
First-principle molecular dynamics with ultrasoft pseudopotentials: Parallel
implementation and application to extended bioinorganic systems

P. Giannozzia)

Department of Chemistry and Princeton Materials Institute, Princeton University, Princeton,
New Jersey 08544 and NEST-INFM, Scuola Normale Superiore di Pisa, I-56126 Pisa, Italy

F. De Angelis
Department of Chemistry and Princeton Materials Institute, Princeton University, Princeton,
New Jersey 08544 and Istituto CNR di Scienze e Tecnologie Molecolari (ISTM), Dipartimento di Chimica,
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We present a plane-wave ultrasoft pseudopotential implementation of first-principle molecular
dynamics, which is well suited to model large molecular systems containing transition metal centers.
We describe an efficient strategy for parallelization that includes special features to deal with the
augmented charge in the contest of Vanderbilt’s ultrasoft pseudopotentials. We also discuss a simple
approach to model molecular systems with a net charge and/or large dipole/quadrupole moments.
We present test applications to manganese and iron porphyrins representative of a large class of
biologically relevant metalorganic systems. Our results show that accurate density-functional theory
calculations on systems with several hundred atoms are feasible with access to moderate
computational resources. ©2004 American Institute of Physics.@DOI: 10.1063/1.1652017#

I. INTRODUCTION

There is increasing interest in studying the electronic
structure of complex biological molecules. This is an essen-
tial step to understand, e.g., enzymatic and/or biomimetic
catalysis. Modeling biocatalytic systems is however very
challenging, because a proper description of the active site
needs the inclusion of a large number of atoms~from several
tens to a few hundreds! treated at a high level of quantum
chemical theory. In this respect a good compromise in terms
of accuracy and computational cost is provided by density-
functional theory~DFT!,1,2 whose use to model the elec-
tronic structure of protein active sites is becoming increas-
ingly popular. In combination with Car–Parrinello~CP!3

first-principle molecular dynamics~MD!, DFT allows us to
optimize molecular structures, study dynamical and finite-
temperature properties, and model reaction paths.

In most standard implementations, the CP method em-
ploys a plane-wave~PW! basis set. An advantage of PWs is
that they do not depend on atomic positions and are free of
basis-set superposition errors. Total energies and forces on
the atoms can be calculated using computationally efficient
fast Fourier transform~FFT! techniques. Finally, the conver-
gence of a calculation can be controlled in a simple way,
since it depends only upon the number of PWs included in
the expansion of the electron density. The dimension of a PW
basis set is controlled by a cutoff in the kinetic energy of the
PWs, which is usually measured in Ry units. A disadvantage
of PWs is their extremely slow convergence in describing

core states. To deal with this difficulty, one usually employs
norm-conserving~NC! pseudopotentials~PPs!4 to model the
interaction of the valence electrons with the ionic core
~nucleus1core electrons!. Parallel implementations of PW
calculations based on NC PPs are well documented in the
literature~see, e.g., Refs. 5–7!.

For many elements such as Al, Si, and P, it is possible to
build accurate ‘‘soft’’ NC PPs, i.e., PPs whose pseudo-
orbitals are slowly varying in real space. Typical soft PPs can
be adequately described by PWs up to a cutoff of 20 Ry or
less. For other elements, however, this is not possible: very
large PW basis sets are needed to accurately represent the
contractedp orbitals of the first-row elements O, N, F, and
the 3d orbitals of the transition metal block. These orbitals
belong to elements whose NC PPs are necessarily ‘‘hard,’’
typically requiring cutoffs of more than 70 Ry in order to
yield sufficiently converged results. A consequence of the
delocalized nature of the PWs is that the presence of a single
hard PP in a system requires the use of a correspondingly
high cutoff for all the other PPs. This difficulty is particularly
serious for metalorganic systems containing one or more
transition metal centers. The high cutoff required for such
atoms translates into a very large number of PWs, which in
turn implies long execution times and large memory require-
ments.

An approach that drastically reduces the PW cutoff
needed for elements that would be described by hard NC PPs
was proposed by Vanderbilt,8 who introduced ‘‘ultrasoft’’
~US! PPs. In this approach the normalized charge density is
the sum of two terms: a soft part represented in terms ofa!Electronic mail: giannozz@nest.sns.it
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smooth orbitals and a hard part which is treated as an aug-
mented charge. A closely related approach, the ‘‘projector-
augmented wave’’~PAW! method introduced by Blo¨chl,9 is
an all-electron rather than a PP electronic structure method.
The PAW approach provides a simple and effective algo-
rithm for reconstructing all-electron orbitals from
pseudo-orbitals.10 An efficient serial implementation of the
CP scheme with US PPs is described in Ref. 11.

In this paper we present in detail a parallel implementa-
tion of the CP scheme using US PPs. We also provide further
details on the procedures used in serial implementation. We
compare the relative efficiency of US and NC PPs in realistic
calculations for large molecules, performed on parallel ma-
chines. Our test molecules are a reduced and an extended
model of the active site of myoglobin, containing the iron–
porphyrin motif. We focus on metalloporphyrin systems be-
cause they are representative of a large class of biomolecules
which can be modeled efficiently with US PPs. Our bench-
marks indicate that US calculations are at least 2–3 times
less expensive than NC calculations of comparable accuracy.

The use of a PW basis set implies that periodic boundary
conditions~PBCs! are imposed, i.e., an isolated molecule has
to be placed into a periodically repeated box~a ‘‘supercell’’!.
The supercell must be large enough to ensure that the total
potential is vanishingly small at the box boundary, thus mini-
mizing spurious interactions between periodic replicas. For
neutral systems with small dipole/quadrupole moments, su-
percells of reasonable size can be safely used. For charged
molecules, or molecules with large dipole/quadrupole mo-
ments, however, the error induced by PBC may be rather
large unless exceedingly large supercells are used.

We follow here a technique introduced by Makov and
Payne~MP!12 to eliminate the spurious electrostatic interac-
tions in the latter case. The MP technique is approximate
because it is not self-consistent and takes into account only
moments up to quadrupole. To check the accuracy of the MP
technique, we compare CP calculations on highly charged
manganese porphyrins, performed using PWs and US PPs,
with calculations on the same systems using localized basis
sets which do not require PBC. The comparison shows that
the MP correction yields results that to all practical effects
are indistinguishable from results obtained without PBC.

