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ABSTRACT
We present the first simulations evolving resolved spectra of cosmic rays (CRs) from MeV-TeV energies (including
electrons, positrons, (anti)protons, and heavier nuclei), in live kinetic-MHD galaxy simulations with star formation and
feedback. We utilize new numerical methods including terms often neglected in historical models, comparing Milky Way
analogues with phenomenological scattering coefficients ν to Solar-neighborhood (LISM) observations (spectra, B/C,
e+/e−, p̄/p, 10Be/9Be, ionization, γ-rays). We show it is possible to reproduce observations with simple single-power-
law injection and scattering coefficients (scaling with rigidity R), similar to previous (non-dynamical) calculations. We
also find: (1) The circum-galactic medium in realistic galaxies necessarily imposes a ∼ 10kpc CR scattering halo, influ-
encing the required ν(R). (2) Increasing the normalization of ν(R) re-normalizes CR secondary spectra but also changes
primary spectral slopes, owing to source distribution and loss effects. (3) Diffusive/turbulent reacceleration is unimpor-
tant and generally sub-dominant to gyroresonant/streaming losses, which are sub-dominant to adiabatic/convective terms
dominated by ∼ 0.1− 1kpc turbulent/fountain motions. (4) CR spectra vary considerably across galaxies; certain fea-
tures can arise from local structure rather than transport physics. (5) Systematic variation in CR ionization rates between
LISM and molecular clouds (or Galactic position) arises naturally without invoking alternative sources. (6) Abundances
of CNO nuclei require most CR acceleration occurs around when reverse shocks form in SNe, not in OB wind bubbles
or later Sedov-Taylor stages of SNe remnants.
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1 INTRODUCTION

The propagation and dynamics of cosmic rays (CRs) in the interstel-
lar medium (ISM) and circum/inter-galactic medium (CGM/IGM)
is an unsolved problem of fundamental importance for space plasma
physics as well as star and galaxy formation and evolution (see re-
views in Zweibel 2013, 2017; Amato & Blasi 2018; Kachelrieß &
Semikoz 2019). For decades, the state-of-the-art modeling of Galac-
tic (Milky Way; MW) CR propagation has largely been dominated
by idealized analytic models, where a population of CRs is propa-
gated through a time-static MW model, with simple or freely-fit as-
sumptions about the “halo” or thick disk around the galaxy and no
appreciable circum-galactic medium (CGM)1 with “escape” (as a
leaky box or flat halo-diffusion type model) outside of some radius
(Blasi & Amato 2012a; Strong & Moskalenko 2001; Vladimirov
et al. 2012; Gaggero et al. 2015; Guo et al. 2016; Jóhannesson et al.
2016; Cummings et al. 2016; Korsmeier & Cuoco 2016; Evoli et al.
2017).

These calculations generally ignore phase structure or inho-
mogeneity in the ISM/CGM, magnetic field structure (anisotropic
CR transport), streaming, complicated inflow/outflow/fountain and
turbulent motions within the galaxy, and time-variability of galactic
structure and ISM phases (although see e.g. Blasi & Amato 2012b;
Jóhannesson et al. 2016; Liu et al. 2018; Giacinti et al. 2018), even
though, for example, secondary production rates depend on the lo-
cal gas density which varies by several orders of magnitude in both

1 The term “halo” is used differently in CR and galaxy literature. In most
CR literature, the “halo” is generally taken to have a size∼ 1−10 kpc, cor-
responding to the “thick disk” or “disk-halo interface” region in galaxy for-
mation/structure terminology. In the galaxy community, the gaseous “halo”
usually refers to the circum-galactic medium (CGM), with scale-lengths
∼ 20−50kpc and extent ∼ 200−500kpc (Tumlinson et al. 2017).

space and time (even at a given galacto-centric radius) as CRs prop-
agate through the ISM. Likewise, the injection itself being propor-
tional to e.g. SNe rates is strongly clustered in both space and time
and specifically related to certain ISM phases (see Evans 1999;
Vázquez-Semadeni et al. 2003; Mac Low & Klessen 2004; Walch
et al. 2015; Fielding et al. 2018), and other key loss terms depend
on e.g. local ionized vs. neutral fractions, magnetic and radiation
energy densities – quantities that can vary by ten orders of mag-
nitude within the MW (Wolfire et al. 1995; Evans 1999; Draine
2011). And these static models cannot, by construction, capture
non-linear effects of CRs actually modifying the galaxy/ISM struc-
ture through which they propagate. This in turn means that most in-
ferred physical quantities such as CR diffusivities. residence times,
re-acceleration efficiencies, and “convective” speeds (let alone their
dependence on CR energy or ISM properties) are potentially sub-
ject to order-of-magnitude systematic uncertainties. That is not to
say these static-Galaxy models are simple, however: their complex-
ity focuses on evolving an enormous range of CR energies from
.MeV to &PeV, including a huge number of different species, and
incorporating state-of-the-art nuclear networks for detailed spalla-
tion, annihilation, and other reaction rates (recently, see Liu et al.
2018; Amato & Blasi 2018).

Meanwhile, simulations of galaxy structure, dynamics, evolu-
tion, and formation have made tremendous progress incorporating
and reproducing detailed observations of the time-dependent, multi-
phase complexity of the ISM and CGM (Hopkins et al. 2012a; Kim
& Ostriker 2017; Grudić et al. 2019; Benincasa et al. 2020; Keating
et al. 2020; Gurvich et al. 2020), galaxy inflows/outflows/fountains
(Narayanan et al. 2006; Hayward & Hopkins 2017; Muratov et al.
2017; Anglés-Alcázar et al. 2017; Hafen et al. 2019b,a; Hop-
kins et al. 2021c; Ji et al. 2020), and turbulent motions (Hopkins
2013a,b; Guszejnov et al. 2017b; Escala et al. 2018; Guszejnov et al.
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2 Hopkins et al.

2018; Rennehan et al. 2019), magnetic field structure and amplifi-
cation (Su et al. 2017, 2018a, 2019; Hopkins et al. 2020c; Gusze-
jnov et al. 2020b; Martin-Alvarez et al. 2018), dynamics of mergers
and spiral arms and other gravitational phenomena (Hopkins et al.
2012c, 2013a,c; Fitts et al. 2018; Ma et al. 2017b; Garrison-Kimmel
et al. 2018; Moreno et al. 2019), star formation (Grudić et al. 2018a;
Orr et al. 2018, 2019; Grudić et al. 2019; Grudić & Hopkins 2019;
Garrison-Kimmel et al. 2019b; Wheeler et al. 2019; Ma et al. 2020a;
Grudić et al. 2020), and stellar “feedback” from supernovae (Mar-
tizzi et al. 2015; Gentry et al. 2017; Rosdahl et al. 2017; Hopkins
et al. 2018a; Smith et al. 2018; Kawakatu et al. 2020), stellar mass-
loss (Wiersma et al. 2009; Conroy et al. 2015; Höfner & Olofs-
son 2018), radiation (Hopkins et al. 2011; Hopkins & Grudić 2019;
Hopkins et al. 2020a; Wise et al. 2012; Rosdahl & Teyssier 2015;
Kim et al. 2018; Emerick et al. 2018), and jets (Bürzle et al. 2011;
Offner et al. 2011; Hansen et al. 2012; Guszejnov et al. 2017a),
resolving the dynamics of those feedback mechanisms interacting
with the ISM. However, these calculations (including our own) treat
the high-energy astro-particle physics in an incredibly simple fash-
ion. Most ignore it entirely. Even though there has been a surge of
work in recent years arguing that CRs could have major dynamical
effects on both the phase (temperature-density) structure and dy-
namics (inflow/outflow rates, strength of turbulence, bulk star for-
mation rates) of galaxies (see Jubelgas et al. 2008; Uhlig et al. 2012;
Booth et al. 2013; Wiener et al. 2013b; Hanasz et al. 2013; Salem
& Bryan 2014; Salem et al. 2014; Chen et al. 2016; Simpson et al.
2016; Girichidis et al. 2016; Pakmor et al. 2016; Salem et al. 2016;
Wiener et al. 2017; Ruszkowski et al. 2017; Butsky & Quinn 2018;
Farber et al. 2018; Jacob et al. 2018; Girichidis et al. 2018), es-
sentially all of these studies have treated CRs with a “single bin”
approximation. evolving a single fluid representing “the CRs” (re-
cently, see Salem et al. 2016; Chan et al. 2019; Butsky & Quinn
2018; Su et al. 2020; Hopkins et al. 2020b; Ji et al. 2020, 2021b;
Bustard & Zweibel 2020; Thomas et al. 2021). Even if one is only
interested in the dynamical effects of CRs on the gas itself, so as-
sumes the CR pressure is strongly dominated by ∼GeV protons,
this could be inaccurate in many circumstances. For example, cer-
tain terms which should “shift” CRs in their individual energies or
Lorentz factors and therefore change their emission/loss/transport
properties instead simply rescale “up” or “down” the CR energy
density in single-bin models, effectively akin to “creating” new
CRs.

More importantly, even if “single-bin” models allow for a rea-
sonable approximate estimation of bulk CR pressure effects on gas,
a “single-bin” CR model precludes comparing to the vast majority
of observational constraints. Essentially, it restricts comparison to
a handful of galaxy-integrated ∼GeV γ-ray detections in nearby
star-forming galaxies (Lacki et al. 2011; Tang et al. 2014; Griffin
et al. 2016; Fu et al. 2017; Wojaczyński & Niedźwiecki 2017; Wang
& Fields 2018; Lopez et al. 2018), which in turn means that the-
oretical CR transport models are fundamentally under-constrained
(see Hopkins et al. 2021e). Because the γ-rays constrain a galactic-
ISM-integrated quantity over a narrow range of CR energies, differ-
ent physically-motivated models which reproduce the same γ-ray
luminosity can predict qualitatively different CR transport in the
ISM/CGM/IGM (depending on how they scale with properties as
noted above), as well as totally different effects of CRs on outflows,
accretion, and galaxy formation (Hopkins et al. 2021d). This also
precludes comparing to the enormous wealth of detailed Solar sys-
tem CR data covering a huge array of species, as well as the tremen-
dous amount of spatially-resolved synchrotron data from large num-
bers of galaxies spanning the densest regions of the ISM through the
diffuse CGM, and all galaxy types. While there have been important
preliminary efforts to model these more detailed datasets with vari-

ations of post-processing or tracer-species calculations (see Pinzke
et al. 2017; Gaches & Offner 2018; Offner et al. 2019; Winner et al.
2019; Vazza et al. 2021; Werhahn et al. 2021a,b,c), these necessarily
neglect the dynamics above, and are more akin to the “time static”
analytic models in some ways.

In this manuscript, we therefore generalize our previous ex-
plicit CR transport models from previous studies to a resolved CR
spectrum of electrons, positrons, protons, anti-protons, and heav-
ier nuclei spanning energies ∼MeV to ∼TeV. This makes it pos-
sible to explicitly forward-model from cosmological initial con-
ditions quantities including the CR electron and proton spectra,
B/C and radioactive isotope ratios, and detailed observables in-
cluding synchrotron spectra, alongside Galactic magnetic field and
halo and ISM structure. We show that for plausible injection as-
sumptions the simulations can reproduce the observed Solar neigh-
borhood values. We explicitly account for and explore the roles
of a wide range of processes including: anisotropic diffusion and
streaming, gyro-resonant plasma instability losses, “adiabatic” CR
acceleration, diffusive/turbulent re-acceleration, Coulomb and ion-
ization losses, catastrophic/hadronic losses (and γ-ray emission),
Bremstrahhlung, inverse Compton (accounting for time-and-space-
varying radiation fields), and synchrotron terms. In § 2, we out-
line the numerical methods and treatment of spectrally-resolved CR
populations, and describe our simulation initial conditions. In § 3
we summarize the qualitative results, and explore the effects of each
of the different pieces of physics in turn. We also compare with ob-
servational constraints and attempt to present some simplified ana-
lytic models that explain the relevant scalings. We conclude in § 4.
The Appendices contain various additional details, showing typical
CR drift velocities and loss timescales (§ A), predicted CR spectra
for additional parameter choices (§ B), detailed numerical methods
and validation tests (§ C), and mock observational diagnostics of
the simulation magnetic fields (§ D).

2 METHODS

2.1 Non-CR Physics

The simulations here extend those in several previous works includ-
ing Chan et al. (2019), Hopkins et al. (2020b) (Paper I), and Hop-
kins et al. (2021e) (Paper II), where additional numerical details
are described. We only briefly summarize these and the non-CR
physics here. The simulations are run with GIZMO2 (Hopkins 2015),
in its meshless finite-mass MFM mode (a mesh-free finite-volume
Lagrangian Godunov method). All simulations include magneto-
hydrodynamics (MHD), solved as described in (Hopkins & Raives
2016; Hopkins 2016) with fully-anisotropic Spitzer-Braginskii con-
duction and viscosity (implemented as in Paper II; see also Hop-
kins 2017; Su et al. 2017). Gravity is solved with adaptive La-
grangian force softening (matching hydrodynamic and force res-
olution). We treat cooling, star formation, and stellar feedback fol-
lowing the FIRE-2 implementation of the Feedback In Realistic En-
vironments (FIRE) physics (all details in Hopkins et al. 2018b); as
noted in § 3.2 our conclusions are robust to variations in detailed
numerical implementation of FIRE. We explicitly follow the en-
richment, chemistry, and dynamics of 11 abundances (H, He, Z, C,
N, O, Ne, Mg, Si, S, Ca, Fe; Colbrook et al. 2017; Escala et al.
2018); gas cooling chemistry from ∼ 10− 1010 K accounting for a
range of processes including metal-line, molecular, fine-structure,
photo-electric, and photo-ionization, including local sources and
the Faucher-Giguère et al. (2009) meta-galactic background (with

2 A public version of GIZMO is available at http://www.tapir.
caltech.edu/~phopkins/Site/GIZMO.html

MNRAS 000, 000–000 (0000)

http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html


CR Spectra in Galaxies 3

Figure 1. Mock images of the simulations studied here, selected as Milky Way (MW)-like galaxies near z≈ 0 from the FIRE cosmological simulation project.
The three galaxies are m12i (our “fiducial” galaxy, top), m12f (middle), and m12m (bottom), all broadly MW-like but different in detail with e.g. different
extended outer gas/stellar disks, different bar/spiral arm strengths, and different detailed spatial distribution of gas & star formation within the disk. Left:
Hubble Space Telescope-style ugr composite image ray-tracing starlight (attenuated by dust in the simulations as Hopkins et al. 2004) with a log-stretch
(∼ 4dex surface-brightness range). Middle: Gas portrayed with a 3-band volume render showing “hot” (T � 105 K, red), “warm/cool” (T ∼ 104− 105 K,
green), and “cold (neutral)” (T � 104 K, magenta) phases. Right: Gas again, but on larger scales, more clearly showing the continuing gas distribution well
into the circum-galactic medium and “halo” up to & 100kpc beyond the galactic disk.

self-shielding) and tracking detailed ionization states; and star for-
mation in gas which is dense (> 1000cm−3), self-shielding, ther-
mally Jeans-unstable, and locally self-gravitating (Hopkins et al.
2013b; Grudić et al. 2018a). Once formed, stars evolve according
to standard stellar evolution models accounting explicitly for the
mass, metal, momentum, and energy injection via individual SNe
(Ia & II) and O/B or AGB-star mass-loss (for details see Hopkins
et al. 2018a), and radiation (including photo-electric and photo-
ionization heating and radiation pressure with a five-band radiation-

hydrodynamic scheme; Hopkins et al. 2020a). Our initial conditions
(see Fig. 1) are fully-cosmological “zoom-in” simulations, evolving
a large box from redshifts z & 100, with resolution concentrated in
a ∼ 1− 10Mpc co-moving volume centered on a “target” halo of
interest. While there are many smaller galaxies in that volume, for
the sake of clarity we focus just on the properties of the “primary”
(i.e. best-resolved) galaxies in each volume.

MNRAS 000, 000–000 (0000)
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2.2 CR Physics & Methods

2.2.1 Overview & Equations Solved

Our CR physics implementation essentially follows the combina-
tion of Paper II & Hopkins et al. (2021a) with Girichidis et al.
(2020). We explicitly evolve the CR distribution function (DF):
f = f (x, p, t, s, ...), as a function of position x, CR momentum p,
time t, and CR species s. An extensive summary of the numerical
details and some additional validation tests are presented in Ap-
pendix C, but we summarize the salient physics here.

We assume a gyrotropic DF for the phase angle φ and evolve
the first two pitch-angle (µ ≡ p̂ · b̂) moments of the focused CR
transport equation (Isenberg 1997; le Roux et al. 2001), to lead-
ing order in O(u/c) (where u is the fluid velocity) on macro-
scopic scales much larger than CR gyro-radii,3 for an arbitrary
f = f (p, µ, ...). From Hopkins et al. (2021a), this gives the equa-
tions solved:

Dt f̄0 +∇· (v b̂ f̄1) = j0 +D :∇u
[

3 f̄0 + p
∂ f̄0

∂p

]
(1)

1
p2

∂

∂p

[
p2
{

S` f̄0 + D̃pµ f̄1 + D̃pp
∂ f̄0

∂p

}]
Dt f̄1 + v∆( f̄0) =−

[
D̃µµ f̄1 + D̃µp

∂ f̄0

∂p

]
+ j1 (2)

D̃pp = χ
p2 v2

A

v2 ν̄ , D̃pµ =
p v̄A

v
ν̄ , D̃µµ = ν̄ , D̃µp = χ

p v̄A

v
ν̄

where f̄n ≡ 〈µn f 〉µ is the n’th pitch-angle moment (so e.g. f̄0 is
the isotropic part of the DF, and f̄1 = 〈µ〉 f̄0), DtX ≡ ∂tX +∇ ·
(uX)≡ ρdt(X/ρ) is the conservative co-moving derivative, v = β c
is the CR velocity, p = γ βms c the CR momentum, b̂ ≡ B/|B|
the unit magnetic field vector, jn represent injection & catastrophic
losses, S` represents continuous loss processes described below, vA

is Alfvén speed, the coefficients D̄ are defined in terms of the scat-
tering rate ν̄ ≡ ν̄+ + ν̄−, the signed v̄A ≡ vA (ν̄+− ν̄−)/(ν̄+ + ν̄−),
and the operator ∆(q)≡ b̂ ·∇ (χq)+∇· [(1−3χ)q b̂] and Edding-
ton tensor D≡ χI+ (1−3χ) b̂b̂ are defined in terms of χ:

χ≡ 1−〈µ2〉
2

=
1
2

[
1− f̄2

f̄0

]
(3)

where 〈µ〉 ≡ f̄1/ f̄0. The moments hierarchy for f̄2 is closed by the
assumed M1-like relation 〈µ2〉 ≈ (3+4〈µ〉2)/(5+2

√
4−3〈µ〉2),

which is exact for both a near-isotropic DF (the case of greatest
practical relevance, as argued in e.g. Thomas & Pfrommer 2021)
or a maximally-anisotropic DF (〈µ〉 → ±1), or any DF which
can be made approximately isotropic via some Lorentz transfor-
mation (Hopkins et al. 2021a). All of the variables above should
be understood to be functions of x and t, etc. The CRs act on
the gas+radiation field as well: the appropriate collisional/radiative
terms are either thermalized or added to the total radiation or mag-
netic energy, and the CRs exert forces on the gas in the form of the
Lorentz force (proportional to the perpendicular CR pressure gra-
dient) and parallel force from scattering, as detailed in Paper II and
Hopkins et al. (2021a). As defined therein the CR pressure tensor
P =

∫
d3p(pv) f is anisotropic following D.

Note that if the “flux” equation Eq. 2 reaches local steady-state
with |Dt f̄1| � |ν̄ f̄1|, which occurs on a scattering time∼ ν̄−1 (gen-
erally short compared to other timescales of interest in our simu-

3 Of course, certain kinetic processes and plasma instabilities on gyro scales
can only be resolved and properly treated in particle-in-cell (PIC) or MHD-
PIC simulations of the sort in e.g. Bai et al. (2015, 2019); Mignone et al.
(2018); Holcomb & Spitkovsky (2019); Ji & Hopkins (2021); Ji et al.
(2021a). But recall that CR gyro radii are ∼ 0.1au(R/GV)(|B|/µG)−1,
vastly smaller than our resolution at all rigidities we consider.

lations, so this is often a reasonable approximation), then we have
χ→ 1/3, D→ I/3, v f̄1 → −v̄A p∂p f̄0− (v2/3 ν̄) b̂ · ∇ f̄0. In this
case Eq. 1 for Dt f̄0 reduces to the familiar Fokker-Planck equa-
tion with a streaming speed∝ v̄A and anisotropic/parallel diffusivity
κ‖ = v2/3ν̄.

The spatial discretization follows the gas mesh: each gas cell
j represents some finite-volume domain Vj, which carries a cell-
averaged f j(p, t, s, ... |x j). Each species s is then treated with its
own explicitly-evolved spectrum p, discretized into a number of in-
tervals or bins n, defined by a range of momenta p−n, s < p < p+

n, s

(p ≡ |p|) within each cell j. To ensure manifest conservation we
evolve the conserved variables of CR number N j,n, s(t) and kinetic
energy Ekin

j,n, s(t) integrated over each interval in space and momen-
tum:

N j,n, s(t)≡
∫

V j

n j,n, s d3x≡
∫

V j

∫ p+n, s

p−n, s

f j,n, s(...)d3xd3p (4)

Ekin
j,n, s(t)≡

∫
V j

ε j,n, s d3x≡
∫

V j

∫ p+n, s

p−n, s

Ts(p) f j,n, s(...)d3xd3p (5)

where d3p ≡ p2 d pdΩ = p2 d pdφdµ and Ts(p) ≡ (p2 c2 +
m2

s c4)1/2−ms c2 is the CR kinetic energy. Note we could equiva-
lently evolve the total CR energy as by definition E tot

j,n, s ≡ Ekin
j,n, s +

N j,n, s ms c2 (or e j,n, s = ε j,n, s + n j,n, s ms c2).

2.2.2 Spatial Evolution & Coupling to Gas

Operator-splitting (1) spatial evolution, (2) momentum-space oper-
ations, and (3) injection, the spatial part of Eqs. 1-2 can be written as
a normal hyperbolic/conservation law for f̄0: Dt f̄0 = −∇· (v b̂ f̄1),
and Eq. 2 for the flux f̄1. That is discretized and integrated on the
spatial mesh defined by the gas cells identically in structure to our
two-moment formulation for the CR number density or energy and
their fluxes from e.g. Paper II and Chan et al. (2019); Hopkins et al.
(2021a), and solved with the same finite-volume method. Because
the detailed form of the scattering rates ν̄ are orders-of-magnitude
uncertain (see review in Paper II), we neglect details such as bin-
boundary flux terms and differences in diffusion coefficients for
number and energy across the finite width of a momentum bin
(i.e. use the “bin centered” ν̄).4 At this level, the spatial equations
for ( f̄0, f̄1) are exactly equivalent to the two-moment equations for
e.g. (n, Fn) or (ε, Fε) (where Fq is the flux of q) in Hopkins et al.
(2021a), integrated separately for each j, n, s.

Per Paper II and Hopkins et al. (2021a), it is convenient to
write the CR forces on the gas in terms of “bin integrated” variables,
which can then be integrated into the Reimann solver or hydrody-
namic source terms. Performing the relevant integrals within each
bin n for species s, to obtain the total energy en,s =

∫
n 4π p2 d pE(p),

total energy flux Fe,n,s =
∫

n 4π p2 d pE(p)v, and scalar isotropic-
equivalent pressure P0,n,s =

∫
n 4π p2 d p(pv/3), the force on the gas

can then be represented as a sum over all bins:

Dt(ρu) + ...=
∑

s

∑
n

[
− (I− b̂b̂) ·

[
∇·
(
Dn, s P0,n,s

)]
(6)

+
ν̄n,s

c2

[
Fe,n,s−3χn,s v̄A (en,s + P0,n,s)

]
b̂
]

4 This “bin-centered” approximation (along with simple finite-sampling ef-
fects owing to our finite-size bins) leads to a well-understood numerical ar-
tifact (shown in Girichidis et al. 2020, Ogrodnik et al. 2021, and our § C5)
wherein small “step” features appear between the edges of different spec-
tral “bins” (i.e. the slopes do not join continuously, because the variation
of the effective spatial diffusivity continuously across the bin is neglected,
so it changes discretely bin-to-bin). This is evident in e.g. our Fig. 2 and
essentially all our CR spectra, but we show the effect is small compared to
∼ 1σ variations in the spectra and much smaller than physical variations
from different scattering-rate assumptions or Galactic environments.

MNRAS 000, 000–000 (0000)
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2.2.3 Momentum-Space Evolution

Within each cell and bin j, n, s at each time t, we operator-split
the momentum-space terms in Eq. 1 (those inside p−2 ∂p [p2{...}])
and integrate these following the method in Girichidis et al. (2020),
to which we refer for details and only briefly summarize here. We
evolve the DF as an independent power law in momentum in each
interval, with slope ψ, as f̄0, j,n, s(x, t) = f̄0, j,n, s[p0

n, s](p/p0
n, s)

ψ j, n, s ,
where p0

n, s is the bin-centered momentum. Note there is a strict
one-to-one relationship between e.g. the pair (n j,n, s, ε j,n, s) and
( f̄0, j,n, s[p0

n, s], ψ j,n, s), so we work with whichever is convenient.
In a timestep ∆t, processes which modify the momentum

p of CRs (the S` term in Eq. 1) give rise to some ṗ = −S` =
F(p, s, U(x, t), ...) which is some function of the local plasma state
U(x, t) (gas/magnetic/radiation field properties) and CR species
and rigidity. If we operator-split these terms (so U is constant
over ∆t within cell j), and begin from a power-law DF f j,n, s as
specified above, then we can solve exactly for the final momen-
tum p f = p(t + ∆t) (and therefore rigidity or energy) of each CR
with some initial pi = p(t) obeying ṗ above. Even if the integrals
cannot be analytically solved, they can be numerically integrated
to arbitrary precision. This allows us to exactly calculate the fi-
nal CR energy Ekin, tot

j,n, s (t +∆t) =
∫

Ω j
d3 x

∫
pi

T (p f [pi]) f i
j,n, s(pi)d pi

and likewise N tot
j,n, s(t +∆t) for the CR population which “began” in

the bin, as well as the final energy and number which remain “in
the bin” (i.e. with momenta in the interval p−n, s < p f

s < p+
n, s), e.g.

Ekin,bin
j,n, s (t + ∆t) =

∫
Ω j

d3 x
∫ p f<p+n, s

p−n, s<p f
T (p f [pi]) f i

j,n, s(pi)d pi. The

difference (e.g. Ekin, tot
j,n, s −Ekin,bin

j,n, s ) gives the flux of energy or number
which goes to the next bin (representing CRs “moving down” or up
a bin as they lose or gain energy). After each update to E and N,
we re-solve for the corresponding DF slope ψ and normalization.
Because this is purely local, it can be sub-cycled and parallelized
efficiently. For a given ṗ = ..., we calculate the time δt j,n, s which
would be required for a CR to move from one “edge” of the bin
to another (e.g. to cool from p+

n, s to p−n, s), for each bin, and for the
lowest-energy bin to cool to zero. To integrate stably we require
the subcycle timestep ∆t j ≤Ccour MIN(δt j,n, s), with Ccour the usual
Courant factor and the minimum over all bins and species.

Catastrophic losses (e.g. fragmentation and decay) eliminate
CRs entirely so appear directly in e.g. j as ∂t f =−... reducing f , n,
ε together. We can therefore simply integrate these within each bin
similar to the procedure above, but remove the losses rather than
transferring them to the neighboring bin.

In this paper we consider spectra of protons, nuclei, electrons,
and positrons, with 11 intervals/bins for each leptonic species and 8
intervals for each hadronic. For leptons these intervals span rigidi-
ties (10−3 - 5.62× 10−3, 5.62× 10−3 - 1.78× 10−2, 1.78× 10−2

- 5.62× 10−2, 5.62× 10−2 - 0.178, 0.178 - 0.562, 0.562 - 1.78,
1.78 - 5.62, 5.62 - 17.8, 17.8 - 56.2, 56.2 - 178, 178 - 1000) GV.
For hadronic species the ranges are identical but we do not explic-
itly evolve the three lowest-R intervals because these contain neg-
ligible energy and are highly non-relativistic. This corresponds to
evolving CRs with kinetic energies over a nearly identical range for
nuclei and leptons from < 1MeV to > 1 TeV. This is summarized
in Table C1, which gives the upper and lower rigidity boundaries
between each of our bins for both leptons and hadrons, with repre-
sentative values of T , γ, and β for species like e−, e+, p, p̄.

