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Abstract

The present paper generalises some results for spectrally negative Lévy processes to the
setting of Markov additive processes (MAPs). A prominent role is assumed by the first
passage times, which will be determined in terms of their Laplace transforms. These
have the form of a phase-type distribution, with a rate matrix that can be regarded as
an inverse function of the cumulant matrix. A numerically stable iteration to compute
this matrix is given. The theory is first developed for MAPs without positive jumps and
then extended to include positive jumps having phase-type distributions. Numerical and
analytical examples show agreement with existing results in special cases.
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1. Introduction

Markov modulation is the basis for many generalisations in stochastic processes. It leads
from renewal processes to Markov renewal theory, which has enabled an analysis of the
classical M/G/1 and GI/M/1 queues. Another important example for queueing theory is the
Markov-modulated Poisson process, later generalised to Markovian arrival processes, which
are now standard use in current literature. On a more general level, Markov additive processes,
introduced in [10], [13], and [14], are a powerful generalisation of Lévy processes. The use of
Markov additive processes (MAPs) or, rather, subclasses of MAPs, has become increasingly
popular in stochastic modelling. For a recent textbook presentation, see [3, Chapter XI].

Stochastic modelling based on MAPs requires a theory which is able to provide methods
for the computation of key characteristics such as first passage times, suprema, or stationary
distributions. On the level of Lévy processes, many results can be obtained for the spectrally
negative variant, i.e. the class of Lévy processes without positive jumps. Standard references
are [8, Chapter VII] or [9]. Recently, some results have been proven for Lévy processes with
phase-type positive jumps as well; see [5], [11], [19], or [20]. In the present paper we firstly
generalise some of these results to the level of MAPs without positive jumps and then we
sketch an extension to MAPs with phase-type positive jumps. Related works investigating
MAPs include [12, Chapter 14], [17], and [18].

Many arguments in this paper are straightforward generalisations of ideas from [1], in which
the overall supremum of MAPs with continuous paths was investigated. As expected, the
main method in generalising the existing theory of Lévy processes consists in finding a matrix
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equivalent to the inverse function of the cumulant. It turns out that the Laplace transform of
a first passage time has a phase-type form where we need to determine two matrices: the rate
matrix U(γ ) and the recovery matrix A(γ ). To this aim, we derive fixed point equations for
A(γ ) and U(γ ) from which these can be determined via successive approximation.

An extension of the classical fluctuation theory for spectrally negative Lévy processes is
the incorporation of positive jumps having phase-type distributions. The phase-type assump-
tion is almost without loss of generality due to the following two results. Asmussen et al.
[5, Proposition 1] showed that Lévy processes with phase-type jumps are dense within the class
of one-dimensional Lévy processes (equipped with the Prokhorov distance). Furthermore,
Pistorius [20, Proposition 1] showed that the joint distribution of first passage times and the
respective overshoots (equipped with convergence in distribution) are continuous functionals of
Lévy processes (equipped with convergence in law). In Section 5 we shall sketch an analogous
extension for MAPs.

As far as the author is aware, the only existing approach to determine the Laplace transform
of first passage times for MAPs is the construction of suitable martingales, as proposed in [4]
or [16]. One advantage of the present paper is seen in the feature that here the classical theory
of Lévy processes finds a natural extension. A switch of analytical methods is not required.

In Section 2 some notation and preliminary results shall be provided. Initially, results
for first passage times will be derived in Section 3. The question of numerically computing
the matrices A(γ ) and U(γ ) will be examined in Section 4. An extension of the theory,
incorporating positive jumps of phase type, is described in Section 5. The relation between first
passage times, suprema, and the stationary distribution for the process reflected at the origin
carries through to the MAP level and shall be described briefly in Section 6. In Section 7
we investigate the relation between the martingale approach of Asmussen and Kella [4] and
a diagonalisation of U(γ ) in the case where no negative subordinators are part of the MAP.
The last section contains some numerical examples, which show that in some special cases the
results obtained here are in agreement with the results obtained by different approaches.

2. Preliminaries

2.1. Lévy processes

A Lévy process is a real-valued stochastic process with stationary and independent incre-
ments. The study of this class of processes goes back as far as the foundations of modern
probability theory. A modern textbook is [8], whereas [9] gives an extensive presentation for
the fluctuation theory of spectrally negative Lévy processes. For ease of reference, we shall
restate some classical results for these, along with the necessary notation, in the following.

Let Y = (Yt : t ≥ 0) be a one-dimensional real-valued Lévy process with parameters µ
for the drift, σ 2 for the variation, and ν for its Lévy measure. Assume that Y has no positive
jumps, i.e. that ν is concentrated on (−∞, 0]. Then the Lévy–Khintchine formula yields
E(exp(αYt )) = exp(tψ(α)) for Re(α) ≥ 0, where the function

ψ(α) = αµ+ 1

2
σ 2α2 +

∫ 0

−∞
(eαx − 1 − αx1{x>−1})ν(dx)

(where 1{·} is the indicator function) is called the Laplace exponent of Y; cf. [8, Section VII.1].
A subordinator is a Lévy process with increasing paths, implying that σ 2 = 0 and that the Lévy
measure is concentrated on [0,∞). We assume that Y is not the negative of a subordinator.
Furthermore, let Y0 = 0 throughout this section.

https://doi.org/10.1239/jap/1222441829 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1222441829


Markov additive processes 781

Since the function ψ is strictly convex, there is a largest solution, called �(0), of the
equation ψ(α) = 0, α ≥ 0. As Y is not the negative of a subordinator, it follows that
limα→∞ ψ(α) = ∞. Hence, there is an inverse function of ψ : [�(0),∞) → [0,∞). It shall
be denoted by � : [0,∞) → [�(0),∞). Denote the running maximum of Y until time t ≥ 0
by St := sup{Ys : s ≤ t}. The assumption that Y has no positive jumps yields the following
lemmas.

Lemma 1. ([8, Theorem VII.1].) Let τ(x) := inf{s ≥ 0 : Ys > x} for x ≥ 0 denote the first
passage time of the level x. Then (τ (x) : x ≥ 0) is a subordinator with Laplace exponent �.

Lemma 2. ([8, Corollary VII.2].) Let E(λ) ∼ Exp(λ) be an exponentially distributed random
variable, independent of Y and with λ > 0. Then SE(λ) has an exponential distribution with
parameter �(λ).

Lemma 3. ([8, Theorem VII.4].) Let E(q) ∼ Exp(q) be an exponentially distributed random
variable, independent ofY and withq > 0. Furthermore, letGE(q) = sup{t < E(q) : Xt = St }.
Then

E(exp(−αGE(q) − βSE(q))) = �(q)

�(α + q)+ β
,

E(exp(−α(E(q)−GE(q))− β(SE(q) − YE(q)))) = q(�(α + q)− β)

�(q)(α + q − ψ(β))
,

for α, β > 0.

Remark 1. Later on, we shall use the second equation of Lemma 3 with a matrix argument U

instead of −β. Of course, convergence of E(exp(−α(E(q) − GE(q))I + U(SE(q) − YE(q))))

can be expected only for matrices U with all eigenvalues having negative real part.