The paper is organized as follows: In Sec. II, we recall
the main aspects of US–PP implementation in the serial case.
In Sec. III, we describe our parallel implementation. In Sec.
IV, we compare the computer performances of US and NC
PPs for a reduced and an extended model of the myoglobin
active site. In Sec. V, we compare CP calculations with lo-
calized basis-set calculations not requiring PBC. The test
systems are highly charged isomericmeso-substituted man-
ganese porphyrins. Section VI contains our conclusions.

II. PLANE-WAVE ULTRASOFT PSEUDOPOTENTIAL
IMPLEMENTATION

A. Kohn–Sham equations with ultrasoft
pseudopotentials

The implementation of CP molecular dynamics within a
US–PP framework is described in Ref. 11. Here we briefly
note the main formulas, using the same notation of Ref. 11.

The total energy of a system ofNv valence electrons,
having one-electron Kohn–Sham~KS! orbitalsf i , is given
by

Etot@$f i%,$RI%#5(
i

^f i u2
\2

2m
¹21VNLuf i&1EH@n#

1Exc@n#1E drVloc
ion~r !n~r !1U~$RI%!,

~1!

wheren(r ) is the electron density,EH@n# is the Hartree en-
ergy

EH@n#5
e2

2 E E drdr 8
n~r !n~r 8!

ur2r 8u
, ~2!

Exc@n# is the exchange and correlation energy,U($RI%) is
the ion–ion interaction energy, andRI indicate atomic posi-
tions. In the following, potentials have energy dimensions.
The PP is composed of a local partVloc

ion , given by a sum of
atom-centered radial potentials

Vloc
ion~r !5(

I
Vloc

I ~ ur2RI u! ~3!

and a nonlocal partVNL

VNL5 (
nm,I

Dnm
~0!ubn

I &^bm
I u, ~4!

where the functionsbn
I and the coefficientsDnm

(0) characterize
the PP and are specific for each atomic species. For simplic-
ity, we consider a single atomic species only in what follows.
The bn

I functions, centered at siteRI , depend on the ionic
positions through

bn
I ~r !5bn~r2RI !. ~5!

bn is an angular momentum eigenfunction in the angular
variables, times a radial function which vanishes outside the
core region; the indicesn andm in Eq. ~4! run over the total
numberNb of these functions.

The electron density in Eq.~1! is given by

n~r !5(
i

F uf i~r !u21 (
nm,I

Qnm
I ~r !^f i ubn

I &^bm
I uf i&G , ~6!

where the sum runs over occupied KS orbitals. The augmen-
tation functionsQnm

I (r )5Qnm(r2RI) are localized in the
core. The ultrasoft PP is fully determined by the quantities
Vloc

I (r ), Dnm
(0) , Qnm(r ), andbn(r ). The functionsQnm(r ) are

defined in terms of atomic orbitals as:Qnm(r )
5c n

ae* (r )c m
ae(r )2c n

ps* (r )c m
ps(r ), wherec ae are atomic

one-electron orbitals~not necessarily bound!, and c ps are
the corresponding pseudo-orbitals. TheQnm(r ) are pseud-
ized as described in Ref. 11. This enables us to treat the
Qnm(r ) with Fourier transform techniques.

The KS orbitals obey generalized orthonormality condi-
tions

^f i uS~$RI%!uf j&5d i j , ~7!

whereS is a Hermitian overlap operator given by
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S511 (
nm,I

qnmubn
I &^bm

I u, ~8!

and

qnm5E drQnm~r !. ~9!

The orthonormality condition~7! is consistent with the con-
servation of the charge* drn(r )5Nv . Note that the overlap
operatorS depends on ionic positions through theubn

I &.
The ground-state orbitalsf i minimize the total energy

Eq. ~1! subject to the constraints Eq.~7!

dEtot

df i* ~r !
5e iSf i~r !, ~10!

where thee i are Lagrange multipliers. Equation~11! is the
KS equation

Huf i&5e iSuf i&, ~11!

where

H52
\2

2m
¹21Veff1 (

nm,I
Dnm

I ubn
I &^bm

I u. ~12!

Veff is a screened effective local potential

Veff~r !5Vloc
ion~r !1VH~r !1mxc~r !. ~13!

mxc(r ) is the exchange-correlation potential

mxc~r !5
dExc@n#

dn~r !
, ~14!

andVH(r ) is the Hartree potential

VH~r !5e2E dr 8
n~r 8!

ur2r 8u
. ~15!

The ‘‘screened’’ coefficientsDnm
I appearing in Eq.~12! are

defined as

Dnm
I 5Dnm

~0!1E drVeff~r !Qnm
I ~r !. ~16!

They depend on the KS orbitals throughVeff , Eq. ~13!, and
the charge density, Eq.~6!.

B. Molecular dynamics with ultrasoft pseudopotentials

In the CP approach,3 the electronic orbitals and the ionic
coordinates evolve according to a classical Lagrangian

L5m(
i
E dr uḟ i~r !u21

1

2 (
I

M IṘI
22Etot~$f i%,$RI%!,

~17!

subject to a set of constraints

Ni j ~$f i%,$RI%!5^f i uSuf j&2d i j 50. ~18!

Here m is a fictitious mass parameter for the electronic de-
grees of freedom,MI are the masses of the atoms, andEtot

andS are given in Eqs.~1! and ~8!, respectively. The holo-
nomic orthonormality constraints Eq.~18! do not cause en-

ergy dissipation in a MD run. They may be incorporated in
the Euler equations of motion by introducing Lagrange mul-
tipliers L i j :

mf̈ i52
dEtot

df i*
1(

j
L i j Sf j , ~19!

FI5MIR̈I52
]Etot

]RI
1(

i j
L i j ^f i u

]S

]RI
uf j&. ~20!

At equilibrium, Eq.~19! reduces to the electronic KS equa-
tions ~10! or ~11!. A unitary rotation brings theL matrix into
diagonal form:L i j 5e id i j . The equilibrium for the ions is
achieved when the ionic forcesFI in Eq. ~20! vanish.

In deriving explicit expressions for the forces, Eq.~20!,
one should keep in mind that the electron density also de-
pends onRI throughQnm

I andbn
I . Introducing the quantities

rnm
I 5(

i
^f i ubn

I &^bm
I uf i&, ~21!

and

vnm
I 5(

i j
L i j ^f j ubn

I &^bm
I uf i&, ~22!

we arrive at the expression

FI52
]U

]RI
2E dr

]Vloc
ion

]RI
n~r !

