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Abstract

We present a new efficient method for Monte Carlo simulations of diffusion-reaction processes.

First introduced by us in [Phys. Rev. Lett., 97:230602, 2006], the new algorithm skips the tra-

ditional small diffusion hops and propagates the diffusing particles over long distances through a

sequence of super-hops, one particle at a time. By partitioning the simulation space into non-

overlapping protecting domains each containing only one or two particles, the algorithm factorizes

the N -body problem of collisions among multiple Brownian particles into a set of much simpler

single-body and two-body problems. Efficient propagation of particles inside their protective do-

mains is enabled through the use of time-dependent Green’s functions (propagators) obtained as

solutions for the first-passage statistics of random walks. The resulting Monte Carlo algorithm

is event-driven and asynchronous; each Brownian particle propagates inside its own protective

domain and on its own time clock. The algorithm reproduces the statistics of the underlying

Monte-Carlo model exactly. Extensive numerical examples demonstrate that for an important

class of diffusion-reaction models the new algorithm is efficient at low particle densities, where

other existing algorithms slow down severely.
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I. INTRODUCTION

Models in which the overall dynamics is represented by random walks are widely applied

in science, engineering, medicine and finance. Probably the simplest example of a random

walk is a sequence of steps taken randomly in two directions – left or right – along a line in

one dimension. The object whose displacements follow such a sequence is referred to as a

random walker or, simply, a walker. Of particular interest are diffusion-reaction systems in

which multiple walkers walk simultaneously and independently and some significant events

take place when two or more walkers find each other in space, or collide. Examples include

formation and growth of aggregates of colloidal particles in suspensions, kinetics of aerosols

in meteorology, diffusive phase transformations in solids [1], surface diffusion during crystal

growth from vapor [2, 3], defect evolution in solids [4, 5], multi-particle diffusion-limited

aggregation in physics, diffusion-controlled reactions in chemistry and biochemistry [6–8],

population dynamics, quantum physics [9], and risk assessment and pricing models in finance

to name a few. Numerical simulations of such processes often utilize various flavors of the

Monte Carlo method.

Kinetic Monte Carlo (KMC) is a simple and robust computational approach for simula-

tions of systems evolving through random walks. Mathematically, KMC derives from the

theory of Markov processes in which the model evolves from state to state through a sequence

of stochastic transitions whose rates depend on the current state alone. Random walks are

typically simulated as sequences of hops, either from one lattice site to a neighboring one

for discrete walks, or through finite displacements for continuum walks. When the system

dynamics is defined by collisions among the walkers, the hops themselves are trivial changes

of the system’s state while significant events take place only when the walkers collide. A

serious computational bottleneck is presented for the KMC method by situations when the

density of walkers is low. Consider a system of randomly distributed walkers. It takes on

average ∝ L3 hops for a walker to collide with another in 3d space (Here, L is the average

spacing between the walkers expressed in the units of the lattice spacing or, in the continuum

case, in the units of particle diameter). When L is large, it can take a great number of KMC

cycles to evolve the model to a meaningful event, a collision. This is a serious drawback

limiting applicability of the KMC method to diffusion-reaction simulations.

Several attempts have been made so far to overcome this notorious inefficiency in KMC
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simulations. In [7], the equivalence between continuous random walks and diffusion is ex-

ploited by using the fundamental solution for the single particle diffusion to propagate the

walkers over large distances. The JERK method [10] uses a known solution for the statis-

tics of binary collisions between two diffusing particles to decide which of the N(N − 1)/2

pairs of walkers should collide over the next time step 1. These and similar methods achieve

improvements in the efficiency of KMC simulations but at a cost of their accuracy. The fun-

damental difficulty that none of the mentioned methods can fully address is that statistics

of collisions in the system of N walkers is an N -body problem. That is, the probability of

collisions between, say, walkers 1 and 2, depends on all other N − 2 walkers in the system.

It is only in the limit of very small hops (in [7]) or vanishing time steps (in [10]) that such

approximate methods become asymptotically exact. Unfortunately, in this same limit the

mentioned methods lose their numerical efficiency.

Here we present a novel approach for KMC simulations that is both efficient and exact

for a wide class of models involving collisions among multiple Brownian particles. Based on

exact solutions for the first passage statistics of random walks, the new method is referred

to as First Passage Kinetic Monte Carlo (FPKMC) in the following. In the new algorithm,

rather than propagating the particles to collisions by small diffusional hops, the particles

are propagated over long distances while each walker (particle) is protected within its own

spatial region. The N regions are non-overlapping and partition the space into disjoint

spatial domains in which the enclosed walkers are propagated individually. The use of

first-passage statistics for walker propagation permits an elegant factorization of the N -

body problem into a product of N single-body problems. Efficient implementation of the

new method leads to an asynchronous event-driven algorithm [11] in which every walker

propagates within its personal space and from its own time origin. The resulting speedup is

most impressive when the density of diffusing particles is low and particle collisions are rare.

In this paper we introduce the basic theory of the FPKMC method and present a few sim-

ple but representative simulation tests on the method’s accuracy and efficiency. The paper

is organized as follows. The next section introduces the basic ideas behind the new method

using one-dimensional continuous random walks as a simple example. Section 3 describes

1 It was in fact the JERK method and its applications to modeling irradiated materials that inspired the

key idea of the new algorithm presented in this paper.

3



the overall algorithm. In section 4 we focus on propagators, i.e., elementary solutions for

first-passage statistics required for efficient propagation of multiple walkers to collisions, and

describe extensions of the FPKMC algorithm to higher dimensions. Section 5 presents sev-

eral computational experiments validating the new method’s accuracy and efficiency. The

results are summarized in Section 6. Appendix A describes a rejection sampling proce-

dure used in the FPKMC algorithm and Appendix B contains a concise derivation of the

propagators. Appendix C gives a more formal mathematical justification for the FPKMC

algorithm.

II. FIRST PASSAGE PROPAGATION IN 1d

In this section we introduce the FPKMC algorithm using one-dimensional (1d) continuous

time - continuous space random walks (diffusion) as an illustrative example. An extension

to diffusion in dimensions higher than one will be described in section IVD. The defini-

tions and the algorithms to be presented here remain essentially the same for discrete walks,

but for discrete-valued space x and/or time t the integrals appearing in the discussion be-

low correspond to sums over appropriate discrete values. We defer to a future publication

algorithmic details specific to discrete random walks.

A. Single walker

To define the probability distributions to be employed in the FPKMC algorithm, let us

first consider a single continuous random walk in one dimension (1d). Let x0 and t0 = 0 be

the position and time origins of the walk and a be some other (barrier) position on the line

−∞ < x < ∞. Through a sequence of random displacements the walker can at some future

time reach the barrier position a for the first time. Similarly, for a closed interval [a, b] such

that a < x0 < b , a first passage event occurs when the walker reaches either one of two

barriers a or b. The theory of first passage processes [12] concerns itself with finding the

probability that the walker will reach one of two barriers for the first time within time interval

[t, t + dt). The relevant statistical distribution is the probability density c(x0,x, t) to find

the walker surviving at time t (having not reached either end of [a, b]) within infinitesimal

interval [x, x + dx] inside [a, b]. By its definition, the integral S(x0, t) =
∫ b

a
dx′c(x0,x

′, t) is
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the total probability for the walker to survive by time t regardless of its end position x.

The splitting probability j(a, t) is defined as the conditional probability that, given that the

first-passage event occurs at time t, the walker reaches barrier a rather than b. For a random

walk in 1d, j(a, t) + j(b, t) = 1 at all times. When the walk origin x0 is exactly in the center

of interval [a, b], the splitting probabilities are equal j(a, t) = j(b, t) = 1
2

and independent

of the first passage time t. Finally, the no-passage (NP) PDF is defined as the conditional

probability to find the walker at position x at time t, provided the first-passage event has

not yet occurred, g(x0, x, t) = c(x0,x,t)
S(x0,t)

.

We defer to section IV the derivation of the probability distributions introduced above.

For now let us simply assume that the functions S(x0, t), j(a, t) and g(xo, x, t) are available

and proceed to describe how they can be used to obtain statistical samples of random walks

in various situations.

First consider the statistics of continuous random walks on the line −∞ < x < ∞ with

no barriers. Assuming that the walks start at position x0 = 0 and time t0 = 0, the PDF of

walker positions at time t > 0 is given by the fundamental solution of the diffusion equation

c∞(x, t) = 1√
4πt

exp(−x2

4t
), where the effective diffusion coefficient is assumed to be unity.