2.2.4 Injection & First-Order Acceleration

By definition our treatment of the CRs averages over gyro orbits
(assuming gyro radii are smaller than resolved scales), so first-order
Fermi acceleration cannot be resolved but is instead treated as an
injection term j. Algorithmically, injection is straightforward and
treated as in Paper II, generalized to the spectrally-resolved method

here: sources (e.g. SNe) inject some CR energy and number into
neighbor gas cells alongside radiation, mechanical energy, metals,
etc. We simply assume an injection spectrum (and ratio of leptons-
to-hadrons injected), and use it to calculate exactly the ∆Ekin

j,n, s and
∆N j,n, s injected in a cell given the desired total injected CR energy
∆Ekin

tot, j =
∑

s

∑
n ∆Ekin

j,n, s.
The relative normalization of the injection spectra for heav-

ier species s (relative to p or e−) is set by assuming the test-
particle limit, given the abundance of that species Ns within the
injection shock, e.g. dNs/dβ = (Ns, j/NH, j)dNH/dβ. This is only
important for CNO, as the primary injection of other species we
follow (beyond p and e−) is negligible.5 Because the acceleration
is un-resolved, to calculate the ratio of heavy-element to p nuclei
(Ns/NH), we need to make some assumption about where/when
most of the acceleration occurs: for example, for pure core-collapse
SNe ejecta (averaging over the IMF), NO, ej/NH, ej ∼ 0.015 (e.g.
Nomoto et al. 2013; Pignatari et al. 2016; Limongi & Chieffi 2018,
and references therein), while for the ISM at Solar abundances
NO, ISM/NH, ISM ∼ 0.0005 (Lodders 2019). For initial ejecta mass
Mej, if we assume most of the acceleration occurs at some time
when the swept-up ISM mass passing through the shock (which
increases rapidly in time) is ∼ Mswept, then Ns/NH ≈ (N′s, ej Mej +
N′s, ISM Mswept)/(N′H, ej Mej + N′H, ISM Mswept) (where N′s ≡ dNs/dM is
the number of species s in the ejecta or ISM, per unit mass). Equiv-
alently we could write this in terms of the shock velocity rela-
tive to its initial value, assuming we are somewhere in the energy-
conserving Sedov-Taylor phase. In either case, N′s, ej and N′s, ISM are
given by the abundances of the stellar ejecta and the ISM gas cell
into which the CRs are being injected, which follow the detailed
FIRE stellar evolution and yield models and reproduce extensive
metallicity studies of galactic stars and the ISM (Ma et al. 2016,
2017b,a; Muratov et al. 2017; Escala et al. 2018; Bonaca et al. 2017;
van de Voort et al. 2018; Wheeler et al. 2019).

2.3 CR Loss/Gain Terms Included

Our simulations self-consistently include adia-
batic/turbulent/convective terms, diffusive re-acceleration,
“streaming” or gyro-resonant losses, Coulomb, ionization,
catastrophic/hadronic/fragmentation/pionic and other collisional,
radioactive decay, annihilation, Bremstrahhlung, inverse Compton,
and synchrotron terms, with the scalings below.

2.3.1 Catastrophic & Continuous Losses

For protons and nuclei, we include Coulomb and ionization
losses, catastrophic/collisional/fragmentation/ionization losses, and
radioactive decay. Coulomb and ionization losses scale essen-
tially identically with momentum as ṗ ≡ ṪC (dp/dT ) with ṪC ≈
−3.1 × 10−7 eVs−1 cm3 Z2

crβ
−1 [ne + 0.57nneutral] and dp/dT =

1/v = 1/β c (the difference being whether they operate primarily
in ionized or neutral gas; Gould 1972), where ne is the free (ther-
mal) electron density (the Coulomb term), and nneutral the neutral
number density (ionization term).

For protons, we take the total pion/catastrophic loss rate to
be ḟcr(p) = −nnβ cσeff,p fcr(p) with σeff,p ≈ 21.3β−1 Θ(T [p]−
0.28GeV) mb (Mannheim & Schlickeiser 1994; Guo & Oh 2008),
where nn is the nucleon number density (≈ ρ/mp), Θ(x) = 0 for
x < 0, = 1 for x ≥ 1. For heavier nuclei, we take the total frag-
mentation/catastrophic loss rate to be ḟcr(p) = −nnβ cσs fcr(p)
with σs = 45A0.7 (1 + 0.016 sin [1.3−2.63lnA]) mb (with A the
atomic mass number) at ≥ 2GeV and σs = σs(> 2GeV) [1 −

5 At Solar abundances, NB/NH ∼ 3 × 10−10, NBe/NH ∼ 10−11,
Ne+/Ne− � 10−12, and Np̄/NH � 10−12, all many orders-of-magnitude
lower than the ratios observed in CRs.

MNRAS 000, 000–000 (0000)



6 Hopkins et al.

0.62 exp(−T/0.2GeV) sin(1.57553[T/GeV]0.28)] at < 2GeV
from Mannheim & Schlickeiser (1994), with the cross-sections
for secondary production of various relevant species described be-
low. For antimatter ( p̄), we include annihilation with ḟcr(p) =
−nHβ cσpp̄ fcr(p) where nH is the number density of hydro-
gen nuclei (≈ XH ρ/mp) and σpp̄ ≈ 1.5mb(−107.9 + 29.43x−
1.655x2 + 189.9e−x/3) (with x ≡ ln(R/GV); Evoli et al. 2017).
For radioactive species (10Be), the loss rate scales as ḟcr(p) =
− fcr(p)/(γ t1/2, s/ ln2), where t1/2, s is the rest-frame half-life of the
species (t1/2 = 1.51Myr for 10Be).

For electrons and positrons, we include Bremstrahh-
lung, ionization, Coulomb, inverse Compton, and syn-
chrotron losses, plus annihilation. At our energies of inter-
est we always assume electrons/positrons are relativistic for
the calculation of loss rates. For Bremstrahhlung we take
ṗ = −(3/2π)αfsσT c [

∑
Z nZ Z (Z + 1)](ln [2γ] − 1/3) p, where

σT is the Thompson cross-section, αfs the fine-structure constant,
and nZ the number density of ions (determined self-consistently
using the ionization fractions computed in our radiation-chemistry
solver) with charge Z (Blumenthal & Gould 1970). For ion-
ization we adopt ṗ = −(3/4)me c2σT nneutral ln(2γ3/α4

fs)
(Gould & Burbidge 1965),6 while for Coulomb we have
ṗ = −(3/2)me c2σT neβ

−2 {ln[me c2β
√
γ−1/~ωpl] +

ln[2](β2/2 + 1/γ) + 1/2 + (γ − 1)2/16γ2} with the plasma
frequency ω2

pl ≡ 4π e2 ne/me (Gould 1972). Ignoring Klein-Nishina
corrections (unimportant at the energies of interest), for inverse
Compton and synchrotron we have ṗ = −(4/3)σT γ

2 (urad + uB)
(e.g. Rybicki & Lightman 1986), where urad and uB are the local
radiation energy density and magnetic field energy density (given
self-consistently from summing all five [ionizing, FUV, NUV,
optical/NIR, IR] bands followed in our radiation-hydrodynamics
approximation in-code, plus the un-attenuated CMB, and from our
explicitly-evolved magnetic fields).

Positron annihilation is treated as other catastrophic terms
with ḟcr(p) = −neβ cσ(e+e−) fcr(p) with the Dirac σ(e+e−) ≈
π r2

0, e (γ2
∗ + 1)−1 [(γ2

∗ + 4γ∗ + 1)(γ2
∗ − 1)−1 ln(γ∗+

√
γ2
∗−1)−

(γ∗+ 3)(γ2
∗− 1)−1/2] where γ∗ is the positron Lorentz factor in

the electron frame and r0, e is the classical electron radius.
Following Paper II and Guo & Oh (2008), the Coulomb losses

and a fraction = 1/6 of the hadronic losses (from thermalized por-
tions of the cascade) are thermalized (added to the gas internal en-
ergy), while a portion of the ionization losses are thermalized corre-
sponding to the energy less ionization potential. Other radiative and
collisional losses are assumed to go primarily into escaping radia-
tion.

2.3.2 Secondary Products: Fragmentation & Decay

Our method allows for an arbitrary set of primary species, each of
which can produce an arbitrary set of secondary species (which can
themselves also produce secondaries, in principle): energy and par-
ticle number are transferred bin-to-bin in secondary-producing re-
actions akin to the bin-to-bin fluxes within a given species described
above. For computational reasons, however, it is impractical to in-
tegrate a detailed extended species network like those in codes such
as GALPROP or DRAGON on-the-fly. We therefore adopt an inten-
tionally highly-simplified network, intended to capture some of the

6 For lepton ionization, using the more extended Bethe-Bloch formula ap-
propriately corrected for light (electron/positron) species from Ginzburg
(1979), ṗ = (3/4)me c2σT β

−2 ∑
sgas

nneutral,sgas Zsgas Φsgas with Φsgas ≡
ln{([γ−1]β2 γ2 m2

e c4)/(2 I2
sgas )} − (2/γ − 1/γ2) ln2 + 1/γ2 + (1 −

1/γ)2/8; sgas = H, He at Solar abundances with (IH, IHe) = (13.6, 24.6)eV
gives a result which differs by . 4% from the simpler Gould & Burbidge
(1965) expression at all energies we consider.

most important secondary processes: we evolve spectra for e−, e+,
p̄, and nuclei for H (protons), B, CNO, stable Be (7Be + 9Be) and
unstable 10Be.

For collisional secondary production from some “primary”
species s with momentum p = ps (or T = Ts(p)), which pro-
duces a species s′ with momentum p′ = p′s′ (T ′ = Ts′(p′)) with
an effective production cross-section σs→s′ , we generically have
ḟcr, s′(p′)d3p′ = nnβs(p)cσs→s′(p→ p′) fcr, s(p)d3p.

We consider secondary e− and e+ produced by protons via
pion production, with standard branching ratios (∼ 1/3 to each)
and because our spectral bins are relatively coarse-grained assume
the energy distribution of the injected leptons from a given pro-
ton energy T is simply given by the expected mean factor Te± =
αpe± Tp (with the weighted mean αpe± ≈ 0.12 given by integrat-
ing over the spectra of secondary energies at the scales of in-
terest; see Moskalenko & Strong 1998; Di Bernardo et al. 2013;
Reinert & Winkler 2018), so σp→e±(Te± ,final = αpe± Tp,initial) ≈
(1/3)σeff,p. We similarly treat the production rate for p̄ from p
(which overwhelmingly dominates production) with the effective
integrated cross-section σp→p̄ ≈ 1.4mb

√
s̃p

0.6 exp[−(17/
√

s̃p)
1.4]

with
√

s̃p = 1.87654
√

1 + TGeV/1.87654 (which includes produc-
tion of e.g. n̄ which rapidly decay to p̄) with again a weighted-
mean energy T ′ ≈ 0.1T of the primary (di Mauro et al. 2014; Win-
kler 2017; Korsmeier et al. 2018; Evoli et al. 2018, and references
therein).

The vast majority of B and Be stem from fragmentation of C,
N, and O. Rather than follow C, N, and O separately, since their
primary spectra and dynamics are quite similar, we simply follow
a “CNO” bin, which is the sum of C, N, and O individually (so for
processes like fragmentation we simply sum the weighted cross-
sections of each) assuming Solar-like C-to-N-to-O ratios within
each bin and cell. We have also experimented with following C
and O separately, and find our approximation produces negligible
∼ 10%-level errors, much smaller than other physical uncertain-
ties in our models. We then calculate production cross-sections for
B, stable Be (7Be + 9Be), and 10Be appropriately integrated over
species and isotopes, from the fits tabulated in Moskalenko & Mash-
nik (2003); Tomassetti (2015); Korsmeier et al. (2018); Evoli et al.
(2018). Here p′ is calculated assuming constant energy-per-nucleon
in fragmentation (i.e. T (p′, s′) = (Nnuc

s′ /Nnuc
s )T (p, s) with Nnuc the

nucleon number). For completeness we also follow B→ Be with
σB→7,9Be ≈ 12T−0.022

GeV mb and σB→10Be ≈ 12.5T 0.018
GeV mb (again as-

suming constant energy-per-nucleon).
For radioactive decay, we consider 10Be→10B with ḟ decay

cr,B =

− ḟ decay
cr,10Be, i.e. each primary produces one secondary, with negligible

energy loss (T ′ ≈ T ), but this is negligible as a source of secondary
B production.

2.3.3 Adiabatic and Streaming/Gyro-Resonant/Re-Acceleration
Terms

From the focused-transport equation and quasi-linear scattering the-
ory, there are three “re-acceleration” and/or second-order Fermi
(Fermi-II) terms, all of which we include: the “adiabatic” or “con-
vective” term D :∇u, the “gyro-resonant” or “streaming” loss term
∝ Dpµ and the “diffusive” or “micro-turbulent” reacceleration term
∝Dpp. These immediately follow from the usual focused CR trans-
port equation plus linear scattering terms, and can be written as a
mean evolution in momentum space (see § C3) as:

ṗ
p

=−D :∇u−〈µ〉 D̄pµ

p
+

D̄pp

p2

p
f̄0

∂ f̄0

∂p
(7)

=−D :∇u− ν̄
[

f̄1

f̄0

v̄A

v
+χψ

v2
A

v2

]
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where ψ = ψ j,n,s is the local power-law slope of the three-
dimensional CR DF (defined as f̄0 ∝ pψ; see § 2.2.3), so for all
energies and Galactic conditions we consider ψ ∼−4 is < 0.7 The
physical nature and importance of these is discussed below and
in detail in Hopkins et al. (2021a), but briefly, this includes all
“re-acceleration” terms to leading order in O(u/c), and general-
ize the expressions commonly seen for these. The “adiabatic” (non-
intertial frame) term reduces to the familiar −(∇·u)/3 as the DF
becomes isotropic (χ→ 1/3, D→ I/3), but extends to anisotropic
DFs and is valid even in the zero-scattering limit. The Dpp term pro-
duces a positive-definite momentum/energy gain ṗ/p = |ψ|χv2

A/v2

(since ψ < 0 for any physical DF of interest here); for the com-
monly adopted assumptions that give rise to the isotropic strong-
scattering Fokker-Planck equation for CR transport we would have
D̄pp→ p2 v2

A/9Dxx and recover the usual “diffusive re-acceleration”
expressions, but again the term here is more general, accounting for
finite β and weak-scattering/anisotropic- f (µ) effects. The Dpµ term
is often ignored in historical MW CR transport models (which im-
plicitly assume ν̄+ = ν̄−) but this gives rise to the “gyro-resonant”
or “streaming” losses (Wiener et al. 2013b,a; Ruszkowski et al.
2017; Thomas & Pfrommer 2019). Specifically, since gyro-resonant
instabilities/perturbations are excited by the CR flux in one direc-
tion (and damped in the other), if these contribute non-negligibly
to the scattering rates then generically ν̄+ � ν̄− or ν̄+ � ν̄−, so
v̄A ≈ ±vA, in which case the D̄µp term is almost always dominant
over the D̄pp term dimensionally. In this regime (i.e. if ν̄+ 6= ν̄−),
then in flux-steady-state (Dt f̄1→ 0) the combined D̄pµ and Dpp term
in Eq. 7 becomes negative-definite with ṗ/p ∼ −vA/3`grad where
`grad ≡ P0/|b̂ ·∇P0|.

Given the CR energies of interest, in our default simulations we
will assume self-confinement contributes non-negligibly (or other
effects prevent exact ν̄+, ν̄− cancellation; see § 3.3) so v̄A f̄1 ≈
vA | f̄1|, self-consistently including all terms in Eq. 7. We run and
discuss alternate tests with v̄A→ 0 and different expressions for Dpp

or the “diffusive reacceleration” terms but generically find none of
these change our conclusions.

2.4 Default Input Parameters (Model Assumptions)

We vary the physics and input assumptions in tests below, but for
reference, the default model inputs assumed are as follows.

2.4.1 Injection

By default we assume all SNe (Types Ia & II) and fast (OB/WR)
winds contribute to Fermi-I acceleration with a fixed fraction εinj

cr ∼
0.1 of the initial (pre-shock) ejecta kinetic energy going into CRs
(and a fraction εe ∼ 0.02 of that into leptons). We adopt a single-
power power-law injection spectrum in momentum/rigidity with
j(R)∝ R−ψinj and ψinj ∼ 4.2 (i.e. a “canonical” predicted injection
spectrum; discussed in detail in § 3.1). We will assume most ac-
celeration happens at early stages after a strong shock forms, when
the shocks have their highest velocity/Mach number and the dissi-
pation rates are also highest – this occurs after the reverse shock
forms, roughly when the swept-up ISM mass is about equal to the
ejecta mass (Mswept ≈ Mej). Equivalently, given that most of the
shock energy injected into the ISM, and therefore CR energy, comes
from core-collapse SNe, we obtain nearly-identical results if we in-
stead assume that the injection is dominated by shocks with velocity

7 Note that Hopkins et al. (2021a) wrote a similar expression to our Eq. 7,
but with ψ replaced by−2(1+β2) in the D̄pp term. Their expression came
from considering the behavior of the mean momentum of a “packet” of CRs
with a δ-function-like DF, as opposed to the simpler behavior here where
we consider a piecewise power-law so (p/ f̄0)(∂ f̄0/∂p) = ψ by definition.
Nevertheless, it is striking that over the energy range MeV-TeV, these give
quite-similar prefactors (both∼−4) despite reflecting wildly different DFs.

& 2000kms−1. We show below that slower (e.g. ISM or AGB, or
late-stage Sedov/snowplow SNe) shocks cannot contribute signifi-
cant Fermi-I acceleration of the species followed.

2.4.2 Scattering Rates

In future studies we will explore physically-motivated models for
scattering rates as a function of local plasma properties, pitch an-
gle, gyro-radius, etc. But in this first study we restrict to sim-
ple phenomenological models, where we parameterize by default
the (pitch-angle-weighted) scattering rates as a single power-law
ν̄ = ν̄0 (v/c)(R/R0)

−δ with R0 ≡ 1GV (e.g. ν̄ ∝ v/`scattering where
`scattering ∝ Rδ is some characteristic length). In the strong-scattering
flux-steady-state limit, this gives a parallel diffusivity κ‖ = v2/3 ν̄
or, in the isotropic Fokker-Planck equation ∂t f =∇(Dxx∇ f ), Dxx =
v2/9 ν̄, so reduces to the common assumption in phenomenologi-
cal Galactic CR models that Dxx = βD0 (R/R0)

δ . Here our default
models (motivated by both historical studies and the comparison to
observations discussed below) take ν̄0 ≈ 10−9 s−1, δ = 0.5, equiva-
lent to D0(R = 1GV)≈ 1029 cm2 s−1.

2.5 Initial Conditions

In a follow-up paper, we will present full cosmological simu-
lations from z ≈ 100, as in our previous single-bin CR stud-
ies (see Hopkins et al. 2021c,e, 2020b, 2021d; Ji et al. 2020,
2021b and Paper II). These, however, are (a) computationally
expensive, and (b) inherently chaotic owing to the interplay of
N-body+hydrodynamics+stellar feedback (Su et al. 2017, 2018b;
Keller et al. 2019; Genel et al. 2019), which makes it difficult
if not impossible to isolate the effects of small changes in input
assumptions (e.g. the form of ν̄(R)) and to ensure that we are
comparing to a “MW-like” galaxy. Because we focus on Solar-
neighborhood observations, we instead in this paper adopt a suite of
“controlled restarts” as in Orr et al. (2018); Hopkins et al. (2018b);
Angles-Alcazar et al. (2020). We begin from a snapshot of one of
our “single-bin” CR-MHD cosmological simulations from Paper II,
which include all the physics here but treat CRs in the “single-
bin” approximation from § 1. Illustrations of the stars and gas in
these systems are shown in Fig. 1. Per § 1, these initial conditions
have been extensively compared to MW observations to show that
they broadly reproduce quantities important for our calculation like
the Galaxy stellar and gas mass in different phases (El-Badry et al.
2018b; Hopkins et al. 2020b; Gurvich et al. 2020), molecular and
neutral gas cloud properties and magnetic field strengths (Gusze-
jnov et al. 2020a; Benincasa et al. 2020), gas disk sizes and mor-
phological/kinematic structure (El-Badry et al. 2018a; Garrison-
Kimmel et al. 2018), SNe and star formation rates (Orr et al. 2018;
Garrison-Kimmel et al. 2019b), γ-ray emission properties (pro-
vided reasonable CR model choices; Chan et al. 2019; Hopkins
et al. 2021e), and circum-galactic medium properties in different
gas phases (Faucher-Giguere et al. 2015; Ji et al. 2020), suggesting
they provide a reasonable starting point here. We take galaxy m12i
(with the initial snapshot from the “CR+(κ= 3e29)” run in Paper II)
as our fiducial initial condition, though we show results are similar
for galaxies m12f and m12m.

We re-start that simulation from a snapshot at redshift z≈ 0.05,
using the saved CR energy in every gas cell to populate the CR
DF for all species, assuming an initially isotropic DF with the ini-
tial spectral shape and relative normalization of different species
all set uniformly to fits to the local ISM (LISM) spectra (Bisschoff
et al. 2019). The spectra are re-normalized to match the snapshot
CR energy density8 before beginning, to minimize any initial per-
turbation to the dynamics. We then run for ≈ 500Myr to z = 0. As

8 Throughout this paper, when we refer to and plot the CR “energy density”
ecr, we will follow the convention in the observational literature and take
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Figure 2. Example CR spectra and secondary-to-primary ratios from our full live galaxy-formation simulation at redshift z = 0 in a “working model”
with a single-power-law injection spectrum (with all abundance ratios at injection determined in-code) and fiducial scaling of the scattering rates ν̄ ∼
10−9 s−1 βR−0.6

GV ; see § 3.1 for details. Top: CR intensity (left) and kinetic energy density (right) spectra, for different species: protons p, anti-protons p̄,
electrons e−, positrons e+, B, C, radioactive (10Be) and stable (7Be+9Be) Be. Lines show the median (dashed) and mean (solid) values in the simula-
tion (small-scale “features” are artifacts of our spectral sampling; see § 3.1.1), and shaded range shows the ±1σ range, for ISM gas in the Solar circle
(r = 7− 9kpc) with local density n = 0.3− 3cm−3. Points show observations (colors denote species), from the local ISM (LISM) from Voyager (circles;
Cummings et al. 2016), AMS-02 (squares; Aguilar et al. 2018, 2019a,b, and references therein), and compiled from other experiments including PAMELA,
HEAO, BESS, TRACER, CREAM, NUCLEON, CAPRICE, Fermi-LAT, CALET, HESS, DAMPE, ISOMAX (pentagons; Engelmann et al. 1990; Shikaze
et al. 2007; Boezio et al. 2000; Obermeier et al. 2011; Adriani et al. 2014; Abdollahi et al. 2017; Boezio et al. 2017; H. E. S. S. Collaboration et al. 2017; Yoon
et al. 2017; DAMPE Collaboration et al. 2017; Adriani et al. 2018; Atkin et al. 2019). For the non-Voyager data we omit observations at energies where the
Solar modulation correction is estimated to be important (see Bindi et al. 2017; Bisschoff et al. 2019, and references therein). Middle Left: 10Be/9Be ratio, in
the same ISM gas; dark purple (light cyan) shaded range shows the ±1σ (±2σ) range, lines show median (dashed) and mean (solid). Points show compiled
AMS-02 and other-experiment data (references above). Middle Right: B/C ratio. For the Voyager data, we show both the directly observed values and the
“modulation-corrected” value from Strong et al. (2007) who consider models where modulation could still be important for V1 data (note this would also
reduce the value of B/C observed at ∼ 1GeV). Bottom Left: p̄/p ratio. Note the value at the highest-energies is significantly affected by our spectral upper
boundary (we do not evolve p or heavier ions with rigidity & 1000GV). Bottom Right: e+/(e+ + e−) ratio. We stress that we have not marginalized over
parameters or “fit” to any of these observations, but simply survey a few model choices and show one which gives overall agreement.
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discussed in detail and demonstrated in numerical tests in § C, this
is more than sufficient for all quantities in the local ISM (LISM;
which we use interchangeably with warm-phase ISM gas at Solar-
like galacto-centric radii and densities ∼ 0.1− 1cm−3) to reach
their quasi-steady-state values (which should physically occur on
the loss/escape timescale in the LISM, maximized at ∼ 1−10Myr
around ∼ 1GeV) – only in the further CGM at > 10kpc from the
galaxy do CR transport timescales exceed ∼Gyr. We have con-
firmed this directly by comparing the simulation results at various
times spread over ∼ 100− 200Myr before z = 0; we discuss this
below but the variations in the median are generally much smaller
than the ±1σ range for different Solar-like locations. To test the in-
dependence of our results on the CR ICs, we have also re-started
simulations with zero initial CR energy in all cells. This produces
a more pronounced initial transient in the couple disk dynamical
times (∼ 100 Myr) owing to the loss of CR pressure but converges
to the same equilibrium after somewhat longer physical time, and
all our conclusions are identical at z = 0. This also provides an in-
dependent test that the simulations have converged to steady-state
behaviors.

3 RESULTS & DISCUSSION

3.1 Working Models

3.1.1 Parameters: Single Power-Law Injection & Diffusion Can
Fit the Data

The first point worth noting is that it is actually possible to obtain
reasonable order-of-magnitude agreement with the Solar neighbor-
hood CR data, as shown in Fig. 2. This may seem obvious, but recall
that the models here have far fewer degrees of freedom compared to
most historical Galactic CR population models: the Galactic back-
ground is entirely “fixed” (so e.g. Alfvén speeds, magnetic geom-
etry, radiative/Coulomb/ionization loss rates, convective motions,
re-acceleration, etc. are determined, not fit or “inferred” from the
CR observations); we assume a universal single-power-law injec-
tion spectrum (with just two parameters entirely describing the in-
jection model for all species) and do not separately fit the injection
spectra for different nuclei but assume they trace the injection of
protons given their a priori abundances in the medium; and we sim-
ilarly assume a single power-law scattering rate ν(R) as a function
of rigidity to describe all species.

In our favored model(s), the injection spectrum for all species
is a single power-law with d j ∝ p−4.2 d3p (with all heavy species
relative abundance following their actual shock abundances), with
∼ 10% of the shock energy into CRs and ∼ 2% of that into lep-
tons, and the scattering rate scales as ν̄ ∼ 10−9 s−1βR−(0.5−0.6)

GV .
Under the assumptions usually made to turn the CR transport equa-
tions into an isotropic Fokker-Planck diffusion equation, this cor-
responds to Dxx ≈ βD0 RδGV with δ in the range δ = 0.5− 0.6 and
D0 ≈ 1029 cm2 s−1.9

Briefly, we note in Fig. 2 that the largest statistical discrepancy
between the simulations and observations appears to be between the
flat values of p̄/p at high energies∼ 10−300GV, where our model
±1σ predictions continue to rise by another factor ∼ 2−3. This is
generically the most difficult feature to match, of those we compare,
while simultaneously fitting all other observations, and we will in-
vestigate in more detail in future work. It is interesting in particular

this to be the kinetic energy density (not including the CR rest mass energy),
unless otherwise specified.
9 In Appendix A, we also show that this translates to typical effective CR
“drift velocities” of roughly∼ 300kms−1 (T/GeV)0.3 in Solar circle, mid-
plane LISM gas with densities n ∼ 1cm−3, but this can vary more signifi-
cantly with environment.

because it runs opposite to the recent suggestion that reproducing
p̄/p alongside B/C requires some “additional,” potentially exotic
(e.g. decaying dark matter) source of p̄ (Heisig 2020). But we cau-
tion against over-interpretation of our result for several reasons: (1)
the systematic detection/completeness corrections in the data and
(2) the physical p̄ production cross-sections at these energies re-
main significant sources of uncertainty (Cuoco et al. 2019; Heisig
et al. 2020); (3) the observations still remain within the±2σ range,
so the LISM may simply be a∼ 2σ fluctuation; (4) recalling that the
energy of a secondary p̄ is ∼ 10% the primary p, most of this dis-
crepancy occurs at such high energies that it depends sensitively on
the behavior of our highest-energy p and C bins – i.e. our “bound-
ary” bins; and (5) we are only exploring empirical models with a
constant (in space and time) scattering rate, while almost any phys-
ical model predicts large variations in ν̄ with local ISM environ-
ment, which can easily produce systematic changes in secondary-
to-primary ratios at this level (Hopkins et al. 2021e).

We also caution (as noted in § 2.2.2 and demonstrated in
Girichidis et al. 2020; Ogrodnik et al. 2021 and § C5) that the small
“step” features between CR spectral bins (in Fig. 2 and our subse-
quent plots) are a numerical artifact of finite sampling and the “bin-
centered” approximation for the spatial fluxes. This directly leads
to the “jagged” small-scale features evident in B/C and 10Be/9Be.
There, we follow standard convention and take the intensity ratio
of e.g. B-to-C at fixed CR kinetic energy per nucleon (T/A). But
recall (§ 2.2.3, Table C1, our spectral bins for different species are
aligned in rigidity, not necessarily in kinetic-energy-per-nucleon, so
when taking the ratios the bin edges are offset from one another for
different nucleons, producing the “jagged” or “odd-even” type fea-
tures spaced at semi-regular fractions of the bin widths. Obviously
these features should not be over-interpreted; fortunately these ef-
fects are small compared to the full dispersion seen in Fig. 2 and to
the systematic differences between different Galactic environments
or scattering rate parameterizations shown below.