2.2. MAPs

Let J = (Jt : t ≥ 0) be an irreducible Markov (jump) process with finite state space
E = {1, . . . , m} and infinitesimal generator matrix Q = (qij )i,j∈E . We call Jt the phase at
time t ≥ 0. Define the real-valued process X = (Xt : t ≥ 0) as evolving like a Lévy process
with parameters µi (drift), σ 2

i (variation), and νi (Lévy measure) during intervals when the
phase equals i ∈ E. Whenever J jumps from state i ∈ E to another state j ∈ E, this may be
accompanied (with probability λ−

ij ) by a jump of X which has distribution function Fij . Then
the two-dimensional process (X,J) is called a MAP.

A MAP can also be defined by the following property (see [3, Section XI.2a]): (X,J) is a
Markov process such that

E(f (Xt+s −Xt)g(Jt+s) | Ft , Jt = i) = E(f (Xs)g(Js) | X0 = 0, J0 = i)

holds for all s, t > 0 and i ∈ E, where f and g are measurable functions.
First we shall investigate only MAPs without positive jumps, for which the measures νi and

Fij have support on the negative real numbers only. Then the cumulant of the Lévy process
X(i) in phase i may be written as

ψi(α) = αµi + 1

2
σ 2
i α

2 +
∫ 0

−∞
(eαx − 1 − αx1{x>−1})νi(dx)

for such α ∈ C that allow an integration. For notational convenience, we define the modified
distribution functions F̃ij by

F̃ij (0) = 1 − λ−
ij and F̃ij (dx) = λ−

ijFij (−dx)

https://doi.org/10.1239/jap/1222441829 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1222441829


782 L. BREUER

for x > 0 and i, j ∈ E. Note that λii = 0, which implies that F̃ii = δ0, denoting the Dirac
one-point measure on 0.

Denote the matrix-valued moment generating function ofXt , givenX0 = 0, by X̂t (α). Write
F̂ (s) = (F̂ij (s))i,j∈E , where F̂ij (s) = ∫ ∞

0 esx dF̃ij (x) is the moment generating function of
F̃ij . By Proposition XI.2.2 of [3], the (i, j)th entry of X̂t (α) is given as

E(exp(αXt ); Jt = j | X0 = 0, J0 = i) = (eK(α)t )ij (1)

with
K(α) = diag(ψi(α))i∈E + Q ◦ F̂ (−α) (2)

for arguments α ∈ C that allow convergence of the integrals involved. Here the notation
A ◦ B denotes entrywise multiplication of the matrices A and B having the same dimension,
i.e. (A ◦ B)ij := aij bij .

3. First passage times

Let ((Xt , Jt ) : t ≥ 0) be a MAP with phase space E = E− ∪Eσ , where the subspaces have
the following meaning: during any phase i ∈ E−, the level process X(i) is the negative of a
subordinator or the constant processX(i)t = 0 for all t ≥ 0. The subspaceEσ contains all other
phases, i.e. for i ∈ Eσ , the level process is not a negative subordinator.

The analysis of positive jumps will be included later in Section 5, so that we may first assume
that all Lévy processes X(i) with i ∈ Eσ are spectrally negative. As negative subordinators, the
X(i) for i ∈ E− are spectrally negative anyway. Then the level process is upper semicontinuous.

Denote the time of first passage beyond the level x ≥ 0 by τ(x) := inf{t ≥ 0 : Xt > x}.
Whenever we start from a negative level X0 < 0, we write τ := τ(0) for the first passage time
beyond 0. Define the functions

fij (x) := Eij (e
−γ τ | X0 = x) := E(e−γ τ ; Jτ = j | J0 = i, X0 = x)

for allx < 0 and an arbitrary but fixedγ ≥ 0. Since the paths ofX are upper semicontinuous and
spatially homogeneous (conditioned on the phase process), we obtain the functional equation

fij (x + y) =
∑
k∈Eσ

fik(x)fkj (y) for all x, y ≤ 0. (3)

Spatial homogeneity of X (conditioned on the phase process) yields, for x > 0 and i, j ∈ E,

Eij (e
−γ τ(x)) := E(e−γ τ(x); Jτ(x) = j | J0 = i, X0 = 0)

= Eij (e
−γ τ(0) | X0 = −x)

= fij (−x).
Let E(−,σ )(e−γ τ(x)) denote the matrix with entries Eij (e−γ τ(x)) over the range i ∈ E− and
j ∈ Eσ . Likewise, E(σ,σ )(e−γ τ(x)) shall contain these entries over the range i, j ∈ Eσ .
Then (3) yields the form

E(−,σ )(e−γ τ(x)) = A(γ )eU(γ )x and E(σ,σ )(e
−γ τ(x)) = eU(γ )x (4)

for some subgenerator matrix U(γ ) and a subtransition matrix A(γ ). The different forms in
(4) are due to the boundary condition

Eij (e
−γ τ(0)) =

{
δij , i, j ∈ Eσ ,
aij (γ ), i ∈ E−, j ∈ Eσ ,
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where δij denotes the Kronecker function (i.e. δij = 1 if i = j and δij = 0 otherwise) and

aij (γ ) := E(e−γ τ(0), Jτ(0) = j | X0 = 0, J0 = i).

The values aij (γ ) are nonnegative but strictly less than 1 if γ > 0 and X(i) is a negative
subordinator. Let A(γ ) denote the E− × Eσ matrix with entries aij (γ ). It is clear that A(γ )

is a subtransition matrix, i.e. it has nonnegative entries and its row sums are at most 1.
Since a first passage to a level above cannot occur in a negative subordinator phase, we

obtain P(Jτ(x) = j) = 0 for all j ∈ E− and, thus, E(−,−)(e−γ τ(x)) = E(σ,−)(e−γ τ(x)) = 0,
where 0 denotes a zero matrix of suitable dimension. Altogether this yields

E(e−γ τ(x)) =
(

eU(γ )x 0
A(γ )eU(γ )x 0

)
=

(
Iσ

A(γ )

) (
eU(γ )x 0

)
,

where Iσ denotes the identity matrix of dimension |Eσ |.
It remains to determine U(γ ) and A(γ ), which is of course the main part of the paper. Since

clearly fij (x) → 0 as x → −∞ (for all i, j ∈ E), we see from (4) that all eigenvalues of U(γ )

must have negative real part.
Denote the semigroup of transition operators for (X,J) by (Pt : t ≥ 0), and define the

matrix-valued function f (x) = (fij (x))i,j∈E . By definition, Ptf (x) = E(e−γ (τ−t) | X0 = x)

for x < 0 and small enough t . This yields, for the infinitesimal generator A of (X,J),

Af = lim
t↓0

1

t
(Ptf − f )

= lim
t↓0

1

t
(E(e−γ (τ−t))− E(e−γ τ ))

= E(e−γ τ ) lim
t↓0

1

t
(eγ tI − I )

= E(e−γ τ )γ I

= γf ,

where E(e−γ τ ) = (Eij (e−γ τ | X0 = ·))i,j∈E . On the other hand, we obtain, for i ∈ E and
j ∈ Eσ , where e′

i and ej denote row and column base vectors of dimension |E| and |Eσ |,
respectively,

Afij (x) = A

(
e′
i

(
Iσ

A(γ )

)
e−U(γ )xej

)

= e′
i

(
Iσ

A(γ )

) (
1

2
σ 2
i U(γ )2 − µiU(γ )

)
e−U(γ )xej

+ e′
i

(
Iσ

A(γ )

) ∫ 0

−∞
(e−U(γ )z − I + U(γ )z1{z>−1})νi(dz)e−U(γ )xej

+
∑
k∈E

qike
′
k

(
Iσ

A(γ )

