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1. Introduction. We consider Markov chains with denumerable states,
designated by 0, 1, 2, • • • , and with transition probabilities independent of
time. Letting xo, xu ■ ■ ■ be the states after 0, 1, • • • steps, we define

(1.1) PM(i,j) = P(xn =j\x0=i), n - 0, 1,. • • ,

where P(^4|ß) stands for the conditional probability of A, given B. We as-
sume that for each i and j there is an integer n=n(i, j) such that

(1.2) P<B>(¿, j) > 0 for n = n(i, j).

Let Na be the first-passage time from i toj; Ntj is the smallest positive
integer n such that xn=j, if x0 = i. If there is no n such that xn=j, then iV,-,-
= oo. If j = i, we speak of the recurrence time for the state i.

We shall usually make the assumption

(1.3) E(Nit) < <*>.
If (1.2) holds, then (1.3) (which is true for all * if it is true for any i) implies
the existence of a set of stationary probabilities ir¡ > 0 satisfying

1    2
»,- lim — EP(r)(*\Í),

n-»oo   n   r=-0

(1.4) »/-£*rP°>(r,j),
r=0

oo

3=0

See Feller [4, Chap. 15] for the relevant theory.
Let da be defined as the probability that the state, initially supposed to be

i, takes on the value j at least once before returning to i. The quantities da
turn out to be very useful.

In §2 we derive some identities to be used in the sequel. In §3 we consider
the distribution of the recurrence time Nkk under the assumptions (1.2) and
(1.3), for "rare" states—i.e., states for which tt* is small. Since (assuming
that there are infinitely many states) no matter how the states are num-
bered, we must have it*—»0 as k—>&>, we can speak of the distribution of
Nkk for large k. It is shown that
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(1.5) P(TrkekoNkk > u) = eko(e-» + €*(«)), u > 0,

where ek(u)-^0 as k—»■» for each fixed m>0.
In §4 we give explicit expressions for the ir¡, da, and for mean recurrence

and first-passage times, in the case where the Markov chain is a random walk ;
that is, P¡¿+i=pi, P$-i = l—pi- The method depends on the representation
of a random walk as a Brownian particle moving among suitably selected
points. §5 gives a more precise form of Lemma 3 for random walks and a
method for getting moments of first-passage times in random walks. §6 gives
a rather curious correspondence between random walks and trees.

The author was in correspondence with Professors Chung and Feller
while this paper was being written, and both of them furnished alternative
proofs of some of the results of §4. Some of the identities in §2 are closely
related to recent and current work of Chung [2], who, in particular, has a
result involving three states of which Lemma 1 of §2 is a special case. Accord-
ing to Chung, Lemma 2 appears in a work by Paul Levy [8] which the author
has not yet seen.

Dr. Chung was courteous enough to delay publication of his paper until
the present paper was ready.

2. Some identities.

Lemma 1(x). Under the assumptions (1.2) and (1.3), we have

(2.1) E(Na + Nu) =-, i jí j.

To prove (2.1), suppose the initial state is i, and let N¡¡\ N®\ • • • be
the time intervals between successive recurrences to i. Let the (random)
integer R designate the first cycle from * back to i during which the state j is
visited at least once. Then A7«'-)- • ■ • +ÍV™ is a sample value of iV.-y+iV,-,-.
Since E(Nu) = l/7r< and E(R) = l/0y, we have, making use of a slight modi-
fication of a theorem of Wald [10, p. 52]

(2.2) E(Nij + NSi) = E(N?i) + • • • + N«*) = E(Nu)E(R) = -,

which proves (2.1).
Since the left side of (2.1) is unchanged if i and j are interchanged, the

right side must be also. This leads to the identity

(2.3) Tj/vi = Bn/e}i.

Formula (2.3) is useful in the treatment of random walks, since the 0¿y
are easy to find and thus the tv¡ can be obtained.