3.1.2 Comparison to Idealized, Static-Galaxy Analytic CR
Transport Models

The “favored” parameters (those which agree best with the ob-
servations) above in § 3.1.1 are completely plausible. The injec-
tion spectrum (ψinj ≈ 4.2) is essentially identical to the “canon-
ical” theoretically-predicted injection spectrum and efficiency for
first-order Fermi acceleration in SNe shocks (Bell 1978; Malkov &
Drury 2001; Spitkovsky 2008; Caprioli 2012). Considering how dif-
ferent the models are in detail, the favored scattering rate in § 3.1.1
and its dependence on rigidity are remarkably similar to the values
inferred from most studies in the past decade which have fit the CR
properties assuming a simple toy model analytic Galaxy model and
isotropic Fokker-Planck equation model for CR transport, provided
they allow for a CR “scattering halo” with size ∼ 5−10kpc (Blasi
& Amato 2012a; Vladimirov et al. 2012; Gaggero et al. 2015; Guo
et al. 2016; Jóhannesson et al. 2016; Cummings et al. 2016; Ko-
rsmeier & Cuoco 2016; Evoli et al. 2017; Amato & Blasi 2018).
Consider e.g. de la Torre Luque et al. 2021 , who compare the
most recent best-fit models from both GALPROP and DRAGON,
which both favor a CR scattering halo of scale-height ∼ 7kpc with
a very-similar Dxx ∼ 0.6× 1029 cm2 s−1 for ∼ 1 GV protons and
δ ∼ 0.4− 0.5. Korsmeier & Cuoco (2021) reached similar conclu-
sions.10 This is also consistent with a number of recent studies using

10 In detail Korsmeier & Cuoco (2021) more broadly considered an ex-
tensive survey of GALPROP model variations with various statistical mod-
eling methods to show that the combination of Li, Be, B, C, N, O re-
quires halo heights zh & 5kpc across models, in turn requiring δ ≈ 0.5 and
Dxx ∼ 0.6× 1029 cm2 s−1 at ∼ 1GV. But they note that larger halo heights
(with correspondingly larger diffusivities scaling as Dxx ∝ z0.8−1.0

h ) are also
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Figure 3. Comparison of CR spectra as Fig. 2 from the same galaxy initial condition, in gas with n = 0.3−3cm−3, with different parameters of the injection
spectrum jinj ∝ p−ψinj and assumed (universal) CR scattering rate ν̄ = ν̄0 βR−δGV . To reduce clutter, lines+shaded range show just the mean+1σ range for
each model, we do not overplot the observations, and for the CR kinetic energy density decr/d lnT we show just p (thick) and e− (thin). Note the “reference”
parameters (about which we vary) are those from our best-fit in Fig. 2 (Appendix B considers variation about an alternative “reference” model). Left: Injection
slope ψinj. As expected this shifts CR spectral slopes, but it also shifts secondary-to-primary ratios in a manner not trivially predicted by leaky-box type
models. Middle: Scattering rate normalization ν̄0. These shift secondary-to-primary ratios qualitatively as expected, but often non-linearly; more surprising,
higher ν̄0 (lower effective diffusivity) clearly produces systematically harder/shallower CR spectra. Right: Dependence of scattering rate on rigidity δ. This
shifts the spectral shape and secondary-to-primary dependence on T roughly as expected, though again slightly non-linearly.

allowed, as e.g. 10Be/9Be becomes weakly dependent on height once that
height is sufficiently large. It is primarily smaller halo heights, and corre-
spondingly lower diffusivities, that are strongly ruled out by the analytic
Galaxy models.

“single-bin” ∼GeV-CR transport models in cosmological galaxy
formation simulations of a wide range of galaxy types (Chan et al.
2019; Su et al. 2020; Hopkins et al. 2021e, 2020b, 2021d), com-
pared to observational constraints from γ-ray detections and upper
limits showing all known dwarf and L∗ galaxies lie well below the
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calorimetric limit (Lacki et al. 2011; Fu et al. 2017; Lopez et al.
2018), which inferred that a value of ν̄ ≈ 10−9 s−1 at E ≈ 1GeV
was required to reproduce the γ-ray observations.

This is by no means trivial, however. Some recent studies us-
ing classic idealized analytic CR transport models have argued that
features such as the “turnover” in B/C at low energies or minimum
in e+/e− require strong breaks in either the injection spectrum or
dependence of ν̄(p) (e.g. favoring a D(p) which is non-monotonic
in momentum p and rises very steeply with lower-p below ∼GeV;
Strong et al. 2011), or artificially strong re-acceleration terms (much
larger than their physically-predicted values here) which would im-
ply (if true) that most of the CR energy observed actually comes
from diffusive reacceleration, not SNe or other shocks (Drury &
Strong 2017), or some strong spatial dependence of ν̄ in differ-
ent regions of the galaxy (Liu et al. 2018). Other idealized ana-
lytic transport models (Maurin et al. 2010; Trotta et al. 2011; Blasi
2017; Yuan et al. 2020) have argued for δ in the range ∼ 0.3− 1
and some for ν̄ as large as ∼ 10−7 s−1 at ∼ 1GeV (equivalent to
D0 ∼ 1027 cm2 s−1). These go far outside the range of models which
we find could possible reproduce the LISM observations.

The fundamental theoretical uncertainty driving these large de-
generacies in previous studies is exactly what we seek to address
in this study here: the lack of a well-defined galaxy model. In the
studies cited above, quantities like the halo size, source spatial dis-
tribution, Galactic magnetic field structure and Alfvén speeds, key
terms driving different loss processes (ionization, Coulomb, syn-
chrotron, inverse Compton), adiabatic/convective/large-scale turbu-
lent re-acceleration, are all either treated as “free” parameters, or
some ad-hoc empirical model is adopted. For example, it is well-
known that if one neglects the presence of any “halo”/CGM/thick
disk (and so effectively recovers a classic “leaky box” model with
sources and transport in a thin . 200pc-height disk), then one
typically infers a best-fit with much lower D0 ∼ 1027 cm2 s−1 and
“Kolmogorov-like” δ ∼ 0.3 (Maurin et al. 2010). At the opposite
extreme, assuming the “convective” term has the form of a uniform
vertical disk-perpendicular outflow everywhere in the disk (neglect-
ing all local turbulent/fountain/collapse/inflow/bar/spiral and other
motions, and assuming a vertically-accelerating instead of decel-
erating outflow) – the inferred δ can be as large as ∼ 1 (Maurin
et al. 2010). Similarly, in these analytic models one can make dif-
ferent loss and/or re-acceleration terms as arbitrarily large or small
as desired by assuming different Alfvén speeds, densities, neutral
fractions, etc., in different phases; so e.g. models which effectively
ignore or artificially suppress ionization & Coulomb losses will re-
quire a break in the injection or diffusion versus momentum p, to
reproduce the correct observed spectra.

Briefly, it is worth noting that in some analytic models, es-
pecially the classic “leaky box” models, it is common to refer to
the residence or loss or escape times of CRs. We discuss these
further below, but readers interested in more details can see Ap-
pendix A, where we explicitly present the CR drift velocities and
loss timescales in our fiducial simulation as a function of species
and energy for LISM conditions.

3.1.3 On the Inevitability of the “Halo” Size

One particular aspect requires comment here: in cosmological
galaxy formation models, a very large “halo” is inevitable. Indeed,
as noted in § 1, in modern galaxy theory and observations, the re-
gion within < 10kpc above the disk would not even be called the
“halo” but more often the thick disk or corona or disk-halo inter-
face. It is well-established that most of the cosmic baryons asso-
ciated with galaxies are located in the CGM reaching several hun-
dred kpc from galaxy centers, distributed in a slowly-falling power-
law-like (not exponential or Gaussian) profile with scale lengths

∼ 20− 50kpc (Maller & Bullock 2004; Steidel et al. 2010; Martin
et al. 2010; Werk et al. 2014; Sravan et al. 2016; Tumlinson et al.
2017). This is visually obvious in Fig. 1.

Thus, from a galaxy-formation point of view, it is not at all
surprising that models with a large “CR scattering halo” are ob-
servationally favored and agree better with realistic galaxy mod-
els like those here. What is actually surprising, from the galaxy
perspective, is how small the best-fit halo sizes in some analytic
Galactic CR transport models (e.g. ∼ 7− 8kpc, in the references
above) actually are. These ∼ 5− 10kpc sizes are actually much
smaller than the scale length for the free-electron density or mag-
netic field strength inferred in theoretical and observational studies
of the CGM (see references above and e.g. Lan & Prochaska 2020).
However, there is a simple explanation for this: as parameterized in
most present analytic models for CR transport, the “halo size” does
not really represent the scale-length of e.g. the magnetic energy or
free-electron density profile; rather, the “halo size” in these mod-
els is more accurately defined as the volume interior to which CRs
have an order-unity probability of scattering “back to” the Solar po-
sition. In the CGM (with sources concentrated at smaller radii), for
any spatially-constant diffusivity, the steady-state solution for the
CR kinetic energy density is a spherically-symmmetric power-law
profile with ecr ∝ 1/κr (Hopkins et al. 2020b), so the characteris-
tic length-scale for scattering “back into” some r = r0 is just ≈ r0.
In other words, in any slowly-falling power-law-like medium with
spatially-constant diffusivity, the inferred CR scattering “halo scale
length” at some distance R0 ≈ 8kpc from the source center (e.g.
the Solar position) will always be Lhalo ≈ R0 to within a factor of
∼ 2 depending on how the halo and its boundaries are defined (and
indeed this is what models infer), more or less independent of the
actual CGM ne or B-field scale-length (generally� R0).

Empirically, Korsmeier & Cuoco (2021) argue for a similar
conclusion from a comparison of parameterized analytic CR scat-
tering models to LISM data. They show that so long as the assumed
scattering halo volume is sufficiently extended (zh & 5kpc, in their
models), the CR observables at the Solar position become essen-
tially independent of its true size (zh) – i.e. the “effective” scattering
halo size becomes constant.

3.2 Effects of Different Physics & Parameters

We now briefly discuss the qualitative effects of different variations
on CR spectra, using tests where we fix all parameters and physics
but then “turn off” different physics or adjust different parameters
each in turn, with resulting spectra shown in Figs. 3, 4, & 5. Here,
our “reference” model is that in Fig. 2. We have considered a set
of simulations varying other parameters simultaneously, and in Ap-
pendix B, we repeat the exercise in Figs. 3, 4, & 5, but for variations
with respect to a different reference model with larger scattering rate
and different dependence of scattering on rigidity. This allows us to
confirm that all of our qualitative conclusions here are robust.

It is useful to define some reference scalings, by reference to a
toy leaky-box type model: if the CR injection rate in some p inter-
val were d j = j0 (p/p0)

−ψinj d3p, and the CR “residence time” (or
escape time) were ∆tres = ∆t0 (p/p0)

−ψres , then the observed num-
ber density would scale as dNobs = ∆t d j = ∆t0 j0 (p/p0)

−ψN
obs d3p.

For the more usual units of intensity we have dI ∝ dN/dt dAdT ∝
p−ψobs with ψobs = ψinj +ψres−2. Again, the explicit loss or escape
timescales calculated in LISM conditions in our reference simula-
tion from Fig. 2, for each of the processes discussed below, are pre-
sented in Appendix A, to which we refer for additional details.

• Injection Spectra: As expected, the CR spectral shapes scales
with the injection spectrum, shown in Fig. 3. However, the scal-
ing is not perfectly linear as the above toy model would imply:
changing the injection ψinj by some ∆ψinj, we obtain ∆ψobs ∼
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Figure 4. CR spectra (as Fig. 3), removing different loss processes to see their effects. We simplify by focusing on just the spectra, B/C, and e+/e−, which
summarize the key effects. We consider removing, each in turn: First Row: (1) the “adiabatic” D :∇u gain/loss term in Eq. 1; or (2) catastrophic losses (still
allowing secondary production, but no primaries are “destroyed” in the process; Second: (3) Bremstrahhlung; (4) inverse Compton; (5) synchrotron; Third:
(6) Coulomb; (7) ionization; (8) Coulomb and ionization; Fourth: (9) the “diffusive reacceleration” D̃pp term in Eq. 1; (10) the “streaming loss” D̃pµ term
in Eq. 1. We also consider (11) arbitrarily increasing the diffusive re-acceleration term to a value much larger than physical. Fifth: Altering the “streaming
speed” v̄A to (a) v̄A = vA, ideal = (|B|2/4πρ)1/2 (our default, the ideal-MHD Alfvén speed), (b) v̄A = vA, ion = (|B|2/4πρion)1/2 (the “ion Alfvén speed,” much
faster in mostly-neutral gas, and favored in self-confinement models), and (c) v̄A = 0 (assumed in older extrinsic turbulence models). All these changes are
discussed in § 3.2. Generically inverse Compton+synchrotron alter high-energy lepton spectra, Coulomb+ionization alter low-energy spectra, and the effect of
the “re-acceleration” terms are modest.
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Figure 5. As Fig. 4, considering purely-numerical parameters. Top: We compare our default closure model for the CR pressure tensor D(χ[µ]) (Eq. 2) to
a simpler model assuming an always-near-isotropic CR distribution (χ = 1/3, D→ I/3), or to a model where we arbitrarily multiply the magnetic fields
everywhere in our initial conditions (a cosmological simulation snapshot at z∼ 0.05) by 10. This multiplies magnetic energy by 100, much larger than allowed
by observations (see § D and Su et al. 2018a; Guszejnov et al. 2020a), but illustrative of how weak the effects of uncertainty in the true Galactic magnetic field
are. Bottom: Varying the reduced speed of light c̃ in Eqs. 1-2 to allow larger timesteps from 0.003− 0.3c. At the lowest c̃ we see some artifacts: as shown in
Hopkins et al. 2021a reducing c̃ means it takes longer by a factor ∼ c/c̃ to converge to the correct steady-state secondary abundances, so at for very-low c̃ we
simply have not run our simulation for sufficient time to reach convergence. But for c̃> 0.01c, the convergence is good.

(0.7− 0.9)∆ψinj, depending on the CR energy range, species, etc.
The issue is that part of the change in assumed slope is offset by
(a) losses, (b) non-linear effects of CRs on the medium, and (c)
non-uniform source distributions (where e.g. the effective “volume”
of sources in a realistic disk sampled by a given ∆tres is not p-
independent, so one needs to convolve over the source distribution
at each p). Shallower slopes (smaller |ψinj|) produce a B/C ratio
which is shallower (drops off more slowly) at low energies. More
dramatically, in e.g. e+/e−, because e− and p are injected with the
same slope and the e+ secondaries have energy ∼ 0.1 times their p
progenitors, a steeper ψinj gives a lower value of e+/e− at a given
R or E, and a sharper “kink” in the distribution, while shallower
ψinj gives a higher e+/e− (rising more continuously to low-E). The
CR kinetic energy density (normalization of the spectra) is slightly
sub-linear in the injected CR fraction εcr, as lower CR pressure al-
lows slightly more rapid gas collapse and star formation, raising the
SFR and CR injection rate (see Hopkins et al. 2020b). The lepton-
to-hadron ratio injected translates fairly closely to the e−/p ratio at
∼ 1− 10GeV, for realistic diffusivities where losses are not domi-
nant at ∼ 1GeV.

• Scattering Coefficients: Parameterizing the scattering coeffi-
cient as: ν̄ = ν̄0βR−δGV , recall this corresponds to Dxx ≈ βD0 RδGV

(with D0 ≈ c2/9 ν̄0) in the often-assumed isotropic strong-scattering
flux-steady-state negligible-streaming limit. Our preferred model
has (in cgs units) ν̄0 ∼ 10−9 (D0 ≈ 1029), δ∼ 0.5−0.6. As shown in
Fig. 3, lowering δ produces a “flatter” (nearly energy-independent)
B/C ratio and systematically higher e+/e− and p̄/p ratio at ener-
gies & 1GeV, as well as flatter CR spectral slopes ψobs for high-E
hadrons (where the residence time is primarily determined by dif-
fusive escape), as expected. Larger δ has the opposite effects (as
expected), but also large-enough δ & 1 (see also Appendix B) at
low energies increases B/C and makes hadronic and leptonic slopes
more shallow, by increasing the effect of losses via slower transport.
Even a modestly-lower δ∼ 0.3 is strongly disfavored, given the fact
that we cannot “remove” the halo here to compensate for the flatter
B/C predicted. A much-higher δ > 1 is also clearly ruled out, and

these limits are robust even after marginalizing over the assumed
injection spectra.

Changing the normalization ν̄0 has the obvious effects of e.g. in-
creasing/decreasing the secondary-to-primary ratio and normaliza-
tion11 of the spectra, but more interestingly also has a strong ef-
fect on the shape of the CR spectra (and scaling of secondary-to-
primary ratios with p), where larger ν̄0 (lower diffusivity) produces
shallower slopes for hadrons. This arises from the non-linear com-
petition between the various loss terms (which become stronger at
lower-ν̄0) and escape, and is generally a larger effect for hadrons
(where the loss timescales are systematically shorter at lower-E) as
compared to leptons (except for the very lowest ν̄0 considered, e.g.
D0 . 1027 cm2 s−1).12

• Ionization & Coulomb Losses: Fig. 4 shows that if we artifi-

11 Briefly, at lower ν̄0 in steady-state with all else equal, the CR energy
density should increase ∝ ν̄−1

0 . But as we decrease ν̄0 (1) the size of the
CR scattering halo also decreases (making this dependence weaker) and (2)
losses become important even for∼GeV protons, so the CR energy density
cannot continue to increase.
12 It is worth commenting on the behavior of 10Be/9Be with varying ν
in Fig. 3 (and Appendix B). Naively we would expect that, all else equal,
10Be/9Be should decrease with increasing CR “residence time” between sec-
ondary production and arrival at the Solar system, hence be lower for higher
ν̄. And at low CR energies, we often see behavior consistent with this (but
the effects are weak and somewhat non-linear, owing to the non-zero effects
of streaming and losses controlling the residence time, instead of diffusive
escape). At high-energies, however, we clearly see 10Be/9Be increase with
ν̄ (either from increasing ν̄0, or increasing δ at T �GeV). While some
of this owes to lower-ν̄ runs sampling an effectively smaller CR scattering
halo and source region, most of the effect owes to the fact that the runs with
larger ν̄ also produce much higher B/C at these energies. At ∼ 100GeV,
for B/C& 0.3 (much higher than observed, but predicted in these models if
we artificially increase ν̄), B actually dominates over C in producing 10Be
(Moskalenko & Mashnik 2003), with a significantly higher ratio of 10Be
to 9Be production factors. So what we see is effectively that tertiary 10Be
production from B becomes important (though we caution that many of the
relevant cross sections are not well-calibrated at these energies).
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cially disable ionization losses, the low-E spectra of p, e−, CNO,
and many other species are significantly more shallow, and the B/C
ratio also becomes flat below ∼ 100− 200MeV (in conflict with
the Voyager data). At these densities and diffusivities, the effect of
disabling Coulomb losses alone is relatively weak compared to ion-
ization, however if we either consider the spectrum in much more
tenuous gas (a poorer match to observations overall) or higher dif-
fusivities, then the relative role of Coulomb losses increases until
both are comparable. The Coulomb or ionization loss time at low
energies is ∼ 1Myr(T/10MeV)(n/cm−3)−1 Z−2, so this is easily
shorter than CR diffusive lifetimes at low-E (see also § A, Figs. A2
& A3), and they (Coulomb & ionization losses) scale almost iden-
tically, the only difference is whether they act in neutral or ion-
ized gas. So if CRs are spread uniformly in volume (e.g. owing to
efficient diffusion) then the ratio of losses integrated over CR tra-
jectories or volume is just the ratio of total ISM+inner CGM gas
mass in ionized vs neutral phases (see e.g. Hopkins et al. 2021e,
for a derivation of this), which is O(1) in the ISM (with modestly
more gas in neutral phases, but not by a large factor). However as
shown below, the lowest-energy CRs are not infinitely-diffusive, so
the CR energy density and loss rates at low rigidities are higher in
denser gas, which tends to be neutral (explaining why ionization
losses have a larger integrated effect at low rigidities than Coulomb
losses). In either case, for low-energy hadrons (with γ ∼ 1, i.e.
not ultra-relativistic), this gives ∆tres ∝ p2 (mildly non-relativistic)
or ∆tres ∝ p3 (highly non-relativistic; at T � 100MeV), giving
ψobs ∼ 0 (assuming the usual injection spectrum), i.e. a “flat” in-
tensity at intermediate energies turning over to ψobs ∼ −0.8, i.e.
an intensity ∝ T 0.4 in the low-energy/sub-relativistic regime, as
observed. For electrons e− (with β ≈ 1 and γ � 1) this gives
∆tres ∝ p1, so ψobs ∼ 1 (intensity ∝ T−1), also as observed.

• Hadronic/Catastrophic/Spallation/Pionic/Annihilation Losses:
Obviously, we cannot get the correct secondary-to-primary ratios
if we do not include these processes; our question here is whether
these processes strongly modify the primary spectrum. Annihilation
serves to “cut off” the spectrum of p̄ and e+ around their rest-mass
energies. Radioactive losses here only shape the 10Be ratios. As for
the spectra of CRs, at LISM conditions, the e− and p population
(as required by the e+/e− and p̄/p ratios and γ-ray luminosity) is
mostly primary, with relatively modest catastrophic losses, so we
see in Fig. 4 that such losses do not dramatically reshape the spec-
tra of these primaries (of course, they can do so in extreme envi-
ronments like starbursts, which reach the proton calorimetric limit).
Nonetheless removing the actual losses from e.g. pionic+hadronic
processes does produce a non-negligible increase in the p spectrum,
and artificially boosts B/C owing to the “retained” primaries pro-
ducing more B, and the lack of losses of B from spallation, which
are actually significant under the conditions where B/C would nor-
mally be maximized.

• Inverse Compton & Synchrotron Losses: Fig. 4 also shows that
if we disable inverse Compton (IC) & synchrotron losses, the high-
E e− and e+ spectra become significantly more shallow, basically
tracing the shape of the p spectrum (set by injection+diffusion).
The magnitude of the change to the spectrum therefore depends
on the assumed ν̄(p) scaling (compare e.g. Appendix B, where
we consider a reference model with δ ∼ 1, where the effect is
somewhat smaller). For high-energy leptons, IC+synchrotron loss
times are ∼ 1Myr(T/100GeV)−1 [(uB + urad)/3eVcm−3]−1, so
shorter than diffusive escape times (again see § A, Figs. A2 &
A3), and this ∆tres ∝ p−1 produces ψobs ∼ 3, as observed. Since
IC & synchrotron scale identically with the radiation & magnetic
energy density, respectively, whichever is larger on average domi-
nates (volume-weighted, since CR transport is rapid at these p).

Even in the MW, it is actually not always trivial that the

synchrotron losses should be comparable to IC losses, since
in many Galactic environments, uB � urad. Consider some ba-
sic observational constraints in different regions, noting uB =
0.02eVcm−3 B2

µG. First, e.g. the CGM, where B� 1µG (Farnes
et al. 2017; Prochaska et al. 2019; Vernstrom et al. 2019; Lan &
Prochaska 2020; Malik et al. 2020; O’Sullivan et al. 2020), but
urad cannot be lower than the CMB value ≈ 0.3eVcm−3; or at
the opposite extreme consider typical star-forming complexes or
OB associations or superbubbles (where most SNe occur) with
observed upper limits from Zeeman observations in e.g. Crutcher
et al. (2010); Crutcher (2012) of 〈|B|〉. 10µG(n/300cm−3)2/3 ∼
5µG(MGMC/106 M�)−1/3 (inserting the GMC size-density rela-
tion; Bolatto et al. 2008) compared to observed urad ∼ 300eVcm−3

averaged over the entire regions out to∼ 200pc and∼ 104 eVcm−3

in the central ∼ 40pc (Lopez et al. 2011; Pellegrini et al. 2011;
Barnes et al. 2020; Olivier et al. 2020).13 But the ratio uB/urad

is maximized in the WIM phases with n ∼ 0.1− 1cm−3, urad ∼
1.3eVcm−3 (the ISRF+CMB; Draine 2011) and B ∼ 1− 10µG
(uB ∼ 0.02−2eVcm−3 Sun & Reich 2010; Jansson & Farrar 2012;
Haverkorn 2015; Beck et al. 2016; Mao 2018; Ma et al. 2020b). In
Fig. 6, we show a quantitative plot of this for the same simulation
as Fig. 4, comparing the energy density in different (radiation, mag-
netic, CR, thermal) forms, as a function of local gas density, just
for gas in the Solar circle. This agrees well with the broad obser-
vational constraints above, and indeed shows that uB/urad is max-
imized in the WIM phases. The fact that this is a volume-filling
phase, and that CRs diffuse effectively (so that the total synchrotron
emission is effectively a volume-weighted integral) ensures the syn-
chrotron losses are not much smaller than the inverse Compton in
the integral, allowing for the standard arguments (e.g. Voelk 1989)
to explain the observed far infrared (FIR)-radio correlation (at least
within the > 1dex observed 90% inclusion interval; Magnelli et al.
2015; Delhaize et al. 2017; Wang et al. 2019).14

As a consequence of this, in Fig. 4, we see that the effect of re-
moving synchrotron losses on the e− spectrum is generally compa-
rable to the effect of removing IC losses, but the synchrotron losses
are somewhat larger at energies . 20GeV which contain most of
the e− energy (thus in a “bolometric” sense synchrotron dominates
over IC losses), while IC losses slightly dominate at even larger en-
ergies. This owes to the fact that higher-energy CRs (being more
diffusive) sample an effectively larger CR scattering halo, therefore
with loss rates reflecting lower-density CGM gas where urad & uB.
• Re-Acceleration (Convective, Streaming/Gyro-Instability, and

Diffusive): We discuss the different “re-acceleration” terms in de-
tail below in § 3.3. In Fig. 4, we see that removing each of the
three re-acceleration terms in turn has relatively small effects. The
convective term can have either sign, while the “streaming” term is
almost always a loss term, and the “diffusive reacceleration” term is
a gain term; on average for CRs we see the sum of the three (usually
dominated by the convective term) results in a weak net loss term
on average.

For the sake of comparison with historical Galactic CR transport
models which usually only include the “diffusive re-acceleration”
term with an ad-hoc or fitted coefficient, we run one more test
(“Maximal Diffusive Reacceleration x10”) where we artificially
(1) turn off both the convective and streaming re-acceleration/loss

13 This can also be derived taking the observed nearly-constant MW cloud
surface density and star formation efficiency and convolving with the IMF
for a young SSP, see Lee & Hopkins (2020).
14 It is worth noting that other authors have shown that even if IC losses
are significantly larger than synchrotron, the FIR-radio correlation is not
strongly modified, when one accounts for secondary processes, radiation
escape, and other effects (Lacki et al. 2010; Lacki & Thompson 2010; Wer-
hahn et al. 2021c).
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terms, which are generally larger and have the opposite sign; (2)
adopt ν̄ = 10−8 s−1 R−1

GV, so Dpp is a factor∼ 10× larger at∼ 1GeV
and ∼ 100× larger at ∼MeV compared to our “preferred” values
(closer to what would be inferred in a “leaky box” model with no
halo); (3) further replace our expression for the Dpp terms derived
directly from the focused CR transport equation with the more ad-
hoc expression ṗ/p = (1/9)(v2

A/κ‖) |∂ ln f/∂ ln p| ∼ (4/9)v2
A/κ‖,

about ∼ 5 times larger than the value we would otherwise obtain.
With this (intentionally un-realistic) case we find noticeable effects
with a steeper low-E slope and a more-peaked B/C, reproducing the
very large implied role of diffusive re-acceleration for CR energy in
some previous models.

• Streaming Terms (Non-Symmetric Scattering): Per § 2.2, we
assume by default (motivated by SC models) that scattering is
anisotropic in the fluid frame such that ν+ 6= ν−, giving v̄A f̄1 ≈
vA | f̄1|. Although this is almost always expected, if somehow the
scattering were perfectly isotropic in that frame and the Alfvén
frame, we would have v̄A→ 0, so the Dµp term (which gives rise to
CR “streaming” motion at veff→ vA in the strong-scattering ν̄→∞
limit) and Dpµ term (the “streaming loss”; § 3.3) vanish. Since we
do not predict ν̄± here, in Fig. 4 we compare a run where we sim-
ply set v̄A = 0. This makes only very small differences. Even for
the scaling adopted in Fig. 4, ν̄ ≈ 10−8 s−1 R−1

GV, and reasonable
vA ∼ 10kms−1, the streaming velocity only dominates over the dif-
fusive velocity (∼ κ |∇e|/e ∼ c2/(ν̄ `grad)) at E . 100MeV. For
our preferred model with smaller and more-weakly-R-dependent
ν̄ ≈ 10−9 s−1 R−0.5

GV , streaming only dominates at .MeV.
Note, however, that in this study v2

A ≡ |B|2/4πρ is the ideal MHD
Alfvén speed. As discussed in Hopkins et al. (2021e), for low-
energy CRs where the frequency of gyro-resonant Alfvén waves
is much higher than the ion-neutral collision frequency, the CR
streaming speed in a partially-ionized gas is the ion Alfvén speed
v2

A, ion ≡ |B|2/4πρion, which can be very large in molecular clouds
with typical ρion . 10−7 ρ. If we simply use this everywhere, we
find in Fig. 4 that it has a significant effect, making the low-energy
slopes shallower in p and e and lowering the peak B/C, as the
CRs escape neutral gas nearly immediately without losses. How-
ever properly treating this regime requires a self-consistent model
for self-confinement including the damping terms acting on gyro-
resonant waves, which we defer to future work.