) ∫ ∞

0
eU(γ )z dF̃ik(z)e

−U(γ )xej ,

with the definitions F̃ij (0) = 1 − λ−
ij and F̃ij (dy) = λ−

ijFij (−dy) for i, j ∈ E. Note that
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λ−
ii = 0 such that F̃ii = δ0 is the Dirac (one-point) measure on 0. This leads to

γ e′
i

(
Iσ

A(γ )

)
e−U(γ )xej

= γfij (x)

= Afij (x)

= e′
i

((
Iσ

A(γ )

)
ψi(−U(γ ))+

∫ ∞

0
Q ◦ F̃ (dz)

(
Iσ

A(γ )

)
eU(γ )z

)
e−U(γ )xej

for all x < 0 and j ∈ Eσ , where the (i, j)th entry of the matrix Q ◦ F̃ is the measure qij F̃ij .
Thus, a first result for U(γ ) and A(γ ) is

γ e′
i

(
Iσ

A(γ )

)
= e′

i

((
Iσ

A(γ )

)
ψi(−U(γ ))+

∫ ∞

0
Q ◦ F̃ (dz)

(
Iσ

A(γ )

)
eU(γ )z

)
(5)

for all i ∈ E. We can write this in matrix form as

γ

(
Iσ

A(γ )

)
= �σ 2/2

(
Iσ

A(γ )

)
U(γ )2 + �µ

(
Iσ

A(γ )

)
U(γ )

+
∫ 0

−∞
�ν(dz)

(
Iσ

A(γ )

)
(e−U(γ )z − I + U(γ )z1{z>−1})

+
∫ ∞

0
Q ◦ F̃ (dz)

(
Iσ

A(γ )

)
eU(γ )z (6)

with �µ := diag(µ1, . . . , µm), where m = |E| is the number of phases and, analogously, for
�σ 2/2 and �ν , the entries of the latter being the Lévy measures.

Remark 2. For the case without negative subordinators, i.e. E = Eσ or E− = ∅, there is no
matrix A(γ ) and we find the following interpretation for the matrix −U(γ ). Looking at (1),
we see that the function K takes the role of the cumulant function ψ for a Lévy process. The
matrix −U(γ ) generalises the inverse functionψ−1, which is denoted by φ in the present paper.
This interpretation is supported by the following observation. For i ∈ Eσ , the ith row in (2) is

e′
iK(α) = e′

iψi(α)+ (qij F̂ij (−α))j∈E = e′
iψi(α)+

∑
j∈E

qije
′
j F̂ij (−α),

where F̂ij (s) = ∫ ∞
0 esx dF̃ij (x). Substituting −U(γ ) for α yields

e′
iK(−U(γ )) = e′

iψi(−U(γ ))+
∑
j∈E

qije
′
j F̂ij (U(γ )) = γ e′

i for all i ∈ E,

where the last equality is due to (5). In this sense, −U is the inverse function of the cumulant
matrix K .

Example 1. For γ = 0 and σi > 0 for all i ∈ E (i.e.E− = ∅ and there is no matrix A(γ )), (5)
has been derived before. The case without jumps (i.e. F̃ij = δ0 for all i, j ∈ E) has been
examined in [1]. Here we obtain

ψi(−U(0)) = −µiU(0)+ σ 2
i

2
U(0)2 and

∫ ∞

0
Q ◦ F̃ (dz)eU(0)z = Q.
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This reduces (5) to Equation (4.1) of [1], where the notation is ri = µi ,� = Q, andU = U(0).
Adding possible downward jumps upon phase changes leads to Equation (5.4) of [18], which
is given in a more adapted way as Equation (6) of [17]. Another special case appears in [20,
Proposition 2(i)]. Here we have γ = 0, µi = σ(i)c + v(i), σ 2

i = σ(i)2s2, and νi = σ(i)ν.
Furthermore, there are no jumps upon epochs of phase changes.

4. Computation of the matrices U(γ ) and A(γ )

Although (6) looks like a nice equation to determine A(γ ) and U(γ ), there is no obvious
numerical approach to solve it. The next theorems provide an iteration which seems numerically
stable.

For all phases i ∈ Eσ , let φi(0) be the largest solution of the equation ψi(α) = 0, α ≥ 0;
cf. [8, Section VII] or Section 2.1. Denote the inverse functions of ψi : [φi(0),∞) → [0,∞)

by φi . Define, for a square matrix U , the functions

F̂ik(U) =
∫ ∞

0
eUy dF̃ik(y), (7)

where F̃ik(0) = 1 − λ−
ik and F̃ik(dy) = λ−

ikFik(−dy) for all i, k ∈ E, and

Li(−U) = qi

φi(qi)
· (φi(qi + γ )I + U) · ((qi + γ )I − ψi(−U))−1 for all i ∈ Eσ . (8)

Theorem 1. The matrices A(γ ) and U(γ ) satisfy the following fixed point equations:

e′
iU(γ ) = −φi(qi + γ )e′

i + φi(qi)
∑
k∈E

pike
′
k

(
Iσ

A(γ )

)
F̂ik(U(γ ))Li(−U(γ )) (9)

for all i ∈ Eσ and

e′
iA(γ ) =

∑
k �=i

qike
′
k

(
Iσ

A(γ )

)
F̂ik(U(γ ))((qi + γ )Iσ − ψi(−U(γ )))−1 for i ∈ E−. (10)

Proof. The proof is a straightforward generalisation of the proofs of Theorems 3.1 and 4.1
of [1]. First we explain (9). Let J0 = i for some i ∈ Eσ . Let Mi denote the maximum and
let Gi denote the time to the maximum before the first phase change. The first equation in
Lemma 3 shows that

E(exp(−γGi);Mi ∈ dx) = φi(qi) exp(−φi(qi + γ ) · x) dx.

Furthermore, we consider the measure

dFYi (y) := E(exp(−γ (τi −Gi));Mi −Xτi− ∈ dy),

where τi is the time until the first phase change. Once the maximum Mi is reached, the
discounted height process e−γ tXt descends by y units according to the distribution function
FYi , whereafter J jumps to another phase k with probability pik . This may be accompanied
by another downward jump (z units) having distribution function F̃ik . From there, the ascend
goes beyond Mi again with time-discounted probability

e′
k

(
Iσ

A(γ )

)
eU(γ )(y+z).
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Altogether this leads to the equations

Uij (γ ) = −φi(qi + γ )δij

+ φi(qi)

∫ ∞

0
dFYi (y)

∑
k∈E

pik

∫ ∞

0
dF̃ik(z)e

′
k

(
Iσ

A(γ )

)
eU(γ )(y+z)ej

= −φi(qi + γ )δij

+ φi(qi)
∑
k∈E

pike
′
k

(
Iσ

A(γ )

) ∫ ∞

0
eU(γ )z dF̃ik(z)

∫ ∞

0
eU(γ )y dFYi (y)ej

for i, j ∈ Eσ . Since U(γ ) has only eigenvalues with negative real part, the second equation in
Lemma 3 can be applied to the argument −U(γ ) instead of the scalar β > 0. This yields

Uij (γ ) = −φi(qi + γ )δij + φi(qi)
∑
k∈E

pike
′
k

(
Iσ

A(γ )

