<an, b> I b is n-minimal over c}. 

Then by Lemma 3.1 we can write down a formula 0 such that for all degrees 
c, d, , ~=DO[c, d, *... if and only if there exists a 0-tower A = <an>new 

such that (i), (ii), and (iii) hold. This A is necessarily good, and we refer to 
A as the good 0-tower encoded by c, d, *.. 

Now given q we can write down a formula q* such that a t q' if and 
only if t=D (p*[c, d, * * *- whenever ktD 0[c, d, * * * ]. The idea here is that q* 
expresses q in terms of the good 0-tower encoded by c, d, * Ad . Thus first- 
order arithmetic is handled by a and A, while function quantifiers are handled 
by a and the relativization to c of Lemmas 5.2 and 3.1. Finally let * be the 
sentence 

3x, a,.. *@(O(x, y, )A 9*(x, , X, @). 

This completes the proof of Theorem 5.3. 

COROLLARY 5.4. There is a sentence * such that, provably in ZFC, 
<D, U > t * if and only if every element of 2W is constructible. 

COROLLARY 5.5. The first-order theory of <D, U > is not absolute with 
respect to models of set theory containing all the ordinals. 

COROLLARY 5.6. The first-order theory of <D, U > is recursively iso- 
morphic to the truth set of analysis (i.e., the set EW of [18, p. 380]). 

Proof. Theorem 5.3 says that EW is many-one reducible to the first-order 
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theory of <D, U>. The converse reducibility is obvious since {<f, g> f is 
recursive in g} is definable in analysis. Corollary 5.6 then follows by Chapter 
7 of [18]. 

The questions which evoked Corollaries 5.5 and 5.6 were first raised in 
a paper on hyperdegrees [27]. It is perhaps worth remarking that all of the 
theorems of the present paper hold for hyperdegrees in place of degrees. 
In fact, Theorem 3.12 was first discovered in the context of hyperdegrees 
where the proof is somewhat simpler (cf. ??1 and 3 of [27]). 

We end the paper with a non-exhaustive list of open questions. Some 
of these questions were suggested by Rogers [19]. 

QUESTION 5.7. Does there exist a degree b such that the semilattice of 
degrees > b is not elementarily equivalent to <D, U >? 

QUESTION 5.8. Does there exist a degree b such that the semilattice of 
degrees > b is not isomorphic to <D, U >? 

QUESTION 5.9. Do there exist degrees a, b such that a # b and the semi- 
lattices of degrees >a and > b are isomorphic? 

QUESTION 5.10. Does <D, U > have automorphisms other than the identity? 

QUESTION 5.11. Does there exist a degree other than 0 which is fixed 
by all automorphisms of <D, U >? 

QUESTION 5.12. Is the jump operator fixed by all automorphisms of 
<D, U>? 

QUESTION 5.13. Is the jump operator first-order definable in <D, U >? 

QUESTION 5.14. Is the set of constructible degrees first-order definable 
in <D, U >? 

THE PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK 
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