• Numerics: For extensive tests of the numerical implementation
of the spatial CR transport, we refer to Chan et al. (2019); Hopkins
et al. (2021e, 2020b). Briefly, however, we have also considered
some pure-numerical variations here in Fig. 5, including: (1) re-
placing the generalized closure relation in Eqs. 1-2 with the simpler
“isotropic” closure from Hopkins et al. (2021a), which assumes the
CR DF is always close-to-isotropic, closer to e.g. the formulation in
Thomas & Pfrommer (2019), or going further and using the older
(less accurate) formulation of the CR flux equation from Chan et al.
(2019). This makes very little difference, as CRs are indeed close-
to-isotropic and the timescale for the flux equation to reach steady-
state (where the formal differences in these formulations vanishes)
is short (∼ ν−1) compared to other simulation timescales (as argued
in e.g. Zweibel 2017; Hopkins et al. 2021a,b; Thomas & Pfrommer
2021). (2) We have also considered the effect of simply assuming
the ultra-relativistic limit always in the spatial transport terms in-
cluding the “re-acceleration” terms, instead of correctly accounting
for β. This is purely to test how the more accurate formulation al-
ters the results; removing the β dependence in these terms artifi-
cially makes the low-energy spectra more shallow and lowers the
low-energy (� 1GeV) B/C while raising 10Be/9Be. So it is impor-
tant to properly include these terms. (3) We have re-run our fidu-
cial and several parameter-variation models with both the FIRE-
2 and FIRE-3 (Hopkins et al. 2022) versions of the FIRE code,
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Figure 6. Correlation of different energy densities with gas density in gas
around the Solar circle (galacto-centric radius R = 7−9kpc). Radiation erad
is roughly constant at low densities owing to the semi-uniform ISRF+CMB,
and rises in dense star-forming regions, but is sub-dominant or compara-
ble to magnetic eB at intermediate volume-filling densities, so synchrotron
losses for leptons are dominant or comparable to inverse Compton. CRs are
diffusive but not infinitely so, so follow a power-law ecr ∝ n0.4−0.5 between
uniform (n0) and pure-adiabatic (n4/3). The “jumps” in thermal eth arise
from phase transitions (primarily hot to warm at n� 0.01cm−3, warm to
cold at n� 1cm−3). These dependencies translate to different loss pro-
cesses dominating with different rates in different ISM phases. It also pro-
duces systematic differences in CR spectra, losses, and ionization rates with
density and galacto-centric radius.

which utilize the same fundamental physics and numerical meth-
ods, but differ in that FIRE-2 adopts somewhat older fits to quan-
tities like stellar evolution tracks and cooling physics. This has no
significant effects on any CR quantities we examine in this paper.
Finally (4) we have tested various “reduced speed of light” (RSOL)
values (which limit the maximum free-streaming speed of CRs to
prevent extremely small timesteps). As extensively detailed in Hop-
kins et al. (2021a) our numerical formulation is designed so that
when the system is in steady-state, the RSOL has no effect at all
on solutions, so long as is faster than other relevant speeds in the
problem. Our default tests here adopt an RSOL of c̃ = 104 kms−1,
which is more than sufficient for convergence, but in several model
variants including raising/lowering ν̄(1GV) by ±1 dex, and chang-
ing the slope ν̄ ∝ R−δ from δ = 0.3− 1, we have tested values
c̃ = 300− 3× 105 kms−1 = (0.001− 1)c. We find that at ∼ 1GV,
we can reduce c̃ as low as ∼ 500− 1000kms−1 and obtain con-
verged results; but for the highest-energy CRs (which can reach dif-
fusive speeds ∼ κ |∇ecr|/ecr ∼ 0.1c) we require c̃ & 3000kms−1

for converged results with this particular RSOL formulation (Eq. 50
from Hopkins et al. 2021a, as compared to the formulation from
Eq. 51 therein which converges more rapidly, but potentially less-
robustly in some conditions).15

15 As shown in Hopkins et al. (2021a), with the RSOL formulation used
here, if the background conditions are in steady-state then the steady-state
CR predictions are strictly RSOL-independent. However, the time required
to come into this steady state is increased by a factor ∼ c/c̃. For this rea-
son, we must (with this formulation) run our c̃ = 3000kms−1 simulation
somewhat longer (beginning at z = 0.075) to ensure it converges to steady
state. If the characteristic CR escape or loss times (which normally set this
timescale) with the true c̃ = c are ∼ 1− 10 Myr, then for c̃ . 300kms−1,
this becomes∼ 1−10 Gyr, timescales over which we cannot treat the galaxy
as being in “steady state,” thus we do not expect our results with this method
to converge for such low c̃.
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3.3 On Re-Acceleration, “Adiabatic,” and “Streaming Loss”
Terms

We generically find that re-acceleration plays a modest to mini-
mal role (see Fig. 3). But there are three different “re-acceleration”
terms, per Eq. 7, and contradictory conclusions in the literature. We
therefore discuss the physics of each in turn, to assess their rela-
tive importance. We will discuss physical behaviors in both self-
confinement (SC) and extrinsic-turbulence (ET) limits.

3.3.1 “Adiabatic” Term

First, consider the “adiabatic” term, ṗ/p = ṗad/p = −D : ∇u ∼
O(∇·u). Despite its simplicity, in a complicated flow there are con-
tributions to∇u from modes on all scales λ, which we can decom-
pose as ∼ δu(λ)/λ. In a standard turbulent cascade, δu(λ)/λ ∼
1/teddy(λ) ∼ λ−(1/2−2/3) (depending on the cascade model) is
larger on small scales. Galactic fountains, pure gravitational col-
lapse/fragmentation cascades, etc., all produce similar results in
this respect (see Elmegreen 2002b; Vázquez-Semadeni et al. 2003;
Krumholz & McKee 2005; Klessen & Hennebelle 2010; Kim et al.
2013; Krumholz & Burkert 2010; Ballesteros-Paredes et al. 2011;
Kim & Ostriker 2015b). However, the quantity of interest (what
actually determines the net effect on the CR spectrum and en-
ergy) is not actually ṗad/p, but a mean (volume-averaged) time-
integrated (over the CR travel time) 〈ṗad〉, which it is well-known
from many galactic/ISM theoretical and observational studies (Sta-
nimirovic et al. 1999; Elmegreen 2002a; Décamp & Le Bourlot
2002; Mac Low & Klessen 2004; Block et al. 2010; Bournaud et al.
2010; Hopkins 2013a; Squire & Hopkins 2017) is dominated by the
largest-scale modes which are coherent over λ ∼ H, the disk scale
height.16 Briefly, this can be understood with a simple toy model.
Since ∇u has either sign, and modes on small scales λ compared
to the total CR travel length ` along b̂ are un-correlated, then av-
eraging over CR paths (assuming a diffusive 3D random walk in
space with λ� `) or averaging over volume d3x (equivalent if the
CRs are in steady-state or we assume ergodicity), the coherent ef-
fect of the modes is reduced by a factor of ∼ N−1/2

modes ∼ (`/λ)−3/2.
So for any realistic spectrum the largest coherent modes domi-
nate the integral, and for any realistic disk structure these must
have λ ∼ MIN(`, H) ∼ H (for the energies of interest), giving
O(〈D :∇u〉)∼O(t−1

dyn) with the disk dynamical time tdyn ∼ 35Myr
at the Solar position.

The magnitude of the coherent effect of this term can then
be estimated as ∆p/p∼O(∆tres 〈D :∇u〉)∼O(∆tres/tdyn). Since
at R & 1GV, the residence time ∆tres decreases with R, this term
is most important at lower energies, as expected. The sign is not
a-priori obvious, however. But again note the averaging above:
if CRs diffuse efficiently, so the CR density is not strongly de-
pendent on the local gas density, then the CR travel time integral
above is dominated by the most volume-filling phases of the ISM
and inner halo/corona traversed. These diffuse phases are the ones
most strongly in outflow, so more often than not, the appropriately-
weighted 〈D :∇u〉> 0 (for detailed discussion of how the adiabatic
term depends on ISM phases, see Pfrommer et al. 2017; Chan et al.
2019), and the net effect of this term is usually to decrease CR en-
ergies. Because the effect is weaker at higher CR energies, in a vol-
umetric sense this has the net effect of making the CR spectra more
shallow (i.e. if Jobs ∝ p−α, this decreases α). But we stress, again,

16 For our purposes, the largest modes with λ ∼ H where H is the disk
scale-height or Toomre length have, by definition in a trans or super-
sonically turbulent ISM, |∇u| ∼ Vc/rdisk ∼ 1/tdyn, where tdyn is the galac-
tic dynamical time (Elmegreen & Efremov 1997; Gammie 2001; Hopkins
2013b; Hopkins & Christiansen 2013).

that the sign of the effect will be different in different Galactic en-
vironments.

3.3.2 “Streaming” Term

Next consider the Dpµ or “streaming” term ṗ = ṗst =−〈µ〉 D̄pµ or
ṗst/p =−ν̄ (v̄A f̄1)/(v f̄0) =−ν̄ (v̄A/c)F ′e /(3cP′0), where F ′e and P′0
are the CR energy flux and pressure in a narrow interval in p. In SC-
motivated models, as discussed in detail in Hopkins et al. (2021a)
and noted above, the asymmetry in ν+ and ν− gives v̄A f̄1≈ vA f̄1, so
the ratio of the “streaming” Dµp to “diffusive” Dpp terms is always
≥ Fe/vA e∼ veff/vA (where veff is the effective bulk transport speed
of CRs) – i.e. it dominates whenever the CRs move at trans or super-
Alfvénic speeds, which is usually true. Moreover, as shown in Hop-
kins et al. (2021a) or seen by plugging into Eq. 1-2, in flux-steady-
state the sum of these two terms becomes ṗst/p =−ν̄ [ f̄1/ f̄0 v̄A/v−
χψ v2

A/v2]→ −[vA |b̂ · ∇P0|/3P0 + ν̄ |ψ/(2 + 2β2))|(vA/γ β c)2].
This term is negative-definite, representing the “streaming losses”
(energy lost to gyro-resonant instability as the CRs move), and the
leading term is∼ vA/`grad, cr where `grad, cr = 3P0/|b̂ ·∇P0|. Compar-
ing this to the magnitude of the adiabatic term, we have | ṗad/ṗst| ∼
(|u|/vA)(`grad, cr/`grad,u) & 1. Thus the “adiabatic” term is almost
always larger than the “streaming” term, because (a) on galaxy
scales the bulk turbulent and convective/fountain/inflow/outflow
motions are trans or super-Alfvénic (|u| & vA), and (b) CR diffu-
sion/streaming means that the CR pressure profile is almost always
smoother than the local gas velocity structure (`grad, cr� `grad,u).

In ET-motivated historical Galactic CR transport models, this
Dpµ term is often neglected, implicitly assuming that the scattering
modes are exactly symmetric in the co-moving and Alfvén frames
(ν+(µ) = ν−(µ), so v̄A→ 0). In reality, multiple effects break this
degeneracy: for example gyro/streaming instabilities (both resonant
and non-resonant) excite modes in one direction and damp in the
other, giving ν+� ν− or ν+� ν− (depending on the sign of 〈µ〉),
giving the SC behavior above. Even if these instabilities are negligi-
ble, symmetry is broken by advective/transport terms, potentially at
the order-unity level (see Zweibel 2017) – the symmetry-breaking
would have to be smaller thanO(vA/c) for the Dpµ term to be much
smaller than the Dpp term.

3.3.3 “Diffusive” Term

Now consider the Dpp or “diffusive” term ṗ = ṗdi ∼ 4 D̄pp/p2 ∼
ν̄ 4χ(vA/v)2. First note, as shown in Hopkins et al. (2021a), that
this term vanishes entirely when CRs approach a “free-streaming”
or highly-anisotropic distribution function limit (χ→ 0), and in any
weak-scattering (small ν) limit D :∇u (which does not depend on
ν) trivially becomes the dominant re-acceleration term.

The Dpp term is also, as noted above, guaranteed to be sub-
dominant in steady-state to the “streaming” term if streaming in-
stabilities are significant (e.g. in SC-motivated models). So in or-
der to estimate the maximum possible importance of the term,
let us assume ET-type models, with a nearly-isotropic DF, and
relatively low-energy CRs (where ν is larger) giving ṗad/p ≈
(2/3) ν̄ v2

A/v2 ≈ (2/27)v2
A/Dxx. Using the fact that in this limit,

the diffusive bulk transport speed is veff ∼ Dxx/2`grad, cr, the ratio
of the adiabatic ṗad term to this diffusive ṗdi term is | ṗad/ṗdi| ∼
(10)(|u|/vA)(veff/vA)(`grad, cr/`grad,u)� 1, as each of the four (...)
terms is & 1. Even comparing this value of the diffusive term in
the ET limit to the “streaming” term, if we include the minimal
advective symmetry-breaking terms above, we see |ṗdi| . |ṗst| for
reasonable coefficients.

Finally, even if we ignore these other re-acceleration terms, it
is difficult for ṗdi to have a large effect: since the magnitude scales
as ∝ v2

A/Dxx ∝ ν̄ v2
A/c2, the re-acceleration time is (ṗdi/p)−1 ∼
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30Gyr(β2 ν̄/10−9 s−1)(10kms−1/vA)2, so it requires unrealisti-
cally small diffusivities (large ν̄) and/or large vA to reach the regime
where it could have an order-unity effect on the CR spectrum,
and even in that regime would require residence times longer than
hadronic or ionization loss timescales, leading to net losses.

3.3.4 Summary

In summary, for almost any internally-consistent (let alone
physically-plausible) ET or SC models for ν̄ and large-scale mo-
tions, there is a robust ordering of the three re-acceleration terms:
|ṗad| & |ṗst| & |ṗdi|, i.e. the “adiabatic” term ∼∇u, which is itself
dominated by the driving-scale motions with λ∼ H and O(∇u)∼
1/tdyn is largest, with the “streaming” or gyro-instability loss (Dpµ)
term intermediate, and the “diffusive” or micro-turbulent (Dpp) re-
acceleration term smallest. In the LISM, tdyn ∼ 35Myr, generally
longer then CR residence/loss timescales, though not completely
negligible near the peak of the CR spectrum, so this can have a
O(1) effect on the peak amplitude (which is energetically plausible
for convective/adiabatic terms, as the energy in ISM turbulence and
bulk outflows is generally larger by a factor of at least several than
CR energies) but weak effects elsewhere in the CR spectrum. We
also see this directly plotting the relevant loss timescales in § A.

Previous studies which inferred a dominant role of diffusive
CR re-acceleration gains generally (1) require un-realistic ener-
getics in this component (as cautioned by Drury & Strong 2017);
(2) ignored both convective and streaming loss terms which, for
any realistic model, offset the diffusive term as described above;
(3) adopted un-realistically low diffusivities (high ν̄) appropri-
ate for e.g. leaky-box models but not models with a more re-
alistic halo, so Dpp is much larger than it should be; and (4)
treat the normalization of the diffusive-reacceleration as arbitrary,
e.g. through “fitting” the value of vA that appears in Dpp, and
adopt order-of-magnitude larger values than physically allowed
here. This can easily be seen from Eq. 7: the diffusive-only re-
acceleration timescale is p/ṗ ∼ v2/4χν̄ v2

A ∼ (c/vA)2 (2/ν̄) ∼
106 Myr(n/cm−3)(B/µG)−2 (ν̄/10−9 s−1)−1. Without invoking
orders-of-magnitude lower ν̄ or larger B, this cannot compete with
the streaming loss and adiabatic terms (timescale ∼ 10− 100Myr,
as noted above) let alone other CR loss/escape terms.

3.4 Where are Most CRs Accelerated?

There is an extensive literature using the abundance patterns of CRs
to constrain their acceleration sites; most of these studies have ar-
gued that most of the ∼MeV-TeV CRs followed here must come
from sites relatively near SNe, probably in “super-bubbles,” with
∼ 10% of the initial ejecta kinetic energy ending up in CRs (see
e.g. Higdon et al. 1998; Parizot et al. 2004; Becker Tjus & Merten
2020, and references therein). As illustrated in Fig. 7, we find the
same, and below we argue this must be the case from abundance,
energetic, and gravito-turbulent considerations.

3.4.1 Abundances: Most CRs Must Come From Initial SNe
Shocks

It has been argued by a number of authors that significant CR Fermi-
I acceleration could occur in shocks with modest Mach number of
just ∼ 5 or even lower (Ryu et al. 2003; Schure et al. 2012; Vink
& Yamazaki 2014; Guo et al. 2014). If this alone were sufficient to
produce an order-unity fraction of the “new” CRs/Fermi-I acceler-
ation to ∼GeV (we stress that Fermi-II acceleration from shocks is
included in our methods), then CRs could be continuously created
almost everywhere throughout the ISM, as it is well-established ob-
servationally that the majority of all the gas in the ISM is super-
sonically turbulent, with e.g. typical Mach numbers in the mas-
sive atomic and molecular clouds that contain ∼ 1/2 of the galaxy
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Figure 7. Top: Ratio of observed C/H in LISM CRs (at Solar-circle with gas
n = 0.3− 3cm−3) vs. CR energy in simulations (lines are median+shaded
ranges ±2σ) and observations (points), for three different assumptions
about where CRs are accelerated, which determines the injection abun-
dance ratios (see § 2.2.4). Our default (Mswept ≈ Mej) assumes CRs accel-
erate when the swept-up mass from SNe or stellar wind injection equals the
ejecta mass (i.e. around reverse-shock formation or the onset of the Sedov-
Taylor phase). For SNe (which dominate the sources) this is similar to as-
suming most acceleration occurs in shocks with velocity & 2000kms−1.
Blue/dashed line assumes efficient acceleration occurs through the end of
the Sedov-Taylor phase such that most of the total CR energy is produced
in the final stages when Mswept ∼ 3000M��Mej and the initial CR abun-
dances essentially trace the ambient ISM abundances (roughly Solar). This
gives C/H an order of magnitude lower than observed. Green/dotted shows
the result assuming acceleration with “pure” ejecta abundance ratios. The
results for N/H and O/H are almost identical, and do not depend strongly on
e.g. CR transport parameters. Bottom: Distribution of injection sites: PDF of
ISM circum-SNe gas densities just before explosion in the outer disk (radii
labeled), where most LISM CRs are accelerated. Despite stars forming at re-
solved densities n & 1000cm−3 in these simulations, most SNe (by number)
explode in evacuated (super)bubble-like regions.

gas mass typically ranging fromM∼ 10−100 (Evans 1999; Mac
Low & Klessen 2004; Elmegreen & Scalo 2004; McKee & Ostriker
2007). If these were the dominant sites of initial CR acceleration,
then the primary CR O/H ratio would just trace the ISM abundance,
with e.g. NO/NH ∼ 0.0005 (Lodders 2019). But in the LISM, the
ratio of NO/NH in CRs (where almost all O is primary) is ∼ 0.01
(Cummings et al. 2016). The qualitative discrepancy is the same if
we consider any of CNO or any heavier species from Ne through Fe.
Most other processes (re-acceleration, spallation, violations of the
test-particle limit in acceleration) make the discrepancy more, not
less, dramatic. This also rules out stellar winds as the source of most
CR acceleration: while AGB winds (which are very low-energy) are
mildly enhanced in CNO, even this is nowhere near sufficient, and
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faster OB/WR winds are so weakly enhanced that they give essen-
tially identical results to “pure ISM” acceleration.

If we assume acceleration near SNe, we can constrain the to-
tal ratio of “entrained” mass per SNe at the time of acceleration,
to the initial ejecta mass. Again, if the only requirement for effi-
cient CR acceleration were a Mach number M & 5, then accel-
eration would be efficient throughout the end of the Sedov-Taylor
and well into the snowplow phase of remnant evolution – we test
this directly in Fig. 7 by running a model where the swept-up mass
Mswept is given by the mass at the end of the Sedov-Taylor phase.
In general, at the end of the Sedov-Taylor phase for a clustered
group of NSNe, the shock velocity is vshock ∼ 200kms−1, and the
swept-up ISM mass is ∼ 3000NSNe M� (Cioffi et al. 1988; Walch
& Naab 2015; Kim & Ostriker 2015a; Hopkins et al. 2018a). The
initial ejecta metallicity has been completely diluted at this point,
predicting NO/NH ∼ 0.0005, again. Per § 2.2.4, if the accelera-
tion occurs from a mix of ambient gas and ejecta when the shock
has entrained a mass Mswept, then the CR NO/NH ≈ (N′O, ej Mej +
N′O, ISM Mswept)/(N′H, ej Mej + N′H, ISM Mswept). If we instead assume
Mswept ≈ Mej (our default model), then we obtain NO/NH ∼ 0.008
for both core-collapse and Ia SNe, in excellent agreement with the
CR observations, as shown for C/H in Fig. 7 (we do not show O/H
but the conclusions are essentially identical). Theoretically, this is a
particularly interesting value, since it corresponds to the time when
the reverse shock fully-forms and propagates through the ejecta,
essentially to the “onset” of the shock and end of the ejecta free-
streaming phase. In any model where the CR acceleration efficiency
to ∼GeV is an increasing function of Mach number or an increas-
ing function of the shock kinetic energy dissipation rate, this will
be the phase which dominates acceleration.17 For completeness, in
Fig. 7 we also consider a model where CRs are accelerated with
“pure ejecta” abundances, i.e. Mswept → 0, which in contrast over
predicts the abundance of intermediate elements.

3.4.2 Energetics: Most CR Energy Comes From SNe Energy

If we assume that CR acceleration imparts a constant fraction
ε ∼ 0.1 of the thermalized/dissipated shock kinetic energy to CRs,
then we have directly verified that in our simulations most of the
CR energy comes from SNe, even if we allow CR injection at
ISM shocks of arbitrarily low Mach number. This is expected: inte-
grated over time and the stellar IMF, the kinetic energy input from
stellar mass-loss (dominated by fast O/B winds) is ∼ 10% that of
core-collapse SNe (Leitherer et al. 1999, 2014; Smith 2014; Rosen
et al. 2014; Eldridge et al. 2017). The input from proto-stellar ra-
diation and jets is only ∼ 1% of that from SNe, while the energy
from winds accelerated around remnants (e.g. PWNe, XRBs, etc.)
is even smaller still (Federrath et al. 2014; Bally 2016; Guszejnov
et al. 2021). From ISM shocks, our simulations reproduce the usual
result that the ISM turbulent dissipation rate is ∼ 1− 5% of the
SNe energy input rate (Hopkins et al. 2012a; Faucher-Giguère et al.
2013; Kim & Ostriker 2015a; Martizzi et al. 2015; Orr et al. 2018),
which also follows from the trivial order-of-magnitude expecta-
tion for super-sonic turbulence, Ė ∼ (1/2)Msweptσ

2
turb/tdyn, where

17 For the usual definition of CR acceleration efficiency η(M), the flux
of accelerated CRs in a strong shock is Fcr ∼ η(M)(1/2)ρV 3

sh (for shock
velocity Vsh and upstream density ρ), so the contribution to the total CR
energy in some time interval dt is dEcr ∝

∮
Fcr dt ∝ η(M) r2

sh V 3
sh dt ∼

η(M) r2
sh V 2

sh drsh (with rsh the shock radius). But in the Sedov-Taylor phase

(rsh ∝ Vsh t ∝ t2/5) this is just ∝ η(M)d ln rsh with M∝ r−3/2
sh . Thus,

any model where η(M) is an even weakly increasing function of M (as
expected qualitatively in most theories of diffusive shock acceleration, see
e.g. Blandford & Eichler 1987; Amato & Blasi 2005; Bell 2013) will pro-
duce most CR acceleration at the smallest rsh possible (i.e. the onset of the
Sedov-Taylor phase, when the reverse shock forms).

tcross = teddy(H) = H/σ = tdyn for any disk with Toomre Q ∼ 1,
given canonical MW-like values for Mswept ∼ 1010 M� and σturb ∼
10kms−1 with tdyn = r/Vc at the effective radius∼ 5kpc. What this
cannot tell us is “how close” to SNe CRs are accelerated (e.g. at
the onset or later in the shock), since by definition during e.g. the
Sedov-Taylor phase the shock energy is conserved – for this we re-
fer to the abundance argument.

3.4.3 Environment: Most SNe Explode in Super-Bubbles

If most CRs are accelerated “near” SNe (before they sweep up a
mass � Mejecta), it follows trivially in simulations like ours that
most CRs are accelerated in super-bubble environments, simply
because the majority of SNe explode in such environments. Note
this is weighted by number or energy, so most SNe come from
∼ 10M� stars that explode ∼ 30Myr after they reach the main se-
quence, well after more massive stars in the complex have exploded
and destroyed their natal GMCs; see e.g. Grudić et al. 2018a. We
have shown that the fact that most SNe energy goes into super-
bubble type structures (overlapping SNe shocks during the energy-
conserving phase) is true for FIRE simulations in a number of stud-
ies (Hopkins et al. 2012b, 2013c; Muratov et al. 2015; Escala et al.
2018), and many other simulation and observational studies have
shown the same (Walch & Naab 2015; Martizzi et al. 2015; Haid
et al. 2016; Fielding et al. 2018; Gentry et al. 2019; Li et al. 2019;
Grasha et al. 2019). And we also confirm this directly in Fig. 7.
Indeed, the fact that star formation (and therefore Type-II SNe)
are strongly clustered in both space and time are not just observa-
tional facts, but are generic consequences of any reasonable model
where gravitational collapse and hierarchical fragmentation (e.g.
from ISM to clouds to clumps to cores to stars) plays an important
role (Hopkins 2013a; Guszejnov et al. 2017a, 2018; Grudić et al.
2018b).

If superbubble type environments have typical densities n ≡
0.01n0.01 cm−3 (per Fig. 7), and the majority of the CR accel-
eration occurs early in the Sedov-Taylor phase when the shock
forms and the dissipation rate is maximized, i.e. when the entrained
mass is ∼ Mejecta ∼ 10M�, then the characteristic shocks occur
at radii ∼ 20n−1/3

0.01 pc, after ∼ 104 n−1/3
0.01 yr of free-expansion, with

the “ambient” mass being primarily SNe-enriched material and a
characteristic delay time between events (i.e. delay time seen by
the ambient medium before the accelerating shock) of ∆tSNe ∼
2×105 yr(Mcl/104 M�)−1 in terms of association stellar mass Mcl.
All of these properties agree well with the constraints from CR ob-
servations (e.g. detailed isotopic ratios) argued for in Higdon et al.
(1998); Parizot et al. (2004); Becker Tjus & Merten (2020).

3.5 Variations Across and Within MW-Like Galaxies

3.5.1 Variation With Galactic Environment

In Fig. 8 we note that the variation in the CR spectra can be signifi-
cant, and quantify some of these variations and their dependence on
the local Galactic environment. We have examined how the spec-
tra vary as a function of local ISM properties including: galacto-
centric radius, height above the midplane, gas density, temperature,
ionization fraction, local inflow/outflow velocity, magnetic energy
density, radiation energy density, turbulent dissipation rate, star for-
mation or SNe rate per unit volume, plasma β, and other properties.
For most of these, there is some correlation with CR spectra, but
it is important to remember that all of these parameters are them-
selves mutually correlated within a galaxy; as a result most of the
systematic variation with the properties above can be captured by
the dependence on galacto-centric radius r and local gas density n,
shown explicitly in Fig. 8.

The dependence on galacto-centric r in Fig. 8 (even at fixed
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Figure 8. Comparison of CR energy spectra (p, thick, and e, thin) vs. en-
vironmental properties, as Fig. 2. Top: Spectra vs. galacto-centric radius
(allowing for the entire range of gas densities at each R). The CR spec-
tra depend strongly on R, with higher normalization (tracing higher source
density+proximity) as R→ 0, but also harder intermediate-energy hadronic
spectra & shifted leptonic, owing to more rapid losses. Middle: Spectra vs.
gas density n at fixed galacto-centric radii R = 7−9kpc. At fixed R, there is
still significant dependence on n. High-energy CRs, which diffuse rapidly,
exhibit weaker variations. Low-energy CRs exhibit dramatic systematic de-
pendence, as their lower diffusivity leads to “trapping” in dense gas. Bottom:
Spectra vs. gas temperature at fixed n = 0.1− 1cm−3 and R = 7− 9kpc.
After controlling for n and R, there is little systematic dependence on tem-
perature or other phase properties (ionization state, magnetic field strength),
but there is still substantial variation in low-energy CR spectra, especially in
hot gas, reflecting the stochastic nature of SNe super-bubbles.
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Figure 9. Correlation between CR kinetic energy density in bins of CR en-
ergy/momentum/rigidity (decr/d lnT ) and gas density (n), in gas at the Solar
circle (R = 7−9 kpc). For CR protons in a narrow interval of energy at these
radii, we fit the correlation decr/d lnT ∝ nα (as in Fig. 6) to a power-law
slope α, and show the best fit α (line) with the ±1σ range (shaded), as a
function of CR energy T . This can also be considered an “effective adiabatic
index” dPcr/d lnT ∝ ρα at each T . Low-energy CRs approach the adiabatic
relativistic tight-coupling limit α→ 4/3 (slightly lower, as losses also in-
crease at high-n for low-energy protons, and offset the adiabatic increase in
ecr). High-energy CRs being more diffusive become more spatially-uniform
with α→ 0.

n, T , |B|, etc.) is easily understood: towards the galactic center, the
source density is higher, and assuming CRs are efficiently escap-
ing, steady-state requires that the kinetic energy density be some
declining function of galacto-centric radius r (see Hopkins et al.
2020b). Specifically, ecr∝ Ėcr(< r)/2πDxx r for a spatially-constant
isotropic-equivalent diffusivity Dxx ∼ κ‖/3 ∼ v2/9 ν̄ (where Ėcr is
the injection rate, proportional to the SNe rate) if losses are neg-
ligible. This scaling provides a reasonable description of what we
see outside of a few hundred pc, in fact, and the CR kinetic energy
density therefore drops by an order of magnitude (or more) between
the equivalent of the Galactic Central Molecular Zone (r . 400pc)
and Solar neighborhood/LISM (r ∼ 8kpc). The spectra towards the
Galactic center are also shallower/harder in hadrons (at intermediate
rigidities from ∼ 0.01− 10GV), while being steeper/softer in lep-
tons: this owes to the fractional importance of losses. The Galactic
center has much higher neutral gas/nucleon/radiation/magnetic en-
ergy densities overall, so the loss rates are all enhanced: this makes
the hadronic spectra (where loss rates increase at low energies) shal-
lower/harder and leptonic spectra (where loss rates increase at high
energies) steeper/softer.