The same statistics can be obtained by randomly sampling from the first-passage (FP) and

no-passage (NP) distribution functions as follows. Define an interval of length L1 centered

on the initial walker position x0 = 0. Draw a random number ξ uniformly distributed on

[0, 1] and solve S(L1, t1) = ξ to sample the exit time t1 out of interval [−L1

2
, L1

2
] . If t1 > t,

use the NP distribution gL1
(x, t) to sample the walker position inside the interval. If t1 < t,

use another random number to sample at which end of interval L1 the walker exits at time

t1. Define a new interval of length L2 centered on the new walker position and sample a

new time t2 of first-passage out of interval L2 using the survival probability distribution

S(L2, t). Continue until the sum of first-passage times Tk =
∑k

i=1 ti exceeds t. Use the

NP propagator gLk
(x, t− Tk−1) to sample the end position of the walker. Proceeding in this

manner, a random sample of the walker position for any time t is obtained through a sequence

of k ≥ 0 first-passage propagations ending in a single no-passage propagation. Repeating

such stochastic sampling sequences many times, statistics of the end walker positions can

be used to reproduce the fundamental solution c∞(x, t) to any desired accuracy. The length

L of the propagation intervals defines how many FP steps on average will be used to reach

time t but otherwise has no bearing on the resulting statistics.
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The above example illustrates the use of NP and FP distributions for sampling random

walks on −∞ < x < ∞. The resulting samples are statistically equivalent to the known

distribution c∞(x, t). While not necessary in this particularly simple case, the same sampling

procedure based on the first-passage statistics can be effectively employed in considerably

more complex situations, such as the one described below where the simple fundamental

solution c∞ no longer applies.

B. Multiple walkers

Consider now multiple objects moving randomly and simultaneously on a properly defined

space and time. The walkers are assumed to walk independently of each other until two of

them find themselves at a distance equal to or smaller than some interaction radius r (in 1d

the interaction radius can be set to zero). As was discussed in the introduction, models of

this kind represent a plethora of situations of practical interest. For our discussion here it

is not necessary to define what specifically happens when the walkers reach the interaction

radius; let us just assume that collisions somehow affect propagation statistics of two (or

more) walkers involved in a collision.

The most straightforward numerical approach to modeling such systems is to use random

numbers to move the walkers over space by small hops, one walker and one hop at a time,

and checking after each such hop if any of the walkers have collided. Although widely used,

this simple method is known to become less and less efficient with the decreasing density

of walkers [13]. The idea of the method presented in this section is to circumvent the need

for the numerous small hops by using the solutions for the first passage statistics of a single

walker to efficiently bring the walkers to collisions.

Consider two simultaneous walks with the same time origin t = 0 but different position

origins x1 and x2 in one dimension, such that −∞ < x1 < x2 < ∞. Is it possible to

obtain statistics of collisions between two walkers using a sampling procedure similar to the

sequence of FP and NP propagations described in the previous section? At a first glance, the

answer should be negative because, in principle, a collision between the walkers can occur

at any time (at least in the case of continuum diffusion), thus altering the statistics of both

walkers. Hence, the simple solutions for first passage statistics of a single walker should no

longer apply. Fortunately, the trick of spatial protection enables the use of single-walker
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propagations.

Let us, at t = 0, surround the walkers by two non-overlapping segments L1 and L2

centered on the walk origins x1 and x2. For example, make the ends of two segments coincide

at the mid-point between x1 and x2, as shown in Fig. 1. The key observation that enables

the use of single-walker propagators is that, for as long as both walks remain inside their

protective segments, there can be no interaction between the walkers. Hence, up until the

time one of the walkers exits its protective segment, the statistics of the two walks remains

independent of each other and the single walker propagators can be used. Let us now use the

survival probabilities S(L1, t1) and S(L2, t2) to randomly sample the first-passage times t1

and t2 and find their minimum tmin = min{t1, t2}. Say, tmin = t1 which means that at time

t = t1 walker 1 reaches one of the ends of its protective segment L1 while walker 2 remains

inside its protective segment L2. Let us randomly select to which end of its protective

segment walker 1 propagates and advance the time clock by t1, tc := t1. Since walker 2 has

not exited its protective segment L2,, its new position can be obtained by sampling from

the NP distribution gL2
(x2,tc). Now the walkers find themselves in new positions x1 and x2

at time tc, and the propagation cycle can be repeated: new protective segments L1 and L2

are defined around the new walker positions, two FP times are sampled and compared, the

time clock is advanced and new walker positions are sampled from appropriate FP and NP

distributions. As was first proposed in Ref. [9], such propagation cycles can be continued

until two walkers collide.

Extension from two to N walkers is straightforward. One starts by defining non-

overlapping protective segments L1, L2, ..., LN centered on each walker and sampling first

passage times for every walker, {t1, t2, ..., tN}. For as long as all walkers remain inside their

protective segments, no walker can affect the statistics of any other walker. Therefore, the

use of single walker propagators guarantees correct sampling of random walks at least until

the next scheduled propagation at time tmin = min{t1, t2, ..., tN}. At this time, walker i with

the shortest exit time ti = tmin is FP-propagated to one of the ends of its protective segment

and positions of all other N − 1 walkers are sampled from appropriate NP distributions (

see Appendix C for additional details).

The sampling procedure described above allows a seemingly small but important modifi-

cation: rather than canceling all exit times larger than tm and NP-sampling new positions

for the corresponding N − 1 walkers, all or almost all of these N − 1 walkers can be left
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Figure 1: Simultaneous propagation of two walkers using first-passage and no-passage distributions.

The filled circles are walker positions at different stages of propagation. (a) The walkers are initially

at positions x1 and x2 at time t = 0. (b) The walkers are protected by two non-overlapping intervals

L1 and L2 centered on the walker positions. (c) Random samples of two first passage times t1 and

t2 are obtained and compared. Because t1 < t2, walker 1 is moved from its initial position (open

circle) to one of the ends of its protective segment. At the same time, new position of walker 2

inside its segment L2 is sampled from the NP distribution. Time advances to tc := t1. (d) A new

propagation cycle begins by constructing non-overlapping protective segments around new walker

positions. Although after the cycle illustrated by the (a)-(b)-(c) sequence the walkers find each

other slightly farther apart, the next cycle is just as likely to bring them closer together.

alone, protected inside their old segments and scheduled for propagation at their previously

sampled exit times. First, the exit times sampled for all N walkers are arranged in a priority

queue ti ≤ tk... ≤ tm. Second, walker i with the shortest exit time is FP propagated to one

of the ends of its protective segment Li. The NP propagation is only necessary if and when

the segment end where walker i exits is also shared by a neighboring protective segment Lj.

When this happens, independence of two affected walks at later times is no longer assured
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because walker i now intrudes in the protective segment of walker j. The impasse is resolved

by sampling a new position for walker j at time tmin using the NP distribution. Now that

current positions of walkers i and j are decided, the time advances to tc and walkers i and

j are protected again in the space left available for them by all other N − 2 protective seg-

ments. Two new exit times are sampled for walkers i and j, added to the current time and

inserted in the queue. Preceding in this way, every cycle entails exactly one FP propagation

and at most one NP propagation, rather than N − 1 NP propagations as in the algorithm

proposed in Ref. [9].

That it it is unnecessary to sample new exit times at t = tmin for the walkers whose

protective segments remain unaffected, follows directly from the basic property of the random

walk as a memory-less stochastic process. In particular, for any t1 < t and x ∈ [a, b] the

Chapman-Kolmogorov-Smoluchowski identity holds

c(x0, x, t) =

b
∫

a

dx′c(x0, x
′, t1)c(x

′, x, t − t1).

Dividing both parts of the above equality by S(x0, t1) =
∫ b

a
dxc(x0, x, t) we obtain

c(x0, x, t)

S(x0, t1)
=

b
∫

a

dx′g(x0, x
′, t1)c(x

′, x, t − t1).