The identity (2.3) holds even if E(Nu) = », provided the chain is recur-

(') See the next-to-last paragraph of the introduction.
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rent—i.e., P(Na< oo) =1—and provided (1.2) holds. In this case the quanti-
ties ttí/ttí are Doeblin's ratios (see [3]),

¿PW(*,i)

E p(r,a i)
r-tt

The proof in this case follows from results of Chung in [2] and will not be
given here.

As an example of the use of (2.3), we have

Lemma 2(x). (Paul Levy.) Let Yn(i) be the number of times the state is i
during the first n steps from an arbitrary starting point. Then if (1.2) holds and
if the chain is recurrent, we have

(2.4) lim Yn(j)/Yn(i) = vifxi, i^j,
n-+°o

with probability 1.

To prove (2.4), which is trivial if (1.3) holds, we suppose for simplicity
that Xo = i\ this does not essentially affect the argument. From the definition
of 6ij it follows that the probability that the state takes on the value j
exactly r times between successive visits to i is given by 1— 9,j if r=0 and
6ij(\—dji)T~lQji if r>0. The expected number of visits to j between visits to
i is thus On/da. From the strong law of large numbers it follows that if
»i, n2, ■ ■ ■ are the times at which xn—i, we have

(2.5) \im Ynk(j)/Ynk(i) -eti/0».
fc—»oo

Similar reasoning shows that the same limit is approached if n passes through
the sequence of values (n{ ) for which xn =j. But since the sequences (nk) and
(ni ) are the only values of n for which the ratio Yn(j)/Yn(i) can change, the
limit must exist, and use of (2.3) gives (2.4).

3. Distribution of Nkk for large h. We assume throughout this section
that (1.2) and (1.3) hold and that there are infinitely many states; otherwise
the Markov chain is arbitrary.

We first consider the distribution of Nok as A—+ oo , where 0 is an arbitrary
fixed state.

Lemma 3. Lim*,,» P(iroöo*iVo* > «) =eru, u>Q.

Let u denote an arbitrary fixed positive number and denote by [z] the
largest integer not greater than z. Suppose the initial state is 0 and let Sk be
the number of steps in the first [w/^o*] recurrences to 0. Let Ak be the event
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that k is not visited during the first [w/0c*] recurrences to 0, and Bk(e), e>0,
the event

Sk/[u/dok]
7To

<e,

and let Ck be the event

No* >
£-•)'

u/d0k\.

Then we have, letting B denote the complement of B,

(3.0) Y(Ck) ^ P(Ak, Bk) = F(Ak) - F(Ak, Bk).

Now P(Ak)=(l-60kyui^-^e-" as è-^», and P(Bk)-^0, by the law of
large numbers, both these limits holding uniformly on any finite M-interval
bounded away from 0. An easy consequence of (3.0) is that

lim inf Y(ir<0okNok > u) ^ e~\
Jfc—»<a

A similar argument shows lim sup = e~", and Lemma 3 follows.
A consequence of Lemma 3 is that

u > 0.

(3.1) lim inf ~E(iro8okNok) ̂ 1.

On the other hand, from (2.1) we have

(3.2) Ef>o0o*iVo*) + EOro0o*#*o) = L

From (3.1), (3.2), and (2.3), we have, recalling from (2.3) that wddok=T'ißko,

(3.3) lim E(iro0o*/Vo*) = Hm E(irkekoNok) = 1,

(3.4) lim E(Nko)/E(Nok) = 0.

We now prove

Theorem 1. For each w>0,

(3.5) PWídÍVh > u) = 8ko(er* 4- ek(u))

where 6k(u)—>0 as k^rx>.

The symbols in (3.5) are defined in the introduction. The proof will bring
out the intuitive meaning of (3.5). Of course, any fixed state rather than 0
could be used.