At a given galacto-centric r, e.g. at the Solar circle (r ∼
8kpc),18 there is much less variation, but there is still a significant
systematic dependence on the local gas density n, seen also in Fig. 8.
Higher-density environments have higher CR energy density: again
this is qualitatively unsurprising, since (a) in the “tight coupling”
limit ecr ∝ n4/3, (b) even without tight-coupling, the “adiabatic” re-
acceleration term is typically positive in denser regions, and typ-
ically negative in low-density regions, and (c) denser regions are
positively correlated with CR sources (e.g. SNRs). Figure 9 quan-
tifies how CR energy density/pressure scales with gas density, as a
function of CR energy or rigidity, giving a quantitative indication
of “how tightly coupled” CRs are to gas (which is also crucial for
understanding how CRs do or do not modify thermal behaviors of

18 Note that the galactocentric radii in Fig. 8 are spherical radii, so some of
the variation with density reflects gas at different scale-heights; we consider
in more detail the difference between the variation along the disk midplane
cylindrical radius versus vertical height above the disk below in § 3.5.4.
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Figure 10. CR spectra in different Milky Way-like galaxies (as Fig. 3). We
select three of the most “Milky Way-like” galaxies (m12i, m12f, m12m)
from cosmological simulations in our large FIRE suite (Garrison-Kimmel
et al. 2019a), and compare CR spectra for each, restricted to Solar circle
(R = 7− 9kpc) and LISM-like densities (n = 0.1− 1). Differences in de-
tailed galaxy properties (e.g. exact spatial distribution of star formation, disk
thickness, etc) do not qualitatively change any of our conclusions, but can
quantitatively shift our predicted spectra by amounts similar to their ∼ 1σ
scatter at a given (R, n) – an amount much larger than the LISM observa-
tions’ statistical error bars (compare Fig. 2). We therefore caution against
over-interpreting detailed features at this level.

the gas such as the classical thermal instability; see Butsky et al.
2020). At the highest energies for hadrons, the effect is negligible,
owing to fast diffusion (the CR density is basically un-coupled from
the gas density), while at the lowest energies the effect is strongest
(the small diffusivity produces tight coupling). Thus the net effect
is that lower-density regions at a given galacto-centric radius have
slightly harder CR spectra with lower total energy density (opposite

the effect with galacto-centric radius). The effect at the highest den-
sities for leptons is a bit more complicated owing to the non-linear
effects of IC and synchrotron losses. As discussed below, this has
important implications for CR ionization.

Even controlling for galactocentric radius and gas density,
there is still large variation in the total CR kinetic energy density,
with the 90% inclusion interval (−2σ to +2σ range) spanning
nearly ∼ 3dex (∼ 0.7dex 1σ range) at the lowest energies or for
certain species (with smaller ∼ 0.2dex variation in the energy den-
sity of e.g. high-energy protons where diffusion is rapid and losses
minimal). This scatter does not primarily come from a systematic
dependence on a third variable that we can identify (e.g. any of
the variables noted above) – the residual dependence on e.g. gas
temperature, etc., in Fig. 8 is minimal. Rather, this appears to owe
mostly to effectively stochastic variations in space and time: the
combination of e.g. multiple second-order/weak correlations, how
many SNe recently occurred in a given vicinity and how strongly-
clustered they were in both space and time, the recent turbulent or
gravitational collapse history (how strong and with what sign and
on what spatial scale the net recent re-acceleration terms acted), the
local turbulent magnetic field geometry relative to the large-scale
CR gradients, etc.

3.5.2 Variation with Time

We can also examine the variations of CR spectra with time in a
given galaxy. We can do this either by simply taking the CR spec-
tra in different regions as above (§ 3.5.1) at different snapshots near
z ∼ 0 (separated by some ∆t – we typically output ∼ 100 snap-
shots spaced over the time range simulated), or, because our code is
quasi-Lagrangian, we can explicitly ask how the CR spectrum seen
by an individual Lagrangian gas parcel varies in time. Comparing
simulation snapshots at different times before z = 0, we find that
on sufficiently small timescales ∆t � tdyn, smaller than the galaxy
dynamical time (∼ 100Myr), the variations are small as expected:
the galaxy and source distribution and bulk ISM properties by def-
inition evolve on slower timescales and even if the CR escape/loss
timescales are more rapid, they simply converge to quasi-steady-
state (for fiducial simulation, the differences in median spectra be-
tween snapshots are comparable to or smaller than the differences
between e.g. the median and mean curves shown in Fig. 2). On very
large timescales ∆t ∼ tH & Gyr of order the Hubble time, we are
asking an effectively different question (how CR spectra vary with
cosmic time, or as a function of redshift), and the galaxy is fun-
damentally different: this is a key question for understanding e.g.
the FIR-radio correlation but is qualitatively different from what
we seek to understand here and we require fully-cosmological sim-
ulations run for a Hubble time to address it, so we defer this to
future work. On intermediate timescales tdyn . ∆t . Gyr, the vari-
ations in time at a given r, n are largely effectively stochastic, with
a similar amplitude to the differences between different galaxies in
Fig. 10 or differences in position within a galaxy – i.e. the statistics
of the CR spectra are effectively ergodic. In principle there are some
events (e.g. a starburst, large galaxy merger, etc.) which could cause
a substantial deviation from this, but recall our galaxies our chosen
for their MW-like properties which means we specifically selected
systems without such an event between z ∼ 0− 0.1 (so we would
require dedicated simulations of different galaxy types to explore
this).

3.5.3 Variation Across MW-Like Galaxies

Next compare variation across different MW-like galaxies. Fig. 10
specifically compares our m12i, m12f, and m12m halos, at the
same cosmic time: these three halos produce arguably the three
“most Milky Way-like” galaxies in the default FIRE suite, and
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Figure 11. CR properties versus Galactic spatial position in detail. Top: Mean (volume-averaged) number density of CR protons in cylindrical midplane
(height |z|< 1 kpc) radial annuli of radius R (left), and as a function of vertical height within the Solar circle (7kpc< R< 9kpc; right), in narrow bins of CR
energy or momentum (labeled). The profiles are normalized at (R, z) = 0 to compare all energies easily. We consider galaxy m12m because the large bar/disk
warp in m12i at R ∼ 10kpc (see Fig. 1) complicates the geometric structure, but trends are similar in m12i and m12f. Vertical profiles within a few kpc of
the Solar circle are close to exponential with scale-height increasing from ∼ 1− 10kpc for ∼ 5 MeV to ∼ 1 TeV, owing to increasing CR diffusivity. The
midplane profile has more complicated structure and less clear separation owing to the extended source distribution but is qualitatively similar. Bottom: CR
γ-ray emissivity (calculated from the CR spectra; 5−95% range light shaded, with lines showing the γ-ray emission-weighted mean) versus midplane R (left)
or height at the Solar circle (right). We compare our three different Milky Way-like galaxies (Fig. 10) to observations compiled from EGRET (Digel et al.
2001) and Fermi-LAT (Ackermann et al. 2011; Tibaldo 2014; Tibaldo et al. 2015, 2021; Acero et al. 2016; Yang et al. 2016), shown as the dark shaded bands
(with 1σ upper limits in the vertical profile denoted with an arrow). We compare predictions and measurements both for lower photon energies > 100MeV
(thin blue/green higher values at left; grey at right) and > 1GeV (thick pink/red lower values at left).

all have been extensively compared to each other and to different
MW properties in previous studies (see Ma et al. 2016; El-Badry
et al. 2018a,b; Sanderson et al. 2018; Bonaca et al. 2017; Gurvich
et al. 2020; Guszejnov et al. 2020a; Garrison-Kimmel et al. 2019b;
Benincasa et al. 2020; Samuel et al. 2020). There are some non-
negligible differences in detail between the systems, many appar-
ent in Fig. 1: for example, in this particular set of runs, m12f has
a slightly higher mass and more extended gas+stellar disk, with a
hotter CGM halo; m12i has a slightly more rising star formation
history in its outskirts (making them bluer) and a strong bar which
induces a warp and a slight central “cavity” in the SFR, akin to
the MW central molecular zone (see Orr et al. 2021); m12m has a
less centrally-peaked rotation curve, and a pseudobulge driven by
bar-buckling (Debattista et al. 2019). But given the large uncertain-
ties in characterizing the MW’s star formation history and present-
day spatial distribution of star formation over the entirety of the
Galactic disk (let along the disk+halo gas & magnetic field struc-
ture across the entire galaxy, not just the Solar neighborhood), these
are all broadly “equally-plausible” MW analogs (for more detailed
discussion, see Sanderson et al. 2020).

We see systematic differences between the three galaxies

which are comparable to the dispersion in CR spectra within a
galaxy. Even though these are all very similar (relative to e.g. other
∼ L∗ galaxies of much earlier or later type), the detailed differences
above produce some systematic differences in the spatial distribu-
tion and degree of clustering of SNe, the local PDF of gas and radi-
ation and magnetic field energy densities (and therefore losses and
secondary production rates), and other related quantities. This goes
further to show that differences in the details of the local structure
of the ISM are crucial for interpreting CR spectra at better than
order-of-magnitude level.

3.5.4 Comparison with γ-ray Observations

Fig. 11 further compares the variation of CR properties with Galac-
tic environment to constraints from diffuse Galactic γ-ray emis-
sion. First, we show the spatial dependence from Fig. 8 in more
detail, specifically plotting the CR proton number or energy density
in narrow bins of CR energy or rigidity as a function of Galactic
position. We decompose the spherical radial trend from Fig. 8 into
cylindrical coordinates, comparing the CR profile in the disk mid-
plane versus cylindrical galactocentric radius, and at the Solar circle
(∼ 8 kpc cylindrical) as a function of vertical height above the disk.
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We see the expected trend: owing to less-efficient diffusion, lower-
energy CR protons have shorter radial and vertical scale-lengths. In
the vertical direction (again, at the Solar circle), the CR profiles are
approximately exponential (ncr(Ecr, |z|)∝ exp(−|z|/h[ecr])) within
a few kpc of the disk,19 and the vertical scale-height increases sys-
tematically with CR energy, from ∼ 0.5−1 kpc at ∼ 1−5MeV to
∼ 2kpc at∼ 1−3Gev to∼ 6−10kpc at∼ 0.3−1TeV. In the mid-
plane radial direction the qualitative trends are similar but the pro-
files deviate more strongly from a single exponential and differ from
one another more weakly as a function of energy, owing to the con-
tinuous distribution of sources populating the disk and much larger
range of galactocentric scales considered. This confirms, however,
that there is an extended CR halo, whose size increases as a func-
tion of CR energy. The dependence of profile shape on energy is
generally weaker at low energies (.GeV), owing to the fact that
low-energy hadrons (with low diffusivity) have residence times in-
creasingly dominated by losses.

Fig. 11 compares to observations of the inferred CR emissiv-
ity in γ-rays at energies Eγ > 100MeV and Eγ > 1GeV. We cal-
culate the emissivity directly from the CR spectra (including pion
production from protons and heavier nuclei, as well as e+ and p̄ an-
nihilation), with the same cross sections used in-code (see § 2.2 and
e.g. Dermer et al. 2013). We caution that there can be spatial vari-
ations in emissivity from e.g. nearby clouds or Galactic structures
even at a given galactocentric radius (see Ackermann et al. 2012 and
note that detections and upper limits in Fig. 11 at the same distance
range often differ in emissivity by much more than their statistical
error bars), and that there are often very large distance uncertainties
(which are themselves model-dependent) regarding where observed
emission actually originates, so it is important to compare the ob-
served points and uncertainty range to the full range (shaded area)
predicted. With that in mind, the simulations agree quite well with
both the radial and vertical trends, at a range of different γ-ray/CR
energies. Comparing our three different galaxy models, we note that
there are some appreciable differences in the profiles especially in
the galactic nucleus (which is sensitive to the instantaneous state of
the galaxy, e.g. whether there has been a recent nuclear starburst,
while the Milky Way appears to be in a period of quiescence; Orr
et al. 2021), and at large radii (where the less-extended star forming
disk in m12i owing to its bar and warped disk structure noted in
Fig. 1 leads to a more rapid falloff at & 15kpc).

Note that the above applies to protons (other hadrons are sim-
ilar). The electrons (leptons) behave differently, however, owing to
the more complicated role of losses. Considering the electron ver-
tical profiles at the Solar circle, for example, we see the e− scale-
height decreases with increasing energy weakly (by ∼ 20%) from
1→ 50MeV where diffusivities are very low so transport is dom-
inated by advection and streaming, then increases with energy (by
a factor of ∼ 2 from 50MeV to 50GeV) at intermediate energies
where losses are not dominant (outside the disk) and diffusivity in-
creases with energy, then at & 50−100GeV the scale height starts
to drop significantly with increasing energy owing to rapid inverse
Compton and synchrotron losses even in the halo.

We have also compared the variation of the mean predicted
spectral index (αγ in I ∝ E−αγ ) of the emissivity as a func-
tion of midplane radius R to FERMI observational estimates from
Acero et al. (2016) and Yang et al. (2016). Interestingly, at energies
∼ 3− 30GeV which dominate the fitted indices in those observa-
tional studies, our m12i run at z = 0 produces a trend very similar

19 In Fig. 11 we see that there is, especially at low energies, a steeper initial
falloff at small |z| followed by a somewhat shallower vertical profile. This
reflects the fact that the quasi-exponential vertical profile transitions to a
more quasi-spherical, power-law profile in the CGM, at sufficiently large
radii where the disk/source geometry is no longer important.

to that observed (wherein α peaks with a very steep/soft value at
. 2kpc in the galactic center, then falls rapidly by ∆αγ ∼ 0.4−0.6
with increasing R to shallower/harder values from R ∼ 2− 6kpc,
then gradually increases/steepens again by ∆αγ ∼ 0.3 out to R ∼
10− 20kpc). However, our m12m and m12f runs at z = 0 do not
show the same trend (they show a weaker trend of αγ with R, with
occasionally opposite sign); moreover analyzing different snapshots
shows this varies in time, as well. This is because the γ-ray emis-
sion (scaling as∼ ngas ncr) is sensitive to the densest emitting regions
in each annulus, which have different spectral slopes at intermedi-
ate energies as shown in Fig. 8; moreover as discussed in Acero
et al. (2016) this can also depend on variations in losses (as some
dense regions reach calorimetric losses) and the structure of out-
flows (with advection modifying transport speeds). As such, these
higher-order trends, while possible to reproduce, are sensitive to the
instantaneous dynamical state of the galaxy.

3.5.5 Implications for the CR Ionization Rate

A number of studies have attempted to compare the CR ionization
rate ζ inferred from the observed molecular line structure of GMCs,
to the rate one would get from simply extrapolating the LISM CR
spectrum. Although these inferences of ζ must be taken with some
caution as the values are strongly model-dependent and have poten-
tially large systematic errors, a number of independent studies in
e.g. Indriolo et al. (2009); Padovani et al. (2009); Indriolo & Mc-
Call (2012); Indriolo et al. (2015); Cummings et al. (2016) have
concluded that there must be some variation in ζ between nearby
molecular gas in GMCs in the Solar neighborhood (where the in-
ferred ζ ∼ 10−16 s−1) and the (predominantly ionized, much-lower-
density) LISM (which has an implied ζ ∼ 10−17 s−1). Similarly, In-
driolo et al. (2015) showed there must be significant variation with
galacto-centric radius (with larger ζ towards the Galactic center).

Recalling that CR ionization is dominated by low-energy CRs
with E . 100MeV, the variations we have described above im-
mediately provide a potential explanation for all of these obser-
vations. We can make this more rigorous by directly calculating
the CR ionization rate from our spectra, as shown in Fig. 12. Fol-
lowing Indriolo et al. (2009),20 and consistent with our assumed
in-code CR ionization rates (corresponding to the CR ionization
losses in § 2.3.1), we take: ζ ≡

∑
s 4π 1.5

∫ Thigh
Tlow

Js(T )σs(T )dT

with Tlow ≈ 2MeV/n, Thigh ≈ 107 MeV/n, and σs(T ) ≈ 7.63 ×
10−20 cm2 Z2β−2 (1− 0.069β2 + 0.16 log10 [γ β]), and calculate ζ
in every cell in our simulations. We can then weight by the actual
total ionization rate of molecular gas (∝

∫
d3xζ(x)nH2 (x)) to com-

pare to the GMC observations which measure molecular indicators.
First, we examine which CRs contribute primarily to the ion-

ization rate. As expected, these are low-energy CRs, primarily pro-
tons, but there is a broad range of energies which contribute sim-
ilarly to the total ionization rate, and low-energy electrons are not
totally negligible.

By definition, since our “fiducial” model roughly reproduces
the observed low-energy Voyager CR spectra of e− and p, it should
also approximately reproduces the LISM-inferred ζ ∼ 10−17 s−1

in diffuse ionized gas of the appropriate densities, and we see in
Fig. 12 that this is indeed the case. But we also see immediately
in Fig. 12 that this reproduces the observed ζ ∼ 10−16 s−1 in dense
molecular gas at the Solar neighborhood. The reason is simply the

20 Note our definition is slightly different from Indriolo et al. (2009), who
also multiply by the parameter ξs = 0, 1.5, 2.3 in ionized or atomic or
molecular gas respectively, to account for secondary ionizations. We cor-
rect the observations by this factor so they can be compared directly: i.e. we
define ζ such that an exactly identical CR spectrum will produce an identical
ζ, regardless of the ambient non-relativistic gas properties.
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Figure 12. Comparison of CR ionization rates vs. environment. Top: Dif-
ferential contribution to the total CR ionization rate ζ from CRs with dif-
ferent kinetic energies, from p (thick) and e (thin; all other species are sub-
dominant) in different gas densities n at the Solar circle (R = 7− 9 kpc). A
broad range of energies contribute, with the lowest-energy CRs dominant
in the most-dense gas. Usually p dominate. Middle: Total ionization rate
ζ (summing all CR energies and species) vs. gas density at fixed galacto-
centric radius R = 7− 9kpc. Enhanced ionization in GMC environments
(high densities, compared to LISM n∼ 0.1−1cm−3) arises naturally. Bot-
tom: Ionization rate ζ vs. galacto-centric radius (weighted by total ionization
rate of neutral gas). The enhanced nuclear CR densities lead to strongly-
enhanced ζ as R→ 0. We compare observational estimates in Indriolo et al.
(2015), from dense GMC molecular line tracers. Error bars show the range
of distance and inferred ζ for each cloud; points show individual upper lim-
its and detections without error bars treating each velocity sub-channel of
each cloud as a separate system and using kinematic models to place it at its
own distance.

combination of (1) the dependence of low-energy CR densities on
gas density discussed in § 3.5.1 and shown explicitly in Fig. 12 for
the ionizing spectra in different gas environments, together with (2)
the fact that the observations are sensitive to a total-ionization-rate-
weighted-mean in molecular gas, which will always (by definition)
give a systematically higher value than the volume-weighted mean
or median in a medium with variations. Likewise, for the same rea-
sons detailed above, these models naturally reproduce the observed
trend of ζ with Galacto-centric radius, again shown in Fig. 12. Here,
to compare the simulations with observations even heuristically,
we simply take a total actual-ionization-rate-weighted average, so
weighted somewhat towards more dense gas, at various galacto-
centric annuli, and compare with compiled observations of dense
GMC cloud cores, attempting to account for the large systematic
uncertainties in their distances.

We stress that this is occurring as described above in the low-
energy CRs: some of the CR ionization studies above assumed,
based on γ-ray observations, that the CR background must be more
smooth; however the observed γ rays are dominated by orders-of-
magnitude higher-energy CRs, which as shown in § 3.5.1 are in-
deed distributed much more uniformly. Of course, we cannot rule
out models which depend on physics not modeled here, such as
a different, steep injection population at even lower CR energies
(. 1MeV) from some sources which are not massive stars, as ex-
plored in e.g. Cummings et al. (2016); Gaches & Offner (2018);
Offner et al. (2019).

4 CONCLUSIONS

We have presented and studied the first live-MHD galaxy formation
simulations to self-consistently incorporate explicitly-evolved CR
spectra (as opposed to a single field simply representing the total CR
energy). As such we explicitly follow the ISM+CGM gas dynam-
ics (inflows, outflows, fountains, ISM turbulence, super-bubbles,
etc), thermal phase structure of the gas, magnetic field structure,
alongside spectrally-resolved CR populations from∼MeV-TeV, in-
cluding protons p, electrons e−, anti-protons p̄, positrons e+, in-
termediate primaries like C, N, O, stable secondaries B, 7Be, 9Be,
and radioactive secondaries 10Be, with a network that allows for
all the major CR evolutionary processes. We also adopt a recently-
developed detailed treatment of the CR transport equations which,
unlike the commonly-adopted “isotropic Fokker Planck” equation
does not impose any assumptions about strong scattering, isotropic
scattering rates or magnetic field structures, etc, but instead includes
all terms from the Vlasov equation to leading order in O(u/c)
(where u is the Galactic fluid velocity), and gives much more gen-
eral expressions for terms like the “re-acceleration” terms com-
monly invoked.

From the point of view of understanding CR transport physics,
the fundamental advantage of these models as compared to tra-
ditional historical models which treat the Galaxy with a simpli-
fied time-static analytic model (ignoring or making different as-
sumptions for e.g. inflows/outflows, turbulence, source distribu-
tions, etc), is that many terms which can, in principle, be freely ad-
justed or varied in those analytic models (e.g. presence or absence
or “size” of the “halo,” presence of inflows/outflows, structure or ab-
sence of turbulent/fountain motions, structure or neglect of the mag-
netic field structure, inhomogeneous density/ionization/magnetic
field strength/radiation energy density variations in the ISM and
therefore rates of all loss terms, ratios of injected primaries, etc.) are
determined here by the self-consistent cosmological evolution. This
removes tremendous degeneracies and allows us to explore some
crucial sources of systematic uncertainty in those models (which
remain order-of-magnitude).
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From the point of view of constraining CR models for appli-
cation in Galaxy formation simulations, the models here allow us
to calibrate CR transport assumptions in far greater detail and rigor
than is possible with “single” bin models (where one can compare
e.g. the total γ-ray emission from p→ pion production to observa-
tions, but this provides only a single, galaxy-integrated data point
for a few galaxies). In the future, we will explore detailed syn-
chrotron spectra from these models in external galaxies. This will
allow us to explore the consequences of CRs in other galaxies with
much greater fidelity.

4.1 Key Conclusions

We show the following:

(i) It is possible to (roughly) match Solar/LISM CR constraints
with simple transport and injection models. Specifically assuming a
single-power-law injection spectrum with a standard slope (∼ 4.2),
single-power-law scaling of the CR scattering rate with rigidity
ν̄ ∝ βR−δ and δ ∼ 0.5− 0.6, following all the major loss/gain
processes with their expected (locally-varying) rates. As expected,
in the LISM, we show that the shape of the high-energy hadronic
spectra are regulated by injection+escape (dependence of scatter-
ing rates on rigidity), while high-energy leptonic spectral shapes
are regulated by synchrotron+inverse Compton losses, and low-
energy leptonic+hadronic spectra are regulated (primarily) by ion-
ization+Coulomb losses.

(ii) “Large” halo sizes are inevitable & favored. The normal-
ization of the halo structure is not a free parameter in our models.
Indeed, it is now well-established that a majority of the baryons
and significant magnetic field strengths extend to hundreds of kpc
around galaxies in the CGM, so it is un-avoidable that the “thin
disk” or “leaky box” model would be a poor approximation. In
terms of the idealized cylindrical CR scattering halos sometimes
adopted analytically, in the limit of diffusive CRs, the correct “ef-
fective” halo size (defined as the region interior to which a CR has
a non-negligible probability of scattering to Earth) will always be
(up to an order-unity factor) the same as the Solar circle radius
r� ∼ 8kpc). This in turn means that relatively low CR scattering
rates (giving relatively high effective diffusivities), compared to
decades-older “leaky box” models which ignored the halo+CGM,
are required. Our inferred scattering rate at ∼ 1GV, ν̄ ∼ 10−9 s−1,
is in fact in excellent agreement (within a factor of ∼ 2, despite
enormous differences in model details) with most recent analytic
Galactic CR transport models, almost all of which have argued that
a scattering halo21 with effective size ∼ 5− 10kpc is required to
match the LISM observations (Blasi & Amato 2012a; Vladimirov
et al. 2012; Gaggero et al. 2015; Guo et al. 2016; Jóhannesson et al.
2016; Cummings et al. 2016; Korsmeier & Cuoco 2016; Evoli et al.
2017; Amato & Blasi 2018; Korsmeier & Cuoco 2021; de la Torre
Luque et al. 2021).

(iii) Re-acceleration terms are not dominant, and obey a generic
ordering. There are three terms which can act as “re-acceleration”:
the “adiabatic” or non-inertial frame term ṗad = −pD : ∇u, the
“streaming loss” term ṗst = −〈µ〉D̄pµ ∼ −p ν̄ (v̄A/c)(F/ec), and
the “diffusive” or “micro-turbulent” re-acceleration term ṗdi =

21 As discussed in § 3.1.3, the term “halo” in the CGM literature generally
refers to the extended gas (and cosmic ray) distribution on tens to hundreds
of kpc scales (out to or past the virial radius), while in the CR literature it
often refers to a region confined to a few kpc above/below the disk (also
often called the “thick disk” or “corona” or “disk-halo interface”). The “CR
scattering halo” specifically refers here to the effective volume interior to
which CRs have a non-negligible probability of scattering back interior to
the Solar circle.

4 p−1 D̄pp ∼ p ν̄ (vA/c)2. We show that for almost any physically-
realistic structure of the ISM in terms of vA, u, etc. and allowed
values of ν̄, there is a robust ordering with |ṗad| & |ṗst| & |ṗdi| at
&GV, and that these terms have at most modest (tens of percent)
effects on the total CR spectrum.

(iv) Most .TeV Galactic CRs are accelerated in SNe shocks, in
super-bubbles, early in the Sedov-Taylor phase (after the reverse
shock forms). Observed abundances of intermediate and heavy pri-
mary elements in CRs are all consistent, to leading order, with a
universal single-power-law acceleration spectrum with all species
tracing their in-situ abundances in the test particle limit if we as-
sume CRs are accelerated with an efficiency ε ∼ 10% of strong
shock energy when the shock first forms – i.e. when the entrained
mass of ambient ISM material is approximately equal to the initial
ejects mass (Mswept ≈Mej). This is naturally predicted if CRs accel-
erate when the shock first “forms,” and therefore the kinetic energy
dissipation rate and Mach number are maximized. If instead accel-
eration occurred primarily in stellar wind/jet shocks, diffusive ISM
shocks with Mach number � 1, or throughout the entire Sedov-
Taylor phase of SNe remnants, then the abundances of CNO at
∼MeV-TeV would be under-predicted by factors of ∼ 20. Given
the favored conditions, most MW acceleration occurs in SNe shocks
within super-bubble-type conditions.

(v) CR spectra vary significantly in time & space, both systemat-
ically and stochastically. With more realistic Galactic models, sub-
stantial variations are expected between and within Galaxies. CR
energy densities decrease with increasing galacto-centric radius r
(∝ 1/r, for constant scattering rates, over a range of radii) and spec-
tra are harder in hadrons, softer in leptons towards the Galactic cen-
ter, owing to differences in loss rates and source spatial distribu-
tions. We show this naturally reproduces Galactic γ-ray emissivity
observations, though γ-ray-inferred variations in spectral shape can
be sensitive to the local dynamical state of the dense γ-ray emit-
ting gas in the Galactic center. At the Solar circle, the CR spec-
tra still vary significantly with local environment and gas density
n, with e.g. CR kinetic energy density ∝ n0.5 (i.e. higher in more-
dense environments) – the effect is stronger at lower CR energies
owing to tighter coupling with the gas, while becoming negligi-
ble at & 100GeV. Even controlling for e.g. r, n and other variables
(temperature, etc.), the scatter in particularly low-energy CR spectra
from point-to-point in space or time or between galaxies can vary
by orders of magnitude (∼ 90% interval of ±1.5dex at . 10MeV),
owing to the enormous inhomogeneities in local source distributions
(clustered star formation & SNe), loss rates (orders-of-magnitude
variation in local densities, ionization fractions, radiation energy
densities, etc.), and local gas dynamics (e.g. local inflow/outflow,
turbulence structure). This provides a natural explanation for obser-
vations which have inferred a different CR ionization rate in local
molecular clouds (compared to the diffuse LISM observed by Voy-
ager) and different ionization rates at different Galactic positions.

4.2 Future Work

This is only a first study and there are many different directions in
which it can be extended. In future work, we will explore predic-
tions for a wide range of galaxies outside of the MW, from dwarfs
through starbursts and massive ellipticals, at both low and high
redshifts. With the models here, we can make detailed forward-
modeled predictions for spatially-resolved synchrotron spectra in
these galaxies, to compare to the tremendous wealth of resolved
extragalactic synchrotron studies. We can also forward-model the
γ-ray spectrum, which provides a key complementary constraint,
albeit only in a few nearby galaxies.

We stress that the extremely simple (and constant in space and
time) scaling of the scattering rates adopted here, ν̄ = ν0βR−δGV , is
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purely heuristic/empirical. This is quite radically different, in fact,
from what is predicted by either traditional “extrinsic turbulence”
models for CR scattering or more modern “self-confinement” mo-
tivated models. In both of those model classes the local scattering
rates (e.g. across different ISM regions at the Solar circle) can vary
by many orders of magnitude in both space and time, on scales
smaller than the CR residence time or disk/halo scale height, as a
strong function of the local turbulence properties, plasma-β, neutral
fractions, magnetic field strength, gas density, and other parameters
(Hopkins et al. 2021e). These effects simply cannot be captured in
standard CR transport models which adopt simplified static analytic
models for Galactic structure. The most interesting application of
the new methods here, which attempt to combine more detailed CR
propagation constraints with detailed, live galaxy simulations that
explicitly evolve those parameters, is therefore likely to be explor-
ing and making detailed predictions from those more physically-
motivated CR transport/scattering models, in a way which was pre-
viously not possible.

