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Abstract

The first-passage time of a Markov process to a moving barrier is considered
as a first-exit time for a vector whose components include the process and the
barrier. Thus when the barrier is itself a solution of a differential equation, the
theory of first-exit times for multidimensional processes may be used to obtain
differential equations for the moments and density of the first-passage time of
the process to the barrier. The procedure is first illustrated for first-passage-time
problems where the solutions are known. The mean first-passage time of an
Ornstein-Uhlenbeck process to an exponentially decaying barrier is then found
by numerical solution of a partial differential equation. Extensions of the
method to problems involving Markov processes with discontinuous sample
paths and to cases where the process is confined between two moving barriers
are also discussed.

EXIT TIMES; DIFFUSION PROCESS; NEURAL FIRING; ORNSTEIN-UHLENBECK  PROCESS

1. Introduction

The problem of determining the first-passage times to a moving barrier for
diffusion and other Markov processes arises in biological modeling, in statistics
and in engineering. In population genetics (see Ewens (1979)),  if X(t) is the
number of a certain kind of genes present at time t  in a population with a total of
N(t) genes, then the time at which X(t) first hits N(t) is the time of fixation of
that gene in the population. In neurophysiology (Holden (1976)),  if X(t) is the
displacement of a nerve-cell voltage from its resting level and O(t) is the
threshold voltage displacement, then the time at which X(t) first hits O(l) is the
time at which an action potential is generated. In statistics the problem of
determining the time of first passage of a Wiener process to certain moving
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barriers arises asymptotically in sequential analysis (Darling and Siegert (1953))
and in computing the power of statistical tests (Durbin (1971)). A review of
applications in engineering can be found in Blake and Lindsey (1973). Only in
the case of the time of first passage of a Wiener process to a linear barrier is a
closed-form expression for the density available (see, for example, Cox and
Miller (1965)). Approximate or numerical methods have been employed for
other boundary types (Ferebee (1982)).

In the first part of this paper we obtain partial differential equations for the
moments of the first-passage time of a diffusion process to a general class of
moving barriers. Some examples will be given for which exact solutions of such
equations are obtained by means of transformations to simpler problems with a
known solution. We also consider a first-passage-time problem for which useful
new results can be obtained by numerical solutions of the moment equations.
Extensions of the method of solution to finding the moments and density of the
first-passage time of continuous and discontinuous Markov processes confined
between two moving barriers will also be discussed.

2. The moments of first-passage time

Let {X(t), I 2 O}, X(O) = x, be a temporally homogeneous diffusion process
with Ito stochastic differential

(2 11. dX = a (X)dt + p (X)d W,

where {W(t), t Z 0} is a standard Wiener process  with zero mean and variance t.
We assume that existence and uniqueness conditions (see Gihman and Skorohod
(1972)) are met. Let {Y(t), t 2 0} be a moving barrier, with Y(O) = y. We shall
take X(O) < Y(O), as it is more natural in most settings. (The case X(O) > Y(O) is
handled throughout by reversing the inequality of the form x < y and by making
suitable adjustments to certain boundary conditions.)

The random variable T(x, y) is defined as the time at which X first hits the
moving barrier Y:

(2 2). m Y) = inf{t 1 X(t) = Y(t)1 X(O) = x -C y = Y(O)}.

The underlying mechanisms are sketched in Figure 1. It is further assumed that T
is a ‘proper’ random variable, in the sense that

and has finite moments of order n ~5 no;

Our method for determining Mn (x, y) requires that Y(t) be a component
Yl(t), say, of a vector function Y(t) = (Yl(t),  l l 0, Yk (t)) which satisfies a
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Figure 1. The random process hits the Figure 2. The trajectories in Figure 1 as they
moving barrier Y(t), the time of first appear in the (x, y)-plane. D is a domain enclos-
passage being marked T. ing the initial point (x, y) and its boundary is HD.

first-order vector differential equation of the form

(If Y is the solution of a non-autonomous system, then Y* =

(Y#),  l l l 7 Yk (t), Yk+~(f)) with dYk+M = 1 is the solution of an augmented
autonomous system.)

In what follows, we limit our discussion first to the case where (2.5) is a scalar
ordinary differential equation (ORE),

(2 6)
dY. ylg- = YVJ (t > O), Y(O) = y.