)
F̂ik(U(γ ))Li(−U(γ ))ej

for all i, j ∈ Eσ . The statement is just the row vector version of the above equalities.
Now the explanation of (10). Denote the distribution function of −Xt− by F̃Xt . Starting in

a descending phase i ∈ E−, we obtain, for i ∈ E− and j ∈ Eσ ,

Aij (γ ) = E(e−γ τ(0), Jτ(0) = j | X0 = 0, J0 = i)

=
∫ ∞

0
qi exp(−qit)e−γ t ∑

k �=i
pike

′
k

(
Iσ

A(γ )

)

×
∫ ∞

0

∫ ∞

0
eU(γ )(z+x) dF̃ik(z) dF̃Xt (x)ej dt, (11)

which follows from (4) by conditioning on the time t of the first phase change. Since, before
time t , we are exclusively in phase i, we may apply the Lévy–Khintchine formula for X(i),
which yields∫ ∞

0
eU(γ )x dF̃Xt (x) = E(exp(U(γ )(−Xt))) = E(exp(−U(γ )Xt )) = exp(ψi(−U(γ ))t)

(12)
for any t > 0. Hence, in (11) we obtain

Aij (γ ) =
∑
k �=i

qike
′
k

(
Iσ

A(γ )

)
F̂ik(U(γ ))

∫ ∞

0
exp(−(qi + γ )t) exp(ψi(−U(γ ))t) dtej .

It remains to show that the integral occuring herein converges. From (12) we see that the matrix
exp(ψi(−U(γ ))t) is substochastic since (−Xt) is nonnegative and U(γ ) is a subgenerator.
Thus, for all t ≥ 0, its entries are nonnegative and bounded by 1. Since qi + γ > 0, this
ascertains convergence of the integral and, hence, the statement.

Remark 3. To illustrate the relation between Theorem 1 and (5), we show that the two state-
ments are equivalent, given that the matrices φi(qi +γ )I +U(γ ) and (qi +γ )I −ψi(−U(γ ))

are invertible for all i ∈ Eσ . This yields an alternative proof of Theorem 1. It has been shown at
the end of the above proof that the matrices (qi + γ )I −ψi(−U(γ )) are invertible for i ∈ E−.
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Starting from Theorem 1, we obtain, for i ∈ Eσ ,

e′
iU(γ )((qi + γ )I − ψi(−U(γ )))

= −φi(qi + γ )e′
i ((qi + γ )I − ψi(−U(γ )))

+ qi
∑
k∈E

pike
′
k

(
Iσ

A(γ )

)
F̂ik(U(γ ))(φi(qi + γ )I + U(γ )),

after multiplying (9) by (qi + γ )I − ψi(−U(γ )) from the right and recalling definition (8).
This is equivalent to

γ e′
i (φi(qi + γ )I + U(γ )) = e′

iψi(−U(γ ))(φi(qi + γ )I + U(γ ))

− qie
′
i (φi(qi + γ )I + U(γ ))

+
∑
k �=i

qike
′
k

(
Iσ

A(γ )

)
F̂ik(U(γ ))(φi(qi + γ )I + U(γ )),

since U(γ ) and ψi(−U(γ )) are commutative and pii = 0. Using −qi = qii and multiplying
by the inverse of φi(qi + γ )I + U(γ ) from the right, we obtain

γ e′
i = e′

iψi(−U(γ ))+ e′
i

∫ ∞

0
Q ◦ F̃ (dz)

(
Iσ

A(γ )

)
eU(γ )z,

which is (5) for i ∈ Eσ . For the last term, recall definition (7) and note that the (i, j)th entry
of Q ◦ F̃ is the measure qijFij .

For i ∈ E−, we obtain from (10), after multiplying by (qi + γ )I − ψi(−U(γ )) from the
right,

e′
iA(γ )((qi + γ )I − ψi(−U(γ ))) =

∑
k �=i

qike
′
k

(
Iσ

A(γ )

)
F̂ik(U(γ )),

which is equivalent to

γ e′
iA(γ ) = e′

iA(γ )ψi(−U(γ ))+ qiie
′
iA(γ )+

∑
k �=i

qike
′
k

(
Iσ

A(γ )

)
F̂ik(U(γ )),

again using qii = −qi . Now (7) and the definition of the Hadamard product Q ◦ F̃ yield

γ e′
iA(γ ) = e′

iA(γ )ψi(−U(γ ))+ e′
i

∫ ∞

0
Q ◦ F̃ (dz)

(
Iσ

A(γ )

)
eU(γ )z,

which is (5) for i ∈ E−.

Example 2. Taking up the case treated in [1, Theorem 4.1], where γ = 0 and there are no
jumps (see Example 1), and writing U = U(0) and ri = µi , (8) reduces to

Li(−U) = qi

φi(qi)
· (φi(qi)I + U) · (qiI − ψi(−U))−1, (13)

while F̂ik(U) = I , since there are no jumps. The cumulant function is

ψi(−U) = σ 2
i

2
U2 − riU .
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In order to ease the comparison further, we shall use the same notation as in [1, Theorem 4.1],
i.e. we set λi = qi , and define

ωi := − ri

σ 2
i

+
√
r2
i

σ 4
i

+ 2λi
σ 2
i

, ηi := ri

σ 2
i

+
√
r2
i

σ 4
i

+ 2λi
σ 2
i

.

Note that ωi = φi(qi). The relations ωiηi = 2λi/σ 2
i and ηi − ωi = 2ri/σ 2

i lead to the
factorisation

λiI − ψi(−U) = −σ
2
i

2
U2 + riU + λiI

= σ 2
i

2
(−U2 + (ηi − ωi)U + ωiηiI )

= σ 2
i

2
(−U + ηiI )(U + ωiI ),

such that, if U + ωiI is invertible, (13) becomes

Li(−U) = λi

ωi

2

σ 2
i

(ηiI − U)−1 = ηi(ηiI − U)−1.

Now (9) reads

e′
iU = ωi

∑
k∈E

pike
′
kηi(ηiI − U)−1 − ωie

′
i = 2λi

σ 2
i

∑
k∈E

pike
′
k(ηiI − U)−1 − ωie

′
i .

Since λipik = qik for k �= i, pii = 0, and λi = −qii , we can write

e′
iU = e′

i ((�2/σ 2Q + �2λ/σ 2)(ηiI − U)−1 − �ω),

where �2/σ 2 := diag(2/σ 2
1 , . . . , 2/σ 2

m), and �2λ/σ 2 and �ω are defined analogously. Noting
that Q is denoted by � in [1], we see that this is the same form as in [1, Theorem 4.1].

Remark 4. By assumption, the phase process J is irreducible. This implies that no entry of
any row e′

iU(γ ) equals 0, except in one case: if E = Eσ and there are neither jumps nor a
diffusion component (i.e. σi = 0, νi = 0, and Fij = δ0 for all j ∈ E), then FYi = δ0 and
Li(−U(γ )) = Iσ . Hence,

∑
k∈E

pike
′
k

∫ ∞

0
eU(γ )z dF̃ik(z)

∫ ∞

0
eU(γ )y dFYi (y)ej =

∑
k∈E

pike
′
kIej =

∑
k∈E

pikδkj = pij .

Thus, for such rows, we obtain Uij (γ ) = φi(qi)pij for i �= j and Uii(γ ) = −φi(qi + γ ).
Furthermore, the form of φi is particularly simple for such phases, namely, φi(s) = s/µi for
all s ≥ 0. This means that the values for the ith row of U(γ ) are given immediately by

Uii(γ ) = qi + γ

µi
and Uij (γ ) = qij

µi
for all j ∈ E.

