First-Passage Percolation on a Width-2 Strip and the Path Cost in a VCG Auction

Abraham D. Flaxman, Microsoft Research David Gamarnik, MIT Gregory B. Sorkin, IBM Research

May 29, 2007

Outline

(9) Introduction

- What the title means
- Width-2 strip
- First-Passage Percolation
- Path Cost in a VCG Auction
- Fixed graphs with random edge weights
- Minimum Spanning Tree
- Minimum Perfect Matching
(2) The width-2 strip
- First-passage percolation
- Path cost in a VCG auction

Width-2 Strip

- The infinite width-2 strip:
- Vertex set is $\{0,1\} \times \mathbb{Z}$
- edges join vertices at ℓ_{1} distance 1
- The n-long strip is the (finite) subgraph induced by $\{0,1\} \times\{0, \ldots, n\}$.

Width-2 Strip

Width-2 Strip

First-Passage Percolation

First-Passage Percolation:

First-Passage Percolation

First-Passage Percolation:

- Models the time it takes a fluid to spread through a random medium.

First-Passage Percolation

First-Passage Percolation:

- Models the time it takes a fluid to spread through a random medium.
- Each edge of graph has a i.i.d. random weight, find shortest edge-weighted (s, t)-path.

First-Passage Percolation

First-Passage Percolation:

- Models the time it takes a fluid to spread through a random medium.
- Each edge of graph has a i.i.d. random weight, find shortest edge-weighted (s, t)-path.
- The time constant is the limiting ratio of this length to the unweighted shortest path length n, as n tends to infinity.

First-Passage Percolation

First-Passage Percolation:

- Models the time it takes a fluid to spread through a random medium.
- Each edge of graph has a i.i.d. random weight, find shortest edge-weighted (s, t)-path.
- The time constant is the limiting ratio of this length to the unweighted shortest path length n, as n tends to infinity.
- Introduced in Broadbent and Hammersley (1957) and Hammersley and Welsh (1965).

Path Cost in a VCG Auction

- VCG mechanism for buying an (s, t)-path:

Path Cost in a VCG Auction

- VCG mechanism for buying an (s, t)-path:
- Utility-maximizing agents each control an edge, e, of a graph, and can transmit a message at cost c_{e}.

Path Cost in a VCG Auction

- VCG mechanism for buying an (s, t)-path:
- Utility-maximizing agents each control an edge, e, of a graph, and can transmit a message at cost c_{e}.
- Auctioneer finds a cheapest path, pays each edge-agent difference in cost of a cheapest path avoiding edge and cost of a cheapest path if edge cost were 0 .

Path Cost in a VCG Auction

- VCG mechanism for buying an (s, t)-path:
- Utility-maximizing agents each control an edge, e, of a graph, and can transmit a message at cost c_{e}.
- Auctioneer finds a cheapest path, pays each edge-agent difference in cost of a cheapest path avoiding edge and cost of a cheapest path if edge cost were 0 .
- First applied to the shortest-path problem explicitly by Nisan and Ronen (1999).

Path Cost in a VCG Auction

- VCG mechanism for buying an (s, t)-path:
- Utility-maximizing agents each control an edge, e, of a graph, and can transmit a message at cost c_{e}.
- Auctioneer finds a cheapest path, pays each edge-agent difference in cost of a cheapest path avoiding edge and cost of a cheapest path if edge cost were 0 .
- First applied to the shortest-path problem explicitly by Nisan and Ronen (1999).
- May require paying much more than the cost of the shortest path (more to say: Archer and Tardos (2002)).

Fixed graph with random edges weights

Today:
First passage percolation and path cost of VCG auction in the width-2 strip as specific examples of fixed graph with random edge weights.

Fixed graph with random edges weights, Ex 1: MST

Notable example of fixed graph with random edge weights:

- Complete graph K_{n} with edge weights independent, uniform in $[0,1]$

Fixed graph with random edges weights, Ex 1: MST

Notable example of fixed graph with random edge weights:

- Complete graph K_{n} with edge weights independent, uniform in $[0,1]$
- Cost of minimum spanning tree in this network, as $n \rightarrow \infty$, cost \rightarrow

Fixed graph with random edges weights, Ex 1: MST

Notable example of fixed graph with random edge weights:

- Complete graph K_{n} with edge weights independent, uniform in $[0,1]$
- Cost of minimum spanning tree in this network, as $n \rightarrow \infty$, cost $\rightarrow \zeta(3)=\frac{1}{1^{3}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots$

Fixed graph with random edges weights, Ex 1: MST

Notable example of fixed graph with random edge weights:

- Complete graph K_{n} with edge weights independent, uniform in $[0,1]$
- Cost of minimum spanning tree in this network, as $n \rightarrow \infty$, cost $\rightarrow \zeta(3)=\frac{1}{1^{3}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots$
- Proof by studying a greedy algorithm for constructing MST [Frieze (1985)]