It will also be particularly important, especially with a variable
ν̄, to investigate how local variations in plasma properties mod-
ify CR loss and other key timescales commonly assumed in ana-
lytic models for CR transport or observables such as the FIR-radio
or γ-ray-SFR relations. For example, the “effective” or mean syn-
chrotron loss timescale 〈tsynch〉 at some CR energy represents a com-
plicated weighted average over different ISM regions, so can dif-
fer significantly from the synchrotron loss timescale estimated us-
ing just the volume-averaged mean magnetic field value. Exploring
where and when these differences are important in detail will be an
important subject for future study.
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APPENDIX A: CR DRIFT VELOCITIES AND LOSS
TIMESCALES

Here we present and discuss the characteristic CR drift velocities
and different loss timescales in LISM conditions.

A1 Typical LISM Drift Velocities

Fig. A1 presents the typical “drift velocities” of the CRs, ex-
tracted directly from our fiducial simulation (Fig. 2) at z = 0.
Specifically, we define the drift velocity in standard fashion as
vdrift ≡ |FE

cr |/ecr = |Fcr · b̂|/ecr = |v f̄1|/ f̄0 = |〈µ〉|β c (per Eq. 1-2
or § C1) measured independently for CRs of each given species s
in a narrow range of rigidity (for simplicity, we extract this just at
the bin center, for each bin). This is the coherent net drift speed
of those CRs along b̂, relative to the gas. We restrict to LISM-
like gas (galacto-centric radius 7kpc < R < 9kpc, vertical position
|z| < 0.5kpc, gas densities 0.3cm−3 < n < 3cm−3), and weight
the mean and distribution of vdrift by the contribution to the CR
flux, i.e. 〈vdrift〉 = (

∫
ecr vdrift d3x)/(

∫
ecr d3x) (so the mean CR flux

is |FE
cr |= 〈vdrift〉〈ecr〉).
We see that the drift speeds for different species are broadly

similar as a function of CR energy, and (over most of the plot-
ted range) follow a scaling vdrift ∼ 300kms−1 (T/GeV)0.3. This
corresponds well to the expected “diffusive drift speed” vdiff

drift ∼
κeff/`grad, cr, assuming tangled magnetic fields so the effective
isotropically-averaged diffusivity is κeff ∼ v2/(9 ν̄) (with our fidu-
cial ν̄ = 10−9 s−1 R−0.6

GV ) and a CR gradient scale-length `grad, cr ≡
ecr, s/|∇ecr, s| ∼ kpc(T/GeV)0.3. But that scaling of the gradient
scale-length `grad, cr is very similar to what we found by directly
plotting the vertical CR profiles (at energies & 100MeV) in Fig. 11
(see § 3.5.4). Importantly, because as we showed there the CR scale
height increases (weakly) with CR energy, the resulting CR drift
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Figure A1. Typical CR “drift velocities” (§ A1) vdrift ≡ 〈µ〉β c = |vcr f̄1|/ f̄0
extracted directly from the simulations for our fiducial model (Fig. 2), in the
frame comoving with the gas, measured for Solar-circle (7kpc< R< 9kpc)
disk (|z| < 0.5kpc) LISM-like (0.3cm−3 < n < 3cm−3) gas, as a func-
tion of species (labeled) and CR energy. We plot the mean (thick line) and
5− 95% interval (shaded range), weighted by CR energy density at each
species/rigidity (evaluated just at the “bin center” rigidities). Typical LISM
drift velocities scale as vdrift ∼ 300kms−1 (T/GeV)0.3, corresponding to
expected diffusive drift ∼ κeff, iso/`grad, cr for CR gradient scale lengths
`grad, cr ∼ kpc(T/GeV)0.3. The drift speeds scale more weakly with rigidity
than the scattering rates, because the CR scale heights also increase (weakly)
with CR energy (§ 3.5.4). The steeper scaling for high-energy leptons and
low-energy nuclei owes to the dominant role of losses (§ A1). We also com-
pare the mean Alfvén speed in the same gas (horizontal line).

speed (∝ κeff/`grad, cr ∝ β2/ν̄ `grad, cr) varies less-strongly with en-
ergy than the diffusivity or scattering rate. This is a significant, if
subtle, distinction between the simulations here and many analytic
flat-halo diffusion models for CR transport, which assume a fixed
CR gradient scale-length or scale-height by construction in their
boundary conditions.

Note that the features in Fig. A1 which deviate from the trend
above are expected. For leptons at the highest energies (& 50GeV)
losses (synchrotron and inverse Compton) become so rapid that they
regulate the CR scale-height and it begins to decrease with CR en-
ergy (as `grad, cr ∝ T−0.3 or so; see § 3.5.4), so we expect a steeper
dependence vdrift ∝ κeff/`grad, cr ∝ R0.9 ∝ T 0.9, as seen. Similarly,
for heavier nuclei (B/Be/CNO) at very low energies (� 100MeV),
losses become so rapid that they regulate the CR scale height to be
essentially energy-independent, and the nuclei are sub-relativistic
(β � 1, so T ∝ β2 ∝ R2), so vdrift ∝ κeff/`grad, cr ∝ βR−0.6

GV ∝ T 0.8

again becomes steeper.
For reference we compare the mean (CR-energy-weighted)

Alfvén speed in the same gas, typically ∼ 12kms−1, correspond-
ing to |B| ∼ 6µG at these ISM densities (n∼ 1cm−3), as expected
from Fig. 6. For all but the very lowest-energy (. 10MeV) heavy
nuclei, the streaming is highly super-Alfvénic, as we discuss in the
main text. Of course, pure Alfvénic streaming could not produce the
correct scalings of e.g. B/C and other features we study even if the
typical Alfvén speed were a factor of ∼ 30−100 larger, because it
(by definition) gives an energy-independent drift velocity.

A2 CR Loss Timescales

We consider the CR loss timescales in Figs. A2 & A3. We again
focus on Solar-circle (7kpc < R < 9kpc) disk (|z| < 0.5kpc) gas,
and consider electrons and protons. For each loss or escape process
i, in cell j, for species s, at CR momentum p = p j, we define the ef-
fective loss timescale tloss, j,n,s,i as = p j,n,s/ṗ j,n,s,i for continuous CR
loss/gain processes, or = f̄0, j,n,s/ ˙̄f0, j,n,s,i for catastrophic losses, or
= `grad, cr, j,n,s/veff, j,n,s,i for different drift/escape terms. Expressions
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Figure A2. CR loss/escape timescales (§ A2) for Solar-circle (7kpc < R <
9kpc), midplane LISM gas (|z| < 0.5kpc, 0.3cm−3 < n < 3cm−3), for
electrons (e−; top) and protons (p; bottom). For each species and energy,
we measure the mean loss rate, weighted by total CR kinetic energy density
ecr (e.g. the contribution to the total CR energy flux/loss; thick lines), and
5− 95% range (shaded), as a function of CR energy per nucleon. We show
the rate corresponding to each process labeled. We confirm the trends dis-
cussed in § 3.2: at low energies (. 100MeV), Coulomb+ionization losses
are most important (determining the effective CR residence time); while at
high energies for leptons (& 50GeV) synchrotron+inverse Compton losses
dominate. At intermediate and (for hadrons) high energies, diffusive escape
(tloss ∼ `2

grad, cr/κeff ∼ (3`grad, cr/v)2 ν̄) regulates the residence times. Other
loss terms (e.g. Bremsstrahlung and catastrophic) are less important (though
not always negligible); advective and Alfvénic streaming/drift are relatively
minor effects; and the adiabatic, streaming loss, and diffusive reacceleration
terms obey the relative ordering described in § 3.3.

for ṗ and ḟ are given in § 2.3. For all species we show the following
continuous (ṗ) terms: Coulomb plus ionization losses (added to-
gether because they scale identically with CR properties); adiabatic
losses or gains; and the “streaming loss” and “diffusive reacceler-
ation” terms (§ 2.3.3). For electrons we also show Bremsstrahlung
and synchrotron plus inverse Compton losses (again grouped to-
gether given their identical scaling). For protons we show catas-
trophic losses (§ 2.3.1).

For the drift/escape terms, we define the loss rate as the
time to travel down the CR gradient length scale `grad, cr, j,n,s ≡
ecr, j,n,s/|∇ecr| j,n,s with some effective velocity veff, j,n,s,i. This is de-
fined so that for e.g. pure advection/streaming with constant veff, one
would simply have ėcr = ecr/tloss (making it comparable to the other
loss timescales defined above), but we stress that this is not gener-
ally equal to the true “escape time” of CRs from the Galaxy nor to
the “travel time” between CR sources and the Solar system, both of
which are typically longer as for example both `grad, cr and tloss will
tend to increase as the CRs travel above the disk through the inner
halo. Nonetheless it provides a useful comparison. We define the
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Figure A3. CR loss/escape timescales for Solar-circle ISM gas, as Fig. A2, for electrons (e−; left) and protons (p; right), but weighted by ISM gas mass
(top) or volume (bottom). Here we include gas in the disk around the Solar circle 7kpc < R < 9kpc, |z| < 0.5kpc, but include all gas densities n. In a gas-
mass-weighted sense the loss timescales are weighted towards higher-density gas so are shorter, particularly from ionization, synchrotron/inverse Compton,
and catastrophic processes. Catastrophic loss timescales are comparable to escape in the high-density gas. In a volume-weighted sense the loss timescales are
weighted towards low-density regions so are longer, and catastrophic losses are negligible in these regions. But the relative importance of different processes
is similar in both cases to that shown in Fig. A2.

“advective escape” velocity for simplicity as the vertical gas out-
flow velocity from the disk, veff = ugas, z z/|z| (more complex defini-
tions do not change our qualitative conclusions; see Muratov et al.
2017). This is roughly the time for outflows to advect CRs (with
zero drift/streaming speed) out of the disk midplane (though we
caution most of this material may not necessarily reach large galac-
tocentric radii). We define the “Alfvénic streaming escape time”
as the timescale for CRs to stream down their gradient at the lo-
cal Alfvén speed, giving veff = |vA ·∇ecr|/|∇ecr| where vA = vA b̂.
And we similarly define the “diffusive escape” speed as the mea-
sured drift speed in excess of the Alfvénic streaming speed down the
CR gradient, veff = (vdrift− veff,A) = |(v f̄1/ f̄0− vA) b̂ ·∇ecr|/|∇ecr|
using the values of f̄1 (or CR flux) directly from the simulation,
which allows for non-steady-state behaviors. As shown in Fig. A1,
if we just assumed the local-steady-state effective diffusivity so
veff = κeff/`grad, cr or tloss ∼ `2

grad, cr/κeff, we would obtain essentially
identical results.

In Fig. A2, we restrict to LISM gas densities (n ∼
0.3− 3cm−3) and weight the distribution by CR energy, defin-
ing the mean loss timescale for each process22 〈tloss〉−1 ≡
|
∫

ecr t−1
loss d3x|/

∫
ecr d3x, so that the total CR energy loss rate is

just Ėcr = Ecr/〈tloss〉. Note this means that terms with varying sign
(e.g. adiabatic or advective terms) are appropriately averaged so
that the mean is the net gain/loss timescale. Also, note that weight-

22 We plot the absolute value so some processes which are technically
“gains,” e.g. diffusive re-acceleration, can be compared on the same figure.

ing by CR energy density means that even terms which are strictly
CR momentum-independent at a given spatial location (e.g. the
adiabatic term) can have some population-averaged CR momen-
tum/kinetic energy dependence because the averaging weights to-
wards different cells/locations at different CR momenta.

Fig. A2 confirms all of the general conclusions discussed
in § 3.2, from our comparison of CR spectra adding/removing
these different gain/loss terms and simple analytic scalings. For
both electrons and protons, at low energies (. 100MeV), we
confirm that Coulomb-plus-ionization losses dominate, with their
loss time scaling analytically as expected: tloss ∝ T for electrons
(which still have β ≈ 1 at these energies) or ∝ T 1.5 for protons
(with β � 1 at � 100MeV). For electrons at the highest ener-
gies (& 50GeV), inverse Compton and synchrotron losses dom-
inate, producing a loss timescale that again scales as expected,
tloss ∝ T−1. For high energies in hadrons, and intermediate energies
in leptons, diffusive escape dominates, with tloss ∼ `2

grad, cr/κeff ∼
3Myrβ−1 R−0.6

GV (`grad, cr/kpc)2 decreasing with CR energy. How-
ever, as discussed in § A1 above, because `grad, cr increases with
CR energy (at least over the range where diffusive escape is most
important), the diffusive escape time is significantly more-weakly
dependent on CR energy, compared to the scattering rate or diffu-
sivity alone. The adiabatic, advective escape, and Alfvénic stream-
ing escape timescales are order-of-magnitude similar (and nearly
energy-independent), as expected in any medium where the charac-
teristic turbulent/fountain motions are broadly trans-Alfvénic (like
the warm ISM), and do not dominate the loss timescales. We also
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confirm that the three “re-acceleration” terms (adiabatic, streaming
loss, and diffusive re-acceleration) obey the expected hierarchy of
relative importance discussed in detail in § 3.3. Bremsstrahlung (for
electrons) and catastrophic losses (for protons) are also generally
sub-dominant, though not completely negligible in some environ-
ments. Recalling that the total loss/escape rate is given by the sum
of all these processes, we see that the loss/escape timescales are
maximized for CRs near the peak of the spectrum (∼ 0.1−1GeV),
at a few Myr (see also § C6.3).

To get some sense of how these numbers depend on environ-
ment, in Fig. A3 we re-calculate the same loss timescales, again in
Solar circle disk gas, but include all gas densities and weight by
either gas mass (biased to the high-density environments) or vol-
ume (biased to low-density environments). As expected, in denser
environments (which contain much of the ISM gas mass), the
loss timescales are shorter and the relative importance of both ra-
diative and catastrophic losses increases (with catastrophic loss
timescales becoming comparable to diffusive escape in e.g. GMC
environments). Conversely, in lower-density environments (con-
taining much of the ISM volume), loss timescales increase and ra-
diative+catastrophic losses are less important compared to diffu-
sive escape. But the qualitative behaviors and relative importance
of different terms, in a broad sense, is similar to what we found in
Fig. A2.

APPENDIX B: ADDITIONAL PHYSICS & PARAMETER
VARIATIONS

In § 3.2, Figs. 3, 4, & 5 compared the effects of different parameter
and physics variations on CR observables, by turning on and off
different physics or varying different parameters with respect to the
“reference” or best-fit model in Fig. 2.

We have explored a number of other variations as well, as de-
scribed in the main text, in order to identify robust trends and the
best-fit model compared to observations. Figs. B1, B2, & B3 illus-
trate some of these. These are identical to Figs. 3, 4, & 5, except
that we consider a different “reference” model as the baseline about
which parameters and physics are varied. Specifically here we take
a model with a fixed higher scattering rate (lower diffusivity) nor-
malization ν̄0 = 10−8 s−1, which is then re-tuned (fitting δ and ψinj)
to try and reproduce the spectra and B/C ratios as best as possible,
giving ν̄ ∼ 10−8 s−1βR−1

GV (i.e. δ = 1, with slightly-different ψinj =
4.3), as compared to main-text default ν̄0 = 10−9 s−1, δ= 0.5−0.6,
ψinj = 4.2. We stress that directly comparing this reference model to
the observations as in Fig. 2 shows that even with “re-fitting” δ and
ψinj at this ν̄0, the fit (comparing to Solar circle LISM data) is signif-
icantly more poor than our default main-text model: B/C is too flat
between ∼ 0.3− 100GeV (under-predicting B/C at < 3 GeV and
over-predicting B/C at > 3GeV), 10Be/9Be is systematically too-
high at ∼ 0.03− 100GeV, e+/(e+ + e−) is “too flat” (it does not
feature the “curvature” observed from ∼ 0.5− 300GeV), and the
spectra are too hard, under (over)-predicting the intensity of e− and
p at < 100GeV (> 100GeV).

Nonetheless, this provides a useful reference case to consider
the systematic effects of different physics and parameter variations
in Figs. 3, 4, & 5. Because of non-linear interactions between the
different physics, as described in the text, it is not totally obvious
that changing one of the physics or assumptions would have the
same systematic effect if we also change the “reference” model.
For example, since the diffusivity at low CR energies is much lower
here than in our main-text reference model, certain losses in dense
ISM environments could be qualitatively more important, and this
can order-of-magnitude change the ratio of e.g. diffusive reaccel-
eration to streaming loss terms. Nonetheless, Figs. B1, B2, & B3
confirm that all of our qualitative conclusions in the text, regarding

the systematic effects of these variations as well as their qualitative
importance, appear to be robust.

APPENDIX C: ADDITIONAL NUMERICAL DETAILS

Here we outline various technical numerical details of the methods
used for CR evolution in our simulations, originally presented in
other papers we refer to below. We direct the interested reader to
these and other papers cited for additional numerical tests.

To begin, as shown in Hopkins et al. (2021a), Eqs. 1-2 can be
re-written in the convenient form:

Dt f̄0,s =−∇· (v f̄1,s b̂) + j0,s +
1
p2

∂

∂p

[
Qs p2 f̄0,s

]
(C1)

Qs ≡ S`+ pDs :∇u + D̃pµ,s
f̄1,s

f̄0,s
+

D̃pp,s

f̄0,s

∂ f̄0,s

∂p

with

Dt f̄1,s + v∆( f̄0,s) =−
[

D̃µµ,s f̄1,s + D̃µp,s
∂ f̄0,s

∂p

]
+ j1,s (C2)

This is just a matter of definitions and some algebra to re-arrange
terms, but it will be useful below. Note that we explicitly include the
subscript s indicating species here. The total distribution function
can be reconstructed from

f̄0 ≡
∑

s

f̄0,s, (C3)

f̄1 ≡
∑

s

f̄1,s,

but the important point is that these equations are completely sep-
arable in species (there are no “cross terms” to be integrated, ex-
cept for secondary injection which we detail below). This means
that we simply repeat the identical numerical exercise for each sep-
arate species (calculated as a simple loop of species in every nu-
merical step described below), and all our numerical methods are
completely agnostic to the actual species being followed. In princi-
ple, one could trivially extend our method to a completely arbitrary
list of species, with the only constraint being computational mem-
ory limitations and the cost of repeating so many computations in
the relevant loops.

As noted in § 2.2, we will operator split these equations, ac-
cording to each of the three terms on the right-hand side of Eq. C1:
(1) the “spatial” or coordinate-space integration term −∇· (v f̄1,s b̂)
(and all of the Dt f̄1 or “flux” equation except for the j1 term); (2)
the j0 and j1 terms which describe injection by SNe, catastrophic
losses, and secondary production; (3) the terms inside ∂p[...] (i.e.
in Qs), which describe continuous evolution in momentum-space
(integrating the CR spectral evolution).

Also recall the definition of the conserved quantities we inte-
grate: CR number N j,n,s and kinetic energy E j,n,s, integrated over a
spatial domain/cell j and momentum interval/bin n for one species
s.

N j,n, s(t)≡
∫

V j

n j,n, s d3x≡
∫

V j

∫ p+n, s

p−n, s

f j,n, s(...)d3xd3p (C4)

E j,n, s(t)≡
∫

V j

ε j,n, s d3x≡
∫

V j

∫ p+n, s

p−n, s

Ts(p) f j,n, s(...)d3xd3p (C5)

These are what we actually evolve (computing fluxes etc.), in or-
der to ensure manifest conservation. But as noted in the main text,
for any bin n,s, there is a one-to-one correspondence between the
values of N j,n,s and E j,n,s and the equivalent power-law form of

f̄0, j,n,s = f̄0, j,n,s[p0
n,s](p/p0

n,s)
ψ j,n,s (C6)

(where p0
n,s is the “bin center,” as defined in the main text, being
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Figure B1. As Fig. 3, comparing CR spectra in simulations with different injection slopes ψinj, scattering rate normalization ν̄0, and dependence of scattering
rates on rigidity δ. The “reference” parameters here are different from Fig. 3: we vary about a “reference” model with ν̄ ∼ 10−8 s−1 βR−1

GV – re-fitting δ to
compensate as best as possible for a higher ν̄0 (lower diffusivity at ∼ 1GV). This model is a notably poorer fit to the observations in Fig. 2 compared to that
in the main text, but represents a model “re-tuned” to at least reasonably fit B/C with different parameters. Systematically varying the parameters about the
reference model defaults allows us to see that all the qualitative conclusions from Fig. 3 regarding the systematic effects of these parameter variations are
robust to the “reference” model or other parameter choices.

the geometric mean of the bin boundaries p−n,s, p+
n,s, i.e. mean pn,s

in log-space). We pre-compute the mapping from (N j,n,s, E j,n,s) to
( f̄0, j,n,s[p0

n,s], ψ j,n,s) (and vice-versa) in a look-up table for every
species and bin at simulation startup.

Recall the bin “edges” p±n,s for both leptons and hadrons are
defined in rigidity, so e.g. two different hadronic nuclei species s,
s′ with different charge and atomic weights, such as H and Be, will

have different “bin edge” values of momentum p−n,s, p−n,s′ , and of
course different boundary values of kinetic energy and β, even if
their bins align exactly in rigidity. These are summarized for refer-
ence in Table C1.
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Figure B2. CR spectra with different loss terms and other physics disabled, as Fig. 4, but with the variations being with respect to the alternative “reference
model” from Fig. B1. Again, despite the systematically different reference-model parameters, the systematic effects of these physics variations are consistent
with Fig. 4.

C1 Coordinate-Space Integration

C1.1 Spatial Advection & Flux Equations

Consider the coordinate-space (advection and flux) terms:

Dt f̄0,s =−∇· (v f̄1,s b̂), (C7)

Dt f̄1,s + v∆( f̄0,s) =−D̃µµ,s f̄1,s− D̃µp,s ∂p f̄0,s.

From a numerical point of view, this is identical to (and in-code
uses the same modular implementation as) the algorithms used pre-
viously in GIZMO for both “single-bin” CR transport in previous
papers (Ji et al. 2020, 2021b; Chan et al. 2021; Su et al. 2019,
2020, 2021), presented in full detail and extensively numerically
tested/validated in e.g. Chan et al. (2019); Hopkins et al. (2020b,
2021e) (see e.g. Figs. A1, B1-B9, and C1 of Chan et al. 2019,
Figs. 17 & A1-A4 in Hopkins et al. 2020b, Appendices D & E in
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Figure B3. CR spectra with different closure assumptions, arbitrarily re-normalized magnetic field strengths, and reduced-speed-of-light, as Fig. 5, with the
variations being with respect to the alternative “reference model” from Fig. B1. As in Fig. B2, the systematic effects of these physics variations are consistent
with Fig. 5.

Table C1. CR Spectral Momentum Range/Intervals Followed Explicitly

Leptons (e±): Rigidity R, Kinetic Energy T , Lorentz factor γ, for each momentum interval boundary p−n,s, p+
n,s, for electrons and positrons

R (GV) 0.001 0.00562 0.0178 0.0562 0.178 0.562 1.78 5.62 17.8 56.2 178 1000
T (GeV) 0.000612 0.00513 0.0173 0.0570 0.177 0.561 1.78 5.62 17.8 56.2 178 1000
γ 2.2 11 35 110 350 1100 3500 11000 35000 1.1×105 3.5×105 2.0×106

Hadrons: All hadronic species are discretized on the same intervals in R; the corresponding T , γ, and β are given for protons (H), but differ between species
R (GV) – – – 0.0316 0.178 0.562 1.78 5.62 17.8 56.2 178 1000
T (GeV, H) – – – 0.000533 0.0167 0.155 1.07 4.76 16.9 55.3 177 1000
γ (H) – – – 1.0006 1.018 1.17 2.1 6.1 19 60 190 1100
β (H) – – – 0.034 0.19 0.51 0.88 0.99 0.999 0.9999 0.99999 0.9999996

Hopkins et al. 2021e; and see also the extensive implementations
of similar algorithms in different codes reviewed in § 1), as well
as existing radiation-hydrodynamics (M1-like) photon transport in
GIZMO (see e.g. Lupi et al. 2018; Hopkins & Grudić 2019; Hop-
kins et al. 2020a; Grudić et al. 2020, for relevant tests). It is also
numerically similar to other anisotropic advection+diffusion oper-
ators used for a variety of other transport physics (Hopkins 2017;
Rennehan 2021).

The equivalence is more obvious if we note that (since there
are no cross terms) we can (and do) separately solve every CR
momentum “bin” and species, and volume-integrate over the cell
domains to calculate the flux of conserved quantities. First con-
sider N j,n,s: using the definition of Dt (which is defined such that

dt

(∫
V j

d3xX
)
≡
∫

V j
d3xDtX for any X in a cell j), and N j,n,s

(Eq. C4 above) and the usual Stokes’s law transformation, we im-
mediately have the discrete law:

dN j,n,s

dt
≡
∫

V j

d3xDt

∫ p+n, s

p−n, s

d3p f j,n, s (C8)

=

∫
V j

d3x
∫ p+n, s

p−n, s

4π p2 d pDt f̄0, j,n, s

=−
∫

V j

d3x∇·FN
j,n,s =−

∑
j′

F̃N
j j′ ,n,s ·A j j′ ,

where

FN
j,n,s ≡ FN

j,n,s b̂ = b̂
∫ p+n, s

p−n, s

4π p2 d pv f̄1, j,n, s (C9)

is the flux of N, A j j′ is the usual oriented interface area between
neighboring cells j and j′, and F̃ j j′ is the interface flux. Multiplying
by T (p) before integrating we trivially have the analogous energy
equation

dE j,n,s

dt
=−

∑
j′

F̃E
j j′ ,n,s ·A j j′ . (C10)

Numerically, these are just advection equations (akin to any other
advection term being solved simultaneously in-code, and solved
via the same second-order method per Hopkins 2015; Hopkins &
Raives 2016).

So we simply need FN,E
j,n,s , which is explicitly evolved like in

any two-moment method and determined by the Dt f̄1 equation.
The challenge here is, as noted by e.g. Girichidis et al. (2020);
Ogrodnik et al. (2021) and Hanasz et al. (2021), that we cannot
trivially integrate Dtv f̄1 over d3p and arrive at an equation for a
“single” FN,E

j,n,s which can be evolved if the bin has a finite width
in momentum-space (we would need infinitesimally small bins). It
is significantly less complex, computationally less expensive, more
numerically stable, and directly analogous to the previous “single-
bin” CR studies to calculate instead the “bin-centered” fluxes as in
both those previous studies – essentially solving for FN,E

j,n,s by taking
the values of ν̄ j,n,s(p), 〈µ〉 at the bin center p = p0

n, j,s. This auto-
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matically means quantities like χ→ χ0, j,n,s are constant over the
bin (within one bin, one species, one cell: they can and do vary be-
tween different species, bins, and cells). Then we can take Eq. C7
for f̄1, multiply through by v and insert the definitions of D̃µµ, D̃µp,
and ∆(q) ≡ b̂ ·∇ · (Dq) from Eq. 2, and use our local-power-law
definition of f̄0 to treat the ∂p f̄0 terms. Integrating then immedi-
ately yields the desired bin-centered equation: DtFN

j,n,s + c2 b̂ · ∇ ·
N j,n,s =−ν̄0, j,n,s

[
FN

j,n,s− vst,0, j,n,s n j,n,s
]

where n j,n,s ≡ N j,n,s/Vj is the
CR number density, N j,n,s ≡ D0, j,n,sβ

2
0, j,n,s n j,n,s is a second-moment

tensor, and vst,0, j,n,s ≡ −χ0, j,n,sψ j,n,s v̄A, j is an effective “streaming
speed” (note ψ j,n,s < 0 at all energies here, so −ψ j,n,s = |ψ j,n,s|).
Given this bin-centered approximation (which necessarily means
FE

j,n,s and FN
j,n,s do not simultaneously follow the full integrals of

f̄1 except for infinitesimal bins), we have implicitly assumed a con-
stant drift velocity vd = FN/N = FE/E over the bin, so consistency
requires that

FE
j,n,s =

(
E j,n,s

N j,n,s

)
FN

j,n,s. (C11)

Alternatively, we could first derive FE
j,n,s directly from the f1 equa-

tion and infer FN
j,n,s from the Eq. C11 relation, and this would be

equally valid/consistent at the level of the bin-centered approxima-
tion, giving:

DtFE
j,n,s + c2 b̂ ·∇ · P̃ j,n,s =−ν̄0, j,n,s

[
FE

j,n,s− vst,0, j,n,s e j,n,s
]
, (C12)

where P̃ j,n,s ≡ D j,n,sβ
2
0, j,n,s e j,n,s is akin to the CR pressure tensor.23

Cast in this representation (e.g. Eqs. C10 & C12), we can now
see directly that the numerical two-moment equations for the spa-
tial evolution of the CRs, for each individual species and bin, are
numerically identical to the equations solved in many of our pre-
vious “single-bin” CR studies in the references above. We simply
repeat the previous “single bin” flux and advection computation nu-
merically about Nbins ×Nspecies ∼ 70 times per interface (once for
each bin, for each species), and evolve the entire set of fluxes and
time derivatives. With this in mind, the interface flux which appears
in the Riemann problem is determined in exactly the same way as
in those previous single-bin studies. We compute this interface flux
first for FE

j j′ ,n,s, then if the net flux flows from j→ j′ (i.e. CRs move
from cell j to cell j′), we take FN

j j′ = (N j,n,s/E j,n,s)FE
j j′ (i.e. the

CRs carry the same energy as j), if it flows from j′ → j, FN
j j′ =

(N j′ ,n,s/E j′ ,n,s)FE
j j′ . The updates to conserved quantities are then

drifted and kicked using the standard scheme for all conserved ad-
vected radiation-MHD quantities (identical to our previous single-
bin implementation). Every time N j,n,s or E j,n,s is updated, we im-
mediately recompute the “primitive variables” f̄0, j,n,s[p0

n,s], ψ j,n,s.
Finally, this also gives us everything we need to evaluate the

CR force on gas. Per Hopkins et al. (2021a), Eq. 41 therein, we can
rewrite the combined Lorentz+scattering term from Eq. 6 as:

Dt(ρu) + ...+∇·Ptot =− b̂
c2

∑
s,n

DtFEtot
n,s (C13)

where Ptot ≡
∑

s,n Pn,s =
∑

s,n Dn,s P0,n,s is just the sum of the CR
pressure over all bins, and likewise for DtFEtot (here in terms of the
total energy, so DtFEtot

n,s = DtF
Ekin

n,s + ms c2 DtFNtot ). In-code, we sim-
ply add Ptot to the total pressure tensor used in the Riemann prob-
lem, then (in each cell immediately following the Riemann problem
update to the momentum fluxes) add the DtFEtot

n,s as a source term

23 We note here that P̃ ≡ Dβ2 e refers to either the kinetic or total energy,
whichever is evolved by e in the expressions above. But the usually-defined
scalar “CR pressure” as it appears in e.g. the gas momentum equation in the
tightly-coupled limit is defined as β2/3 times the total CR energy density
(or = (1 +γ−1)/3 times the kinetic); see Hopkins et al. 2021a for details.