Proof. Let Tk be the expected value of Nkk, given that the path from k
back to k is never in 0 and let Uk be the expected value of Nk0 given that
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the path from A to 0 is never in A after the initial position. Now consider a
sample first-passage from k to 0. There will first be r returns to A, r =0, 1, ■ ■ -,
before 0 is visited, and finally a passage from A to 0 during which A is not
revisited. Since r has the frequency function 0ao(1 —0*o)r, we have

00

E(Nko) - Tk £ rdko(l - dkoY + Uk

(3.6)
- Tk(-l)

\dkO /
+ Ui

Now, supposing again that the initial state is A, let Dk be a random vari-
able which is l if the state recurs to A without being in 0, and 0 otherwise.
Then for any u > 0 we have

Y(TtifikoNkk > u) = (1 - eko)F(TrkdkoNkk > u\Dk= 1)

+ 0*eP(ir*0*eiV*o + TkdkoNok > u\ Dk = 0).

Now E(Nko\Dk=0) = Uk, and from (3.6) and (3.4), Uk^E(Nk0) =o(î/irkOko),
A—>oo. Therefore, under the hypothesis Dk=0, the random variable -KkdkoNko
converges in distribution to 0. Thus, the second term on the right side of
(3.7) is, using Lemma 3, 8koe~u(1+€*(«)), where lk(u)—>0 as A—>o=.

Since for any non-negative random variable z we have P(z>w) ^E(z)/m,
m>0, it follows that the first term on the right side of (3.7) is bounded by
(using (3.6))

2
/ 1  — 0*0 \ _ „ ,  _ , TTk&kO /    1 \   „
I-)TkeuE(Nkt\Dk= 1) - -(-l)Tk
\      u     J u    \6ko        /

(3.8) =-[E(Nko)-Uk]
u

8k0

u

Since from (3.4) we have irk8koE(Nko)^>0 as A—> oo, Theorem 1 now follows.
As we shall see in the next section, the limit inferior of dko may be 0 as A

—> oo. In this case Theorem 1 is rather empty of content.
4. Random walks. In the remainder of this paper we consider random

walks on the integers with transition probabilities pr for r—>r +1 and qr = 1 — pr
for r—*r — 1. Some of the results can obviously be extended to the case where
the transition r—*r has a positive probability(2).

During the remainder of this paper we shall assume that one of the two

(2) Added in proof: I have learned in a letter from Mr. F. G. Foster that recent independent
work of his overlaps considerably with the work of this section.
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following conditions holds:
Condition A:

0 < pr < 1, r = 1, 2, • • • .

Condition B(co): there is an integer co>l such that

0 < pr < 1,      r = 1, 2, ■ ■ ■ , œ - 1; pu = 0.

Some of the results holding under condition B will obviously be true whether
or not pa = 0. When condition B applies, it is tacitly assumed that all states
mentioned have indices not greater than co.

We make the following definitions. Let
r-l

Li =1,        Lr = IKqi/pj), r > 1;
i=x

r

(4.1) so = 0, z, = Z¿y, r > 0;
i=x

Z = Z Lj = °° (applicable when condition A holds).
y=i

Theorem 2a. Suppose condition A /io/ds and let the initial state be k>0.
The probability that the state never reaches 0 is zk/Z.

If Z = », 2,t/Z is taken to be 0.

Theorem 2b. Suppose condition B(w) holds and let the initial state be k,
0<&=■«. The probability that the state reaches co before it reaches 0 is zk/z^.

Proof of Theorem 2a. Let the points 0 = Zo, Zi, 22, • • • be marked off on a
line and suppose that a one-dimensional Brownian motion (Wiener process)
takes place on the line. As the Brownian particle moves about let it always
bear as a label the subscript of that one of the zr which it has most recently
visited. The label then executes a random walk. Using the well known fact
that a Brownian particle initially at a point 0 between points A and B has
probability OB /AB of reaching A before B, we can verify that the random
walk executed by the label has the same transition probabilities pr, qr as
the original random walk.

Suppose first that Z = lim,—» zr = » . Since the graph of the position of the
particle is continuous, every path from zk to 20 corresponds to a definite finite
sequence of labels—i.e., a definite walk from k to 0. Conversely, every walk
from k to 0 corresponds to a family of Brownian paths from zk to Zo, families
corresponding to distinct walks being mutually exclusive. The probability
of a given walk is the same as the probability of the corresponding Brownian
family. Since almost all Brownian paths from zk reach 20, almost all random
walks from k reach 0, Q.E.D.
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If Z<», walks from k which reach 0 correspond to Brownian paths
from z;t which reach 0 before reaching Z, the probability of these being
1-zt/Z, Q.E.D.