With (2.6), we may now consider the vector random process (X, Y) which
satisfies the degenerate system of first-order Ito stochastic equations

(2.7)

and treat the first-passage-time problem for X as a first-exit-time problem for
the vector (X, Y) in the plane. The separate trajectories of X(l) and Y(l)
sketched in Figure 1, appear as in Figure 2 when plotted in the X, Y-plane. We
therefore see that the time of first passage of X to Y is the time of first exit of
(X, Y) from all or some part of the half-plane, x c y. The theory of first-exit
times for multidimensional diffusion processes (Dynkin (1965); Gihman and
Skorohod (1972)) thus enables us to obtain differential equations for the
moments, Mn (x, y).
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If P is the transition probability function of (X, Y) so that

then P satisfies the backward Kolmogorov equation

(Since X and Y are independent, P can actually be written as the product of
transition probabilities for X and Y but we ignore this here.)

Furthermore, the moments of the first-exit time satisfy the recursion system of
equations

(2.10) Z’.& (Mn) = - nM,,-1, @,Y)~Q

where D is a set of points (x, y) from which passage of (X(t), Y(t)) to the line
x = y is certain. These equations may be solved to obtain the moments of the
time of first passage of the scalar diffusion X to the moving barrier Y.

In order to solve Equation (2.10) for the moments of the first-passage time,
boundary conditions must be specified. Let D be a set o f  points in the
(x, y)-plane with boundary 8D, such as that sketched in Figure 2. That is, part of
t?D is along y = x. Assuming that escape from D is certain for (X, Y), the
boundary conditions are

(2.11) M&y)=O, (W)EaD,

since if (x, y ) E t?D, T(x, y) = 0 with probability 1.
In cases where escape of (X, Y) from the half-plane H = {(x, y) 1 K <  y} i s

certain, one may first find results for finite D and then take limits as D increases
to cover H (cf. Cox and Miller (1965)). In problems where numerical solution of
the moment equations is necessary, the region D is chosen such that points (x, y)
at which the solution is required are away from JD. The size of D is then
increased until further increases lead to a change which is less than a small
specified change in the solution at the points of interest. This procedure will be
illustrated in the next section.

As the actual problem has only a one-sided exit, a reflecting barrier along 8D
except for the portion along x = y (denoted by 8D’) seems just as appropriate as
an absorbing barrier. In other words, instead of Mn = 0, we could have

where J(  l )/h is the derivative of ( 0) normal to 8D’. Numerical calculations
done on the firing-time problem for a model neuron (in Section 4 of this paper
and in Tuckwell et al. (1984)) indicate that both types of boundary conditions
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along dP give effectively the same Mn (x, y) for (x, y) away from the boundary
provided that the finite domain D is sufficiently large. That is, for points remote
from LQ Mn (x, y) is insensitive to the choice of the supplementary boundary
condition on 6V. The condition (2.12) has the advantage that it eliminates the
appearance of a boundary-layer phenomenon in the solution adjacent to 6V

. sometimes associated with the Dirichlet problem. However we note from the
exact solutions of Section 3 that the limiting solutions, obtained by first applying
either a reflecting or an absorbing barrier condition on JP, do not themselves
satisfy those conditions at m.

3. Some exact solutions

To illustrate the application of the method outlined in the last section, we
consider here three, albeit simple, examples for which the first-passage-time
moments can be obtained exactly.

(i) Wiener  process with drift - constant barrier. The density and moments of
the time of first passage of a Wiener process with drift to a constant barrier are
well known. The theory outlined above approaches this problem from a different
viewpoint. The stochastic differential for the diffusion is

(3 1). dX = pdt + udW_, X(O) = x,

and the barrier equation is

dY-z
dt

0 1 Y(O) = y.

Thus, we have LK = p, /3 = u and y = 0. With K = X(O) < Y(O) = y, the moments
Mn (x, y) of the time of first passage of X to Y satisfy

n =1,2,***, with boundary condition Mn (y, y) = 0.
The equations for the moments (3.3) for a constant barrier are evidently ODE in

the independent variable x with y appearing as a parameter. By the method of
Section 2, we first solve the ODE on the strip y - a c x < y, with its solution
denoted by M?(x, y), and with the boundary condi t ions M?(y, y) =
M?‘(y-a,y)=O.The moments Mn (x, y) (n = 1,2,  l . l ), are obtained by letting
a *m. The solution for M?(x, y) is

My’@, y) =
V -x

P

a
z

1 - exp( - 2& - y)/c2)
l- exp(2pa/c2)  l

For p > 0, we get in the limit as a +m

M&y)=7 .
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Similarly, we find

(3 6). M@, y ) =
o2(y - x)+ (y - x)2

P3 P2 l

The above expression for Ml and M2 thus agree with the known results (Cox and
Miller (1965)).

