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Abstract

Probability generating functions for first passage times of Markov chains are found using the method of collective marks.

A system of equations is found which can be used to obtain moments of the first passage times. Second passage

probabilities are discussed.
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1. Introduction

Suppose we have a Markov chain with n states labeled 1, 2, . . . , n.

Define the random variable Xi j to be the number of steps needed to move from state i to state j for the first time. We

refer to Xi j as the first passage time. Define the first passage probability as fi j(k) = P(Xi j = k). There are several ways to

compute the first passage probabilities. For example, see (Hunter, 1983) and (Kao, 1996). First passage probabilities are

important as they can be used to control processes and determine when to implement parameter changes. First passage

times are indicators of changes to a system (e.g. climate change) and act as warning signals that some action may be

needed.

Suppose we have a probability mass function for a discrete random variable X that takes on value k with probability pk

for k = 0, 1, . . . . Define the probability generating function for X to be ψX(z) =
∑

∞

k=0 pkzk. (Alfa, 2014, p. 76) gives an

expression for the probability generating function of the first passage probabilities from state i to state j as follows.

ψi j(z) =
Pi j(z)

1 − Pi j(z)

where Pi j(z) =
∑

∞

k=1 p
(k)

i j
zk. But this is not a closed form since we need the values p

(k)

i j
.

The method of collective marks was originated by (van Dantzig, 1949), and discussed in (Runnenburg, 1965) and

(Kleinrock, 1975, chapter 7). The method gives a probabilistic interpretation of a probability generating function
∑

∞

k=0 pkzk. Let z be the probability that an item is “marked.” Then pkzk represents the probability that random variable

X takes on the value k and each of the k counts is marked. Summing over all k gives the total probability that all items

from a single realization of the random variable X are marked. The method can often simplify computation and explain a

system in an understandable way.

In this paper, we use the collective marks method to find the probability generating function for first passage probabilities,

in a closed form for a fixed number of states n. We find expressions for moments of the first passage times, by using

the system of equations that we develop. We present a method to find probability generating functions of second passage

times.

2. Computing First Passage Probabilities

Theorem 2.1 Let ψi j(z) be the probability generating function for the first passage random variable from i to j for an n

state Markov chain. Then we obtain an equation,

ψi j(z) = pi jz +
∑

k:k, j

pikzψk j(z).
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Proof. By the method of collective marks, ψi j(z) represents the probability that the path starting from i and reaching j for

the first time has all of its steps receiving a mark. Here the probability of a step being marked is assumed to be z. The first

step may enter state j immediately and this occurs with probability pi j. The probability that the singleton path is marked

is z. So pi jz is the probability that the first passage probability consists of 1 step and is marked. Otherwise, the process

goes to some other state k with probability pik and that step is marked with probability z. From the new position k, the

process moves to state j eventually with each step being marked with probability generating function ψk j(z). Summing

over all cases gives the result.

Note The equation in our theorem involves the generating functions ψk j(z) (for all k) and we can get a similar equation

for each of these. For fixed j, this will give us a linear system of equations in the variables ψ1 j(z), . . . , ψn j(z), which can

be solved to get any particular first passage generating function desired as a non linear function of z. The coefficients in

the system of equations may involve z as well as constants.

Theorem 2.2 Let ψ13(z) be the probability generating function for the first passage random variable from 1 to 3 for an 3

state Markov chain. Then

ψ13(z) =
p13z + (p12 p23 − p13 p22)z2

1 − (p11 + p22)z + (p11 p22 − p12 p21)z2
.

Proof. From Theorem 2.1, we have

ψ13(z) = p11zψ13(z) + p12zψ23(z) + p13z

ψ23(z) = p21zψ13(z) + p22zψ23(z) + p23z

Solving this system of two equations in two unknowns gives our result.

Note

(a) A similar result holds for any pair, not just (1, 3).

(b) Our method manages to obtain a closed form for the probability generating function of the first passage times for 3

state Markov chains

(c) Theorem 2.2 can be extended to a larger number number of states as we still essentially get a linear system to solve.

(d) Although the system of equations is linear in the ψi j(z) unknowns, the coefficients involve the variable z, and the

resulting expressions are nonlinear functions of z.

Example 2.1

Consider the Markov transition matrix P =





















.3 .4 .3

.3 .3 .4

.5 .4 .1





















We will compute first passage probability generating functions

for ψ13(z), ψ23(z) , and ψ33(z). For the first two we use theorem 2, with appropriate changes for ψ23(z), and for the third,

we get a separate equation. According to Theorem 2, the probability generating function for the first passage probabilities

from state 1 to state 3 is given by

ψ13(z) =
.3z + (.4 ∗ .4 − .3 ∗ .3)z2

1 − (.3 + .3)z + (.3 ∗ .3 − .4 ∗ .3)z2
=

.3z + .07z2

1 − .6z − .03z2

We use the “series” command in MAPLE to find the Taylor expansion and get results.