The proof of Theorem 2b is essentially the same.
Using Theorem 2, we can now evaluate the quantities 0¿J- for random walks.

(We recall that 0,-y is the probability that the state, initially at i, reaches/ at
least once before returning to i.) In fact, if i<j, we have

(4.2) da = ---, i < j,
Q<+x g¿+ig»+2 Çi+i ■ ■ ■ q¡-x

1 -\ + + • • ■ + -■
pi+x pi+ipi+2 pi+i • ■ • pj-i

and a similar expression holds for i>j. If *'=/— 1, the expression on the right
of (4.2) is taken as pi.

Using (4.2) and (2.3), we can evaluate the stationary probabilities for
random walks with finite mean recurrence times (or the Doeblin ratios for
recurrent walks with infinite mean times). For example, putting i = 0, j>0,
we have from (2.3), (4.2), and the analogue of (4.2) for the case j<i,

Tj =  TTo6oj/6jo

TTopo

( Ox qx ■ ■ ■ ?y-i \
[Í + —+ ■■■ + ^—-)\ px px ■ ■ ■ Pi-x/

j> o,

(4.3) /        îi .    ?i- • • ?y-i\ qx ■ ■ • qj-xI 1 H-h • • • -\-1 -q¡
\        pi px ■ • ■ pi-x/ px ■ ■ ■ pj-x

TTOpO

q¡L}
where L¡ is defined by (4.1). A similar expression holds for_7<0. In the case
of finite mean recurrence times the condition Z7ry = l completes the de-
termination in (4.3).

As an example of the use of Theorem 2 we have the following corollary.

Corollary. According as A or B(co) holds we have

A-»E(2Vio) = Z -'
y-i °jLi

B(co) -* E(Nio) = Z-
y=i   QjLj

For we can place a reflecting barrier at 0, giving p0 = l. Then E^io)
«E(/V„o)-l=l/*-o-l. (If B(co) holds, J.-1.)

Since for every i<j we have
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Nij =   Ni.i+i + Ni+i,i+2 +  •  • •   + A7;-!,*

it is clear how from Theorem 2 any desired mean recurrence or first-passage
time can be found.

As mentioned in the introduction, Professors Chung and Feller have given
alternate approaches (correspondence).

It is interesting now to consider random walks of the transient type. We
shall see that there are nonrecurrent random walks where the conditional mean
recurrence time, given that recurrence takes place, is finite(3). We pick Ni0 as a
typical first-passage random variable.

Theorem 3. Suppose condition A holds. The conditional expectation of Nio,
given that Nu < oo, is

. / 2 \     «      (1   -  Zr/Z)(l   -  Zr+l/Z)
(4.4)    E(ff„|j\r10<«o)-i + (-—— )E---~r-—

\1  —   1/Z/  r=l -Lr+1

where zr and Lr are defined in (4.1), and Z= Er" i zr-

Before proving Theorem 3, it is interesting to consider a special example.
Suppose for simplicity that po = 1 and that the quantities pT have the form

,r = l + -i + 0(-i), r->+oo,

where c is independent of r. From Theorems 2 and 3 we see that if c< —1/4,
the mean recurrence times are finite; if —1/43sc^ 1/4, the mean recurrence
times are infinite but the states are recurrent; if c> 1/4, the recurrence prob-
abilities are less than 1. In the latter case K(iVio| A7io< c0) is finite or infinite
according as c>3/4 or 1/4<c^3/4. The intuitive significance of this last
fact is that if c is large (i.e., c>3/4), then a path from 1 is very unlikely to
get back to 0 unless it does so quickly.