The expression on the left hand side is the probability density at time t of walks that started

at t = 0 and are known to have survived at time t1. The expression on the right hand side

defines the probability density of walks at time t that have survived to time t1, when their

positions x′ inside the interval were sampled from the NP distribution g(x0, x
′, t1), and the

walk was then restarted from the new position origin x′ and time origin t1. Integration of

both sides of the above equality over
∫ b

a
dx yields the corresponding equality for the survival

probabilities

S(x0, t)

S(x0, t1)
=

b
∫

a

dx′g(x0, x
′, t1)S(x′, t − t1).

The expression on the right is the probability to survive at time t for a walk that has survived

at t1 and whose new position x′ inside the interval was sampled from the NP distribution

g(x0, x
′, t1). The expression on the left is the probability to survive at time t for a walk that
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started at t = 0 and survived at t1. The last two equalities mean that for all walkers whose

protective intervals are unaffected by the FP propagation at t1, there is no need to sample

new positions and new exit times because the resulting distributions will be identical to the

pre-sampled statistics. Thus, the two sampling procedures - one used in Ref. [9] and one

proposed here - are statistically equivalent. Obviously, the new procedure is much preferred

since the cost of its sampling cycle is not higher than the cost of the queue update, i.e.,

O(log N), whereas the cost of every sampling cycle in Ref. [9] is O(N).

Just as in Ref. [9], in the new algorithm all N walks are initially protected and start from

the same time origin t0 = 0. The walker with the shortest exit time tmin is FP-propagated

and, perhaps, another neighboring walker is NP-propagated to new positions. The global

time clock advances to tmin and the affected walkers are protected by new segments. One

or two new FP times are sampled, added to the new global time and inserted in the time

queue. Over subsequent cycles, the time origins of the N protected walkers will gradually

become desynchronized. Notwithstanding, statistical independence of protected walkers is

guaranteed up to the shortest exit time in the current time queue. The resulting first-passage

kinetic Monte Carlo (FPKMC) algorithm is asynchronous: every walker propagates within

its personal space (protective segment) and from its own position and time origins. Sooner

or later, a series of FP and NP propagations executed in this manner should bring a pair of

walkers close to their interaction radius. Barring any inaccuracies in the propagators, the

new algorithm is as exact as a Monte Carlo algorithm can be: for any number of walkers

N , the statistics of simultaneous random walks with collisions is correctly reproduced in the

limit of large number of independent Monte Carlo simulations.

Additional justification for the FPKMC algorithm is given in Appendix C.

III. THE FPKMC ALGORITHM

Here we give a brief description of the algorithmic components necessary for an FPKMC

implementation.

First, one has to obtain first-passage (FP) and no-passage (NP) propagators. The NP

propagators are needed when a walker propagates right on or close to the boundary of a

neighboring protective segment. In such a case, the new protective segment for the just

propagated walker will have very small (or even zero) length. Consequently, the new time
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for FP propagation of the “squeezed” walker is likely to be so short that the same walker will

be selected for the very next propagation again. Because its protection is tightly constrained

by the protective segments of its neighbor walkers, the squeezed walker would continue to

perform a series of very short FP propagations resulting in little and, eventually, no advance

of the global clock. The solution to this inefficiency of the Achilles and Turtle type is to

identify which neighbor (or neighbors) limit the space available for protection of the squeezed

walker. Then, NP propagation of the constraining inactive neighbor walker(s) typically

results in more equitable partitioning of space with the squeezed walker. This is achieved

at the cost of canceling the earlier scheduled FP propagation of the constraining walker(s)

and propagating it (them) using the NP propagator to the current time. Proceeding in this

manner, every Monte Carlo cycle entails one FP propagation and, possibly, one or few NP

propagation, while all other N −1 or N −2 walkers stay inactive, scheduled for propagations

at their own times in the future. Calculation and efficient use of FP and NP propagators

are discussed in the next section and, in more detail, in the Appendices.

In FPKMC, FP and NP propagations replace numerous short diffusive hops. At the

same time, much of the computational effort is shifted to maintaining efficient space par-

titioning among the protective domains of the walkers. It is useful to observe that for the

FPKMC method to work, space can be partitioned in an arbitrary manner for as long as

the protective domains remain non-overlapping. One can use this freedom to simplify imple-

mentation and to maximize computational efficiency. To minimize implementation effort, we

use particularly simple protective domains, i.e. centered segments (in 1d) and hyper-cubes

(in dimensions d ≥ 2).

Generally, one would want to partition space for maximum computational efficiency, for

example to maximize the expectation time of the next FP propagation event. Globally

optimal space partitioning for arbitrary positions of the N walkers is possible and can be

accomplished in O(N) operations - we do it only sparingly, such as in the beginning of

each simulation run. During the run, the conditions of space sharing are inspected only

for the walkers that were just propagated, and their neighbors. Definition of optimal space

partitioning depends on the relative mobilities of the walkers. In this paper we only consider

models in which all N walkers have exactly the same mobility properties, i.e., the same

diffusion coefficient for the case of continuum random walks or the same hopping rates for

the case of discrete walks. Cases when some walkers are more mobile than others will be
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considered in a future publication.

The FPKMC algorithm allows exact and efficient treatment of particle collisions, by

protecting and propagating groups of walkers, e.g. pairs. As we show in the next section,

multi-particle propagators needed for such an extension are particularly simple in 1d and for

hypercube-shaped walkers for d ≥ 2. The evolution of various diffusion-reaction models is

defined by what actually happens to colliding walkers - annihilation, coalescence, reflection,

etc. - and how the collisions are handled. The same details will obviously affect the efficiency

of FPKMC simulations but, in our view, the ultimate purpose of the FPKMC method is to

enable efficient propagation of walkers to collisions whereas handling of collisions events is

outside of the method’s main scope. Thus, FPKMC can be viewed as a universal accelerator

for particle diffusion or random walks by which the particles or walkers are brought to or

close to collisions. We leave it for the method’s users to define collision outcomes and to

develop accurate and efficient methods for collision handling. To keep it simple, in this paper

we consider only annihilation and coalescence reactions leaving more complicated collision

scenarios for future publications.

In summary, the FPKMC algorithm entails the following steps:

1. Set the global time clock to zero. Construct non-overlapping protective domains

around all walkers - use individual protection for single walkers and group protec-

tion for close pairs, as seems most efficient.

2. Sample an exit time for each domain (in the case of protected pairs this can mean a

scheduled collision). Put the sampled event times in an event queue (e.g., implemented

as a heap), so that the shortest time can be efficiently found.

3. Find the shortest exit time and identify the corresponding walker and domain. Sample

the exit position for the selected walker. If the new position corresponds to a collision,

take appropriate action.

4. Check if any of the existing protective domains are close to the new position of the

particle. If necessary to make more space available for protection of the propagated

particle, use no-passage propagators to sample new locations for the particles in the

neighboring domains.
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5. Construct new protective domains for all particles that changed their positions in steps

(3) or (4).

6. Sample new event times for the particle(s) protected in step (5), as in step (2).

7. Insert the new event time(s) into the event queue. Go to step (3).

IV. THE PROPAGATORS

The FPKMC algorithm relies on the first-passage (FP) and no-passage (NP) propagators

to skip the numerous small steps and to propagate the walkers to collisions. For the new

algorithm to be efficient, Monte Carlo sampling from these propagators should not entail

significant computational overhead. In this section, the elementary mathematical theory

behind the propagators is presented along with explicit propagator formulas for the case

of continuous diffusion in 1d. We also discuss two methods appropriate for Monte Carlo

sampling from the FP and NP propagators. Propagators suitable for efficient FPKMC

simulations of N simultaneous random walkers on lattices will be given in future publications.

A. Continuous space - continuous time

The problem we consider here is to find when and where a particle performing a random

walk exits a specified domain. Figure 2 shows a schematic of the setting.

Statistics of continuum random walks is equivalent to diffusion. Consider a very large

ensemble of non-interacting random walkers starting simultaneously from the same origin.

The concentration of walkers in this ensemble is the solution to the diffusion equation with

a delta function at the walk origin as the initial condition

D∆c(x̄, t) =
∂c(x̄, t)

∂t
, c(∂Ω, t) = 0, c(x̄, 0) = δ(x̄ − x̄0).

Here, D is the diffusion coefficient, c(x̄, t) is the probability density of finding the diffusing

particle in an infinitesimal volume around x̄ at time t given that it started at x̄0 at time

t = 0.