It should be noted that the same limiting solutions for Ml and M2 would also
be obtained had we used [8M?‘/8x]x=y-a = 0 instead of M?‘(y - a, y) = 0 before
taking the limit a + OQ.

(ii) Wiener process with drift - linear barrier. For this case, the equation for
X is as in the previous example but the barrier Y(t) now satisfies

dY-E
dt

k 7 Y(O) = y.

To obtain the moments of the first-passage time of X(t) to Y(t) with AZ = X(O) <
Y(O) = y, it is simplest to set X(t) = g(t)+ kt and write (3.1) as

(3 8). d* = (p - k)dt + udW, g(O) = x.

Then the original first-passage-time problem becomes that of z(t) to a constant
barrier y and the solution given in (i) is applicable. With a! = p - k, p = 0 and
y = 0, we have from (3.5) and (3.6)

(3 9). M&y)==
_ c2(y -x)( y  - g2

,u-k’ M2(xd)- (p_k)3 +(p_k)2

which coincide with known results (Cox and Miller (1965)).
To obtain the same solution directly by the method of Section 2, without the

transformation from X to X, we note that with a = p, p = u and y = k, t h e
moments of the first-passage time of X(t) to Y(t) satisfy

(3.10)
2 J2M,,

ic ax2-+P

8Mn 8Mn
z+k-= -nMn+

JY
(X<Y)*

n =1,2;**, with Mn (y, y) = 0. The equation may be transformed by a change

of variables 6 = x - y and q = x + y into

with Mo= 1 and with

(3.12) /& =E?_&
S

CT2 ’

/&Zti
u2 l

The solution domain is now the half-plane 5 < 0 with the boundary condition
Mn(y, y)=0 taking the form
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(3.13) Mn(( =O,v)=O.

The method of Section 2 solves (3.11) on a finite rectangle, say { - u < 6 < 0,
1 q 1 c l}, and then lets a and 2 in the solution tend to m.

For reasons which will become clear presently, we give here only a formal
solution for M?‘(t, q) in the strip { - a < 5 < 0, 1 q I< m} obtained by the method
of generalized Fourier transform in q:

As a + m, we get (as previously found in (3.9)),

(3.15)

Observe that the solution (3.14), which satisfies the differential equation (3.11),
the boundary condition Mp’(O, q) = 0 and the auxiliary condition M?‘( - a, q) =
0, is independent of q. As such My’ does not tend to 0 as q + 2 OCL Instead, we
have dMp’/Jq = 0 which suggests that a homogeneous Neumann condition may
be more appropriate for the finite-domain problem in this case.

(iii) Gene fixation in a varying population. In a model of fluctuating gene
frequency when selection varies randomly (Crow and Kimura (1970); Tuckwell
(1976)),  the number of genes of a certain type is described by a Malthusian law in
the form of a Stratonovich differential:

(3.16) dX = ,uXdt + UXdW, X(0)  = x.

As an Ito differential, (3.16) becomes (Jaswinski (1970)):

(3.17) dX Xdt + OXdW, X(0) = x.

The total number of genes in the population (at a particular locus) is assumed to
grow according to the Malthusian law,

(3.18)
dY-c
dt

kY7 Y(O) = y.

The gene frequency is thus X/Y and when this reaches unity, or equivalently
when X hits Y, there will be only one kind of gene in the population (fixation).
In this model it is necessary to have X(O) s Y(O).

From the results of Section 2 we see that the moments of the fixation time are
solutions of the equations .
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n =1,2,..., with Mn (y, y) = 0. For a solution of the problem (for K > 0 and
y > O), we set 6 = In(x) and 7 = In(y) and transform (3.19) into an equation of
constant coefficients

(3.20)

with Mn (6 = q, q) = 0. For p B k, this is exactly the problem solved in (ii) and
the solution there is immediately applicable.

In terms of x and y, we have

(3.21)

(3.22)

The results (3.21) and (3.22) can be obtained by transforming the system of
equations for X and Y to that of a Wiener process with drift and a linear barrier
(Tuckwell (1974)).

4. Firing time of a model neuron

The displacement X(t) of a nerve cell’s electrical potential from its resting
value has been represented, under certain conditions, by an Ornstein-
Uhlenbeck process. The stochastic differential is

(4 .1). dX=(a - X)dt + PdW, X(O) = x.

Here time is measured in units of the membrane time constant. When X(t)
reaches a threshold value Y(t) the neuron fires an action potential. Usually one
is interested in the case of an initially resting cell so that x = 0.