To prove Theorem 3 it is convenient to return to the Brownian motion
scheme. If Z= oo, then Theorem 3 reduces to the corollary to Theorem 2
(note the identity Er"i l/ffr¿r= Er-i (A+gr)/gv£r= Er=i t/Lr+i
-f- Er" i V-í-r) so we may as well take the case Z< <¡o ; Z is of course greater
than 1. We note that if a Brownian particle is initially at Zi = l, the condi-
tional probability density for the maximum displacement y attained by the
particle before it arrives at 0, given that y<Z, is 1/[(1 — 1/Z)y2].

Consider a Brownian path starting at Zi = 1, and let M(y) be the expected
number of label changes before reaching y>zu given that y is reached before
z0 = 0. (We shall always suppose that y is not one of the points zr.) It is in-
tuitively obvious (we omit the formal proof, which is not difficult) that the
conditional expectation of the number of label changes in going from y back

(3) This can also be seen from results of Chung [2 ].
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to So, given that y is the maximum displacement, is M(y) + 1, the added 1
being for the change which occurs when z0 is reached. Therefore the total
conditional expectation in a path from Zito z0, given that y is the maximum
displacement, is l+2M(y). Thus

(4.5) E(Nio\Nio< ») = 1 +
2        ç z  M(y)dy

~i/ZJi     ~y~~
_!_f'
1 - 1/zJi ,i-

Clearly M(y) =0 for 2i<y<22. To evaluate M(y) for y>z2, suppose that
zk is the rightmost of the points Zi, z2, ■ • ■ lying to the left of y, and consider
a Brownian path from 2i to y which reaches y before 20. Let R¡, l^j^k — l,
be the total number of label changes which this path would undergo if only
z, and 2j+i, and no other points of the set 2i, z2, • • • , were present, and if the
label were initially taken to be j. The total number of changes is then Ri
4-P24- • • • -\-Rk-i (it helps to draw a diagram); hence

(4.6) Jf(y) = ¿E(Ay|Z>)
y=i

where D is the event that the path starting from 2X reaches y before 0. Now
E(2?y[Z?) can be found by elementary combinatorial means since, translated
back in terms of random walks, a random walk with only four states is in-
volved. In fact

i z,- -\- Zj+i — 2ztZj+ily
(4.7) E(Py | D)  = -{MJ_ .

zy+i — zj

From (4.5), (4.6), and (4.7) we have

E(Nio\ Nio < »)

\1 — 1/Z/ at^«   *=i J zk      y=i \ zy+i — Zj / y2

(4-8) _ i      /      2      \ ig (1 - g,/gy+1)(l - Zj+i/zN+i)

\1 —  1/Z/  JT-.»    y=i Zy+1 — 2y

=   J + / 2 \ ¿     (1  - Z,-/Z)(l  - Zj+i/Z)    _
\1 —  1/Z/ y=i 2y+i — 2y

The passage to limit under the summation sign is justified because each term
in the sum is positive and increases with N. This gives Theorem 3.

If condition B(co) holds, then we have the following analogue of Theorem
3, proof of which is entirely similar:

The expected value of Nio, given that 0 is reached before co, is, for co>2,

(4.9)      E(Nio | 0 before co) = 1 4-
VI - 1/z J rtí

(1  - 2r/zu)(l  — Zr+x/zS)

1/Zoi/  r-1 Lr+1
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It is now simple to find the conditional expected value of Nk0 for any A>0,
given that 0 is reached before co>A. For we may write Nko = Nk,k-i-\- • ■ ■
+ N10 where the terms in the sum are independent. Hence

*-i
E(N*o | 0 before u) = E E(2V"*_y,*_^i | 0 before co).

j-0

Now E(Ar*_j,*_;_i| 0 before to) = E(A7*_J-t*_,-_i| A— j— 1 before «), because of
the Markovian nature of the process. From (4.9), by a translation of indices,
we have

~E(Njj-i | j — 1 before ia)

(4.10) 2£y *=£T»   (a. - zj-i+r)(zM - zi+r)
~ '    / \/ -\     •^-' r — W«.(ZM  —  Zj_lJ(,Zw  —  Z¿)     r=l Lj+r

Then E(Af*0|0 before to) = Ej-o CJW, where Cyw is defined in (4.10).
It is interesting to note that if the pr have the form

fâ1 c
Pr   =  — + — +  0

2 r

where c< —1/4, then, using (4.2), we have

lim 0*o = 0
i-»oo

and, as pointed out before, Theorem 2 is in this case rather devoid of con-
tent. On the other hand, if the limit superior of pk/qk is less than 1 as A—>oo,
it is clear that the limit inferior of 0*o is positive.