Example 3. In the case of pure drifts in every phase (i.e. σi = 0 and νi = 0 for all i ∈ E) and
no jumps upon phase changes (i.e. Fik = δ0 for all i, k ∈ E), we obtain the fluid flow model
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without Brownian motion. In particular, for γ = 0, Theorem 3.1 of [1] can be retrieved as
follows. The fact that there are no jumps upon phase changes implies that F̂ik(U(γ )) = Iσ for
all i, k ∈ E. From Remark 4 we know that ψi(x) = µix and φi(y) = y/µi for all x, y ≥ 0.
Thus,

Li(−U(0)) = µi ·
(
qi

µi
Iσ + U(0)

)
· (qiIσ + µiU(0))

−1 = Iσ .

Using this in (9) and noting that pii = 0 and qi = −qii , we obtain

e′
iU(0) = − qi

µi
e′
i + qi

µi

∑
k∈E

pike
′
k

(
Iσ

A(0)

)
for all i ∈ Eσ .

Since −qi = qii and pii = 0, this can be written in a matrix form as

U(0) = �1/µQ(σ,σ ) + �1/µQ(σ,−)A(0), (14)

where �1/µ denotes the diagonal matrix with entries 1/µi, i ∈ Eσ , and Q(σ,σ ) and Q(σ,−)
are the obvious blocks of the matrix Q. This is the same as Equation (3.1) of [1], where the
notation is ri = µi , � = Q, α(−+) = A(0), and U = U(0). Equation (10) reduces to

e′
iA(0) =

∑
k �=i

qike
′
k

(
Iσ

A(0)

)
(qiIσ + µiU(0))

−1 for all i ∈ E−.

Since all µi are negative, we can write this in closed form as

A(0) = �1/|µ|(Q(−,σ ) + Q(−,−)A(0)+ �qA(0))(�q/|µ| − U(0))−1,

where again for a vector v the matrix �v shall be diagonal with the same entries as v. Using (14),
we see that this is the same fixed point equation for A(0) as in [1, Theorem 3.1] for the
matrix α(−+).

Theorem 2. The matrices A(γ ) and U(γ ) can be computed as the limit of the sequence
(An,Un : n ≥ 0), which is defined by the initial values U0 := −diag(φi(qi + γ ))i∈Eσ and
A0 := 0, and the iteration

e′
iUn+1 := −φi(qi + γ )e′

i + φi(qi)
∑
k∈E

pike
′
k

(
Iσ
An

)
F̂ik(Un)Li(−Un)

for all i ∈ Eσ and

e′
iAn+1 :=

∑
k �=i

qike
′
k

(
Iσ
An

)
F̂ik(Un)((qi + γ )Iσ − ψi(−Un))

−1

for i ∈ E− and n ∈ N0.

Proof. Consider the number of phase changes in the sample paths until τ(x) < ∞. The
starting values A0 and U0 are correct if we consider only sample paths with no phase changes.
The iteration formulae each add at least one more possible phase change to the set of considered
sample paths. It follows, by induction on n, that the matrices An and Un comprise at least all
sample paths with up to n phase changes. Hence, limn→∞(Un,An) yields the correct result
for U(γ ) and A(γ ), since there are only finitely many phase changes in almost all sample paths
during the finite time interval [0, τ (x)].
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Remark 5. For a phase i ∈ Eσ with σi = 0, µi = 1, νi = 0, and Fij = δ0 for all j ∈ E, the
singular case (qi + γ )I − ψi(−U0) = 0 arises. Remark 4 shows how to deal with this. We
can compute the values for e′

iU(γ ) beforehand and put them as initial values into U0, knowing
that no iteration will change them.

5. Positive jumps of phase type

Now assume that the Lévy measures νi have a positive part (i.e. with support on (0,∞)),
which is a compound Poisson process of jump intensity λ+

i and jump sizes of phase-type
distribution with parameters (α(ii),T (ii)) for i ∈ E. Without loss of generality, we assume that
the distributions PH(α(ii),T (ii)) have no atom (which would be on zero anyway). Note that in
this setting the processes X(i) for i ∈ E− are not necessarily negative subordinators anymore,
but in general superpositions of a negative subordinator and a compound Poisson process with
(positive) phase-type jumps.

Furthermore, we assume that a phase change from i to j may trigger a positive jump of
distribution PH(α(ij),T (ij)) with probability λ+

ij . Note that in connection with the spectrally
negative part of the model described before this section the restriction λ+

ij + λ−
ij ≤ 1 applies.

Again, we may assume, without loss of generality, that the distributions PH(α(ij),T (ij)) have
no atom, which means that a phase change from i to j without an accompanying jump occurs
with probability 1 − λ+

ij − λ−
ij ≤ 1. Denote the respective exit vectors by η(ij) := −T (ij)1,

where 1 denotes the column vector (of appropriate dimension) with all entries being 1.
Our aim is again an expression for the (matrix-valued) Laplace transform E(e−γ τ(x)) of the

first passage time τ(x) := min{t ≥ 0 : Xt ≥ x} for x > 0. The main idea is to spread out
the phase-type positive jumps as a succession of linear pieces (each with positive slope 1) of
exponential duration; cf. [2] or [7]. Then the new process is again a MAP without positive
jumps, to which we can apply the methods derived before. To account for the jump nature of
the new phase-type upward movements, we simply do not discount the time, i.e. we treat these
phases with γ = 0. This is the same method as applied in [7] for a fluid flow model. Thus, we
again obtain a phase-type form

E(e−γ τ(x) | X0 = 0) =
(

Iσ
A(γ )

)
eU(γ )x for x ≥ 0,

and we need to determine the matrices A(γ ) and U(γ ).
Denote the order of the distribution PH(α(ij),T (ij)), which is the dimension of the vector

α(ij), by mij . We add the set

E+ := {(i, j, k) : i, j ∈ E, 1 ≤ k ≤ mij }

of new phases to the old phase space E = Eσ ∪ E−, and denote the new phase space by
E′ := E+ ∪E, where it is understood that E ∩E+ = ∅. By Remark 4, the entries of U(γ ) for
a jump phase p ∈ E+ can be computed immediately, i.e. without the iteration in Theorem 2.

Define q̃i := qi +λ+
i and p̃ii := λ+

i /q̃i , and set λ+
ii := 1 for all i ∈ Eσ ∪E−. Furthermore,

define p̃ij := qij /q̃i for all i �= j ∈ Eσ ∪ E−. Let

F̂ij (U(γ )) :=
∫ ∞

0
eU(γ )y dF̃ij (y)
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with F̃ij (0) = 1 − λ−
ij − λ+

ij and F̃ij (dy) = λ−
ijFij (−dy), and

Li(−U(γ )) := q̃i

φi(q̃i)
· (φi(q̃i + γ )I + U(γ )) · ((q̃i + γ )I − ψi(−U(γ )))−1

for all i, j ∈ Eσ ∪ E−. Now we can state the following extension of Theorem 1.