2E drVeff ~r !(
nm

]Qnm
I ~r !

]RI
rnm

I 2(
nm

Dnm
I

]rnm
I

]RI

1(
nm

qnm

]vnm
I

]RI
, ~23!

whereDnm
I andVeff have been defined in Eqs.~16! and~13!,

respectively. The last term of Eq.~23! gives the constraint
contribution to the forces. Since the PW basis set does not
depend on atomic positions, Pulay-type corrections13 do not
appear in the expression for the forces.

C. Discretization of the equation of motion
and orthonormality constraints

The equations of motion Eqs.~19! and ~20! are usually
discretized using the Verlet or the velocity-Verlet algorithms.
The following discussion, including the treatment of theRI

dependence of the orthonormality constraints, applies to the
Verlet algorithm when using the Fourier acceleration scheme
of Ref. 14. In this framework the fictitious electron mass is
represented by an operatorQ, whose matrix elements be-
tween PWs are given by

QG,G85maxS m,m
\2G2

2mEc
D dG,G8 , ~24!

where G, G8 are the wave vector of PWs,Ec is a cutoff
~typically a few Ry! which defines the threshold for Fourier
acceleration. The fictitious electron mass depends onG as
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the kinetic energy for largeG, it is constant for smallG. This
scheme allows us to use larger time steps with negligible
computational overhead.

The electronic orbitals at timet1Dt are given by

f i~ t1Dt !52f i~ t !2f i~ t2Dt !2~Dt !2Q21F dEtot

df i*

2(
j

L i j ~ t1Dt !S~ t !f j~ t !G , ~25!

whereDt is the time step, andS(t) indicates the operatorS
evaluated for ionic positionsRI(t). Similarly the ionic coor-
dinates at timet1Dt are given by

RI~ t1Dt !52RI~ t !2RI~ t2Dt !2
~Dt !2

MI
F ]Etot

]RI

2(
i j

L i j ~ t1Dt !^f i~ t !u
]S~ t !

]RI
uf j~ t !&G .

~26!

The orthonormality conditions must be imposed at each time
step

^f i~ t1Dt !uS~ t1Dt !uf j~ t1Dt !&5d i j , ~27!

leading to the following matrix equation:

A1lB1B†l†1lCl†51, ~28!

where the unknown matrixl is related to the matrix of
Lagrange multipliersL at time t1Dt via l5(Dt)2L* (t
1Dt). In Eq. ~28! the dagger indicates Hermitian conjugate
(l5l†). The matricesA, B, andC are given by

Ai j 5^f̄ i uS~ t1Dt !uf̄ j&,

Bi j 5^Q21S~ t !f i~ t !uS~ t1Dt !uf̄ j&, ~29!

Ci j 5^Q21S~ t !f i~ t !uS~ t1Dt !uQ21S~ t !f j~ t !&,

with

f̄ i52f i~ t !2f i~ t2Dt !2~Dt !2Q21
dEtot~ t !

df i*
. ~30!

The solution of Eq.~28! in the ultrasoft PP case is not obvi-
ous, because Eq.~26! is not a closed expression forRI(t
1Dt). The problem is thatL(t1Dt) appearing in Eq.~26!
depends implicitly onRI(t1Dt) throughS(t1Dt). Conse-
quently, it is in principle necessary to solve iteratively for
RI(t1Dt) in Eq. ~26!.

A simple solution to this problem is given in Ref. 11.
L(t1Dt) is extrapolated using two previous values

L i j
~0!~ t1Dt !52L i j ~ t !2L i j ~ t2Dt !. ~31!

Equation~26! is used to findRI
(0)(t1Dt), which is correct to

O(Dt4). From RI
(0)(t1Dt) we can obtain a new setL i j

(1)(t
1Dt) and repeat the procedure until convergence is
achieved. It turns out that in most practical applications the
procedure converges at the very first iteration. Thus, the op-
erations described above are generally executed only once
per time step.

The solution of Eq.~28! is found using a modified
version7,11 of the iterative procedure of Ref. 15. The matrixB
is decomposed into hermitian (Bh) and antihermitian (Ba)
parts

B5Bh1Ba , ~32!

and the solution is obtained by iteration

l~n11!Bh1Bhl~n11!512A2l~n!Ba2Ba
†l~n!

2l~n!Cl~n!. ~33!

The initial guessl (0) can be obtained from

l~0!Bh1Bhl~0!512A. ~34!

Here theBa- and C-dependent terms are neglected because
they are of higher order inDt (Ba vanishes for vanishing
Dt). Equations~34! and ~33! have the same structure:

lBh1Bhl5X, ~35!

whereX is a Hermitian matrix. Equation~35! can be solved
exactly by finding the unitary matrixU that diagonalizes
Bh :U†BhU5D, whereDi j 5did i j . The solution is obtained
from

~U†lU ! i j 5~U†XU! i j /~di1dj !. ~36!

When X512A Eq. ~36! yields the startingl (0), while
l (n11) is obtained froml (n) by solving Eq. ~36! with X
given by Eq.~33!. This iterative procedure usually converges
in ten steps or less.

D. Ultrasoft pseudopotential implementation
in the serial case

1. Plane-wave expansion

Let $R% be the translation vectors of the periodically re-
peated supercell. The corresponding reciprocal lattice vectors
$G% obey the conditionsRi "Gj52pn, with n an integer
number.

The KS orbitals can be expanded in a PW basis up to a
kinetic energy cutoffEc

wf

f j ,k~r !5
1

AV
(

GP$Gc
wf%

f j ,k~G!e2 i ~k1G!•r, ~37!

whereV is the volume of the cell, and$Gc
wf% is the set ofG

vectors satisfying the condition

\2

2m
uk1Gu2,Ec

wf , ~38!

andk is the Bloch vector of the electronic states. In crystals,
one must use a grid ofk points dense enough to sample the
Brillouin zone~the unit cell of the reciprocal lattice!. In mol-
ecules, liquids, and in general if the simulation cell is large
enough, the Brillouin zone can be sampled using only the
k50 ~G! point. An advantage of this choice is that the orbit-
als can be taken to be real inr space. In the following we
will drop the k vector index. Functions in real space and
their Fourier transforms will be denoted by the symbols, if
this does not originate in ambiguity.
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Thef j (G)s are the electronic variables. The calculation
of Hf j and of the forces acting on the ions are the basic
ingredients of the computation. Scalar products^f j ubn

I & and
their spatial derivatives are typically evaluated inG space.
An important advantage of working inG space is that atom-
centered functions likebn

I and Qnm
I are easily evaluated at

any atomic position, for example

bn
I ~G!5bn~G!e2 iG"RI. ~39!