5. Generating functions for random walk variables. It is customary to
treat random walk problems by means of linear difference equations. In this
section we use a simple nonlinear recurrence relation which seems well
adapted to certain random walk problems and which, as far as the author
knows, has not been used before.

We give explicit expression for the second moments of typical first-
passage variables. We shall indicate briefly how these can be used to give a
more precise form, for random walks, of the exponential limiting results of
§3; Lemma 3 holds for some walks with infinite mean recurrence times.

Theorem 4. Assume either condition A or B(co) of §4 holds. Let hk(s) be the
generating function for the random variable (\/2)(\-\-Nk,k+\),

Then A* (5) satisfies the recursion formula

(5.1) hk(s) = sTk(hk-i(s)), A= 1, 2,
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where

Tk(u) = pk/(l — qku).

Theorem 4 holds even if hk(i) < 1 ; i.e., even if Nkik+i has a positive prob-
ability of being infinite.

The relation (5.1) is analogous to certain formulae which appear in the
theory of branching stochastic processes. As we shall see in §6, the re-
semblance is more than superficial.

To prove (5.1) we first consider the generating function of Nk,k+i, which
we designate by fk(s). In a passage from k to £+1 there will first be r occur-
rences of the following event: the state goes directly from k to k — 1 and then
continues changing until its first arrival back at k. After r such occurrences,
the state goes directly to k-\-l. For a fixed r = 0, 1, 2, •••, the generating
function for the number of steps required is s(sfk_i(s))r. Since the probability
for a given r is pk(qk)r, we have

(5.2) Ms) = Z Pk(qkYs(sfk-x(s)Y =-Spk     rs ■
r=o 1 — qksfk-i(s)

Since sfk(s) =hk(s2), (5.1) follows from (5.2). There is no difficulty about in-
finite values of Nk¡k+i, provided we adopt the convention, in the argument
just given, that even when Nkik+i is infinite the state does finally go from k
to k + 1 after infinitely many steps.

In the special case of a reflecting barrier at 0, h0(s) =s and (5.1) gives a
means of obtaining hk(s) for all k.

It is clear that the moments of (l/2)(í+Nk¡k+i) satisfy recursion relations
which can be obtained by differentiating (5.1) and putting 5 = 1. For example,
setting

Mk = — (1 + Nkjk+i)

we have

(5.3) hk(\) = P(Mk < ») = Tk(hk_i(\)).

In the recurrent case both sides of (5.3) are equal to 1. Differentiation gives
the relations (which we write down only for the recurrent case)

(5.4) E(Mk) = 1 + — E(Mk-i),
Pk

o ¿>Qk Qk 2
(5.5) E(Mk - Mk) = — E(Jf^i)E(Aft) + — E(Mk-i - Mt-i).

pk Pk

For the reflecting barrier case (where £o = l) we have Jlf0 = (l/2)(14-A7oi) =1,
and (5.4) gives
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1 _,                   s               Ç*       qkqk-i
E(Mk) = — E(l + Nk,k+i) = 1 + — + —-+ • • •

2 />*      ¿*¿>*_i
(5.6)

ç*ç*_i • • • Çi+ —-— > A > 0,
pkpk-i • • • pi

which agrees, after a transformation, with Theorem 3. Similarly, we can use
(5.5) to obtain the variance of Nk,k+i in the reflecting barrier case, obtaining

(5.7) Variance (Nk,k+i) = 4(0* - bl) + 8 qi " ' Ck ¿
Pi  •   •   •   pk r=l

if there is a reflecting barrier at 0, where

A ?1   •   •   •   Çr/ J

Çr OrÇr-1 ÇrÇr-1  *  *  *  01
i, = 1 + — + ^— + • • • + —-

pr prpr-1 Prpr~l  •  '  '  fl

At this point it is convenient to write down an expression derived from
(5.7) by a change of indices: if pk=0 (reflecting barrier at A), then