This diffusion approximation to the underlying discontinuous process in the
model of Stein (1965) was first considered in the context of neural firing by Gluss
(1967), and the mean first-passage time in the case of a constant Y was obtained
by Roy and Smith (1969). The assumption of a constant threshold may not be
appropriate, especially for a rapidly firing nerve cell. Usually, after a short time
interval, called the absolutely refractory period, in which generation of a
subsequent action potential is impossible, the threshold declines as the inhibitory
effect of the previous action potential dies away.

Several time-dependent threshold functions Y(t) have been proposed, both
monotonic (Holden (1976), Chapter 4) and oscillatory (Wilbur and Rinzel
(1983)). To illustrate the present method we consider in this section a generaliza-
tion of the exponentially decaying threshold proposed by Weiss (1964). Let Y(t)
satisfy
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dY
-= -klY+kzdt (t ’ O), Y(O) = y

with kl k2 zz 0 The solution of the above initial-value problem (4.2) is9 -*

For very small positive values of kl, Y(t) will appear like a constant threshold
with magnitude y provided a is large and positive. When kl is very large and
positive, Y(t) will appear like a constant threshold of magnitude k2/kl in a
relatively short time. Typical trajectories will appear as in the general scheme
depicted in Figure 1.

From the theory outlined above, the mean firing time, which we designate
F(x, y) for initial values (X(O), Y(O)) = (q y), is the solution of

@22+@ -x) IYF 8F
2 ax z + (kz - kly) - = - 1,

8Y
x < y,

with F(y, y) = 0. In general, this boundary-value problem will have to be solved
numerically, though an asymptotic solution may be obtained for small ,B2 and/or
at distances far away from the origin, i.e. as x2+ y2*m.

For a finite-difference solution, we first solve the problem for a finite rectangle
S shown in Figure 3 with F(x, y) = 0 on the boundary 8S of S. Care has to be
taken that the corner C of the rectangle is above the line y = k2/kl = k which is
the asymptotic value of the threshold Y(t) as t -+ *. If C were not above this
line, as would be the case if the asymptotic barrier value were V, any trajectory
which started above k’ could never reach the absorbing edge y = x. Such initial
values would lead to infinite exit times and a solution on S would not be
possible.

X

Figure 3.
problem.

Illustrating the selection of the domain of the equation (4.4) in the neuron firing-time
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We solved (4.4) numerically for various parameter values. For the neuron-
firing problem we are mainly interested in the solution along x = 0 for various
y, representing thresholds with various initial values. The results are given in
Table 1.

TABLE 1
Mean first-passage times of an Ornstein-UhIenbeck process, X(t) to an exponentially decaying

barrier, Y(t) with X(O) = 0, Y(0) = y

A. a = 20, p = 10, k1 = 1, k2 = 10 B. Q = 20, p = 10, kI = 0.8, k2 = 10

8 0.479 8 0.534
9 0.529 9 0.594

10 0.577 10 0.652
11 0.623 11 0.707
12 0.666 12 0.760
13 0.708 13 0.812
14 0.747 14 0.862
15 0.786 15 0.911

C. a = 20, 6 = 5, kI = 1, k2 = 10 D. cx = 20, p = 10, kI = 1, k2 = 8

8 0.552 6 0.326
9 0.604 7 0.379

10 0.654 8 0.428
11 0.701 9 0.475
12 0.747 10 0.520
13 0.790 11 0.562
14 0.832 12 0.603
15 0.872 13 0.641

E. a = 15, /3 = 10, kI = 1, k2 = 10
Y F(0, y ) = Mi(O, Y)

8 0.631
9 0.699

10 0.762
11 0.821
12 0.877
13 0.929
14 0.979
15 1.026
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In all cases the results are such that a substantial increase in the size of S led to
a less than 1 per cent change in the solution at the tabulated values. The solution
must also be a monotonically increasing function of y on x = 0. The value of
F(0, 10) in Case A of Table 1 was checked against a previously known value,
since this represents the constant threshold solution Y(t) = 10, I Z 0. It will be
seen by examining the parameter values in Cases A-E that the qualitative
dependence of the solution on the parameters is correct. Thus it is possible to
obtain mean first-passage times of diffusion processes to many barriers in cases
where these quantities were not previously known.

5. Extensions

The method outlined above for finding the moments of the time of first
passage of a diffusion process to a moving barrier can be applied in the case of a
Markov process X(t) with diffusion and jump components. Such a process will
have a stochastic differential of the form

(5.1) dX = a (X)dt + p (X)d W +
I

y(X, u)v(dt x du), X(0) = x,
R

where V( l ) is a Poisson random measure (Gihman and Skorohod (1972)). The
transition density p(s, x  ; t, y ) of such a process satisfies a backward Kolmogorov
equation

where

where II( .) is the jump rate measure and A = J II is the total jump rate.