Thus

^f j ubn
I &5 (

GP$Gc
wf%

f j* ~G!bn~G!e2 iG"RI, ~40!

and

K f jU]bn
I

]RI
L 52 i (

GP$Gc
wf%

Gf j* ~G!bn~G!e2 iG"RI. ~41!

The kinetic energy term is diagonal inG space and is easily
calculated

2~¹2f j !~G!5G2f j~G!. ~42!

In summary, the kinetic and nonlocal PP terms inHf j are
calculated inG space.

2. Dual space technique

The local potential termVefffj could be calculated inG
space, but it is more convenient to use a different~‘‘dual
space’’! technique. The idea is to switch fromG to r space,
back and forth, using FFT, and to perform the calculation in
the space where it is more convenient. The KS orbitals are
first Fourier transformed tor space; then (Vefffj)(r )
5Veff(r )f j (r ) is calculated inr space, whereVeff is diago-
nal; finally (Vefffj)(r ) is Fourier transformed back to
(Vefffj)(G).

In order to use FFT, one discretizes ther space by a
uniform grid spanning the unit cell

f ~m1 ,m2 ,m3![ f ~rm1 ,m2 ,m3
!,

~43!

rm1 ,m2 ,m3
5m1

a1

N1
1m2

a2

N2
1m3

a3

N3
,

wherea1 , a2 , a3 are lattice basis vectors, the integer index
m1 runs from 0 toN121, and similarly form2 andm3 . In
the following we will assume for simplicity thatN1 , N2 , N3

are even numbers. The FFT maps a discrete periodic function
in real spacef (m1 ,m2 ,m3) into a discrete periodic function
in reciprocal spacef̃ (n1 ,n2 ,n3) ~wheren1 runs from 0 to
N121, and similarly forn2 andn3), and vice versa.

The link betweenG space components and FFT indices
is

f̃ ~n1 ,n2 ,n3![ f ~Gn
18 ,n

28 ,n
38
!,

~44!
Gn

18 ,n
28 ,n

38
5n18b11n28b21n38b3 ,

wheren15n18 if n18>0, n15n181N1 if n18,0, and similarly
for n2 andn3 . The FFT dimensionsN1 , N2 , N3 must be big
enough to include all non-negligible Fourier components of

the function to be transformed: ideally the Fourier compo-
nent corresponding ton185N1/2, and similarly forn28 and
n38 , should vanish. In the following, we will refer to the set
of indicesn1 , n2 , n3 and to the corresponding Fourier com-
ponents as the ‘‘FFT grid.’’

The soft part of the charge density:nsoft(r )
5( j uf j (r )u2, contains Fourier components up to a kinetic
energy cutoffEc

soft54Ec
wf . This is evident from the formula

nsoft~G!5 (
G8P$Gc

wf%
(

j
f j* ~G2G8!f j~G8!. ~45!

In the case of NC PPs, the entire charge density is given by
nsoft(r ).

Veff should be expanded up to the sameEc
soft cutoff since

all the Fourier components ofVefffj up to Ec
wf are required.

Let us call$Gc
soft% the set ofG vectors such that

\

2m
G2,Ec

soft. ~46!

The soft part of the charge density is conveniently calculated
in r space, by Fourier transformingf j (G) into f j (r ) and
summing over the occupied states.

The exchange-correlation potentialmxc(r ), Eq. ~14!, is a
function of the local charge density and—for gradient-
corrected functionals—of its gradient at pointr

mxc~r !5Vxc~n~r !,u¹n~r !u!. ~47!

The gradient¹n(r ) is conveniently calculated from the
charge density inG space, using (¹n)(G)52 iGn(G). The
Hartree potentialVH(r ), Eq. ~15!, is also conveniently cal-
culated inG space

VH~G!5
4p

V

n~G!*

G2
. ~48!

Thus in the NC–PP case, a single FFT grid, large enough to
accommodate the$Gc

soft% set, can be used for orbitals, charge
density, and potential.

The use of FFT is mathematically equivalent to a pure
G-space description~we neglect here a small inconsistency
in exchange–correlation potential and energy density, due to
the presence of a small amount of components beyond the
$Gc

soft% set!. This has important consequences: working inG
space means that translational invariance is exactly con-
served and that forces are analytical derivatives of the energy
~apart from the effect of the small inconsistency mentioned
above!. Forces that are analytical derivatives of the energy
ensure that the constant of motion~i.e., the sum of kinetic
and potential energy of the ions in Newtonian dynamics! is
conserved during the evolution.

3. Double-grid technique

Let us focus on US PPs. InG space the charge density is

n~G!5nsoft~G!1 (
i ,nm,I

Qmn
I ~G!^f i ubn

I &^bm
I uf i&. ~49!

If Ec
wf is the cutoff for the KS orbitals, the cutoff for the soft

part of the charge density isEc
soft54Ec

wf . The augmentation
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term often requires a cutoff higher thanEc
soft, and as a con-

sequence a larger set ofG vectors. Let us call$Gc
dens% the set

of G vectors that arc needed for the augmented part

\2

2m
G2,Ec

dens. ~50!

In typical situations, using pseudized augmented charges,
Ec

densranges fromEc
soft to ;2 – 3Ec

soft.
The same FFT grid could be used for both the aug-

mented charge density and for KS orbitals. This however
would imply using an oversized FFT grid in the most expen-
sive part of the calculation, dramatically increasing computer
time. A better solution is to introduce two FFT grids:

~i! a coarser grid~in r space! for the KS orbitals and the
soft part of the charge density. The FFT dimensions
N1 , N2 , N3 of this grid are big enough to accommo-
date allG vectors in$Gc

soft%; and
~ii ! a denser grid~in r space! for the total charge density

and the exchange–correlation and Hartree potentials.
The FFT dimensionsM1>N1 , M2>N2 , M3>N3 of
this grid are big enough to accommodate allG vectors
in $Gc

dens%.