Theorem 3. Let (X,J) be a MAP with phase-type positive jumps. Then the matrices U(γ )

and A(γ ) satisfy the equations

e′
pU(γ ) =

mij∑
l=1

T
(ij)
kl e′

(i,j,l) + η
(ij)
k e′

j

(
Iσ

A(γ )

)
(15)

for p = (i, j, k) ∈ E+,

e′
iU(γ ) = −φi(q̃i + γ )e′

i + φi(q̃i)
∑

j∈Eσ∪E−
p̃ije

′
j

(
Iσ

A(γ )

)
F̂ij (U(γ ))Li(−U(γ ))

+ φi(q̃i)
∑

j∈Eσ∪E−
p̃ij λ

+
ij

mij∑
k=1

α
(ij)
k e′

(i,j,k)Li(−U(γ )) (16)

for all i ∈ Eσ , and

e′
iA(γ ) =

∑
j∈Eσ∪E−, j �=i

qije
′
j

(
Iσ

A(γ )

)
F̂ij (U(γ ))((q̃i + γ )Iσ − ψi(−U(γ )))−1

+
∑

j∈Eσ∪E−, j �=i
qij λ

+
ij

mij∑
k=1

α
(ij)
k e′

(i,j,k)((q̃i + γ )Iσ − ψi(−U(γ )))−1

+ λ+
i

mii∑
k=1

α
(ii)
k e′

(i,i,k)((q̃i + γ )Iσ − ψi(−U(γ )))−1 (17)

for i ∈ E−.

Proof. First note that the positive (phase-type) part of any Lévy measure νi is replaced by
linear movements in the phases (i, i, 1), . . . , (i, i, mii). The rate to enter these phases is λ+

i .
Hence, we replace qi in Theorem 1 by q̃i = qi+λ+

i . As a consequence, we change the transition
probabilities pij to p̃ij = pij qi/q̃i for all i �= j ∈ Eσ ∪ E−.

The rows given in (15) follow from Remark 4, noting that, during movements in phases
p ∈ E+, we set γ = 0.

The first two terms in (16) have exactly the same explanation as in the proof of Theorem 1.
The last term in (16) subsumes all possibilities of a positive jump occurring from phase i ∈ Eσ .
For i = j in the sum, this is part of the Lévy measure νi . Then the phase (i, i, k) is entered
with transition probability

λ+
i

qi + λ+
i

α
(ii)
k = p̃iiλ

+
ii α

(ii)
k for k = 1, . . . , mii,
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as λ+
ii = 1 by definition. For i �= j in the sum, a positive jump happens as part of the phase

change from i to another phase j �= i with probability λ+
ij . Then the phase (i, j, k) is entered

with transition probability

qi

qi + λ+
i

pij λ
+
ij α

(ij)
k = p̃ij λ

+
ij α

(ij)
k for k = 1, . . . , mij .

The consecutive matrix L(−U(γ )) plays the same role as in the first terms in (16) and is
explained in the proof of Theorem 1.

Adapting the proof of Theorem 1 to the new rates q̃i and transition probabilities p̃ij explains
the first term in (17). The last term in (17) mirrors the event that a jump happens due to
the positive part of the Lévy measure νi in a descending phase i ∈ E−. The phase (i, i, k)
is entered with transition probability p̃iiα

(ii)
k . This multiplied with the new rate q̃i yields

λ+
i α

(ii)
k . The second term in (17) subsumes positive jumps upon a phase change from i to

another phase j �= i. As above, the phase (i, j, k) is entered with transition probability
p̃ij λ

+
ij α

(ij)
k , which upon multiplication with q̃i yields qijλ

+
ij α

(ij)
k . The common remaining

factor ((q̃i + γ )Iσ − ψi(−U(γ )))−1 has the same explanation as in the proof of Theorem 1.

Example 4. The case of a Lévy process with positive jumps of phase type has been examined
in [19]. If this Lévy process without the positive jumps is not a negative subordinator then
E− = ∅ and Eσ = {1}. There can be no phase changes within E− ∪ Eσ , such that the
terms involving Fij do not apply. The frequency of the positive jumps is denoted by λ > 0
in [19], such that q̃1 = λ. The number φ1(q̃1 + γ ) is denoted by p in [19]. The phase-
type distribution of the positive jumps has parameters (π ,T ) with dimension d, such that
E+ = {(1, 1, 1), . . . , (1, 1, d)} and α(1,1)k = πk for k ≤ m11 = d. Applying (15), we see that

U(γ ) =
(

T η

u1 · · · ud ud+1

)
,

where η = −T 1 and the phases in E+ are listed in the rows before phase 1. Thus, it remains
to determine the numbers u1, . . . , ud+1. Since p̃11 = λ+

1 /q̃1 = λ/λ = 1 and λ+
11 = 1 by

definition, (16) yields, for j = 1, . . . , d,

uj = φ1(q̃1)π̃L1(−U(γ ))ej

= π̃ q̃1 · (φ1(q̃1 + γ )I + U(γ )) · ((q̃1 + γ )I − ψ1(−U(γ )))−1ej

= π̃λ · (pI + U(γ )) · ((λ+ γ )I − ψ1(−U(γ )))−1ej

= pπ̃
λ

λ+ γ
(λ+ γ ) · ((λ+ γ )I − ψ1(−U(γ )))−1 · (pI + U(γ ))p−1ej ,

where π̃ = (π1, . . . , πd, 0). In [19] the notation µj := λπj/(λ + γ ), µ := (µ1, . . . , µd, 0),
and

Â(U) := (λ+ γ )((λ+ γ )I − ψ1(−U))−1 · (pI + U)p−1

were used for every j = 1, . . . , d and a matrix argument U = S + sµ+, where

S :=
(

T η

0 −p
)
, s :=

⎛
⎜⎜⎜⎝

0
...

0
p

⎞
⎟⎟⎟⎠ , and µ+ := µÂ(S + sµ+);
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see (7) and (8) of [19]. Hence, we obtain, for j = 1, . . . , d,

uj = pµÂ(S + sµ+)ej and ud+1 = pµÂ(S + sµ+)ed+1 − p,

which coincides with [19, Theorem 1, case (A)]. In particular, U(γ ) = S + sµ+.
Case (B) of [19] dealt with a Lévy process which without the positive jumps would be a

negative subordinator. Here Eσ = ∅, E− = {1}, and E+ = {(1, 1, 1), . . . , (1, 1, d)}. This
means that we need to determine a d × d matrix U(γ ) and a d-dimensional row vector A(γ ).
Again there can be no phase changes within E− ∪Eσ such that the terms involving Fij do not
apply. Equation (15) yields

U(γ ) = T + ηA(γ ),

where (π ,T ) denote the parameters of the phase-type distribution governing the jump sizes
and η = −T 1. Thus, it remains to determine the row vector A(γ ). Equation (17) yields

A(γ ) = λπ((λ+ γ )I − ψ1(−U(γ )))−1

= λ

λ+ γ
π · (λ+ γ )((λ+ γ )I − ψ1(−U(γ )))−1,

where the last line shows that A(γ ) equals π+ in [19]. This coincides with [19, Theorem 1,
case (B)].

Example 5. We shall derive the Laplace transform of the ruin time for the classical compound
Poisson risk model. In this there is an initial risk reserve u ≥ 0, the claim sizes and interclaim
times are independent and have exponential distributions with parameters β > 0 and λ > 0,
respectively. The rate of premium income is denoted by c > 0. This model has been analysed
in [15]. The net profit condition is c/λ > 1/β, which is equivalent to λ/cβ < 1.