(i) Processes confined between two moving barriers. Suppose a Markov pro-
cess X(t) with stochastic differential given by (5.1) is initially between the two
time-varying barriers Y(t) and Z(t), with Y(O) > Z(O). Let Y(t) and Z(t) satisfy
the differential equations

$f= gw, Z(O) = 2.

We consider the random variable T(x, y, z), the time at which X(t) first hits
either Y(t) or Z(t). If the moments Mn (x, y, z) of T exist, then M& n = 1,2,  l l l

satisfy the equations (Dynkin (1965)),
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where the domain of the equations is the region S = {(x, y, z) 1 x < y, K > z} and
the boundary conditions are Mn (x, y, z) = 0, (x, y, z) E S.

(ii) The density of the first-passage time. Consider a Markov process X, with
stochastic differential (5.1), which is initially below a barrier Y(t), where Y(t)
satisfies (5.4). Let the distribution of the time T(x, y) at which X first reaches or
exceeds Y be

(5 7). G(t,x,y)=Pr[T(x,y)s t].

From the theory of exit times for Markov processes, G will satisfy the equation

(5 f9. $= Lx[Gl+f(y)$y Y DO, x <y,

with boundary conditions

(5 9. G(t, & y) = 1, 120, K zy,

(5.10) G(O,%y)=O, x < y.

The density gt, x, y ) of G, if it exists, will satisfy the equation

(5.11)

with boundarv conditions

(5.12) g(t,% Y) = S(t), x 2 y,

(5.13) g(OJJ)=O, x < y.

Similarly, equations for the distribution function and density of the time at
which a Markov process X(t), with stochastic differential (5.1), leaves the region
bounded by Y(t) and Z(t) satisfying (5.4) and (5.5), may be obtained.

For example, the density of first-passage-time density of Problem (iii) in
Section 3 satisfies

(5.14) z=$ x$$+ (/L 2) xz+ lzy$ (t >0, x <y).

The solution of this equation satisfying (5.12) and (5.13) is

(5.15) ln(yh)
g(tJ~Y)=~~exP L

- (ln( /x - pt ’
iU; ) 91 Cl B 01

as can be seen by transforming the process X to a Wiener process and the barrier
to a constant one.
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(iii) Barriers satisfying higher -order differential equations. If the barrier Y(l)
satisfies a differential equation of order greater than 1, the moments and density
of the time at which the random process X(t) first hits Y(t) may sometimes be
found if the equation for Y(t) can be written as an autonomous system of
first-order equations. To illustrate, suppose X(t) has a stochastic differential
(5.1) and the barrier satisfies the deterministic second-order equation

(5.16) $-f(Y)%- g(Y) = 0, Y(0) = y, P(O) = 2.

The second-order ODE for Y may be written as a first-order system

(5.17)
dY-z
dt Z $=f(Y)Z+g(Y).

Let T(x, y, z) be the time at which X(t) first hits Y(t) when

[X(O), Y(O), Z(O)] = (& y, z )* Then the moments Ma@, y, z) of T satisfy the
equations

(5.18) L[M,]+z - nM+,

in the half-space x c y, with boundary conditions Mn (x, y, z) = 0, x 2 y. Simi-
larly, the distribution function G of T satisfies

(5.19) $=L[G]+z$+[f(y)z+g(y)]$$ (-0, x <Y),

with boundary conditions

(5.20) G(t,x, y,z)= 1, (t 20, x 2 y),

(5.21) G(O,YJ)=~, (x CYl*

(iv) First-passage time of a Wiener process with drift to a sinusoidal
barrier. For a specific application of the method for barriers satisfying a
higher-order ODE, we consider the Weiner process with drift

(5.22) dX = pdt + cd W, X(O) = x,

and let 7(x, y, z) be the time at which X(t) first reaches the barrier Y ( t )
satisfying

(5.23) $+w’(Y-k)=O, Y(O) = y, P(O) = 2.

Thus the barrier is the sinusoidal function of time

(5.24) Y(t) = (y - k)cos(ut) +L sin(mt) + k,0
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with a ‘mean value’ of k and a period 27~/~.  Then, from (5.18) the expected time
IK at which X(t) first hits Y(l) satisfies the equation

where it is assumed that passage of X(l) to Y(f) is certain in a finite time. An
asymptotic solution of (5.25) with boundary condition IK@, y, z) = 0 in terms of
elementary functions is possible when o2 is sufficiently small. For the more
general situation, a numerical solution may be obtained as in Section 4.
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