In this framework, the soft part of the electron density
nsoft, is calculated inr space using FFTs on the coarse grid
and transformed inG space using a coarse-grid FFT on the
$Gc

soft% grid. The augmented charge density is calculated inG
space on the$Gc

dens% grid, using Eq.~49! as described in the
next section.n(G) is used to evaluate the Hartree potential,
Eq. ~48!. Thenn(G) is Fourier transformed inr space on the
dense grid, where the exchange–correlation potential, Eq.
~47!, is evaluated.

In real space, the two grids are not necessarily commen-
surate. Whenever the need arises to go from the coarse to the
dense grid, or vice versa, this is done inG space. For in-
stance, the potentialVeff , Eq. ~13!, is needed both on the
dense grid to calculate quantities such as theDnm

I , Eq. ~16!,
and on the coarse grid to calculateVefffj , Eq. ~11!. The
connection between the two grids occurs inG space, where
Fourier filtering is performed:Veff is first transformed inG
space on the dense grid, then transferred to the coarseG
space grid by eliminating components incompatible with
Ec

soft, and then backtransformed inr space using a coarse-
grid FFT.

We remark that for each time step only a few dense-grid
FFT are performed, while the number of necessary coarse-
grid FFTs is much larger, proportional to the number of KS
statesNks.

4. Augmentation boxes

Let us consider the augmentation functionsQnm , which
appear in the calculation of the electron density, Eq.~49!, in
the calculation ofDnm

I , Eq. ~16!, and in the integrals involv-
ing ]Qnm

I /]RI needed to compute the ionic forces, Eq.~23!.
The calculation of theQnm in G space has a large computa-
tional cost because the cutoff for theQnm is the large cutoff

Ec
dens. The computational cost can be significantly reduced if

we take advantage of the localization of theQnm in the core
region.

We call ‘‘augmentation box’’ a fraction of the supercell,
containing a small portion of the dense grid in real space. An
augmentation box is defined only for atoms described by US
PPs. The augmentation box for atomI is centered at the point
of the dense grid that is closer to the positionRI . During a
MD run, the center of theIth augmentation box makes dis-
continuous jumps to one of the neighboring grid points
whenever the position vectorRI gets closer to such grid
point. In a MD run, the augmentation box must always com-
pletely contain the augmented charge belonging to theIth
atom; otherwise, the augmentation box must be as small as
possible. Augmentation boxes of different sizes for different
atoms could in principle be used, but in our implementation
the same box size is chosen for all the atoms. Thus the
atomic species having the less localized augmented charge
determines the size of all the augmentation boxes.

The volume of the augmentation box is much smaller
than the volume of the supercell. The number ofG vectors in
the reciprocal space of the augmentation box is smaller than
the number ofG vectors in the dense grid by the ratio of the
volumes of the augmentation box and of the supercell. As a
consequence, the cost of calculations on the augmentation
boxes increases linearly with the number of atoms described
by US PPs.

Augmentation boxes are used twice in the calculation:

~i! to construct the augmented charge density, Eq.~6! and
~ii ! to calculate the self-consistent contribution to the co-

efficients of the nonlocal PP, Eq.~16!.

In case~i!, the augmented charge is conveniently calcu-
lated inG space, following Ref. 11, and Fourier transformed
in r space. All these calculations are done on the augmenta-
tion box grid. Then the calculated contribution at eachr
point of the augmentation box grid is added to the charge
density at the same point in the dense grid. In case~ii !, it is
convenient to calculateDnm

I as follows: for every US atom,
take the Fourier transform ofVeff (r ) on the corresponding
augmentation box grid and evaluate the integral of Eq.~16!
in G space.

III. PARALLEL ULTRASOFT PSEUDOPOTENTIAL
IMPLEMENTATION

Various parallelization strategies for PW–PP calcula-
tions have been described in the literature. A strategy that
ensures excellent scalability in terms of both computer time
and memory consists of distributing the PW basis set and the
FFT grid points in real and reciprocal space across proces-
sors. A crucial issue for the success of this approach is the
FFT algorithm, which must be capable of performing three-
dimensional FFT on data shared across different processors
with good load balancing.5 This algorithm can be generalized
to the US case as described in the following subsection.
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A. Parallel FFT in the US case

Partitioning a real-space FFT grid across processors is
straightforward. The FFT grid, Eq.~43!, is subdivided in a
number of slices equal to the number of processors, so that
each processor can take care of a different slice. The slices
are cut along planes orthogonal to a chosen crystallographic
direction. We label the crystallographic directions by 1, 2, 3.
For instance, let us consider a FFT grid withN3 planes along
direction 3, which is distributed acrossNp processors. IfNp

is a divisor of N3 , good load balancing is achieved if
each slice contains the same number (N3 /Np) of planes.
Processorp contains planes withm3 values such that:
(p21)(N3 /Np)<m3<p(N3 /Np)21. If Np is not a divisor
of N3 , all the slices cannot be equal. In this case their di-
mension is chosen in such a way as to minimize load imbal-
ance. IfNp exceeds the number of planesN3 , this strategy
has to be refined.

The partition of theG space grid is more involved. The
Fourier components of the quantities of interest~e.g., the
orbitals, the charge density, etc.! are stored as vectors~one-
dimensional arrays!: f ( i )[ f (Gi), where the indexi spans
one of the three sets ofG vectors defined above, namely the
set$Gc

wf%, the set$Gc
soft%, and the set$Gc

dens%. When a FFT is
needed, the Fourier components have to be transferred to one
of the two grids~three-dimensional arrays!, defined by Eq.
~44!. The two grids are either the coarse grid, with dimen-
sionsN1 , N2 , N3 , or the dense grid, with dimensionsM1 ,
M2 , M3 . The Fourier components must be evenly distrib-
uted across processors in order to achieve optimal load bal-
ancing for operations like scalar products. At the same time,
their distribution across processors should achieve good load
balancing in the FFTsandminimize the amount of data com-
munication needed to perform the FFTs.