The survival probability S(t) is defined as the probability that at time t the particle

has still not crossed the boundary of Ω. S(t) can be found by integrating c over Ω, or by
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Figure 2: Consider a random walk and a domain Ω enclosing the walk origin. The walk can be

thought to consist of two parts: the part shown in red that is entirely contained inside Ω, and the

rest of the walk shown in black.

integrating the probability flux (∇c · n̂) out of Ω,

S(t) =

∫

Ω

c(x̄, t)dx̄ = 1 −
∫ t

0

∫

∂Ω

∇c(x̄, τ) · n̂|dS̄|dτ,

where dS is the element of the surface area of ∂Ω. Conversely, the exit probability per unit

time (exit current) is:

p(t) = −
∫

∂Ω

∇c(x̄, t) · n̂|dS̄| = − ∂

∂t

∫

Ω

c(x̄, t)dx̄. (1)

The above boundary and volume integral expressions are equal by the Gauss’s theorem and

the diffusion equation. The probability density for the exit location on ∂Ω, i.e. the splitting

probability is:

j(x̄, t) =
∇c(x̄, t) · n̂x̄

−p(t)
, x̄ ∈ ∂Ω. (2)

The first-passage (FP) propagation consists of sampling from the exit-time probability p(t)

and the splitting probability j(x̄, t). The no-passage (NP) propagation entails sampling from

the probability density to find the particle near x̄ at time t under the condition that the

particle has not exited Ω by time t:

g(x̄, t) =
c(x̄, t)

S(t)
. (3)
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B. Propagators on a segment in 1d

In 1d, each protective domain is a line segment of length L. After translation and ex-

pressing the particle position in the units of L and expressing time in the units of L2/D,

particle diffusion on segment [a, b] is described by the following equation on [0, 1]:

∂2c

∂x2
=

∂c

∂t

with the boundary conditions c(0, t) = c(1, t) = 0 and the initial condition c(x, 0) = δ(x−x0),

where x0 is the initial position of the particle. The solution can be written as the eigen-

function expansion,

c(x, t) = 2
∞
∑

k=1

sin(kπx) sin(kπx0)e
−k2π2t. (4)

This series converges quickly for t & 1
π2 . An alternative is to take advantage of the fun-

damental solution (Gaussian) and express c(x̄, t) as a sum of properly shifted images with

alternating positive and negative signs, as shown in Fig. 3,

c(x, t) =
1√
4πt

∞
∑

k=−∞
(−1)k exp

{

−
[

x −
(

k + 1
2

+ (−1)k(x0 − 1
2
)
)]2

4t

}

, (5)

which can also be derived from Eq. (4) through the Poisson summation formula.

This expression converges quickly when t . 1
4
. The needed FP and NP propagators can

be now obtained by substituting either of these two solutions into Eqs. (1), (2) and (3).

Further technical details can be found in Appendix B.

C. Pair propagators in 1d

In order to make the FPKMC algorithm more efficient and to enable exact sampling of

particle collisions, it is necessary to be able to protect particle in pairs. Appropriate FP

and NP propagators for the protected pairs should allow correct sampling of the collision

time and particle positions. Consider two particles at x and y on a unit segment [0, 1] so

that 0 < x < y < 1. To obtain the propagators one can solve the following two-dimensional

diffusion problem
(

∂2c

∂x2
+

∂2c

∂y2

)

=
∂c

∂t
,
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Figure 3: The solution for the probability density c(x, t) is obtained by summing the images of the

fundamental (Gaussian) solution placed at appropriate positions along the x axis. The individual

images are shown as dashed lines and the solid line is the resulting solution.
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Figure 4: Two particles on a line protected by a single domain [0, 1]. The edges on the triangle are

Dirichlet boundaries for the diffusion problem, and correspond to the three possible event outcomes:

x exits to the left, y exits to the right, and x and y collide.

with the boundary conditions c(t, x = 0, y) = c(t, x, y = 1) = c(t, x, x) = 0 and the initial

condition c(0, x, y) = δ(x − x0, y − y0). This diffusion equation has to be solved on the

triangle shown in Fig. 4. Absorption of the pair at the boundary x = y corresponds to a

collision between the two particles.

Rather than solving this two-dimensional problem, we note that there is a simpler diffusion
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problem whose solution may allow us to propagate the pair almost as efficiently. Namely,

we can use the solution of the same equation on any domain that is entirely contained inside

the triangle. To retain the ability to sample collisions, a finite fraction of the x = y line

should be included in the new domain boundary. With this in mind, let us introduce new

variables for the center of mass u = 1√
2
(x + y) and the difference v = 1√

2
(y − x) and define

the new domain as the maximal rectangle that can be inscribed in the triangle so that one

of its sides coincides with the collision line v = 0 (that is x = y). In these new coordinates,

the two-dimensional diffusion problem on the rectangle separates into two 1d problems, one

for u and one for v, with the absorbing boundary conditions on all rectangle sides. This is

convenient since one can use the FP and NP propagators already derived for a unit segment

in 1d. First, one samples two exit times, one for “walker” u and another for “walker” v. The

exit time out of the inscribed rectangle is the shorter of the two. The exit coordinates are

sampled using the splitting FP probability j for the “walker” whose exit time is shorter and

using the NP propagator for the other “walker”. The two particles collide when “walker” v

exits to v = 0. All other outcomes correspond to pair propagation. Note that this algorithm

preserves exact statistics of diffusive propagation and collisions of the protected pair. The

sampled time increments are somewhat smaller on average than could be achieved by using

the full triangular domain, which is an acceptable cost to pay for eliminating the need to

compute and sample from the more complicated 2d propagators on the triangular domain.

D. Generalization to higher dimensions

For the case of isotropic diffusion in any number of dimensions m, the use of hyper-

rectangles or hyper-cubes for protecting the particles is convenient because the diffusion

equation separates into m one-dimensional diffusion equations, one for each Cartesian direc-

tion. The same holds for anisotropic diffusion provided the edges of the protective hyper-

rectangles are oriented along the principal axes of the diffusion tensor. In both cases the FP

and NP probability distributions for m dimensions are the products of m one-dimensional

distributions. Therefore, one can use the one-dimensional propagators to sample time and

location of exit out of the protective hyper-rectangle. To do this, m exit times are sampled

from the corresponding m one-dimensional FP propagators and the shortest of them, say tk,

is taken as a sample of the exit time. Then the splitting probability function j(tp) is used
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to sample the exit location for the Cartesian direction k and the NP distributions at tk are

sampled to obtain the walker exit position for the remaining m − 1 Cartesian directions.

A similar method can be used to propagate protected pairs and possibly larger groups

of particles. For example, for the case of a pair of square-shaped particles protected by

a square in 2d, the change of variables is used to transform the problem to diffusion on

two rectangles, one for each Cartesian coordinate. Accordingly, four one-dimensional FP

propagators are used to sample an exit time tp and an exit dimension k in the transformed

coordinates. Then, three NP propagators are used to sample particle positions at the exit

time tp in the three other dimensions. Using the splitting probability function j(tp) one

decides if the sampled exit indicates a collision along one of the two Cartesian directions.

If so, whether or not the pair has actually collided is determined by the particle separation

along the other Cartesian direction. For a collision to occur, the latter should be smaller

than the sum of the half-widths of the square-shaped particles.

E. Sampling

Given a random number r uniformly distributed on r ∈ [0, 1), a sample first passage time

tp is obtained by solving S(tp) = r or simply as tp = S−1(r), where S(t) is the survival

probability function on domain Ω. A exit location sample x ∈ δΩ can be obtained from the

splitting probability density j(x, tp). Splitting probabilities for exit to the ends of a segment

in 1d are given by two numbers j1(tp) and j2(tp), j1(tp)+j2(tp) = 1. When the initial position

of the walker is at the center of a protective segment, the splitting probabilities are equal

and independent of the first passage time, j1 = j2 = 1
2
. Thus, using protective segments

(or hyper-rectangles) concentric with the initial particle positions is particularly convenient.

Given a NP probability density function g(x, t), a sample of the no-passage position xnp at

time t′ can be obtained by solving G(xnp; t
′) = r, or G−1(r; t′) = xnp, where r is a random

number uniformly distributed on r ∈ [0, 1), G(xnp; t
′) =

∫ xnp

x1

g(x, t′)dx is the cumulative NP

distribution function at time t′.