ψ13(z) = .3z + .25z2 + .159z3 + .1029z4 + .06651z5 + 0.04299z6 + 0.02779z7 + . . .

This result agrees with other methods.

Similarly, from Theorem 2, we find

ψ23(z) =
.4z + (.3 ∗ .3 − .4 ∗ .3)z2

1 − (.3 + .3)z + (.3 ∗ .3 − .3 ∗ .4)z2
=

.4z − .03z2

1 − .6z − .03z2
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Finally,

ψ33(z) = p33z + p31zψ13(z) + ψ32zψ23(z) = .1z + .5zψ13(z) + .4zψ23(z)

=
.1z − .06z2

− .003z3 + .15z2 + .035z3 + .16z2
− .012z3

1 − .6z − .03z2

=
.1z + .25z2 + .02z3

1 − .6z − .03z2

3. Moments of First Passage Times

One can easily find expressions for the moments of first passage probabilities via a system of equations (Hunter, 1983).

However, we will use our system of equations to give an alternative method. Theorem 2.2 gives an expression for ψi j(z) so

we can find the moments of the first passage probabilities by simply taking derivatives and evaluating the expressions at

z = 1, making any additional computations needed. But this explicitly requires solving for ψi j(z) which can be a somewhat

burdensome task as the coefficients of the linear system involve the variable z.

Theorem 2.1 gives an equation for ψi j(z) involving the probability generating function of first passage times from i to j

and since we have similar expressions for ψk j(z) (for k , j), we have a system of equations that we can work with. We can

take the derivative of the SYSTEM of equations, and then substitute z = 1 into the system to create a much more tractable

system of equations. Of course, ψi j(1) = 1 and ψ′
i j

(1) = µi j where µi j = E(Xi j), where Xi j is the number of steps needed

to reach state j from state i for the first time. Also, ψ
(2)

i j
(1) = E(Xi j(Xi j − 1)).

Example 3.1 We use the same 3 × 3 transition matrix as in Example 2.1

The system of equations from Theorem 1 is

ψ13(z) = .3zψ13(z) + .4zψ23(z) + .3z

ψ23(z) = .3zψ13(z) + .3zψ23(z) + .4z

Also ψ33(z) = .1z + .5zψ13(z) + .4zψ23(z).

Taking derivatives gives

ψ′13(z) = .3ψ13(z) + .3zψ′13(z) + .4ψ23(z) + .4zψ′23(z) + .3

ψ′23(z) = .3ψ13(z) + .3zψ′13(z) + .3ψ23(z) + .3zψ′23(z) + .4

and

ψ′
33

(z) = .1 + .5ψ13(z) + .5zψ′
13

(z) + .4ψ23(z) + .4zψ′
23

(z)

Evaluating at z = 1 gives

µ13 = .3 + .3µ13 + .4 + .4µ23 + .3 = 1 + .3µ13 + .4µ23

µ23 = .3 + .3µ13 + .3 + .3µ23 + .4 = 1 + .3µ13 + .3µ23

and

µ33 = .1 + .5 + .5µ13 + .4 + .4µ23 = 1 + .5µ13 + .4µ23

Solving these gives µ13 = 2.97, µ23 = 2.70 and µ33 = 3.57.

4. Second Passage Times

Theorem 4.1 Let Yi j be the random variable representing the number of steps needed to move from i to j for the second

time. Then the probability generating function for Yi j is ψi j(z)ψ j j(z).

Proof Yi j = Xi j + X j j where Xi j is the first passage random variable, so Yi j is just the convolution of two independent

random variables. Since the pgf of a convolution is the product of the pgf’s of each part, the result follows.

Example 4.1 We will compute the second passage time from state 1 to state 3 in the Markov chain with transition matrix

P =





















.3 .4 .3

.3 .3 .4

.5 .4 .1





















We earlier calculated
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ψ13(z) =
.3z + .07z2

1 − .6z − .03z2
and ψ33(z) =

.1z + .25z2 + .02z3

1 − .6z − .03z2
so

ψsecond(z) =
(.3z + .07z2)(.1z + .25z2 + .02z3)

(1 − .6z − .03z2)2
. If we expand this (using MAPLE) into a Taylor series, we get

ψsecond(z) = 0.03z2 + .118z3 + .1561z4 + .1522z5 + .1316z6 + .1065z7 + . . .

Thus, for example, the probability of moving from 1 to 3 for the second time on step 4 is 0.1561.

In a similar manner,we can obtain higher order passage probabilities.

5. Discussion

The use of collective marks is not absolutely necessary to obtain Theorem 2.1, but it does make the proof simpler than

other methods. The closed form result of Theorem 2.2 appears to be new. If there are a large number of states, the

expressions of Theorem 2.2 would quickly become much more complex. Second passage (or higher order) passage times

can be studied by expanding the Markov transition matrix to contain the information about how many passages have

occurred but it is much easier to simply view a second passage time as the convolution of two single passage times, as

presented here.
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