For each pairn18 , n28 in Eq. ~44! we define a ‘‘column’’
in G space, including allGn

18 ,n
28 ,n

38
with 2M3/2<n38

<M3/2. Since the KS orbitals have nonzero Fourier compo-
nent only forG vectors belonging to the set$Gc

wf%, only a
subset of all the columns contributes to a one-dimensional
FFT of a KS orbital in the direction 3. We call these columns
‘‘active columns’’ for the set$Gc

wf%. In general, the number
of nonzero Fourier components is different for each active
column. Ideally, we would like to distribute the active col-
umns across the processors, so that each processor receives
the same number of active columns and the same number of
Fourier components. Although not possible in general, this
can be achieved to a good extent with a simple algorithm:16

~1! create a list of columns, ordered by decreasing number of
nonzero Fourier components;~2! assign the column to the
processors, following the order in the list;~3! when all the
processors contain at least one column, assign the following
column in the list to the processor with the smallest number
of nonzero Fourier components. This algorithm works nicely
when the number of columns per processor is large enough.

After assigning to the processors all the columns that are
active for the set$Gc

wf%, we distribute across the processors
the remaining columns, that are active for the set$Gc

soft%,
using the same algorithm. Finally we distribute across the
processors the remaining columns, that are active for the set

$Gc
dens%, again using the same algorithm. The remaining col-

umns are not active for any set ofG vectors and play no role.
After distributing all the columns across the processors,

a one-dimensional FFT along direction 3 is done on local
data~on a single processor!. However, the data on the planes
orthogonal to direction 3 are distributed across the proces-
sors. In order to perform FFTs in each of these planes, the
corresponding data must be made local to a processor. This is
achieved by a parallel transpose operation, performed with a
single call to the appropriate MPI17 library routine. Two-
dimensional FFTs can then be performed on the planes, with
each processor operating on local data. Nonzero contribu-
tions are present only for (n18 ,n28) pairs corresponding to
active columns. This fact can be exploited to reduce the
number of FFT operations, by performing only the FFTs
along direction 1~or 2! that include nonzero contributions.
The strategy for parallel three-dimensional FFT that we have
presented requires the number of processorsNp be smaller
than or equal to the number of planesN3 . The FFT fromr to
G space uses the same algorithm in reversed sequence.

In calculations using only theG point ~k50!, the KS
orbitals can be chosen to be real functions inr space, so that
f~G!5f* ~2G!. This allows us to store only half of the Fou-
rier components. Moreover, two real FFTs can be performed
as a single complex FFT. To this end the auxiliary functionF
is introduced:

F~r !5f j~r !1 if j 11~r !, ~51!

whose Fourier transformF~G! yields

f j~G!5
F~G!1F* ~G!

2
, ~52!

f j 11~G!5
F~G!2F* ~G!

2i
. ~53!

A side effect on parallelization is thatG and2G must reside
on the same processor. As a consequence, pairs of columns
with Gn

18 ,n
28 ,n

38
and G2n

18 ,2n
28 ,n

38
~with the exception of the

casen185n2850), must be assigned to the same processor.

B. Scalar products

All scalar productŝ f ug&5( i f i* gi , i 51, n wherei runs
on a distributed grid, can be calculated by calling standard
optimized library routines~like BLAS from NetLib18! on
each processor, and subsequently by summing the partial re-
sults of all processors, using a call to standard MPI17 librar-
ies. Scalar products between vectors for which only half of
the Fourier components are stored require a special treat-
ment. Letnp be the number of Fourier components stored on
processorp. The contribution of this processor to the scalar
product iŝ f ug&p52( i 51,np

f i* gi if the G50 components are
not within the set ofnp components. If instead theG50
components, identified byi 51, are stored on processorp, the
contribution of processorp to the scalar product iŝf ug&p

5 f 1g112( i 52,np
f i* gi .
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C. Iterative orthonormalization

The scalar products in the matrix elements, Eq.~29!,
needed to compute the Lagrange multipliers are calculated in
parallel, following the procedure of the previous subsection.
In the present implementation, the solution of the matrix
equation~35!, involving square matrices of dimension equal
to the numberNks of KS orbitals, is not parallelized but
replicated on all the processors. Usually the time spent in the
nonparallelized part of the iterative orthonormalization is
only a small fraction of the total time of the calculation.

To efficiently perform calculations on very large sys-
tems, using a large number of processors, the solution of Eq.
~35! should also be parallelized. The time consuming steps
are matrix–matrix multiplication and the diagonalization of
theB matrix. Both calculations requireO(Nks

3 ) floating-point
operations. A convenient parallelization approach is de-
scribed in Ref. 7.

D. Augmentation boxes

The parallelization of the calculations performed on the
augmentation boxes is not obvious for two reasons:~1! each
augmentation box has a grid which is a portion of the dense
grid and is distributed across processors; and~2! the boxes
follow the atoms in the MD evolution, causing the portion of
the dense grid to change with time. In the present implemen-
tation, we deal with these difficulties as follows. We keep on
all processors a copy of all the quantities defined on the
augmentation boxes. Calculations on the grid of a given aug-
mentation box are performed only in the processors that con-
tain at least a fraction of the given augmentation-box grid.
This causes some replication of the calculations. FFTs on the
augmentation box grid are performed locally on each proces-
sor. In order to reduce the amount of replication, in the FFTs
from G to r space, the two-dimensional FFTs along planes
orthogonal to direction 3 are performed only in the planes
belonging to the slice of the dense grid that is local to a given
processor. No communication is needed to copy the aug-
mented charge inr space from the augmentation-box grid to
the dense grid~see Sec. II D 4!. In the calculation ofDnm

I ,
we evaluateQnm

I in G space, transform it inr space using
augmented-box FFT, evaluate the integral of Eq.~16! in r
space and sum the final result over all processors. This ap-
proach keeps communications to a minimum, at the expense
of a number of augmentation-box FFTs larger than in the
serial case.

Augmentation-box grid related calculations constitute a
very small part of the overall computational cost, both in
computer time and in memory. Therefore the simple ap-
proach that we have presented is convenient even if some
calculations are replicated on few processors and the load
balance is not optimal.

IV. TEST CASE: IRON PORPHYRINS

We report here a comparison of computer performances
for US and standard PPs in CP calculations. Our test
systems—prototypes of systems containing the iron–
porphyrin motif—are a reduced and an extended model of
the active site of myoglobin.

A. Models and computational details

The reduced model is composed of an iron–porphyrin–
imidazole complex, already investigated using the CP
method by Roviraet al.;19 the metallic pentacoordinated cen-
ter is bound to the four planar porphyrin nitrogens, with the
imidazole nitrogen occupying one of the axial sites, binding
approximately orthogonal to the porphyrin plane~see Fig. 1!.
The chemical formula is@FeN6C23H16#. A simple cubic cell
of size 15.875 Å, containing a total of 46 atoms and 154
electrons, is used. For the reduced model, we compare both
spin-restricted and unrestricted (S52) calculations.