Even for the simple case of diffusion on a 1d segment with two absorbing ends, no closed

form solution exist and the FP and NP propagators are available only in the form of series

expansions. We have implemented and tested two techniques for sampling FP and NP

propagators, both taking advantage of the fast convergence of the expansion series. The
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first technique uses pre-tabulated propagators or, rather, appropriate inverse functions for

fast lookup and interpolation. This method is particularly simple for the case of continuous

diffusion on a segment in 1d because the propagators can be stored as one-dimensional (FP)

or two-dimensional (NP) tables (the time and position variables in the propagator tables are

stored in the units of L2/D and L, respectively).

The second technique is rejection sampling that relies on a converging series of upper and

lower bounds to exactly sample from the FP and NP distribution density functions at a the

cost of an occasional rejection. The needed series of bounds is obtained by integrating the

series expressions (4) and (5) and observing that the terms in the resulting series solutions for

the propagators have alternating signs and absolute values that monotonically decrease with

the increasing term order. Thus, subsequent partial sums of the alternating series present

an alternating sequence of increasingly tight upper and lower bounds. Taking advantage

of particularly fast convergence of series (5) and (4) for short (t . 1
4
) and long (t & 1

π2 )

times, respectively, it is possible to construct very tight bounds to the exact distribution

functions. As a result, rejection sampling is efficient because rejections are infrequent and it

rarely takes more than two bound evaluations to accept or reject a sample. This sampling

technique is especially useful when it is difficult or impossible to evaluate and/or invert the

cumulative probability distribution functions. However, when the inverse distributions are

available, such as in the form of look-up tables, we found both table lookup and rejection

techniques similarly efficient.

Further technical details on computing and sampling the 1d propagators are given in the

Appendices.

V. COMPUTATIONAL TESTS ON ACCURACY AND EFFICIENCY

In this section we apply the FPKMC algorithm to several simple problems as a way to

validate the method and compare its efficiency to traditional algorithms. The first test is for

one-species coalescence on a discrete lattice in 1d, the second for one species annihilation in

3d, and the last is for two-species annihilation in 3d.

19



A. Irreversible coalescence on a 1d lattice

Our first test of the FPKMC algorithm is simulation of a diffusion-controlled reaction of

irreversible coalescence A + A ⇒ A on a discrete lattice in 1d. On every MC step every

particle hops to the right or to the left with probability 1
2

and, whenever two particles are

found to occupy the same lattice site, one of them is eliminated. To obtain the needed FP

and NP propagators for this discrete space-discrete time model it is necessary to solve for the

PDF of a simple unbiased random walk of length n on an interval with two absorbing ends

(barriers) at positions 0 and l (here n and l are positive integers). Similar to the continuous

case discussed in the preceding section, the PDF for the random walk can be obtained as an

expansion over appropriate eigen-functions or as a sum over image solutions. In the limit

of n, l → ∞, the PDF and the propagators asymptotically converge to the solutions for the

continuum diffusion in 1d 2.

We performed this simulation in two different ways: (1) using standard hopping [14] and

(2) using the FPKMC algorithm in which on every MC step only one particle is advanced

to the boundary of its protective domain (a segment in 1d). In both series of simulations

periodic boundary conditions were applied. Plotted in Fig. 5 are the simulated kinetics of

this diffusion-controlled reaction averaged over 70 independent realizations. The two kinetics

agree within small statistical errors. At the same time, in each simulation using single hops

it takes on average 5 · 109 particle hops to reach the end of this reaction (i.e., annihilation of

all but one particles) whereas the new algorithm accomplishes the same in just 4 · 104 steps

(on average).

B. Annihilation in 3d continuum space

The next test is a simulation of a diffusion-controlled reaction of particle annihilation A+

A ⇒ 0 but this time in continuous space and continuous time in 3d. Figure 6 compares the

annihilation kinetics simulated using the FPKMC method and a standard KMC algorithm

in which the particles are propagated by small hops [4, 5, 15]. Each simulation starts with

8000 cube-shaped particles occupying initially a volume fraction of 0.004 of the simulation

2 The FP and NP propagators for discrete random walks on lattices in 1d and in higher dimensions will be

presented in future publications.
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Figure 5: Comparison between the standard KMC calculations (crosses) and the first-passage KMC

(circles) results for of A+A → A coalescence reaction by discrete-space discrete-time random walks

in 1d.

Figure 6: Comparison between the standard KMC calculations (crosses) and the first-passage

KMC (circles) results for of A + A → A coalescence reaction by continuous-space continuous-time

Brownian motion in 3d.

cube volume with periodic boundary conditions applied in all 3 dimensions. The two kinetics

are seen to be identical within small statistical errors.

The greater efficiency of the FPKMC method allows simulations of very large numbers of

diffusing and reacting particles at a modest computational effort. An example is shown in

Fig. 7 for the same annihilation reaction in 3d but starting with 125 million particles. The

reaction completes in 45 CPU hours on a modest workstation. By comparison, we estimate
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Figure 7: Simulated kinetics of A + A → 0 reactions in 3d. The initial number of particles is

125 · 106 and the reaction completes in 45 CPU hours.

that it would take tens of CPU years on the same workstation to complete this simulation

using the standard KMC algorithm 3.

Each step of the FPKMC algorithm requires more calculations than one step of the

standard KMC algorithm. The obvious overhead due to the need to sample from the more

complicated distributions is relatively minor whereas more serious amount of computational

effort in FPKMC is spent on keeping track of near neighbor particles, space partitioning and

other tasks associated with particle protection, as well as on maintaining the event queue

after every event. Note that all of these elements appear in other KMC algorithms in one

form or another, and therefore standard techniques can be used. FPKMC codes used for

simulations presented in this paper have not been extensively optimized although some of

the more obvious inefficiencies have been addressed. Nevertheless, it should be of interest to

compare the net efficiency of the FPKMC simulations to that of the standard KMC method

3 The code we refer to here as “standard KMC algorithm” is BigMac [4] that has been extensively used

for simulations of various diffusion-reaction processes. BigMac has not been specifically optimized for

conditions of low particle density.
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in the units of CPU time per particle collision.

A relevant comparison is given in Fig. 8, where the number of particle collisions (annihi-

lation) per second of CPU time is plotted as a function of particle density for two series of

simulations of A + A ⇒ 0 annihilation reaction in 3d using the FPKMC and the standard

KMC algorithms. Each of the two series consists of three simulations starting from the same

high initial volume fraction of particles of 0.05 and ending at a much lower volume density

10−6 (the simulations proceed from right to left). Because in the beginning some of the

particles are very close to each other, it is necessary to use very small hop sizes in order to

ensure that collision sequences are properly resolved. In the course of the simulation the

nearest neighbor particle pairs progressively annihilate and the time step gradually increases.

Eventually, as the average particle spacing gradually increases due to continued annihila-

tion, the average number of hops between any two collisions also increases and efficiency of

the standard method deteriorates inversely proportionally to the particle volume fraction

(density) ρ. At the same time, FPKMC automatically selects the propagation step size to

meet the local geometrical requirements, achieving an exact solution without any tuning.

Efficiency of the FPKMC algorithm is proportional to ρ− 1

3 throughout the whole range of

simulated particle densities. Thus, while FPKMC is competitive with the standard method

even at high particle densities, at a sufficiently low density the new algorithm is certain to

outperform the standard method.

Exactly how the new method’s efficiency compares to traditional hop-by-hop KMC with

varying particle density depends on dimensionality and, possibly, on whether or not the

walks are continuous or discrete. For the case of continuous diffusion in 1d, simulation

efficiency is manifestly independent of particle separation. In higher dimensions, efficiency

of the FPKMC method diminishes with decreasing density. Luckily, the need for efficient and

accurate simulations of diffusion-reaction processes is limited to dimensions d < 4 because

for d > 4 the effect of correlations can be neglected and the mean field kinetics becomes

accurate [16].