(using the discrete value of DtFEtot
n,s we would have at the end of the

timestep). The detailed treatment of the latter makes little differ-
ence, since we see from this form that it acts as a correction which
(a) is suppressed by ∼ 1/c2 (so is typically suppressed relative to
other terms in the gas momentum equation byO(ncr/ngas)), and (b)
vanishes when the CRs approach flux-steady-state (which generally
occurs on the scattering time ∼ ν̄−1).

C1.2 Timestep Condition

As discussed in the papers above, this imposes the usual Courant
condition on the cell timesteps

∆tcell
j ≤Ccour ∆x j/c̃ , (C14)

where c̃ (c̃ = 104 kms−1 is our default, with Ccour = 0.25 to be con-
servative; for various tests see Hopkins 2015; Hopkins & Raives
2016; Hopkins 2016, 2017; Hubber et al. 2018; Panuelos et al. 2020;
Deng et al. 2019; Bonnerot et al. 2021). As in all other applications
in GIZMO the actual timesteps are determined by the smallest of
all possible constraints, including e.g. gravity, MHD, and any other
constraints (see Hopkins 2015), but in these runs, that is almost al-
ways set by this condition given the extremely large c̃.

C2 Injection, Catastrophic Losses, and Secondary
Production

Now consider the j (injection, catastrophic loss, and secondary pro-
duction) terms:

Dt f̄0,s = j0,s , (C15)

Dt f̄1,s = j1,s .

C2.1 Injection

For injection from discrete (point) sources, i.e. SNe and stellar
mass-loss, the injection terms j0 and j1 are handled in the exact
same manner as our previous single-bin CR studies (Chan et al.
2019; Hopkins et al. 2020b, 2021e; Ji et al. 2020, 2021b; Chan
et al. 2021; Su et al. 2019, 2020, 2021) or any other injection of
scalar quantities such as mass, metals, passive scalars/tracers, or
thermal energy (Hopkins et al. 2018a). Briefly, in a timestep for
a star particle ∆t∗, if a SNe occurs some total CR energy ∆E∗cr (or
∆E∗cr = Ė∗cr ∆t∗, for continuous sources like O/B mass-loss) will be
injected into the surrounding cells each receiving some fraction

∆E∗cr, j = w j ∆E∗cr (C16)

according to an appropriate weight function (such that
∑

j w j =
1), and we then immediately calculate exactly the corresponding
∆N j,n,s, ∆E j,n,s according to the specified injection spectra as de-
fined in the main text (these are equivalent to the integral of j0 over
each bin).

∆N j,n,s ≡
∫ p+n,s

p−n,s

4π p2 d p j∗0,n,s(p)∆t∗ (C17)

∆E j,n,s ≡
∫ p+n,s

p−n,s

4π p2 d pT (p) j∗0,n,s(p)∆t∗ (C18)∑
n,s

∆E j,n,s ≡∆E∗cr, j = w j ∆E∗cr (C19)

Recall, we assume j∗0 ∝ p−ψinj (with ψinj = 4.2) is a simple power-
law, so these can easily be calculated exactly, with the normalization
of j∗0,n,s for each species given by (1) Eq. C19, which normalizes the
total sum energy deposited to be exactly that desired,24 and (2) the

24 Because for our injection spectra, the total energy is totally dominated
by protons/H, if we instead defined ∆E∗cr, j as specifically that injected into
protons our results are nearly indistinguishable.
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ratios of different species following the ratios specified in § 2.2.4 &
2.4.25 These ∆N j,n,s and ∆E j,n,s are added to the cell N j,n,s and E j,n,s

respectively, and the primitive variables are re-computed.
For consistency, we also update the flux (e.g. include the

j1 = 〈µ〉inj j0 term), assuming the newly-injected CRs are stream-
ing radially away from the star (so given our bin-centered approxi-
mation, ∆FN

j,n,s = v0, j,n,s ∆N j,n,s r̂ · b̂), but because the CR flux equa-
tion evolves towards local equilibrium on the (very rapid) scattering
timescale∼ ν̄−1, it makes no detectable difference if we ignore this
flux update.

Extensive tests of the actual numerical injection algorithm for
arbitrary scalar fields demonstrating its numerical stability, manifest
conservation, numerical isotropy (ability to avoid imprinting pre-
ferred directions), and accuracy are given in Hopkins et al. (2018a).

C2.2 Catastrophic Losses

Catastrophic/fragmentation/pionic losses, annihilation, radioactive
decay, and secondary production also fall into this term, as they
can be described by some j = ḟ term effectively “adding” or
“removing” CRs, rather than slowly and continuously increas-
ing/decreasing their individual momenta p. So for example as
in the main text, for some catastrophic collisional loss process,
ḟs = −σ vs nx fs, where nx is the local ISM density of nucleons
or whatever relevant “target” species. These are integrated along-
side the momentum-space terms, on the same subcycle timestep
∆tsub

j ≤ ∆tcell
j (where ∆tcell

j is the cell timestep for other oper-
ations). Assume on the sub-cycle timestep (always smaller than
e.g. the CR transport timestep ∼ 0.25∆x j/c̃, which is itself al-
most always much smaller than any other evolved MHD fluid evo-
lution timescales) that the background (non-CR) fluid state vector26

U j(x, t) (e.g. magnetic field, density, gas velocity, etc.) is constant
over the substep (a good assumption for the reasons above).

First consider the loss terms, and define the total CR number
loss rate as

ḟloss, j,s = ḟcatastrophic, j,s + ḟannihilation, j,s + ḟdecay, j,s , (C20)

summing all the relevant expressions for each species as a function
of p for each species s (all given explicitly in § 2.3.1). This can be
written

ḟloss, j,s(p) =−R j,s(p, s, U j, ...) f j,s (C21)

for all terms considered. Then for every cell j, for every subcycle
timestep ∆tsub

j , for every species s, for every CR momentum bin n,
we compute

Ṅ j,n,s ≡−〈R j,s〉Nn N j,n,s ≡−
∫

V j

∫ p+n, s

p−n, s

d3xd3pR j,s(...) f j,n,s (C22)

Ė j,n,s ≡−〈R j,s〉En E j,n,s ≡−
∫

V j

∫ p+n, s

p−n, s

d3xd3pR j,s(...)Ts(p) f j,n,s .

For most of the terms in ḟ the 〈R j,s〉N,En terms can be computed
analytically but even if not, they can be pre-computed to arbitrary
precision again as a function of ψn,s (and U j, usually entering just in

25 As noted in the text, the injection abundances of antimatter, B, Be are
negligible, so of the species we follow this is only important for e−, where
j∗
0,n,e−

≡ 0.02 j∗0,n,H and CNO where the abundance is scaled relative to H
(with dNs(β)/dβ = (Ns, j/NH, j)dNH(β)/dβ at each β) according to the
ambient ISM and ejecta abundances (Ns, j/NH, j) as given in § 2.2.4 & 2.4.
26 For the CR momentum-space and catastrophic loss update, we adopt the
value of U j drifted to the midpoint of the timestep of j. However because
our CR timesteps are so small compared to macroscopic MHD evolution
timescales (& 106 yr), it makes no perceptible difference if we use the value
of U j at the beginning or end of each step.

the normalization of 〈R j,s〉N,En ) in a look-up-table. We then integrate
the change in N j,n,s and E j,n,s as:

N j,n,s(t j,0 + ∆tsub
j ) = N j,n,s(t j,0) exp

[
−〈R j,s〉Nn ∆tsub

j

]
, (C23)

E j,n,s(t j,0 + ∆tsub
j ) = E j,n,s(t j,0) exp

[
−〈R j,s〉En ∆tsub

j

]
.

While this is numerically stable for arbitrary timesteps, for ac-
curacy we impose a subcycle timestep restriction (together with the
restrictions for continuous losses below) of

∆tsub
j ≤

Ccour

MAX
(
〈R j,s〉Nn , 〈R j,s〉En

) (C24)

where the maximum is taken over all n and s.
For consistency with the “bin-centered” approximation de-

scribed in § C1, which effectively takes 〈µ〉 j,n,s(p) = 〈µ〉0, j,n,s, we
simply reduce FN

j,n,s (and FE
j,n,s) by the same fractional amount as

N j,n,s (E j,n,s) after each subcycle (but for the same reasons above
regarding the rapid response of DtFN,E

j,n,s , this update has almost no
effect on our results).

C2.3 Secondary Production

Secondary (or tertiary or any other successive) production is then
handled immediately following and consistent with these loss terms.
Consider a loss event which acts upon a CR with momentum p = ps

(in bin n), species s, within cell j, and leaves a product with p′s′ (or

T ′s′ ≡
√

p2
s′ c

2 + m2
s′ c

4−ms′ c2), n′, s′ in j. Obviously the species

conversion s→ s′ is specified by the reaction. As detailed in the
main text, we simplify for each secondary-producing reaction by
assuming a fixed energy ratio T ′s′ =αss′ Ts for that reaction: knowing
s′ and T ′ (hence p′) we can then determine the bin n′ into which the
secondaries should be deposited.27 We then calculate the number
and energy of secondaries going into bin n′, s′. For an effective
production cross-section σs→s′ , by definition we have dṅs′(p′) ≡
d3p′ ḟs′(p′) = d3pσs→s′ vs nn fs(p), and dės′(p′) = T ′s′(p′)dṅs′(p′).
Defining28 R j,s→s′ ≡ σs→s′ vs nn and integrating, we have:

Ṅ j,n→n′,s→s′ ≡
∫

V j

∫ pmax

pmin

d3xd3pR j,s→s′(p, s, ...) f j,n,s (C25)

Ė j,n→n′,s→s′ ≡−
∫

V j

∫ pmax

pmin

d3xd3pR j,s→s′(p, s, ...)T ′s′ f j,n,s

=−αss′

∫
V j

∫ pmax

pmin

d3xd3pR j,s→s′(p, s, ...)Ts f j,n,s

where pmin ≡ MAX[p−n,s, ps(p′,−n′ ,s′)], pmax ≡ MIN[p+
n,s, ps(p′,+n′ ,s′)]

represent the appropriate minimum/maximum range of either the
“primary” bin (n) itself, or of the primary ps which would producing
a secondary p′ within the bounds of the “target” bin (n′).29 These
integrals have the exact same form as the catastrophic loss terms, so
we evaluate them identically30 to obtain the number ∆N j,n→n′ ,s→s′

27 For numerical convenience, since the map T ′s′ = αss′ Ts and set of
secondary-producing processes is fixed at runtime, we pre-compute a lookup
table for each secondary-producing process which specifies the correspond-
ing bin(s) n′, s′ for each n, s.
28 We also include radioactive decay production, with R j,s→s′ ≡
1/(γ t1/2,s/ ln2), but this is negligible for the species followed (see § 2.3.1).
29 This accounts for the fact that from one primary bin n, the products can
be split across two secondary bins n′, depending on the map p′(p), which
we treat in two successive secondary injection “steps” for each bin n, s.
30 For consistency, we calculate the ratio ΦN

ss′ ≡ |Ṅ j,n→n′ ,s→s′ |/|Ṅtot
j,n,s|

where Ṅtot
j,n,s is the total catastrophic loss rate from bin n from

Eq. C22, then take ∆N j,n→n′,s→s′ = ΦN
ss′ |∆N j,n,s| where ∆N j,n,s =

N j,n,s(t j,0)−N j,n,s(t j,0 + ∆tsub
j ) from Eq. C23, and do the same for energy

∆E j,n→n′ ,s→s′ = ΦE
ss′ |∆E j,n,s| (with ΦE

ss′ ≡ |Ė j,n→n′ ,s→s′ |/|Ė tot
j,n,s|). Thus

the correct fraction of the total loss is always assigned to n′, s′.
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and energy ∆E j,n→n′ ,s→s′ added to bin n′, s′. We then immediately
update the conserved variables for bin n′ of species s′: N j,n′,s′ →
N j,n′,s′ + ∆N j,n→n′ ,s→s′ , E j,n′ ,s′ → E j,n′ ,s′ + ∆E j,n→n′ ,s→s′ , and re-
compute the primitive variables for n′, s′. This is looped over each
bin n for each primary-producing species s in turn, alongside the
catastrophic losses.

Note that for some species (e.g. p̄), the highest values of
the secondary momentum we evolve (e.g. p′,max

s′ = p′,+n′ , s′ for the
highest-energy bin n′) correspond to higher values of the pri-
mary momentum ps(p′s′) outside of the range we evolve. To ac-
count for this, when we consider the highest-energy bin n for each
secondary-producing primary species s, we calculate Ṅ j,n→n′ ,s→s′

up to the maximum p′,max
s′ by simply extrapolating the primary spec-

trum in that highest-energy bin to arbitrarily-large p (i.e. assum-
ing f̄0, j,n,s[p0

n,s](p/p0
n,s)

ψ j,n,s simply continues to p � p+
n,s). This

is consistent with our spectral boundary conditions defined below
(§ C3.4).

For some species (e.g. p̄, B, etc.), it is possible in principle
that even-heavier nuclei which we do not follow explicitly could
produce some secondaries. We have attempted to assess the impor-
tance of this with the following method: first we assumed the spec-
tra of all heavier hadrons to follow the same relative normalization
to whatever the “primary” of interest is (e.g. H or CNO), as ob-
served in the fits to the spectra of different species in Cummings
et al. (2016); Bisschoff et al. (2019). Then, we combined this with
the production cross-sections from Moskalenko & Mashnik (2003);
Tomassetti (2015); Korsmeier et al. (2018); Evoli et al. (2018) to
calculate the mean “additional” production at each p′, relative to
the channels we follow. Then assume this ratio is constant, so that
the number produced dṅs′(p′) is enhanced (relative to the rate at the
channels we follow) by a factor 1 + εs′(p′). For all the secondary
species of interest here (e±, p̄, B, Be), this correction is negligible
(always . 10% and usually . 1%), compared to other uncertainties.

C3 Momentum-Space Integration

C3.1 Basic Setup

Now consider the continuous momentum-space terms,

Dt f̄0,s = p−2 ∂p[Qs p2 f̄0,s] . (C26)

which we can write in terms of the one-dimensional distribution
function f̄ 1D

0 ≡ 4π p2 f̄0 as

Dt f̄ 1D
0 =−∂p[(−Qs) f̄ 1D

0 ] , (C27)

i.e. f̄ 1D
0 is simply being translated or advected one-dimensionally in

|p|-space with a flux (−Qs) f̄ 1D
0 hence a Lagrangian “velocity” or

translation speed ṗ31

dp
dt

= ṗ =−Qs . (C28)

Combining this with the definitions of D̃pµ, D̃pp, f̄1 = (vd/v) f̄0, and
using our local power-law representation of f̄0, we can simplify to
obtain:

ṗ =−Qs =−S`− p
[
D :∇u + ν̄

{
v̄A vd

v2 +ψχ
v2

A

v2

}]
(C29)

31 One can also see this as shown in Hopkins et al. (2021a) by inserting the
f for a CR “packet” with a single value of p = 〈p〉, and calculating Dt〈p〉
directly, to obtain Eq. C29. Note that technically the statement ṗ =−Qs and
our treatment of these terms is only valid if Qs can be written in a manner
that does not depend explicitly on f0,s itself (but instead on terms which
depend on p, s, µ, and external/background local plasma properties), but
this is trivially satisfied for all terms we consider as shown in Eqs. C29-C30.

Here the advective/turbulent/convective term32 is ∝ D : ∇u, the
“streaming” or gyro-resonant loss term33 is ∝ ν̄ v̄A vd/v2, and the
diffusive re-acceleration term is ∝ ν̄ ψχv2

A/v2. All other continu-
ous losses (Coulomb, ionization, Bremstrahhlung, inverse Comp-
ton, synchrotron) are in

S` ≡−
[

ṗCoulomb + ṗion + ṗBrems + ṗIC + ṗsynch
]

(C30)

with the expressions given for each species in § 2.3.1.

C3.2 Numerical Integration Method

This can then be immediately integrated using the method presented
in Girichidis et al. (2020) (see also Ogrodnik et al. 2021) without
modification, but we review that here for completeness. Since we
have operator-split these terms, there is no communication between
cells here: we are effectively updating a “one-zone” model in this
step independently within each cell j. Recall that on the subcycle
timestep ∆tsub

j , we assume the background MHD plasma state U j is
fixed, and note that each CR species in this step is strictly indepen-
dent (there are no cross-terms), so trivially we only need to define
the method for a single species s (we will update each species s in
serial in turn, on each substep ∆tsub

j ). Given this, it also immediately
follows that over the sub-step for a single species s, ṗ = ṗ j,s(p j,s, ...)
is purely a function of p and numerical constants.

Now consider each “bin” in turn. Assume (temporarily) that
ṗ > 0: then for convenience we will evaluate the bins in order of
increasing p0

j,n,s. For any initial p0, j,n,s in the bin (p−n,s < p0, j,n,s <
p+

n,s), one can immediately calculate the final momentum

p f , j,n,s = p0, j,n,s +

∫ t0, j+∆t j

t0, j

ṗ j,s(p j,s, U j, ...)dt . (C31)

For some p0, j,n,s = p′0, j,n,s, we will have

p′f , j,n,s = p+
n,s . (C32)

Thus all CRs with p0, j,n,s < p′0, j,n,s remain “in the bin” though their
energy may increase: we can compute their final number and energy
as

N f , j,n,s =

∫ p′0, j,n,s

p−n,s

dN0, j,n,s (C33)

E f , j,n,s =

∫ p′0, j,n,s

p−n,s

Ts(p f , j,n,s[p0, j,n,s])dN0, j,n,s

where

dN0, j,n,s ≡
∫

V j

d3x4π p2
0,s d p0,s f̄0, j,s (C34)

≡Vj f̄0, j,n,s[p0
n,s](p0, j,n,s/p0

n,s)
ψ j,n,s 4π p2

0, j,n,s d p0, j,n,s

is just the number density per unit “initial” momentum d p0, j,n,s

(given by the primitive variables for the cell, or equivalently by
N0, j,n,s, E0, j,n,s, at the start of this substep). We can likewise com-
pute a number and energy

∆N j,n→n′,s =

∫ p+n,s

p′0, j,n,s

dN0, j,n,s (C35)

∆E j,n→n′,s =

∫ p+n,s

p′0, j,n,s

Ts(p f , j,n,s[p0, j,n,s])dN0, j,n,s ,

which are the total number and final energy of the CRs which will

32 Calculated using our standard second-order gradient estimator for ∇u j
for each cell, with the value of D j,n,s used for the flux update in § C1.
33 Again in-code we take vd = FN

j,n,s/n j,n,s = FE
j,n,s/e j,n,s defined in the flux

update, taken to be constant over the bin and subcycle step per our “bin-
centered” approximation.
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increase in momentum sufficiently to move from bin n to the “next”
bin n′. The relevant integrals here can be computed numerically
to arbitrary desired precision.34 Note that our subcycle timestep
condition ensures CRs do not cross multiple bins in a single sub-
step. We then immediately update the conserved quantities in both
bins (N j,n,s→ N f , j,n,s, E j,n,s→ E f , j,n,s, N j,n′ ,s→ N j,n′ ,s + ∆N j,n→n′ ,s,
E j,n′ ,s → E j,n′ ,s + ∆E j,n→n′,s), and immediately recalculate the cor-
responding primitive variables. We then repeat this for the next bin
n′, and so on until all bins for species s in cell j are updated for
that subcycle step ∆tsub

j (we then repeat for each species, then re-
peat for the next subcycle timestep, until the full timestep ∆tcell

j is
complete). Of course, if ṗ j,s < 0, then the procedure above is nu-
merically identical, but we instead evaluate the number and energy
of CRs which “move down” to a lower-p j,s bin, working in order of
n from the highest-p j,s to lowest-p j,s bin.35

Again we stress that this is just a straightforward implemen-
tation of the method from Girichidis et al. (2020) (itself an ex-
tension of the methods proposed and utilized in e.g. Jun & Jones
1999; Miniati 2001, 2007; Miniati et al. 2001; Jones & Kang 2005;
Yang & Ruszkowski 2017; Winner et al. 2019), and readers inter-
ested in detailed numerical validation and tests should see that paper
(e.g. their Figs. 8-12). Another implementation of the same method
for leptons, demonstrating the applicability to different species and
flexibility to handle arbitrary cooling functions is given in Ogrodnik
et al. (2021), and other details of the method are discussed in Hanasz
et al. (2021). These papers, as well as our tests below, also motivate
our choice of bin sizes: if we restrict to the dynamic range of CR
energies we follow here, both suggest ∼ 10 intervals spanning that
particular range as “optimal,” though Ogrodnik et al. (2021) show
that increasing the bin number only modestly increases the accu-
racy of the results at a level significantly smaller than e.g. galactic
variations or variations between different diffusion models shown
in Figs. 2-5 in the text.

C3.3 Subcycle Timestep Condition

For stability and accuracy we enforce a subcycle timestep

∆tsub
j ≤Ccour MIN

(
δt j,n, s

)
, (C36)

where the minimum is over all bins and species, and δt j,n, s is the
time required for a CR to cross from one bin boundary p±j,n,s to the
next closest bin (higher or lower according to the sign of ṗ j,s evalu-
ated at p±j,n,s), or to cool from the lowest-p bin boundary p−j,n=0,s|min

for each species s to p = 0 (if ṗ j,s < 0 at this ps = p−j,n=0,s|min). We
pre-calculate this for all bin “edges” for each species s in each cell

34 We can operator split all loss processes in ṗ and evaluate the integrals
to construct a table of p f , j,n,s[p0, j,n,s], which then immediately allows us
to evaluate the relevant updates to N j,n,s and E j,n,s, each independently ei-
ther analytically (where this is solveable) or pre-computed in a lookup ta-
ble. But we find identical results using a simple composite trapezoidal rule
quadrature to evaluate the integrals numerically for arbitrary ṗ j,s. For this we
impose a fractional error tolerance of better than 1% in |p f , j,n,s− p0, j,n,s|,
which is almost always easily satisfied for ∼ 10− 12 integration steps, but
because this tolerance is so much smaller than our bin sizes, and our sub-
cycle timesteps are small (so the “integration” is usually extremely well-
approximated by a simple linear expansion in ∆tsub

j , which makes the ex-
pressions above trivial for any ṗ) we find we can make the tolerance much
larger (up to ∼ 50%) before we detect measureable differences in any re-
sults.
35 It is possible, though extremely rare, for ṗ j,s(p j,s, ...) to change sign as
a function of p j,s over the range of p (for a given s and j) that we evolve
in our simulations for that s. In these cases, we evaluate bins in the “order”
(increasing or decreasing p) matching the sign of ṗ j,s in the majority of
bins for species s in cell j, but for each bin we use the correct value of ṗ j,s
to determine if there is flux to higher or lower-p bins (or both, if the sign-
change occurs mid-bin).

j, and take the minimum. We then take the minimum of this and
the similar timestep restriction from the j terms in § C2, and set the
subcycle timestep to the minimum of this or the cell timestep ∆tcell

j .

C3.4 Spectral Boundary Conditions

For the lowest and highest-p bins for each species s, we adopt a
simple inflow/outflow boundary condition. If the flux (∆N j,n→n′ ,s,
∆E j,n→n′,s) would move out of the spectral domain (e.g. if ṗ< 0 at
the p−n,s boundary of the lowest-p j,n,s bin, or ṗ> 0 at the p+

n,s bound-
ary of the highest-p j,n,s bin) we simply allow it to be lost (outflow).
If there should be a flux “into” the domain (e.g. if ṗ > 0 at the p−n,s
boundary of the lowest-p j,n,s bin, or ṗ < 0 at the p+

n,s boundary of
the highest-p j,n,s bin; rare at the low-p-boundary, but not uncommon
at the high-p-boundary), then we calculate the flux (∆N j,n′→n,s,
∆E j,n′→n,s) which should flow into the bin by temporarily assum-
ing the existence of a “ghost bin” which has a continuous power-law
distribution function matched to the same slope and normalization
at the bin edge (e.g. if in the final “regular” bin, the distribution
function is given by some f̄0, j,n,s[p0

n,s](p/p0
n,s)

ψ j,n,s , we simply as-
sume this power law continues to p� p−n,s or p� p+

n,s for the lower
or higher boundaries respectively). Ignoring this “boundary flux,”
however, has very minimal effects (de-activating it leads to slightly-
steeper slopes for leptons in the highest-rigidity bins, but the effect
is small).

C4 Reduced Speed of Light Implementation

As described in the text, we implement a reduced speed of light
(RSOL) c̃ < c as is standard practice in the field, to allow larger
numerical timesteps. The specific implementation is presented and
derived exactly from the Vlasov equation for an arbitrary CR popu-
lation (obtained by multiplying the Dt f term in the Vlasov equation
by c/c̃, then re-deriving all equations) in Hopkins et al. (2021a)
(their Eq. 50). Mathematically, this amounts to36 multiplying Dt f̄0,s

and Dt f̄1,s in Eq. C1-C2 by (c/c̃). Since c̃/c is a universal constant
in the simulation, this is numerically trivial (it has no effect on the
numerical methods above) – in fact it is, by construction, exactly
equivalent to a change of units for certain operations (Hopkins et al.
2021a). We stress that this method is identical to the standard im-
plementation of an RSOL in radiation-hydrodynamics simulations
(see e.g. Skinner & Ostriker 2013; Rosdahl et al. 2013, and refer-
ences therein), and recently-developed implementations for MHD-
PIC simulations (Ji & Hopkins 2021; Ji et al. 2021a) and as such
has been tested in hundreds of applications. As shown therein and
in Hopkins et al. (2021a), it is trivial to demonstrate that this neces-
sarily gives the exact solutions (for c̃ = c) in local steady-state, and
even out-of-steady-state, the solutions for e.g. any propagating pop-
ulation exactly match the c̃ = c solution at any fixed distance from
a source. And we show explicitly in the text (Figs. 5 & B3) that our
results are independent of c̃, as they should be.

C5 Simple Numerical Tests

Fig. C1 presents some idealized numerical tests of the methods
above. We emphasize that the methods here have all been presented
and tested in other papers previously, so these should be regarded as
“validation” tests our particular implementation, and readers inter-
ested in more comprehensive details should see the numerical meth-
ods papers referenced above. We consider tests of each operator-
split term from § C1-C3 in turn, in our GIZMO code.

36 Trivially, this is also equivalent to taking F̃N,E
j j′ ,n,s → (c̃/c) F̃N,E

j j′ ,n,s in

Eqs. C8-C10 and c2 b̂ · ∇P j,n,s → c c̃ b̂ · ∇P j,n,s, ν̄0, j,n,s → (c̃/c)ν̄0, j,n,s in
Eq. C12; j→ (c̃/c) j in Eq. C15; and Qs→ (c̃/c)Qs in Eq. C26.
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Figure C1. Numerical tests of our implementation of CR spectral evolution, from § C5. We consider an idealized homogeneous medium, with Dt f = jinj−L
given by continuous injection jinj ∝ p−4.2 as in the main text and different loss terms “L” considered each in turn, so that we can compare to exact solutions.
For each test besides “pure injection” we evolve to twice the CR “loss timescale” tloss. We plot the predicted spectrum f̄0 (in arbitrary units, compensated by
p4.2 for clarity) to see how different terms modify the spectra, and label the assumed scaling of the loss rates. We show either electrons or protons for each
(whichever is more relevant). We compare both exact numerical solutions at the same time as the simulation, and steady-state solutions given as t →∞. In
all cases simulation and exact solutions have converged close to steady-state. Left: Injection and catastrophic losses (§ C5.1). For “injection only” L = 0.
Otherwise we take L = f/tloss with the arbitrary scaling of tloss shown bracketing the range of collisional and radioactive losses in-text. Center: Continuous
momentum losses (§ C5.2), L = p−2 ∂p(p2 ṗ f ) with ṗ = −p/tloss, where tloss scales according to examples of the different continuous loss/gain terms
considered in the text. Right: Spatial advection/streaming/diffusion (§ C5.3), L = ∇ · F = ∇ · (v f̄1 b̂) where the spatial flux F (or f̄1) is integrated for a
vertically-stratified plane-parallel CR atmosphere. We choose parameters such that the transport is either streaming/advection-dominated (drift speed and tloss
independent of CR momentum), or diffusion-dominated (drift speed and t−1

loss ∝ ν̄(p)/v2). The latter produces the well-known “step” artifacts as a result of the
“bin-centered” diffusion approximation (where the scattering rate is treated as constant across each bin – varying only bin-to-bin – for purposes of calculating
the spatial flux).