The extended model is composed of a large portion of
the myoglobin active site, defined by the full heme group
~same coordination as for the reduced model! plus the 13
surrounding residues which were comprised within a sphere
of 8 Å radius centered on the iron atom~see Fig. 2!. The
initial geometry has been taken from the x-ray experimental
structure of the O2–myoglobin complex20 and the included
residues have been terminated by NH2 groups, resulting in a
total of 332 atoms and 902 electrons. The chemical formula
is @FeO19N35C106H173#. A simple cubic cell of size 25.4 Å
has been used, ensuring a minimum separation of 5 Å be-
tween periodic replicas. Such distance has been deemed suf-
ficient based on previous experience with neutral molecules.
For the extended model we discuss only the performances of
the more computationally demanding spin-unrestricted (S
52) calculations.

For a correct comparison of performances we need to
compare data of similar quality, in terms of accuracy of
chemical properties, obtained with algorithms of comparable
quality in terms of serial speed and parallel speedup. In order
to satisfy the first requirement, we need to determine a set of
cutoffs for the US and standard calculations yielding compa-
rable structural properties. To this end we compared the op-
timized geometry of the triplet ground state for the reduced
model from our US calculations and from published NC re-
sults, performed atEc

wf570 Ry.19 Our geometrical param-
eters are converged to the same extent as those in Ref. 19 at
Ec

wf525 Ry and Ec
dens5200 Ry; in particular the critical

Fe–N distances in the porphyrin and in the imidazole are
found to be 2.00 and 2.12 Å, respectively, versus 2.00 and
2.14 Å of Ref. 19, with the out-of-plane displacement of the
iron atom computed to be 0.14 versus 0.15 Å. The overall

FIG. 1. ~Color! Reduced model: the iron–porphyrin–imidazole complex:
~yellow! Fe, ~dark gray! C, ~blue! N, ~light gray! H.
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agreement between the two sets of results is excellent, and
the residual difference can be attributed to the different func-
tionals used: BP8621,22 in Ref. 19, and PW9123 in our calcu-
lations. We estimate that we can safely compare US–PP cal-
culations performed atEc

wf525 Ry to standard calculations at
Ec

wf570 Ry. For a fair comparison we use the same cutoff
for the charge density in the US case as in the standard case
(Ec

dens5280 Ry). We also performed calculations atEc
wf

535 Ry for the US case, atEc
wf5100 Ry for the standard

case (Ec
dens5400 Ry in both cases!.

In order to compare algorithms of similar quality, all
calculations were performed using the same code24 ~standard
PPs are just a special case of US PPs!. The PPs used in the
standard case tests were generated using the technique of
Troullier and Martins.25 In the US case, we use US PPs for

all atoms, including H.26 The PW91 functional23 is used in
all calculations.

B. Results

The results for the reduced models were obtained on a
32-node IBM SP3~43375 MHz power3 processors per
node!, while the extended model calculations were per-
formed on a 64-processor SGI Origin~643300 MHz MIPS
R12 000 processors!, both at the Keck Materials Science
Laboratory, Princeton University.

The reported execution times are an average over 20
time steps of the measured wall time~the sum of CPU and
system time, differing by only a few percent from pure CPU
time!.

The parallelization performances of the US versus NC–
PPs implementation for the spin-restricted case of the re-
duced model are shown in Table I. The execution times for a
CP step~including calculation of forces and time evolution
of atomic positions! are about 15% larger than for a purely
electronic step~orbital time evolution only!, as expected. The
small superlinear speedup observed both for US and NC PPs
is a consequence of caching: since the memory per processor
decreases almost linearly with the number of processors, bet-
ter caching can be achieved with an increased number of
processors, thus increasing the serial speed of the code. It is
worth noting that US calculations are faster by a factor of
;2.5 with respect to the NC case and require half RAM
memory and 1/4 disk space with respect to standard calcula-
tions.

The performances of US versus NC–PPs calculations at
higher cutoff are shown in Table II. The number of PWs is
approximately (35/25)3/2.1.65 times larger than in the pre-
ceding case. Execution times should approximately be pro-
portional to the same factor. The factor is actually somewhat
larger~.1.9!, but the cache effects mentioned above and the
effect of the discreteness of the FFT grid explain the differ-
ence. Again, US calculations are faster by a factor of;2.5
with respect to the NC case and require half RAM memory
with respect to standard calculations.

In Table III we report spin-unrestricted results, showing
an approximate doubling of execution time and of memory
requirements, in line with expectations.

Table IV contains the performances of US calculations
on the quintet state (S52), which is experimentally known
to be the ground spin state in myoglobin, of our extended
model of myoglobin atEc

wf525 Ry andEc
dens5200 Ry. The

scaling with the number of processors is excellent in this

TABLE I. Performances of the US and NC calculations, for the spin-
restricted case. For US PPs:Ec

wf525 Ry, Ec
dens5280 Ry, FFT grid size: 160,

96, 16 for the dense, coarse, and augmentation box grids, respectively. For
NC PPs:Ec

wf570 Ry, Ec
dens5280 Ry, FFT grid size: 160.Np is the number

of processors;Mr is an estimate of the RAM needed per processor in Mb;
Te is the execution time per electronic time step~at fixed atoms!, in s; Ti is
the same asTe per CP time step~atoms moving!, in s.

Np

US NC

Mr Te Ti Mr Te Ti

4 190 49.5 56.2 357 136.1 159.7
8 100 23.6 26.1 139 44.6 49.8

16 57 10.7 12.1 77 21.0 22.9

TABLE II. Performances of the US calculations, spin-restricted case at
higher cutoff. For US PPs:Ec

wf535 Ry, Ec
dens5400 Ry, FFT grid size: 192,

120, 20 for the dense, coarse, and augmentation box grids, respectively. For
NC PPs:Ec

wf5100 Ry, Ec
dens5400 Ry, FFT grid size: 192. The meaning of

the various columns is the same as in Table I.