In terms of the methods available from the present paper we consider a MAP (X,J), which
is defined as follows. Let the phase space be given by E− = {1}, E+ = {(1, 1, 1)}, and
Eσ = ∅. The parameters are given by σ1 = 0, µ1 = −c, ν1 = 0, and

Q =
(−λ λ

β −β
)
.

Then the ruin time for the compound Poisson model coincides with the first passage time τ(u)
given that we start with X0 = 0.

According to the definitions in Section 5, we set T (1,1) = −β and α(1,1) = 1. We then
obtain from Theorem 3 that A(γ ) and U(γ ) are scalars and

U(γ ) = −β + βA(γ ) and A(γ ) = λ · (λ+ γ − cU(γ ))−1.

This yields, for A(γ ), the two solutions

A(γ ) = λ+ γ + cβ

2cβ
±

√
1

4

(
λ+ γ

cβ
+ 1

)2

− λ

cβ
,

from which we take the smaller one in accordance with Theorem 2. After some elementary
algebra, we obtain

A(γ ) = 1

2cβ

(
λ+ γ + cβ −

√
(λ+ γ + cβ)2 − 4λcβ

)

= 1

2cβ

(
λ+ γ + cβ −

√
(cβ − (λ+ γ ))2 + 4γ cβ

)

https://doi.org/10.1239/jap/1222441829 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1222441829


794 L. BREUER

and

U(γ ) = 1

2c

(
λ+ γ − cβ −

√
(cβ − (λ+ γ ))2 + 4γ cβ

)
.

Thus, U(γ ) coincides with −R in [15, Equation (4.24)], noting that our γ is denoted by δ
there. This in turn yields A(γ ) = (β − R)/β and (4), namely E(e−γ τ(u)) = A(γ )eU(γ )u,
translates into

E(e−γ τ(u)) = β − R

β
e−Ru,

which is Equation (5.38) of [15].

6. Overall supremum and the stationary distribution of the reflected process

The first passage times are closely related to other important characteristics such as suprema
and the stationary distribution of the reflected process. This shall be described shortly in the
present section. As a preparation, the following observation is useful. By definition,

E(e−γ τ(x) | X0 = 0) =
∫ ∞

0
e−γ t P(τ (x) ∈ dt | X0 = 0)

=
∫ ∞

0
γ e−γ t P(τ (x) ≤ t | X0 = 0) dt for all x ≥ 0,

where the last equality is due to integration by parts. For the supremum process, St :=
sup{Xs : s ≤ t}, the relation

P(τ (x) ≤ t | X0 = 0) = P(St ≥ x | X0 = 0)

holds for x > 0. This implies that E(e−γ τ(x) | X0 = 0) = P(SE(γ ) ≥ x | X0 = 0) for all
x > 0, where E(γ ) is an independent random variable with exponential distribution of rate γ .
Hence, we obtain

P(SE(γ ) ≥ x | X0 = 0) =
(

Iσ
A(γ )

)
eU(γ )x for all x > 0. (18)

Thus, the supremum before an exponential killing time E(γ ) has a phase-type distribution with
rate matrix U(γ ). This generalises Lemma 2.

Let π denote the stationary distribution of the phase process J, i.e. πQ = 0, where 0 is the
row vector with all entries being 0. Furthermore, define the drift of the Lévy process in phase i
by mi := E(Xi1) and write m = (mi)i∈E as a column vector. If the mean drift πm is negative
then the overall supremum S∞ := sup{Xt : t ≥ 0} is finite almost surely. In the limit γ → 0
we obtain the following theorem.

Theorem 4. If the mean drift πm is negative then the overall supremum S∞ has a phase-type
distribution with parameters (

β

(
Iσ

A(γ )

)
,U(0)

)
,

where β is the distribution of J0.

Now define the reflected process Xrt := Xt − inf{Xs : s ≤ t}. If πm < 0 then the process
(Xr ,J) has a stationary distribution. Denote its steady-state variables by (Xr, J ). Denote
a time-reversed version of (X,J) by (X̃, J̃), where the generator matrix for J̃ is given by
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Q̃ := �1/πQ�π and X̃ has the same parameters as X but depends on J̃. Finally, write
S̃∞ := sup{X̃t : t ≥ 0}. Then Proposition 2.1 of [1] yields

P(Xr > x, J = i) = πi P(S̃∞ > x | J̃0 = i, X̃0 = 0) = πie
′
i

(
Iσ

Ã(0)

)
eŨ(0)x1,

where Ũ(0) and Ã(0) pertain to (X̃, J̃) and 1 denotes the column vector with all entries being 1.

7. Diagonalisation and the Asmussen–Kella martingale in the absence of negative
subordinators

One possibility to determine the Laplace transform of the first passage times τ(x) is the
use of appropriate (vector-valued) martingales, as proposed in [4]. Choose Yt := −γ t/α in
Theorem 2.1 of [4]. Then Equation (2.9) therein states that

M(α, t) =
∫ t

0
exp(αZs)1Js ds · (F (α)− γ I )+ exp(αZ0)1J0 − exp(αZt )1Jt

is a row vector-valued zero-mean martingale, where Zt := Xt + Yt for a MAP (Xt , Jt : t ≥ 0)
and the notation is F (α) = K(α) = diag(ψi(α))+ Q ◦ F̂ (−α) (cf. definition (2)). If we can
find complex numbers α1, . . . , αm and corresponding linearly independent vectors h1, . . . ,hm

such that
(F (αj )− γ I )hj = 0 for all j = 1, . . . , m,

then the Laplace transform of τ(x) can be determined by optional stopping and solving a
resulting system of linear equations. This approach has been applied to option pricing in [5]
and to insurance risk in [6].

In this section we shall explore the relation between that approach and a diagonalisation of
U(γ ) for the special case that none of the phases governs a negative subordinator, i.e. E− = ∅

or E = Eσ . Denote the moment generating function of F̃ij by F̂ij (s) = ∫ ∞
0 esx dF̃ij (x) and,

furthermore, define the matrix F̂ (s) = (F̂ij (s))i,j∈E for all complex numbers s ∈ C for which
the entries F̂ij (s) are defined.

Theorem 5. If there are complex numbers s1, . . . , sm with Re(sj ) > 0 for all j ∈ E and
respective linearly independent vectors h1, . . . ,hm such that

e′
i (ψi(sj ) · I + Q ◦ F̂ (−sj )− γ I )hj = 0 for all i, j ∈ E, (19)

then the matrix U(γ ) has a diagonalisation of the form U(γ ) = −H�sH
−1, where H =

(h1, . . . ,hm) and �s = diag(s1, . . . , sm).

Proof. It suffices to show that U(γ ) = −H�sH
−1 solves (5). Since the vectors h1, . . . ,hm

build a base for R
m, this is equivalent to

e′
iψi(H�sH

−1)hj +
∑
k∈E

qike
′
k

∫ ∞

0
exp(−H�sH

−1y) dF̃ik(y)h
j = γ hij for all i, j ∈ E,

where hij is the (i, j)th entry of H .
The form of theψi shows thatψi(H�sH

−1) = Hψi(�s)H
−1. Denoting the ith row vector

of H by hi , this yields, for the first term,

e′
iψi(H�sH

−1)hj = hiψi(�s)ej = hiψi(sj )ej = hijψi(sj ).
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For the second term, we obtain∑
k∈E

qike
′
k

∫ ∞

0
exp(−H�sH

−1y) dF̃ik(y)h
j =

∑
k∈E

qikhk

∫ ∞

0
exp(−�sy) dF̃ik(y)e

j

=
∑
k∈E

qikhkj

∫ ∞

0
exp(−sj y) dF̃ik(y)

= e′
i (Q ◦ F̂ (−sj ))hj

= γ hij − e′
iψi(sj )h

j ,

where the last equality is due to the assumption stated in (19). Since e′
iψi(sj )h

j = hijψi(sj ),
the proof is complete.