Fixed graph with random edges weights, Ex 2: MM

Another notable example of fixed graph with random edge weights:

- Complete bipartite graph $K_{n, n}$, edges weights independent, uniform in $[0,1]$

Fixed graph with random edges weights, Ex 2: MM

Another notable example of fixed graph with random edge weights:

- Complete bipartite graph $K_{n, n}$, edges weights independent, uniform in $[0,1]$
- Cost of minimum weight perfect matching in this network, as $n \rightarrow \infty$, cost \rightarrow

Fixed graph with random edges weights, Ex 2: MM

Another notable example of fixed graph with random edge weights:

- Complete bipartite graph $K_{n, n}$, edges weights independent, uniform in $[0,1]$
- Cost of minimum weight perfect matching in this network, as $n \rightarrow \infty$, cost $\rightarrow \zeta(2)=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$

Fixed graph with random edges weights, Ex 2: MM

Another notable example of fixed graph with random edge weights:

- Complete bipartite graph $K_{n, n}$, edges weights independent, uniform in $[0,1]$
- Cost of minimum weight perfect matching in this network, as $n \rightarrow \infty$, cost $\rightarrow \zeta(2)=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$
- Calculated non-rigorously via statistical physics [Mézard and Parisi (1987)]

Fixed graph with random edges weights, Ex 2: MM

Another notable example of fixed graph with random edge weights:

- Complete bipartite graph $K_{n, n}$, edges weights independent, uniform in $[0,1]$
- Cost of minimum weight perfect matching in this network,

$$
\text { as } n \rightarrow \infty, \text { cost } \rightarrow \zeta(2)=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}
$$

- Calculated non-rigorously via statistical physics [Mézard and Parisi (1987)]
- Rigorous proof limit exists [Aldous (1992)]

Fixed graph with random edges weights, Ex 2: MM

Another notable example of fixed graph with random edge weights:

- Complete bipartite graph $K_{n, n}$, edges weights independent, uniform in $[0,1]$
- Cost of minimum weight perfect matching in this network,

$$
\text { as } n \rightarrow \infty, \text { cost } \rightarrow \zeta(2)=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}
$$

- Calculated non-rigorously via statistical physics [Mézard and Parisi (1987)]
- Rigorous proof limit exists [Aldous (1992)]
- Rigorous proof of $\zeta(2)$ (not by analyzing known algorithm) [Aldous (2001)]

Ingredients for analyzing minimum perfect matching

Proof ingredients:

Ingredients for analyzing minimum perfect matching

Proof ingredients:

- An infinite object; fixed graph with random weights should converge to it; in this case, Poisson Infinite Weighted Tree (PWIT)

Ingredients for analyzing minimum perfect matching

Proof ingredients:

- An infinite object; fixed graph with random weights should converge to it; in this case, Poisson Infinite Weighted Tree (PWIT)
- A Recursive Distributional Equation (RDE) for a carefully chosen random variable of interest.

Ingredients for analyzing minimum perfect matching

Proof ingredients:

- An infinite object; fixed graph with random weights should converge to it; in this case, Poisson Infinite Weighted Tree (PWIT)
- A Recursive Distributional Equation (RDE) for a carefully chosen random variable of interest.
- A proof that the solution to the RDE on infinite object has something to do with the expectation for the finite object.

This present paper

Consider the present paper a simple example of that approach.

This present paper

Consider the present paper a simple example of that approach.

- Infinite analog of n-long width-2 strip is the infinite width-2 strip

First passage percolation in the width-2 strip

- Recursive distributional equations

First passage percolation in the width-2 strip

- Recursive distributional equations

$$
\left.\left.\begin{array}{rl}
\ell(0, i) & =\min \left\{\ell(0, i-1)+X_{i},\right.
\end{array} \quad \ell(1, i-1)+Y_{i}+Z_{i}\right\}, 子 \begin{array}{ll}
\ell(1, i) & =\min \left\{\ell(1, i-1)+Y_{i},\right.
\end{array} \quad \ell(0, i-1)+X_{i}+Z_{i}\right\}
$$

First passage percolation in the width-2 strip

- Recursive distributional equations

$$
\begin{array}{ll}
\ell(0, i)=\min \left\{\ell(0, i-1)+X_{i},\right. & \left.\ell(1, i-1)+Y_{i}+Z_{i}\right\} \\
\ell(1, i)=\min \left\{\ell(1, i-1)+Y_{i},\right. & \left.\ell(0, i-1)+X_{i}+Z_{i}\right\}
\end{array}
$$

(not such a useful RDE)

First passage percolation in the width-2 strip

- Recursive distributional equations

$$
\begin{array}{ll}
\ell(0, i)=\min \left\{\ell(0, i-1)+X_{i},\right. & \left.\ell(1, i-1)+Y_{i}+Z_{i}\right\} \\
\ell(1, i)=\min \left\{\ell(1, i-1)+Y_{i},\right. & \left.\ell(0, i-1)+X_{i}+Z_{i}\right\}
\end{array}
$$

(not such a useful RDE)
Better to consider $\Delta_{i}=\ell(1, i)-\ell(0, i)$.