Variance (A<10) = -4(¿—V¿—)
\  r=l    Lrf \ r=2    LrJ

-i:wer)(¿a(5.8)

where Li = \, Lr = qx ■ ■ ■ qr-i/pi ■ • ■ pT-i, r>\.
From (5.8) it follows that in any recurrent random walk where condition

A of §4 holds we have

(5.9)

Variance (Nw) = -J-£±-\(¿      \
\ r=l    Lrf \ r_2    Lr/

We now re-examine the arguments leading to Lemma 3 of §3.
For simplicity we assume throughout the rest of this section that

Condition C:    po = 1

holds.
In deriving Lemma 3, the assumption of a finite mean recurrence time

enabled us to say that [w/0o*] cycles from 0 to 0 correspond, with high prob-
ability, to almost exactly u/wSok steps when A is large. In the case of random
walks, however, it is clear that the distribution of Nok does not depend on
the value of the p, for r^A. Therefore, let us suppose that the original
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random walk is altered by placing a reflecting barrier at k>0; since condi-
tion C holds, this will make the recurrence times finite.

The modified random walk will have a new set of stationary probabilities
7Tr(k), r =0, 1, • • • , k. The question is then whether [u/90k] cycles from 0 to 0
in the modified random walk correspond almost exactly to u/(iro(k)dok)
steps. We know that the number of steps in a cycle of the modified walk,
having a finite mean value, satisfies the weak law of large numbers, but is
[w/0o¡í] cycles a "large enough" number to make the sample mean almost
equal to the true mean? Clearly it is sufficient to have

(5.10) lim (7ro(è))20oJb Variance (Nio(k)) = 0

where Nio(k) is the random variable Nio in the modified random walk. To
apply (5.10) to any particular case, we can refer to (4.2) and (5.8).

As an example of a case where the mean recurrence times are infinite but
(5.10) still holds, suppose pr= 1/2 — l/4r, r = \, 2, ■ ■ ■ . From Theorems 2
and 3 this corresponds to a recurrent random walk with infinite mean recur-
rence times. Then

qiq2 ■ • • çr_i
Lr = -~ Cir, r —=> » ,

Pxpi  ■   •   •   Pr-X

where Ci is independent of r, and an easy calculation shows that (5.10) holds.
Although we shall not enter into details here, the results of this section

can be used to give error terms for Theorem 1 or Lemma 3 in the case of
random walks with finitely many states. In particular, some of the results of
[l] for the time-continuous Ehrenfest model can be obtained for the usual
Ehrenfest model with a discrete time parameter. The argument is simple but
tedious, depending on the use of Chebyshev's inequality.

6. Walks and trees/4) Random walks and branching processes are both
objects of considerable interest in probability theory. We may consider a
random walk as a probability measure on sequences of steps—that is, on
"walks," as defined below. A branching process is a probability measure on
"trees," as defined below. The purpose of the present section is to show that
walks and trees are abstractly identical objects and to give probabilistic conse-
quences of this correspondence. The identity referred to is nonprobabilistic
and is quite distinct from the fact that a branching process, as a Markov proc-
ess, may be considered in a certain sense to be a random walk, and also dis-

(4) I. J. Good has pointed out the similarity between certain formulae in branching proc-
esses and random walks [5]. Mr. Good has also informed me by letter that D. G. Kendall has
recently shown a relationship between branching processes and the theory of queues, and Good
himself has shown a connection between the theory of queues and the gambler's ruin problem
[71.
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tinct from the fact that each step of the random walk, having two possible
directions, represents a two-fold branching.

By a "walk" we shall mean any finite sequence of integers «0, »1, • • • , nr
satisfying the following conditions:

wo = nr = 0,

(6.1) »}> 0, lájáf-1,
| n, - nj+i | = 1, j = 0, 1, • • • , r - 1.

Notice that our walks begin at 0 and terminate as soon as 0 is reached, and
we consider for the time being only those which do come back to 0.