Efficiency of Monte Carlo simulations of diffusion-controlled annihilation or coalescence

reactions can be further enhanced by periodic replication. Although not directly related to

the methods discussed in this paper, periodic replication is especially efficient when used

in combination with the FPKMC method. In has been noted in the past [17] that in the

reactive systems where the number of particles steadily decreases, the simulated kinetics of
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Figure 8: Computational performance as a function of particle density measured in six independent

realizations of A + A → 0 annihilation reaction in 3d performed on a single CPU workstation

using the standard KMC calculations with a finite hop distance (lower symbols) and the FPKMC

algorithm (upper symbols). The dashed and dotted lines are theoretical estimates with slope 1 for

the standard KMC calculations and slope 1
3 for the new algorithm.

the late stages of the reaction are not representative of the kinetics of interest. This is due

to an inevitable growth of correlations among particles remaining in the box as the simula-

tion progresses. In annihilation and coalescence reactions, correlations develop because the

surviving particles are less likely to have reacting neighbors in close proximity. This “cor-

relation hole” effect spaces the particles more evenly than in a random configuration, thus

affecting the distribution of times of particle collisions. If and when the growing correlation

length becomes comparable to the simulation box size, the kinetics becomes distorted, as a

finite size effect. Reduction in the number of surviving particles compounds the difficulties

making the tail kinetics noisy. For these reasons, the last 2-3 decades of simulated kinetics

are typically discarded [17]. On the other hand, the first few decades of the simulated ki-

netics are often discarded because they reflect more the initial particle distribution (usually

random) rather than the reaction kinetics of interest. Combined with the usual limit on the

number of particles (typically 106), these unwanted behaviors limit to 4-6 decades the useful

time interval over which one can observe and quantify diffusion-reaction kinetics.

Periodic replication works as follows [18]. First, the simulation starts from its initial
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Figure 9: Schematic of the periodic replication procedure.

configuration in a periodic box and proceeds as usual. Then, once the correlation length

grows comparable to the box size, the particles are synchronized to the current point in time

and 2d neighboring periodic replicas are combined in a new box double the linear size of

the old box, see Fig. 9. The simulation restarts in the new box in which the particles that

were previously periodic image slaves of each other are now treated independently. Such box

doubling should be repeated whenever the correlation length approaches half of the current

box size. Given that correlations propagate by diffusion, we estimate that the correlation

length should grow as ∼
√

Dt where D is the diffusion coefficient. Thus, the volume should

be replicated whenever
√

Dt grows to become an appreciable fraction of the linear box size

L. Hence, the physical time t elapsed between replications should at least quadruple with

each replication. Assuming that in the interval between two box replications the number of

surviving particles decreases as t−α, each replication increases the number of particles by a

factor 2d−2α.

Remarkably, for A + A ⇒ 0 and A + A ⇒ A reactions in 1d, α = 1
2

[19] and the doubling

in the number of particles caused by each replication is compensated by the reduction by

half caused by annihilation or coalescence taking place between two replications. Thus, in
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these particular cases replications do not cause the number of particles to grow and can

continue indefinitely. Combined with the fact that FPKMC efficiency does not depend on

particles density in 1d, we can simulate such processes to an arbitrarily long physical time,

as shown in Fig. 10.

In other cases when d−2α > 0, periodic replications will result in increases in the number

of particles. For example, for the case d = 2, α = 3
4
, the number of particles is expected

to double after two replications, whereas for the case d = 3, α = 1, the number of particles

will double after each replication. Therefore, sooner or later the number of particles will

grow too large to continue. Thus, rather than follow the common practice to start from

a maximum size that fits into memory and then simulate the reaction to the end, it may

be better to start from a small number of particles and let the system grow by replications

to a maximum size afforded by the computer memory. Assuming that with FPKMC we

can handle simulations with at most 109 particles and that is is safe to start with just 103

particles in the box, this allows as many as log2(
109

103 ) ≈ 20 replications for the d = 3, α = 1

case and 40 replications for the d = 2, α = 3
4

case. Thus, replications should allow extension

of the useful time horizon of such reaction-diffusion simulations to 420 (12 decades of time)

and 440 (24 decades of time), respectively. Obviously, this recipe also eliminates the earlier

mentioned tail effects since correlations are never allowed to catch up with the growing box

size and the number of particles in the end of the simulation is large.

C. Two-species annihilation in continuum 3d

The last computational test we report in this paper is a simulation of A + B ⇒ 0

annihilation reaction in 3d. In this reaction, particles do not interact with particles of its

own kind but annihilate on collisions with unlike particles. As has been first observed in Refs.

[16, 20], when the numbers of A and B particles are close to the stoichiometry (50:50), this

reaction does not follow the mean field asymptotic kinetics t−1 but rather t−
3

4 (most other

diffusion-reaction systems follow the mean field behavior for d > 2). This peculiar scaling

was attributed to the emergence and growth of alternating A-rich and B-rich domains that

effectively limit the annihilation reactions to inter-domain boundaries.

An important physical realization of such a situation is recombination of vacancies and

interstitials produced in crystal by neutron, ion or electron irradiation [5]. Here we limit our
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Figure 10: Kinetics of A + A → 0 annihilation reaction in 1d, using replication. The inset is

the logarithmic derivative of the kinetic curve taken over the same time interval reproducing the

theoretical exponent α = 0.5 for this reaction.

study to a model system in which particles A and B are cubes with the same size and diffusion

coefficients and react only with particles of the opposite species. The slow-down caused by

domain growth combined with steadily decreasing particle density makes standard KMC

simulations particularly inefficient which has so far prevented quantitative investigations

of reaction kinetics and domain geometry in such systems, especially in 3d. The FPKMC

method handles this reaction with relative ease in arbitrary dimensions. Figure 11 shows the

geometry of a thin slice through the domain configuration produced in a FPKMC simulation

of A + B ⇒ 0 reaction in 3d starting with 106 particles (no replication).

VI. SUMMARY

We have developed the method of First-Passage Kinetic Monte Carlo (FPKMC) for sim-

ulations of diffusion-reaction processes. By partitioning the space into non-overlapping pro-

tective domains around each particle and/or particle pair, the N -body problem of collisions
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Figure 11: A thin slice through the domain structure formed in a simulation of A+B → 0 reaction

in 3d. The boundaries of the A-rich (red) and B-rich (blue) domains are identified with the sides

of Voronoi polyhedra shared by unlike particles. The two domains are complementary and fill the

space when brought together.

among N Brownian particles or random walkers is factorized into N single-body problems

or, alternatively, K1 single body and K2 two-body problems, K1 + 2K2 = N . Rather than

performing small diffusional hops, exact solutions for first-passage and no-passage statistics

are used to propagate the particles inside the domains. On each Monte Carlo cycle a single

particle or a single particle pair is propagated to the boundary of its protective domain.

This is sometimes followed by a no-passage propagation of one or few neighboring particles

or pairs.

The resulting algorithm is event-driven and asynchronous: each protected particle or pair

propagates in its own spatial domain, from its own spatial and time origin and following its

own propagation time clock. The new method remains efficient at low densities because only

one or a few particles are propagated on every cycle over distances close to the inter-particle

spacing. The FPKMC method is exact for a wide class of diffusion-reaction models in which

Brownian particles or random walkers do not interact until they collide (hard-core models).

The accuracy and efficiency of the new method is demonstrated in simulations of several

well-studied diffusion-reaction models that have previously presented serious computational

28



challenges for Monte Carlo simulations.

We would like to emphasize that the FPKMC method focuses on bringing the particles

close to collisions leaving aside the nature of reactions taking place on collisions. Thus,

although statistics of first passage processes finds its uses in efficient handling of the reaction

events [21], such issues are outside the scope of this paper in which we consider only the

simplest collision outcomes - annihilation and coalescence. Extension of the FPKMC method

to simulations of more complicated reaction kinetics in which diffusional propagation takes

place simultaneously with other competing stochastic processes will be presented elsewhere.
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VIII. APPENDICES

Appendix A: SAMPLING FROM SERIES EXPANSIONS

The distributions sampled in FPKMC are given in the form of series expansions. This

appendix describes a general rejection technique and its application to sampling from such

series expansions. In the following appendix B, first-passage (FP) and no-passage (NP)

propagators suitable for this technique are derived for the case of continuous diffusion. FP

and NP propagators for discrete random walks on lattices will be presented in forthcoming

publications.

Here by a distribution c(x) we mean a function that is non-negative everywhere and

whose integral is bounded, i.e. c(x) ≥ 0 and
∫

c(x)dx < ∞. Sampling from c(x) means

drawing random numbers x distributed according to the probability density c(x)/
∫

c(x′)dx′.