First passage percolation in the width-2 strip

Recursive distributional equation for $\Delta_{i}=\ell(1, i)-\ell(0, i)$.

$$
\Delta_{i}= \begin{cases}-Z_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i}<-Z_{i} \\ \Delta_{i-1}+X_{i}-Y_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i} \in\left[-Z_{i}, Z_{i}\right] ; \\ Z_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i}>Z_{i}\end{cases}
$$

Proof that Δ has something to do with $\mathbb{E}\left[\ell_{n}\right]$

$$
\Delta_{i}= \begin{cases}-Z_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i}<-Z_{i} \\ \Delta_{i-1}+X_{i}-Y_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i} \in\left[-Z_{i}, Z_{i}\right] \\ Z_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i}>Z_{i}\end{cases}
$$

For a concrete example, suppose $Y_{i}, X_{i}, Z_{i} \sim \operatorname{Be}(p)$. Then

Proof that Δ has something to do with $\mathbb{E}\left[\ell_{n}\right]$

$$
\Delta_{i}= \begin{cases}-Z_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i}<-Z_{i} \\ \Delta_{i-1}+X_{i}-Y_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i} \in\left[-Z_{i}, Z_{i}\right] \\ Z_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i}>Z_{i}\end{cases}
$$

For a concrete example, suppose $Y_{i}, X_{i}, Z_{i} \sim \operatorname{Be}(p)$. Then

- Δ_{i} is a Markov chain on $\{-1,0,1\}$ with a unique stationary distribution.

Proof that Δ has something to do with $\mathbb{E}\left[\ell_{n}\right]$

$$
\Delta_{i}= \begin{cases}-Z_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i}<-Z_{i} \\ \Delta_{i-1}+X_{i}-Y_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i} \in\left[-Z_{i}, Z_{i}\right] \\ Z_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i}>Z_{i}\end{cases}
$$

For a concrete example, suppose $Y_{i}, X_{i}, Z_{i} \sim \operatorname{Be}(p)$. Then

- Δ_{i} is a Markov chain on $\{-1,0,1\}$ with a unique stationary distribution.
- $\gamma_{i}=\ell(0, i)-\ell(0, i-1)$ is, too.

Proof that Δ has something to do with $\mathbb{E}\left[\ell_{n}\right]$

$$
\Delta_{i}= \begin{cases}-Z_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i}<-Z_{i} \\ \Delta_{i-1}+X_{i}-Y_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i} \in\left[-Z_{i}, Z_{i}\right] \\ Z_{i}, & \text { if } \Delta_{i-1}+X_{i}-Y_{i}>Z_{i}\end{cases}
$$

For a concrete example, suppose $Y_{i}, X_{i}, Z_{i} \sim \operatorname{Be}(p)$. Then

- Δ_{i} is a Markov chain on $\{-1,0,1\}$ with a unique stationary distribution.
- $\gamma_{i}=\ell(0, i)-\ell(0, i-1)$ is, too.
- $\lim _{n \rightarrow \infty} \frac{\mathbb{E}[\ell(0, n)]}{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\mathbb{E}\left[\gamma_{i}\right]}{n}=\lim _{n \rightarrow \infty} \mathbb{E}\left[\gamma_{n}\right]$.

What you get

If cost of edge $=\left\{\begin{array}{ll}0 & \text { w. pr. } p \\ 1 & \text { w. pr. } 1-p\end{array}\right.$ then shortest path from $(0,0)$ to $(n, 0)$ tends to

$$
\left(\frac{p^{2}(1+p)^{2}}{\left(3 p^{2}+1\right)}\right) n
$$

What you get

If cost of edge $=\left\{\begin{array}{ll}0 & \text { w. pr. } p \\ 1 & \text { w. pr. } 1-p\end{array}\right.$ then shortest path from $(0,0)$ to $(n, 0)$ tends to

$$
\left(\frac{p^{2}(1+p)^{2}}{\left(3 p^{2}+1\right)}\right) n
$$

If cost of edge is uniform in $[0,1]$, then shortest path tends to $\approx(0.42 \ldots) n$.

Path cost in a VCG auction

Same general approach can find the VCG cost of a path in the width-2 strip:

Results

If cost of edge $=\left\{\begin{array}{ll}0, & w . \text { pr. } p ; \\ 1, & w . \text { pr. } 1-p ;\end{array}\right.$ then get

Figure 4. Left: VCG and usual shortest-path rates.
Right: Ratio of VCG cost to shortest-path cost.

Conclusion

Width-2 strip with random edge weights

- First-passage percolation
- VCG path auction

Extensions:

- Extend directly to Width-3 strip with no backtracking.
- Width-k strip?
- With backtracking?