By a "tree" we shall mean a finite set of objects having the relationships
of a (male) family tree descended from a single ancestor. A typical element of
the tree can be designated by a symbol of the form

meaning the mpth son of the • • • of the m2th son of the With son of the original
ancestor. For our purpose the two trees

(6.2)
and

are distinct objects, since we keep track of the "order of birth" of the sons of
a given father.

To exhibit the correspondence, we lay down the general principle that a
step to the right in the walk, say, from A to A + l, corresponds to a birth of an
object in the Ath generation. The "parent" of this step is the last preceding
step from A —1 to A. The "children" of a given step from A to A+l (let us
call this step S) are the steps from A+l to A+ 2 which occur after S, but be-
fore any step from A + l to A succeeding S. The "children" are numbered in
the order of appearance—the first step is oldest, etc.

A step to the left, say, from A + l to A, means that the person correspond-
ing to the last preceding step from A to A +1 has died and will have no further
issue.

Rather than giving a tedious formal demonstration of the correspondence,
we shall here only illustrate it. The reader can easily convince himself by
working through a few such examples. Consider then the leftmost of the
two trees in (6.2). This corresponds to the walk whose successive positions
are 0, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 1, 0, if we adopt the convention that of two
vertices in the same generation pictured in the tree, the upper is the elder.
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The correspondence, step by step, is as follows ((0, 1) means a step from 0 to 1,
etc.): (0, l)<->a appears; (1, 2)<->Z> is born; (2, 3)<-*c is born: (3, 2)<->c dies;
(2, 3) <-»d is born ; (3, 2)<->ddies; (2, l)<->£ dies; (1, 2)<->e is born; (2, l)<->e dies;
(1, 2)<r-rf is born; (2, l)«->/ dies; (1, 0)<->a dies. Similarly, the other tree in
(6.2) corresponds to the walk 0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 0.

Now suppose that probabilities pk, qk = i—pk are prescribed for the
random walk, with 0<pk<l, k = l, 2, ■ ■ ■ . Consider next the following
branching process: an individual in the (k — l)st generation has a probability
prtqt of having exactly r children, r =0, 1, • • • . (The ancestor is the 0 genera-
tion.) Then we have the following result:

Theorem 5. The probability that a random particle starting at 1 reaches 0
for the first time after 2r — \ steps equals the probability that the family tree just
defined becomes extinct after producing a total of r individuals, r = l, 2, • •
The total probability that the particle returns to 0 equals the probability that the
family tree is finite.

The proof, which we omit, follows from the identity between walks and
trees previously demonstrated ; it can also be shown by the use of generating
functions.

As an example we consider the classical case pk=p. The expected number
of children of a single individual in the family tree is q Zr^-o rPT = P/(l~P)-
If p^i/2, i.e., p/(i—p)^l, the total number of individuals in the tree is
finite with probability 1, and the generating function <p(s) of the total number
satisfies the relation

sq
*«-—rr>1 - P4>(s)

whence we have (see Otter [9], or Hawkins and Ulam [6])

1 - (1 - ipqsY'2
*(,) =-

It can be verified that <p(s) is likewise the generating function for the random
variable (1/2)(14-A7i0). In the case p>l/2, <f>(s) has the same form, but in
this case 0(1) =q/p; this is the probability that the family is finite and, as is
well known, is likewise the probability that Ni0 is finite.

If condition B(co) holds, the generating function of the random variable
(1/2)(14-Ar10) can be obtained by changing the numbering system of the lat-
tice points in Theorem 4. We obtain

(6.3) Z 5'P(^—^ = r) = sT*i(sT*2( ■ ■ • (sTLi(s)) ■ ■ ■ ))
r=0 \ 2 /

where T*(u)=qr/(\—pTu). This formula is likewise the generating function
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for the total number of individuals in generations 0 through co— 1 of the family
tree. The generating function for (1/2)(1+A7i0) in the case where condition A
holds (and for the total number of individuals in the family tree) is obtained
by letting « go to oo in (6.3).
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