Rejection sampling is often used when it is difficult to invert the cumulative distribution,

e.g. to solve ξ =
∫ x

c(x′)dx′ for x, and, at the same time, a majoring distribution C(x)

29



exists such that it is easy to sample and C(x) ≥ c(x) for all x. Rejection sampling proceeds

as follows:

1. Let xtrial be a sample of C.

2. Pick a uniformly distributed random number 0 ≤ y < C(xtrial).

3. If y < c(xtrial), accept xtrial as a sample of c, otherwise reject xtrial and go to step 1.

If
∫∞
0

C(t)dt/
∫∞
0

c(t)dt − 1 is small, rejection is infrequent and the resulting sampling is

efficient while still exact in the sense of sampling from the true distribution c(x, t).

When the distribution c is available in the form of a converging series expansion, the

partial sums of the series can be used in the acceptance/rejection test in step 2 of the

rejection sampling algorithm above. Suppose c(x) =
∑∞

k=0 ck(x), define the partial sums

Sm =
∑m

k=0 ck(x) and assume that upper and lower bounds Um and Lm of the remainder

term are available, so that Lm ≤ c(x) − Sm ≤ Um and both bounds become tighter with

each added term. Then, in step 3 above, if y < Sm + Lm the sample is accepted without

evaluating any terms beyond m. Conversely, if y ≥ Sm + Um the sample is rejected. If

however Sm + Lm < y ≤ Sm + Um no decision can be made and the next order terms have

to be calculated in order to repeat the test with the same sample y but using Sm+1, Um+1

and Lm+1. Especially simple is the case when the sign of the remainder term c(x) − Sm is

known; the sample is accepted if y < Sm and the remainder is positive and rejected if y ≥ Sm

and the remainder is negative. Our experience with the FPKMC algorithm suggests that

the rejection procedure requires computing only two terms on average before the sample is

accepted or rejected.

Appendix B: PROPAGATORS FOR CONTINUOUS DIFFUSION

Here we derive the first passage and no passage propagators suitable for rejection sampling

on one dimensional line segments for the case of continuous diffusion.

1. First-passage propagator

Assume c(x, t) is the solution to the diffusion equation given in section IV. From Eq. (1)

it follows that the exit probability per unit time is p(t) = ∂c
∂x

(0, t) − ∂c
∂x

(1, t). Taking the
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Figure 12: Comparison of one-term expansions versus full probability density. The inset shows the

relative error of using only the proposed majoring function without subsequent rejection sampling.

solution in the form of the image series suitable for short times [c.f. Eq. (5)] we obtain:

p(t) =
2π

√
4πt

3

∞
∑

j=−∞
(−1)j

{(

j +
1

2

)

e−(j+ 1

2
)
2

/4t −
(

j − 1

2

)

e−(j− 1

2
)
2

/4t

}

.

Retaining the two most significant terms in this series yields an approximate expression

accurate for short times

ps(t) =
4π

√
4πt

3 e−
1

16t .

Similarly, retaining the first term in the long time expansion (4)

p(t) =

∞
∑

k=1

2kπ sin(kπx0)[1 − (−1)k]e−k2π2t,

and using x0 = 1/2, we obtain an approximation that is accurate for long times,

pl(t) = 4πe−π2t.

In turns out that ps > p and pl > p for all times t and, furthermore, ps and pl intersect at

τ0 ≈ 0.0796. Thus, min(ps, pl) is a tight majoring function for the true distribution p that

it is accurate to within 0.6% for all t, as shown in Fig. 12.

Defining the integrals

Fl(τ) =
∫∞

τ
pl(t)dt = 4

π
e−π2τ

Fs(τ) =
∫ τ

∞ ps(t)dt = 2
[

1 − erf
(

1√
16t

)] ,
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a sample of the exit time ttrial from the majoring distribution is

ttrial = F−1
s (r) =

1

16
[

erf−1
(

1 − r
2

)]2 ,

if r < Fs(τ0), and

ttrial = F−1
l (r − Fs(τ0)) = τ0 − π−2 log

r − Fs(τ0)

Fl(τ0)
,

otherwise. Here, r is a random number uniformly distributed on the segment 0 < r ≤
Fs(τ0) + Fl(τ0). Using this trial value of the exit time, it is now straightforward to employ

the rejection sampling technique described in appendix A. For the short time series, the

terms of the series alternate in sign and decrease in magnitude with increasing m so that the

partial sums Sm provide an alternating sequence of upper and lower bounds. The same holds

for the long time series, provided τtrial ≥ 1
18π2 ≈ 0.0056. Depending on the value of ttrial, one

or the other series converges faster. It is possible to choose among the two alternatives by

comparing ttrial to τ0. However, it is more efficient to use a different switchover time tswitch

that optimizes the computational cost of the sampling routine. For our implementation

tswitch ≈ 0.033 turned out to be optimal.

2. No-passage propagator

The no-passage propagator is the distribution density of particle positions at time t

conditioned on the fact that the particle has not reached the boundary of its protective

domain by that time. As is the case for the FP propagator described above, sampling from

the NP distribution is most efficiently done using two different expansion series at short times

and at long times. Using the sampling procedure described below, rejections are infrequent

(less than 1%) requiring on average less than two terms in the series expansions to accept

or reject the sample.

For short times, the probability density c(x, t) is best represented by the image sum [c.f.

Eq. (5)]. The m = 0 term of this expansion is the fundamental solution C(x, t) for diffusion

on −∞ < x < ∞. C(x, t) is a simple over-estimator C(x, t) ≥ c(x, t) that can be used to

obtain a trial sample for the particle position xtrial on (0, 1). Since C(x, t) is a Gaussian, a

trial position can be obtained by scaling and translation of a normally distributed random

number rn, xtrial = (1 + rn

√
8t)/2 [xtrial can occasionally fall outside (0, 1) in which case
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it is discarded]. With a trial position so selected, the partial sums Sm of the image series

for concentration c(x, t) are used as an alternating sequence of increasingly tight upper and

lower bounds convenient for rejection sampling, as described in appendix A.

At long times, as an approximation for the particle position distribution it seems reason-

able to take the first term of the eigenfunction expansion [c.f. Eq. 4], c̃(x, t) = sin(kπx)e−π2t.

Although this function is smaller than the full solution c(x, t) for some x, it is still possible

to use it to construct a tight majoring function C(x, t) ≥ c(x, t) by multiplying c̃ with a

factor 1 + g(t), so that C(x, t) = [1 + g(t)] c̃(x, t) ≥ c(x, t), for all x. One possible choice for

g(t) is

g =
e−8π2t

1 − e−16π2t
.

This particular factor was derived by taking the absolute value of every term in the eigen-

function series expansion, noting that | sin x| ≤ 1 and that x2 ≥ x for x ≥ 1, and replacing

the square in the exponential by a linear function. The resulting sum is a geometric sum

and can be evaluated analytically.

Sampling xtrial from the majoring distribution is then performed by picking a uniformly

distributed random number −1 ≤ r < 1, and setting xtrial = 1
2

+ 1
2π

arccos r. In addition

to xtrial we also need an estimate for the remainder of the long-time series. Following a

derivation similar to that of g, we find that the function

dm = 2
e−π2t(2m+3)2

1 − e−4π2t
,

bounds the series remainder so that cm(x, t) − dm ≤ c(x, t) ≤ cm(x, t) + dm. The so defined

C(x, t) and dm can be employed for rejection sampling. To reduce the cost, when it is

necessary to compute the higher order terms of the series expansion for c(x, t), we re-use the

already calculated time exponentials which requires a few multiplications for each iteration.

The time tswitch for switchover from the short time series to the long time series can be

selected to optimize the cost of rejection sampling, similar to the FP propagators described

in the preceding section.

We note in passing that still tighter bounding functions g and dm can be derived by re-

placing the infinite sum in c(x, t) with a majoring integral. However the resulting expressions

contain the error function, erf(x), which can be expensive to numerically evaluate.
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Appendix C: JUSTIFICATION FOR THE ALGORITHM

The goal of the FPKMC algorithm is to generate a stochastic trajectory of the simu-

lated system of N Brownian particles with the correct probability. To achieve this goal

the FPKMC algorithm samples the system’s configuration R = {r1, . . . , rN} at time t from

the Green’s function of the Master equation. In the considered case of particle diffusion,

the Master equation is a diffusion equation in the dN -dimensional space for the probability

density G(R, t;R0) to find the system in configuration R at time t, starting from R0 at time

t0 = 0,
∂G

∂t
= D · ∇2G in Ω, where G(R, 0) = δ(R −R0) and G(∂Ω, t) = 0,

where D = {D1, . . . , DN} is a (block-diagonal) diffusion tensor. Here Ω denotes the region

of phase space bounded by the non-overlap conditions between the hard particles. As soon

as the configuration leaves region Ω through the bounding surface ∂Ω a hard-sphere collision

occurs 4.