C5.1 Injection & Catastrophic Terms

First consider the injection and catastrophic loss processes in j
(§ C2). Without loss of generality, consider a single species s, and
single cell j (i.e. a spatial “one-zone” model), in a frame comov-
ing with the cell. To test these terms, assume all other terms are
negligible,37 so the DF evolves according to Dt f ≈ jinj− jloss, with
jinj(p)∝ p−4.2 (as we assume in the text) and jloss =−(σ vn)loss f =
− f/tloss (the general form of all loss terms we consider, with tloss(p)
some function of p), with j and tloss independent of time, and be-
gin at t = 0 with f = 0. With these simplifications, the actual
units and normalization of jinj and jloss are arbitrary: so we sim-
ply work in convenient code units. This has an exact analytic so-
lution f (p, t) = jinj tloss (1− exp{−t/tloss}). We compare the nu-
merical results, using our in-code implementation, for both an early
time and/or negligible loss case (t� tloss, where the spectrum is es-
sentially “pure injection” with f ≈ jinj t), and for a time t ≈ 2 tmax

loss

(where tmax
loss is the maximum tloss over the momentum range we

evolve), by which point the spectrum should be close-to-steady-
state.

Note that the different catastrophic processes considered in
the text mostly have similar dependence on p: the different catas-
trophic hadronic processes generally feature approximate jloss ∝ β
(tloss ∝ 1/β) at high energies (i.e. roughly constant in the relativistic
limit),38 with a cutoff at very low energies where jloss → 0 (which
is not interesting for our test). Two exceptions are radioactive de-
cay, where tloss ∝ γ, and p̄ annihilation (where σpp̄ ∼ constant at
high-p, but then rises∝ p−1/3 at small-p, weaker than β−1 for non-
relativistic CRs). So for the sake of completeness we consider both
a case with tloss ∝ 1/β and ∝ γ at all energies, which bracket the
range of different cases for different species.

37 We do this in-code by multiplying all other terms (besides those of inter-
est for our test) in the equations for Dt f by some arbitrarily small number.
38 This also includes positron annihilation: although the Dirac formula fea-
tures a complicated dependence on γ, for ultra-relativistic positrons (the case
of interest at our energies), this becomes tloss = constant +O(1/γ) to lead-
ing order. Likewise the residual T dependence for heavier nuclei is generally
weak.

C5.2 Continuous Momentum-Space Terms

Next consider an analogous experiment for the continuous
momentum-space terms (§ C3), ignoring all other terms (be-
sides injection) so Dt f = jinj + p−2 ∂p(p2 Qs f ). Already analytic
solutions become non-trivial here, but the steady-state (Dt →
0) solutions can be easily solved exactly. For the simple (but
representative) case of a power-law Qs = −ṗ = p/tloss with
tloss ≡ tloss,0 (p/p0)

−ψloss (and jinj = j0 (p/p0)
−ψinj ), we have f →

( j0 tloss,0/(ψinj − 3))(p/p0)
−(ψloss+ψinj) = (ψinj − 3)−1 jinj tloss. We

again begin from f = 0 and evolve each test until t ≈ 2 tmax
loss (where

the maximum is over p for a given tloss[p] in each test).

We consider each of the continuous loss processes treated in-
code in turn, but since the units/normalization are arbitrary in these
tests, we only consider separately those which exhibit a different de-
pendence of tloss on p. Thus we have (1) adiabatic (tloss ∼ constant);
(2) Bremsstrahlung (tloss ∝ 1/(ln(2γ)− 1) ∝ p−(0.1−0.3) for lep-
tons, the case we consider), not very different from adiabatic;
(3) inverse Compton & synchrotron (tloss ∝ p/γ2 ∝ p−1, again
for leptons); (4) Coulomb & ionization losses (tloss ∝ pβ (1 +
1/(γ β)2)−1/2, or ∝ p3 in the non-relativistic limit and ∝ p in
the ultra-relativistic limit, for hadrons and similarly up to log-
arithmic corrections for leptons); (5) streaming losses and dif-
fusive reacceleration (tloss = (v2/ν̄)(v̄A vd + ψχv2

A)−1 with vd ≡
FN

n,s/n j,n,s; the pre-factor here depends on the local drift velocity/flux
and spectral shape, so for simplicity in this test problem we as-
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sume |v̄A vd +ψχv2
A| ∼ constant,39 with ν̄ ∝ β p−1/2 similar to the

observationally-favored values, so tloss ∝ v p1/2).
Since some of these terms depend on β, γ and have dif-

ferent behavior in relativistic and non-relativistic limits, we fo-
cus on the most interesting cases by considering Bremsstrahlung
and inverse Compton+synchrotron for a leptonic case (e− or e+,
they are the same here), and Coulomb/ionization and stream-
ing/diffusive reacceleration for a hadronic case so we can see the
non-relativistic/relativistic transition (here we take protons [H] as
the test case, though the scaling to other hadrons is straightforward).
The adiabatic case is entirely independent of species choice in this
setup.

Note that a couple of these “loss” terms can have either
sign and represent gains (e.g. adiabatic), but then (in this highly-
simplified test problem) there is no steady-state solution so we
only consider the “loss” sense. In our full simulations this energy
comes from some other term (e.g. gas mechanical energy) and other
loss/escape terms are always present, so these cannot run away.

C5.3 Spatial Flux/Advection Terms

Next we consider the spatial flux terms (§ C1), ignoring all other
terms besides injection so Dt f̄0 = jinj−∇ · F with F = v f̄1 b̂. To
construct a simple analytically-solveable test problem, consider an
infinitely-thin, cylindrically-symmetric source plane in the xy axis
with effective “upward” j2D = δ(z)F0 (i.e. some constant injection
rate per unit area F0 ≡ dN/dt dAd3p in the source plane directed
in the +z direction, and no injection elsewhere), and b̂ = ẑ, with
spatially-uniform ν̄ and v̄A. This is designed to be directly anal-
ogous to classic historical thin disk/leaky-box-type models. Note
that (as discussed in § C1) it is trivial to see in this setup that the
spatial solutions for each momentum “bin” are entirely independent
and operator-split here (each repeats the identical numerical proce-
dure). Nonetheless, we show the full CR spectrum to illustrate this
independence, and the effect of the “bin-centered” approximation
discussed below.

We will consider two limits: first, a “streaming-dominated”
limit, obtained by setting ν̄ to some extremely large numerical
value, so that f̄1 → (D̃µµ/D̃µp)∂p f̄0 in steady-state. This has
steady-state solutions for f̄0 with F = v f̄1 = v̄Aψinj f̄0 = F0, so f̄0→
F0/|ψinjv̄A| is just proportional to the injection spectrum (ψ=−ψinj)
and the “loss” timescale (given by the escape time) to travel some
finite distance `0 is tloss ∼ `0/|ψ v̄A|. In other words, the injection
spectrum is simply advected. Numerically we treat this with 10 spa-
tial cells (akin to our coarse number of momentum bins for the
problems above) along the z direction (the symmetry of the prob-
lem means it is one-dimensional), where the lower (z = 0) bound-
ary cell treats the injection with an inflow boundary of flux F0, and
the uppermost (defined as z = `0) uses an outflow boundary. Again
the units are arbitrary, so we evolve to 2 tloss = 2`0/|ψinj v̄A| in code
units.

Second, we consider a “diffusive” case, obtained by tak-
ing v̄A = 0 with finite ν̄. Now in steady-state, F = v f̄1 b̂ =

39 As noted in the text, when the flux equation (Dt f̄1) is in local steady-
state in the near-isotropic limit (|Dt f̄1| � |ν̄ f̄1|), which is often a good
approximation, then vd takes a value such that the “streaming + diffusive
re-acceleration” term in Eq. C29 becomes ν̄ {...} → (v̄A/3) f̄−1

0 b̂ ·∇ f̄0 +

(ψ ν̄/3) [(v2
A − v̄2

A)/v2]. For our default model assumptions in the main
text (allowing Alfvénic streaming, v̄A =±vA) this further simplifies to give
tloss = 3`∇/vA where `∇ ≡ f̄0/|b̂ ·∇ f̄0| ≈ nn,s/|∇‖nn,s|. In this limit then,
the streaming plus diffusive reacceleration term has tloss ∼ constant, iden-
tical to the adiabatic term, and is trivial to accurately integrate. Our test
therefore intentionally reflects a strongly “out-of-equilibrium flux” or a “no
streaming” (v̄A = 0) configuration, which are more challenging to treat ac-
curately.

−(v2/3 ν̄)∂z f̄0 ẑ = F0 ẑ, so ∂z f̄0 = −(3 ν̄/v2)F0 =constant (in
space). Here we treat this with the same 10-cell profile with the
lower cell having an injection (inflow) boundary and the upper cell
enforces f̄0 = 0 at its upper boundary `0, so f̄0 = (3 ν̄/v2)F0 (`0−
z).40 This gives the usual effective (parallel) diffusivity κ‖ =
v2/(3 ν̄), and loss/escape time tloss ∼ `2

0/κeff ∼ `2
0 (3 ν̄/v2) (and

again we evolve to 2 tmax
loss ). Here, unlike the streaming case, the

transport/drift speed ∼ κ‖/`0 ∝ v2/ν̄ is not p-independent: mo-
tivated by the cases in the text we consider protons (so we can
see both relativistic and non-relativistic limits for the v terms) and
ν̄ ∼ 10−9 s−1βR−1/2

GV ∝ v p−1/2 (the actual units are arbitrary and
scale out of our simplified test, but the dependence on p we retain),
so the effective diffusivity scales as κ‖ ∝ v p1/2.

Recall, in our “bin-centered” approximation, we take (v2, ν̄)≈
(v2

0, ν̄0) in the flux equation (Eq. C12 for Dt f̄1 or dtFN,E ), where
v0, ν̄0 are the values at the bin centers (geometric mean values of
p0

n,s ≡ (p−n,s p+
n,s)

1/2). As a result, numerically, v2/ν̄→ (v2
0/ν̄0) is ef-

fectively constant over each bin, so after injection, that bin is trans-
ported from cell-to-cell conserving its slope ψ within the bin. But
since e.g. ν0 = ν0[p0

n,s], the transport speed is correct at the center of
each bin and each bin diffuses with a different mean speed. As a re-
sult, we see that the gross spectrum traces the expected steady-state
behavior: if we draw a curve connecting bin centers p0

n,s, for exam-
ple, it traces the exact solution. But without accounting for how ν̄
varies within each bin, the slopes under pure diffusion do not evolve
so we produce the “step” structure seen. This is evident in the pre-
dicted spectra in the main text as well (e.g. Figs. 2-5), in particular
where diffusion dominates the residence/escape time (e.g. for pro-
tons at energies &GeV).

One can show that the discrepancy here is formally second-
order in momentum space, in that the correction terms to the fluxes
( f̄1 terms) or difference between the bin-centered and exact solu-
tions scales as O(| ln(p+/p−)|2). So we could decrease the errors
by substantially increasing the number of bins. But this would entail
very large computational expense for almost no other gain. Instead,
in future work (Hopkins 2022), we present a modified version of the
method here which incorporates a series of second-order correction
terms to modify the evolve the spectrum appropriately “within each
bin” when momentum-dependent diffusion dominates, in a way that
retains manifest conservation of CR number and energy, stability,
and the trivially operator-split bin-to-bin behaviors desired. We have
run preliminary (low-resolution) experiments with this method, and
find that the results are nearly identical to our bin-centered model
except the “step” structures are smoothed.

C5.4 Continuous versus Discrete Injection

In the experiments above, we treat the injection as continuous
(numerically, we operator split and include an injection step and
then subsequent CR operator steps in each cell timestep ∆tcell; see
§ C6.1), both because this allows comparison with simple steady-
state solutions and behaviors discussed in the main text, and be-
cause it is a numerically difficult “stress test.” It is well-known in
many contexts that accurately representing steady-state solutions in
the continuous-injection limit is more challenging (compared to e.g.
free-decay of CR spectra from some initial condition, without injec-
tion) for numerical methods like ours which operator-split injection
and losses. But in our simulations in the main text, recall that the
delay between individual injection events (i.e. SNe) in some patch

40 Note this upper boundary is only needed in 1D. For a real 3D problem
like our full simulations at distances r far from the source injection, for
(spatially) constant diffusivity κ ∼ (v2/ν̄), the solution is power-law-like,
f ∝ F0/κ r, so we can have an infinite or open box with f > 0 everywhere
(Ji et al. 2020).
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of the ISM is time-resolved,41 so achieving exact balance in contin-
uous injection is not particularly important to our results. We can
immediately test the free-decay limit by simply taking any of our
tests above and at some time turning off the injection (setting it to
zero or some numerically small number). As expected, the solutions
in this case are at least as accurate as those in Fig. C1, or formally
better (though the numerical errors are small in any case, except for
the “bin centered” effects, which are similar in both steady-state and
free-escape limits).

C6 Summary

C6.1 List of Operations in Pseudo-Code

To summarize, the CR-specific operations taken on every cell
timestep ∆tcell

j are, in-code:

• Compute cell timesteps ∆tcell
j and list of active cells.

• Perform first half-step kick for evolved fluxes (CR and MHD),
drift and synch cells. Calculate where sources (e.g. SNe) will occur.
• Update neighbor lists and re-compute volume decomposition,

and cell primitive variables (e.g. Vj).
• Inject CRs from discrete (stellar & black hole) sources, along-

side other mechanical feedback (e.g. ∆N inj
j,n,s, per § C2). Update CR

variables (conservative and primitive).
• Compute spatial gradients, shielding, and other quantities for

inter-cell faces (e.g. A j j′ ) and fluxes.
• Compute inter-cell fluxes (e.g. F̃ j j′ ) for conserved quantities

(e.g. dNflux
j,n,s/dt, per § C1) for all interacting neighbors. MHD and

other fluxes also computed.
• Perform second half-step kick for evolved fluxes.
• Compute CR momentum-space update (losses & continuous

momentum-space terms; § C2 & C3).

– Calculate cell sub-cycle timestep ∆tsub
j from minimum of

all constraints.
– Iterate over subcycle timesteps within each cell j until the

subcycles reach ∆tcell
j .

· Iterate over each species s, within the subcycle step.

* Iterate over each bin n, for the species s.

* Calculate loss/gain or neighbor-bin flux n → n′ or
secondary-bin flux (n→ n′, s→ s′) for each loss/gain pro-
cess, from the current cell n.

* Update CR conserved and primitive variables for each
bin ( j,n,s, j,n′,s′), according to those loss/gain terms.

• Repeat until final simulation time is reached.

C6.2 Computational Expense and Typical Timesteps

In terms of computational expense, the simulations here are typi-
cally ∼ 30 times more expensive than an otherwise identical sim-
ulation without any CRs. This difference is almost entirely driven
by the Courant condition (∆tcell

j ≤Ccour ∆x j/vsignal), given our very
high c̃ ∼ vsignal adopted, which reduces the timesteps for all cells
at all times by a correspondingly large factor. If we compare to,
say, a single-bin CR simulation (Hopkins et al. 2020b) or an M1
radiation-hydrodynamics simulation (which solves numerically es-
sentially identical spatial advection/flux equations so imposes the
same Courant condition; see Hopkins et al. 2020a) with the same
c̃, the cost difference is much more modest, a factor . 2− 3. Of

41 At our fiducial resolution, a single star particle representing a young
stellar population has a mean time between individual supernova events of
∼ 1 Myr, compared to a numerical timestep of ∼ 103 yr.

that added cost, most owes to added communication and associ-
ated imbalances, particularly in the gradients and MHD (+CR) flux
computation, because the method requires calculating and passing
in memory∼ 100 times as many CR-specific variables compared to
a “single bin” CR simulation, as each species and bin requires its
own “set” of variables (e.g. N j,n,s, E j,n,s, FN,E

j,n,s , their gradients, etc.)
each equivalent to the set we would normally pass for a single-bin
CR calculation.

The momentum-space operations are relatively modest in cost
(typically entailing ∼ 10−20% of the total runtime), for three rea-
sons. First, while we invoke subcycling, the cells which dominate
the total CPU cost of our simulations (those with the smallest ∆tcell

j ,
generally the most dense, star-forming gas), generally do not require
many subcycles because their flux/Courant timesteps are already
very small: for e.g. a gas cell with nn ∼ 100cm−3 at our fiducial
mass resolution and reduced speed of light, ∆x j/c̃∼ 103 yr (so the
timestep is a couple hundred years). But at this density, the subcy-
cle timestep ∆tsub

j is generally limited by either the ionization loss
timescale (the gas being mostly neutral) for hadrons in the lowest-
energy bin (∼ p−n,s/| ṗion, j,n,s| in the lowest-p hadronic bin) which is
also∼ 103 yr, or by the synchrotron/inverse Compton loss timescale
in the highest-energy leptonic bin which is ∼ a few× 103 yr (for
magnetic+radiation energies of ∼ 100eVcm−3 at these gas densi-
ties, per Fig. 6 in the text). So these cells typically only feature a few
subcycles at most. Second, the momentum-space operations are em-
barrassingly parallel at the cell j and species s level (involving no
communication between threads). And third, the complicated sub-
operations (e.g. numerical integration and evaluation of the relevant
cooling/loss functions) are almost entirely floating-point operations
that are very high-efficiency.

There are some cases in e.g. very low-density cells where ∆tcell
j

is larger but the radiation energy density is still relatively high (as it
cannot fall much below the ISRF in the ISM or CMB in the CGM;
see Fig. 6), so more subcycles are required, reaching & 100−1000
in rare cases. But since the overall timesteps are so much larger to
begin with and this is a small fraction of all cells, it has little effect
on the total CPU cost.

C6.3 Timescales for Convergence

Briefly, we review here the timescales over which we expect
the simulations to converge to local-steady-state behavior for the
CR spectra. In steady state in the disk we have injection ḟ ∼
j̇inj balanced by some “effective loss” rate ḟ ∼ − f/tloss, where
“loss timescale” tloss is given by whatever process dominates the
loss rate (i.e. the fastest of all loss processes), including es-
cape (i.e. diffusive/streaming/advective losses from the disk to the
halo/CGM/IGM). Focusing on just the terms which dominate at
most of the energies and most of the species of interest, and
using the expressions in the text or the values from the sim-
ulations shown in § A2, the Coulomb/ionization loss timescale
is given roughly by: tloss, ion ∼ 0.1Myr(cm−3/nn)(T/MeV); the
synchrotron-plus-inverse Compton loss timescale (for leptons) is
given by tloss, synch/IC ∼ 0.3Myr(eVcm−3/(urad + uB))(R/TV)−1;
and the escape loss timescale (for the best-fit scattering rates,
ignoring advection and streaming, for a simple smooth ver-
tical profile and tangled fields) is approximately: tloss, escape ∼
Myr(`cr/kpc)2 (R/GV)−1/2, where `cr(R) ∼ f̄0,s(R)/|∇ f̄0,s(R)| is
the CR gradient scale length at some rigidity.

First, note that these are extremely “well-resolved” timescales:
our typical numerical timestep in our fiducial simulations for gas at
densities ∼ 1cm−3 is ∼ 103 yr, so we do not have to worry about
e.g. the limit where the CRs converge to equilibrium on much faster
timescales than are numerically tractable (where implicit solvers
may be useful, compared to our explicit spectral integration).
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Second, recall that the typical timescale for the CR proper-
ties to converge to steady-state at some R is given by the relevant
(shortest) loss timescale at that R:42 ∼ 0.1 Myr at the lowest and
highest CR energies we evolve, and ∼ a few Myr at the peak of
the spectrum (∼GeV) where the net loss+escape timescale is max-
imized (this, of course, is in part the reason why the spectum peaks
at these energies). So we expect to converge to numerical equilib-
rium in . 10Myr at all evolved CR energies in the Galactic disk.
But as discussed in the text, to be conservative we should account
for the reduced-speed-of-light slowing down CR escape. As shown
in Hopkins et al. (2021a), for our numerical formulation the steady-
state solutions are guaranteed to be invariant to the choice of c̃, and
we confirm this explicitly in e.g. Figs. 5 & B3, but in the worst-
case scenario, the simulation time it takes for the simulation to ac-
curately converge to steady-state can be increased systematically
by a factor = c/c̃. But for our highest-c̃ tests in Figs. 5 & B3,
this is just a factor ∼ 3, so we would expect worst-case conver-
gence times, at the slowest-converging energies, still � 100Myr,
i.e. shorter than one Galactic dynamical time at the Solar circle
(and far shorter than the ∼ 500Myr for which we typically run
our simulations). Of course, as discussed in the text (§ 3.5.1, 3.5.2,
3.5.4), we have also confirmed directly that the simulations reached
steady-state (as expected), by verifying that the results are statis-
tically time-independent (e.g. independent of snapshot number, up
to small stochastic and, as we noted, effectively ergodic variations
at a given location corresponding to phenomena such as individual
SNe bubbles) for the last several hundred Myr over which we evolve
them.

This does, however, introduce the caveat (discussed in the main
text) that in very low-density gas, at distances far from the Galactic
center (� 10kpc), e.g. in the CGM, where one might have very low
nn and urad + uB and very large `cr � kpc, these timescales could
become &Gyr, in which case we would not expect the local CR
spectra to have converged to equilibrium. Indeed, if the loss/escape
times exceed ∼Gyr in these regions, then it is not clear if the CGM
or IGM can converge to true steady state at all in a Hubble time. In
this regime (the distant CGM), fully-cosmological simulations are
required to capture both the relevant timescales and non-equilibrium
accretion/outflow/galaxy formation effects.

C6.4 Approximate “Error Budget”

For highly non-linear, chaotic, multi-physics simulations such as
those in this paper, it is impossible to rigorously define a theoretical
error or systematic uncertainty “breakdown” uniquely assigned to
different terms. But we can make some estimates from our analytic
derivations, idealized tests, and full-physics tests in the paper.

On the purely numerical side, quantities such as errors from
our assumed closure relation for the Vlasov hierarchy of the CR
moments equations, or reduced-speed-of-light assumption, or finite
time needed for the CR equations to converge to local steady-state,
or numerical integration, are all formally demonstrably small, and
we confirm this directly in our tests (both idealized but also full-
physics, where we vary the closure, c̃, run-time or snapshots ana-
lyzed, resolution, etc.). From examination of our numerical deriva-
tions or full-physics results in Figs. 2-5 & B1-5, the most signifi-
cant numerical error is likely the “bin-centered” approximation for
the spatial fluxes (§ C1). As is well-known (see § C5 above and e.g.
Fig. 12 in Girichidis et al. 2020 and Fig. 7 in Ogrodnik et al. 2021),
this produces the “step” structure between bins of a given s (where
the spectra are not perfectly smooth between bin edges), which in

42 Formally, if Dt f = j− f/tloss with j and tloss constant, then any de-
viations in the initial condition from the equilibrium solution are damped
exponentially with a decay time = tloss.

turn produces the more noticeable step features when taking ratios
of e.g. B/C (where the bin edges do not exactly align in units of
energy-per-nucleon). We could reduce this error by increasing the
number of bins by a large factor, but that is highly inefficient. A
more efficient approach would be to evolve the fluxes without mak-
ing such an approximation; but this introduces both conceptual dif-
ficulties (e.g. one must invoke some “closure” or model assumption
for how 〈µ〉 varies across each bin) and practical numerical chal-
lenges (it is difficult to construct a numerically-stable reconstruction
and integration; see e.g. Girichidis et al. 2020). So this is outside the
scope of our study here.

In any case, Figs. 2-10 & B1-5 show that physical uncertainties
are generally much larger than these pure-numerical uncertainties.
These are investigated in detail in the main text, but we briefly sum-
marize here. One uncertainty is whether our galaxies are “realistic”
in properties like the phase structure (which influence loss rates),
source (SNe/massive-star) distribution, magnetic field structure, etc.
For this reason we consider a wide range of models where we vary
different loss terms, make different assumptions about streaming
and diffusive reacceleration, change the magnetic fields by an or-
der of magnitude, compare different local regions of the galaxy and
different times/snapshots (separated by e.g. several galaxy dynam-
ical times, over which the phase structure and local field geome-
try, etc, will vary), as well as entirely different galaxies. In general,
these differences are larger than the numerical errors from e.g. the
bin-centered flux approximation, but still small compared to the dif-
ferences that arise from modest changes to the assumed scaling of
the CR scattering rates (e.g. Figs. 3 & B1), and small compared to
what would be needed to change our key qualitative conclusions
(as demonstrated, for example, by the fact that our conclusions and
favored ν̄(R) are very similar to what is inferred in classic models
which assume a static, much more highly-simplified analytic model
for the Galaxy). So the dominant physical uncertainty, as we discuss
in the text, is almost certainly our assumption that the CR scattering
rates can be approximated as a universal-in-time-and-space function
of rigidity. That is not the prediction of any physically-motivated
model (in either extrinsic turbulence or self-confinement motivated
scenarios), but is a common phenomenological approximation. In
future work (Hopkins et al. 2021b), we will lift this assumption and
explore different physically-motivated models.

APPENDIX D: MAGNETIC FIELD COMPARISONS

One can immediately read off the median magnetic field strength
|B| as a function of ISM gas density n in the Solar neighbor-
hood from Fig. 6 in the main text: fitting a power law we have
roughly |B| ∼ 6.3+3.5

−2.3µG(n/cm−3)0.4. This is consistent with (per-
haps slightly higher than, at the tens of percents level) typical ob-
servational estimates at gas densities∼ 0.01−100cm−3 (e.g. Beck
2009; Sun & Reich 2010; Crutcher et al. 2010; Haverkorn 2015;
Beck 2015; Beck et al. 2016; Ordog et al. 2017, and references
therein).

More detailed comparison of the simulated magnetic fields
to observational diagnostics for the “single-bin” FIRE+CR simu-
lations and FIRE simulations without CRs can be found in Su et al.
(2017, 2018a); Guszejnov et al. (2020a); Chan et al. (2021). In an
independent study, Ponnada et al. (in prep) extend these by consid-
ering mock observations of Zeeman absorption (from the compila-
tion in Crutcher 2012), Galactic (pulsar) RMs and DMs43, as well

43 The pulsar RM+DM points are taken from the Australia Telescope Na-
tional Facility (ATNF) pulsar catalogue (Manchester et al. 2005), using
version 1.63 of the updated catalogue available at http://www.atnf.
csiro.au/research/pulsar/psrcat, as compiled in Seta & Fed-
errath (2021).
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Figure D1. Comparison of mock-observational diagnostics of ISM mag-
netic fields to observations in our fiducial simulation (same as Fig. 6), from
Ponnada et al. (in prep.). Top: Simulation sightlines (dashed lines show±1σ
range, shaded range shows ±2σ or 5− 95% range, at each NHI) compared
to Galactic Zeeman absorption observations from Crutcher (2012). Bottom:
Simulation sightlines (same style) compared to RM & DM measurements
of Milky Way pulsars from the ATNF catalogue. We construct mock sight-
lines through the simulation ISM (restricting to gas within ±1kpc of the
midplane and < 10kpc from the galactic center), and calculate column den-
sities of atomic HI (NHI ≡

∫
nHI d`) and free electrons (DM ≡

∫
ne d`), as

well as appropriately-weighted integrals along the line of sight to obtain
RM≡ (e3/2πm2

e c4)
∫

ne B‖ d` (bottom) and the cool HI-column-weighted
|B‖| (top).

as extragalactic RM constraints from indirect synchrotron model-
ing (Fletcher et al. 2011) and upper limits in the CGM inferred
from e.g. fast radio bursts (FRBs; Prochaska et al. 2019; Lan &
Prochaska 2020). Ponnada et al. focuses on the simulations run
fully-cosmologically from z = 100 to z = 0, i.e. our prior cos-
mological simulations with “single-bin” CR treatments (but oth-
erwise identical physics and numerics to the simulations here),
and therefore does not include the specific simulations (the con-
trolled restarts) studied here. We therefore include here in Fig. D1
a direct comparison of the simulation magnetic field constraints
from Galactic Zeeman and RM+DM observations, using the iden-
tical methodology applied to our “default” or fiducial simulation
in this paper (from Fig. 2) at z = 0 (the end of the simulation).
We refer to Ponnada et al. for details of the mock observational

methodology. Together, the range of free electron column (DM)
and atomic HI column (NHI) correspond in the simulations to a
range of total (ionized+atomic+molecular) column densities from
∼ 1018.5−1024.3 cm−2, almost six orders of magnitude.

In brief, the agreement is good at a given DM or NHI (and the
simulations lie below the upper limits measured for the CGM from
FRBs). Nonetheless, as emphasized in the text we still consider sys-
tematic variations of a factor of ∼ 10 in |B| to larger or smaller val-
ues – well outside the range allowed by observations, but instruc-
tive as a counterfactual test case. As shown clearly in Figs. 5 & B3,
even order-of-magnitude changes in |B| have little effect on our re-
sults (much smaller than modest changes to the assumed scattering
rates).
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