Theorem 6. If the matrix U(γ ) has a diagonalisation of the form U(γ ) = −H�sH
−1, with

H = (h1, . . . ,hm) and �s = diag(s1, . . . , sm), then Re(sj ) > 0 and

e′
i (ψi(sj ) · I + Q ◦ F̂ (−sj )− γ I )hj = 0 for all i, j ∈ E.

Proof. This follows by the same arguments as in the proof of Theorem 5, together with the
observation that all the eigenvalues of U(γ ) must have negative real part.

Remark 6. Kyprianou and Palmowski [17] used the Asmussen–Kella martingale as a base for
their analysis (see Theorem 4 therein). However, it seems difficult to arrive from there to an
explicit algorithm for computing U(γ ). This is reflected in their observation that ‘establishing
an expression for �(q) for spectrally negative MAPs is an open problem’, where �(q) is the
crucial expression for determining E(e−γ τ(x)) in Theorem 1 of [17]. A solution to this problem
is proposed by Theorem 2 in the present paper.

8. Numerical examples

Example 6. The topic of the first example is the equivalence of the martingale approach and
the diagonalisation of U(γ ). We will first compute U(γ ) via the Asmussen–Kella martingale
and then via the iteration in Theorem 2. Set E = {1, 2}, q1 = 9, q2 = 21, σi = 2 for i = 1, 2,
µ1 = 0, µ2 = −8, νi = 0, and Fij = δ0 for i, j ∈ E. Furthermore, set γ = 2.

For the martingale approach, we need to find s ∈ C with positive real part such that

det

(
2s2 − 11 9

21 2s2 − 8s − 23

)
= 0.

The two values s1 = 1.5530 and s2 = 6.1205 satisfy these conditions. Two respective
eigenvectors in (19) are h1 = (0.824 52, 0.565 84)� and h2 = (−0.139 42, 0.990 23)�. With
H = (h1,h2), this yields

U(2) = −H�sH
−1 =

(−1.955 45 0.586 44
2.858 33 −5.718 05

)
.

A direct computation of U(2) via the iteration in Theorem 2 yields

U(2) =
(−1.955 45 0.586 43

2.858 32 −5.718 03

)
,

which may be regarded as the same result.
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Example 7. Let σ 2
i = 0 and µi = 1 for all i ∈ E. The Lévy measures shall have the simple

form νi(−dx) = λiηi exp(−ηix) dx, with some given parameters λi, ηi > 0. If the parameters
are chosen such that the process has a negative mean drift then the overall supremumM∞ will
be finite almost surely and P(M∞ > x) = exp(U(0)x); cf. Theorem 4. Since the time aspect
here is neglected (γ = 0), we can compute U = U(0) by a fluid flow model as well. This
yields a numerical test.

First we specify the necessary ingredients for Theorem 2:

ψi(−U) = −U + λi

(∫ ∞

0
eUxηi exp(−ηix) dx − I

)
= −U + λi(ηi(ηiI − U)−1 − I ),

φi(qi) = λi − ηi + qi

2
+

√(
λi − ηi + qi

2

)2

+ ηiqi,

Li(−U) = qi

φi(qi)
· (φi(qi)I + U) · (qiI − ψi(−U))−1.

Let there be m = 2 phases, and let q1 = 1 and q2 = 2. Furthermore, set η1 = 3, λ1 = 4,
η2 = 4, and λ2 = 6. Then Theorem 2 yields

U =
(−2.5801 1.4238

3.5470 −5.1301

)

after 15 iterations. However, the initial value U0 had to be slightly perturbed to a new value,
U0 = −�φ(q) + [0, 0.1; 0.1, 0], in order to avoid a singular matrix in the first iteration
(cf. Remark 5).

This result can be compared with the following fluid flow model (see [1]). Set E+ = {1, 2},
E− = {3, 4}, r1 = r2 = 1, r3 = r4 = −1, and

� =

⎛
⎜⎜⎝

−5 1 4 0
2 −8 0 6
3 0 −3 0
0 4 0 −4

⎞
⎟⎟⎠ .

After 30 iterations, according to Theorem 3.1 of [1], the obtained values for α(−+) and U =
T (++) + T (+−)α(−+) are

α(−+) =
(

0.604 96 0.105 94
0.257 83 0.478 32

)
and U =

(−2.5802 1.4238
3.5470 −5.1301

)
,

which can be regarded as the same result.

Example 8. Again, set γ = 0 and U = U(0). In the previous example the simple form of the
Lévy measure led to a closed-form expression of the matricesψi(−U), which greatly simplified
numerical evaluations. In the case of phase-type jumps (say with parameters αi , T i , and exit
vector ηi = −T i1) such a closed form is not obvious, and we need to evaluate the integrals∫ ∞

0
eUxαi exp(T ix)ηi dx

numerically. Furthermore, the inverse functions φi need to be evaluated numerically.
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This example serves to demonstrate that this is possible from the view point of numerical
stability. Again, we let σ 2

i = 0 and µi = 1 for all i ∈ E. The Lévy measures shall have the
form νi(−dx) = λiα

i exp(T ix)ηi dx. Let there be m = 2 phases, and let q1 = 1 and q2 = 2.
Furthermore, set λ1 = 4 and λ2 = 6 as well as

T 1 =
(−6 6

0 −6

)
and T 2 =

(−8 8
0 −8

)
,

with α1 = α2 = (1, 0). After 15 iterations, according to Theorem 2, starting with U0 = �φ(q),
we arrive at

U =
(−2.9148 1.4329

3.6593 −5.7093

)
.

Here the integration has been performed in a naive manner by a Riemann upper sum with step
size 10−4 until the tail is bounded by 10−4. The inverse function can be determined easily,
since the functions ψi : [φi(0),∞) → [0,∞) are strictly increasing. This has been done to an
accuracy of 10−5.

This result can again be compared against a fluid flow case. Its specification isE+ = {1, 2},
E− = {3, 4, 5, 6}, r1 = r2 = 1, ri = −1 for i ∈ E−, and

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

−5 1 4 0 0 0
2 −8 0 0 6 0
0 0 −6 6 0 0
6 0 0 −6 0 0
0 0 0 0 −8 8
0 8 0 0 0 −8

⎞
⎟⎟⎟⎟⎟⎟⎠
.

After 30 iterations, according to Theorem 3.1 of [1], the values for the matrices α(−+) and
U = T (++) + T (+−)α(−+) are

α(−+) =

⎛
⎜⎜⎝

0.521 216 0.108 179
0.708 560 0.086 688
0.276 425 0.381 737
0.202 654 0.604 703

⎞
⎟⎟⎠ and U =

(−2.9151 1.4327
3.6586 −5.7096

)
.

Given the crudeness of the numerical integration procedure, the accuracy is reasonable. How-
ever, the 30 iterations for the fluid flow case were computed much quicker than the 15 iterations
for the jump case, which of course is due to simpler iteration rules.
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