What needs to be demonstrated is that the FPKMC algorithm correctly samples from

G(R, t;R0) even if the latter Green’s function is unknown. More specifically, the algorithm

should correctly sample the time t̃ < t and configuration R̃ ∈ ∂Ω when the first collision

occurs or, alternatively, sample a configuration R given that no collision has occurred by

time t.

Rather than trying to solve for the exact Green’s function G(R, t;R0) - a difficult task

indeed given the complicated shape of the collision boundary ∂Ω - the FPKMC algorithm

relies on a much simpler Green’s function obtained for an auxiliary sub-problem in which

the particles are spatially protected against each other,

∂G0

∂t
= D · ∇2G0 in Ω0 where G0(R, 0) = δ(R −R0) and G0(∂Ω0, t) = 0,

where now Ω0 ⊂ Ω is a Cartesian product of subspaces, each of which is a domain only of

the coordinates of a single particle, Ω0 = P1 ⊗ P2 ⊗ · · · ⊗ PN . This sub-problem is fully

separable into corresponding sub-problems for the Green’s function gi(r, t; r
0
i ) for each of the

independent particles

∂gi

∂t
= Di∇

2gi in Pi where gi(r, 0) = δ(r − r0
i ) and gi(∂Pi, t) = 0,

4 Exactly how the particles react on collisions is outside the scope of the FPKMC algorithm.
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to give G0(R, t;R0) =
∏N

i=1 gi(ri, t; r
0
i ).

As elaborated in Ref. [9], using Green’s theorem it can be shown that

G(R, t;R0) = G0(R, t;R0) +

∫

R̃∈∂Ω0

∫ t

t̃=0

Jn(R̃, t̃;R0)G(R, t − t̃; R̃)dt̃∂S,

where Jn(R̃, t̃;R0) = −D · ∇nG0(R̃, t̃;R0) denotes the normal component of the current

at the auxiliary surface ∂Ω0. The probablistic meaning of the above equation is that the

system’s configuration at time t can be sampled by first sampling an exit time t̃ and location

R̃ ∈ ∂Ω0 on the auxiliary boundary. Then, if the time of interest is shorter than the

sampled exit time, t < t̃, the exit location is discarded and the system’s configuration is

sampled from (the normalized form of) G0(R, t;R0). Otherwise one recursively repeats the

process by constructing a new Ω0 and samples an exit location and time starting from the

new time origin, until the walk hits ∂Ω0 (this requires at least one pair protection). In this

case, the exit location on the first-passage boundary ∂Ω0 serves as a source for subsequent

propagation since the random walk is a memory-less Markov process that can continue from

the last sampled point forgetting the past.

Owing to the separability of the protected walkers, the current is expressed as [9]

Jn(R̃, t̃;R0) =
∑

m

(

∏

l 6=m

gl(rl, t̃; r
0
l )

)

[

−∇ngm(r̃m, t̃; r0
m)
]

,

where now m denotes the walker that first leaves its protection through r̃m ∈ ∂Pm at time t̃.

The probabilistic meaning is as follows: first select a walker m and the associated t̃ = t̃m with

the correct probability, and then sample positions for all other walkers from (the normalized

forms of) single particle distributions gl’s. It is shown in Ref. [9] that m and the associated t̃

can be sampled by simply choosing the minimum among independently sampled exit times,

one time for each walker.

Numerical efficiency of the FPKMC algorithm, however, derives from an important ad-

ditional observation not used in Ref. [9]: it is not necessary to sample gl for N − 1 walkers

that have not exited their protections. One can of course sample N −1 new positions rl ∈ Pl

at time t̃, and then sample N − 1 new exit times from gl(r, t− t̃; rl). However, as discussed

in Section IIB, the new exit times and locations have exactly the same distributions as

those sampled originally. Therefore, those particles that have not exited their protections

can be left in the queue or updated to the current point in time at will. For computational
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efficiency, the first-passage predictions for walkers are updated only when this becomes nec-

essary, namely, for the walker m with the shortest exit time in the queue and, perhaps, for

one or few other walkers whose protective regions need to be modified.

[1] M. Strobel, K.-H. Heinig, and W. Möller. Three-dimensional domain growth on the size scale

of the capillary length: Effective growth exponent and comparative atomistic and mean-field

simulations. Phys. Rev. B, 64(24):245422, Dec 2001.

[2] J. S. Reese, S. Raimondeau, and D. G. Vlachos. Monte Carlo Algorithms for Complex Surface

Reaction Mechanisms: Efficiency and Accuracy. J. Comp. Phys., 173(1):302–321, 2001.

[3] M. Biehl. Lattice gas models and Kinetic Monte Carlo simulations of epitaxial growth. In

A. Voigt, editor, Int. Series of Numerical Mathematics 149, pages 3–18. Birkhaeuser, 2005.

[4] S. K. Theiss, M.-J. Caturla, M. D. Johnson, J. Zhu, T. J. Lenosky, B. Sadigh, and T. Diaz

de la Rubia. Atomic scale models of ion implantation and dopant diffusion in silico. Thin

Solid Films, 365:219–230, 2000.

[5] C. Domain, C. S. Becquart, and L. Malerba. Simulation of radiation damage in Fe alloys: an

object kinetic Monte Carlo approach. Journal of Nuclear Materials, 335(1):121–145, 2004.

[6] D. P. Tolle and N. Le Novere. Particle-based stochastic simulation in systems biology. Current

Bioinformatics, 1(3):315–320, August 2006.

[7] J. S. van Zon and P. R. ten Wolde. Green’s-function reaction dynamics: A particle-based ap-

proach for simulating biochemical networks in time and space. J. Chem. Phys., 123(23):234910,

2005.

[8] S. J. Plimpton and A. Slepoy. Microbial cell modeling via reacting diffusive particles. J. Phys.:

Conf. Ser., 16:305–309, 2005.

[9] M. H. Kalos, D. Levesque, and L. Verlet. Helium at zero temperature with hard-sphere and

other forces. Phys. Rev. A, 9(5):2178–2195, 1974.

[10] J. Dalla Torre, J.-L. Bocquet, N. V. Doan, E. Adam, and A. Barbu. JERK, an event-based

Kinetic Monte Carlo model to predict microstructure evolution of materials under irradiation.

Philosophical Magazine, 85:549–558, 2005.

[11] A. Donev. Asynchronous event-driven particle algorithms. SIMULATION: Transactions of

The Society for Modeling and Simulation International, 85(4):229–242, 2008.

36



[12] S. Redner. A guide to first-passage processes. Cambridge University Press, Cambridge, 2001.

[13] Daniel ben Avraham. Computer simulation methods for diffusion-controlled reactions. J.

Chem. Phys., 88(2):941–948, 1988.

[14] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz. A new algorithm for Monte Carlo simulation

of Ising spin systems. J. Comput. Phys., 17(1):10–18, 1975.

[15] S. S.Andrews and D. Bray. Stochastic simulation of chemical reactions with spatial resolution

and single molecule detail. Physical biology, 1(3):137–151, 2004.

[16] F. Leyvraz and S. Redner. Spatial organization in the two-species annihilation reaction A +

B → 0. Phys. Rev. Lett., 66(16):2168–2171, 1991.

[17] Y. Shafrir and D. ben Avraham. Large scale simulations of two-species annihilation, A+B → 0,

with drift. Phys. Lett. A, 278(4):184–190, 2001.

[18] M. Smith and T. Matsoukas. Constant-number Monte Carlo simulation of population balances.

Chemical Engineering Science, 53(9):1777–1786, 1998.

[19] D. Zhong, R. Dawkins, and D. ben Avraham. Large-scale simulations of diffusion-limited

n-species annihilation. Phys. Rev. E, 67(4):040101, 2003.

[20] D. Toussaint and F. Wilczek. Particle–antiparticle annihilation in diffusive motion. J. Chem.

Phys., 78(5):2642–2647, 1983.

[21] H. Kim and K. J. Shin. Exact Solution of the Reversible Diffusion-Influenced Reaction for an

Isolated Pair in Three Dimensions. Phys. Rev. Lett., 82(7):1578–1581, 1999.

37