Np

US NC

Mr Te Ti Mr Te Ti

8 167 44.7 50.1 307 118.7 143.7
16 93 20.9 23.0 157 50.5 57.2

FIG. 2. ~Color! Extended model of the myoglobin active site:~red! O, other
colors as in Fig. 1.
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case too, with a slight superlinear scaling up to 32 proces-
sors. The ratio between execution times for electronic and
CP time steps is almost the same in the extended and in the
reduced models. A geometry optimization time step requires
less than 20 min in the spin-unrestricted case on 48 proces-
sors, with a total RAM usage of;21 Gb. The total size of
the file containing the KS orbitals is 6.7 Gb. In this case no
standard calculation was attempted; indeed, an extrapolation
from the results of Tables I, III, and IV points to a total
memory requirement of more than 40 Gb.

A typical local geometry optimization requires;250
time steps. An execution time of 20 min per time step thus
translates into less than four days for the optimization to
complete. This is a perfectly feasible calculation, not even
requiring a state-of-the art massive parallel computer. On the
other hand, a typical MD run requires no less than 10 000
time steps, corresponding in the present case to a few ps of
simulation time. A true dynamical simulation would there-
fore become accessible on a state-of-the art massive parallel
computer.

The relevance of simulating extended portions of myo-
globin active site can be understood by considering the spin
density distribution of the quintet spin state of the extended
model, reported in Fig. 3 together with selected integrated
spin density values. The spin density is mainly localized on
the iron atom~;88%!, even though a sizable contribution
~;12%! is computed to be delocalized over the rest of the
system, with the largest contributions arising from the propi-
onate groups bound to the porphyrin ring. This finding is of
particular interest, considering that CO rebinding in myoglo-
bin has been recently related to a spin crossover from the
quintet spin state, corresponding to unbound CO
1myoglobin, to the singlet spin state characterizing the
bound configuration of the CO–myoglobin complex.27 Since
explicit inclusion of the protein environment alters the spin
distribution of the quintet state in our extended model, an
effect on the relative energy of the different spin states can
be expected.

V. ACCURACY OF PERIODIC BOUNDARY
CONDITIONS

The use of PBC to describe molecules is perfectly ap-
propriate for neutral molecules with small dipole/quadrupole
moments, provided that the chosen supercell is large enough
to minimize the spurious interactions between periodic rep-
licas. This goal can usually be reached with supercells that
leave a few Å of empty space between periodic replicas.

Charged molecules should be described by charged su-
percells, but these have infinite electrostatic energy. A finite
energy is obtained by setting to zero the divergentG50
contributions to the energy, as if the system were neutral.
This is equivalent to adding a neutralizing background. En-
ergies obtained in this way will be referred to as ‘‘uncor-
rected.’’ The direct comparison of uncorrected energies be-
tween different charge states is usually meaningless, because
the error induced by PBC is large in this case. The long-
range character of Coulomb interactions would require un-
practically large supercells. Uncorrected energies may also
be affected by a large error in molecules with large dipole/
quadrupole moments.

Several techniques have been devised to overcome such
limitation. The Hockney technique28 yields an exact treat-
ment of charged species using PWs without imposing PBC.
This is achieved by cutting the Coulomb potential in real
space beyond a suitably chosen cutoff that excludes all spu-
rious interactions between periodic replica, still taking into
account intramolecular interactions. This technique is rather
expensive, since it requires the definition of an enlarged FFT
grid for the Coulomb potential. A similar technique29 where
the cutoff acts in reciprocal space allows for faster execution
with minor loss of accuracy.

A much simpler and approximate technique, due to Ma-
kov and Payne~MP!,12 consists of calculating the leading
electrostatic correction terms and removing them from the
uncorrected total energy. The MP correction is performeda
posteriorion the energy only: the effect of the charge on the
potential and on atomic forces is therefore neglected.

TABLE III. Performances of the US calculations: spin-unrestricted calcula-
tions, same cutoffs as in Table I.

Np Mr Te Ti

4 263 92.5 104.5
8 139 44.6 49.8

16 77 21.0 22.9

TABLE IV. Performances of the US calculations: spin-unrestricted calcula-
tions for the extended model,Ec

wf525 Ry, Ec
dens5200 Ry, FFT grid size:

224, 160, 20 for the dense, coarse, and augmentation box grids, respectively.

Np Mr Te Ti

16 1067 3011 3764
32 656 1407 1690
48 441 992 1190

FIG. 3. ~Color! Isodensity contour plot~contour value 0.02! and selected
integrated values of the spin density for the quintet state of myoglobin
extended model. Hydrogen atoms have been omitted for clarity.
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The Makov–Payne corrected energyEMP for a cubic su-
percell has the form

EMP5E1
q2a

2L
2

2pqQ

3L3
, ~54!

whereE is the uncorrected energy,q is the net charge,Q is
the quadrupole moment,a is the Madelung constant, andL is
the supercell side. This is Eq.~15! of Ref. 12 with the correct
sign. When applying Eq.~54!, the origin has to be translated
so that the dipole moment vanishes.12 Therefore, the calcu-
lation of the Makov–Payne correction is straightforward
since it requires only calculation of the dipole and quadru-
pole moments.

A. Models and computational details

We want to verify the ability of PW–PP calculations
with the MP correction to reproduce the electronic and struc-
tural properties of highly charged species. We compute the
energy difference between twomeso-substituted Mn~V! por-
phyrins: the oxo-aquo-Mn~V!TM-2-Pyridyl ~2-Pyp! and
-Mn~V!TM-4-Pyridyl ~4-Pyp! porphyrins,I ~see Fig. 4!, and
between the corresponding oxo-hydroxo species,II , in which
the axial water molecule has been replaced by a OH2 ligand.
We compare our results to calculations employing a localized
basis set of Slater type orbitals~STOs!. The oxo-aquo and
oxo-hydroxo porphyrins, recently experimentally character-
ized as mimics of the halide oxidation reaction catalyzed by
haloperoxidases,30,31have a charge15 and14, respectively,
with four positive charges approximately localized on the
aryl nitrogens and, in the case of the oxo-aquo species, the
residual positive charge located at the metal center; the two
isomeric porphyrins differ, both in the oxo-aquo and oxo-
hydroxo form, for the position of the methyl-substituted ni-
trogen in the aromatic ring attached to themesoporphyrin
carbons, which should lead to a considerable increase of the
quadrupole moment from the 2-Pyp to the 4-Pyp isomer. Due

to charge differences between oxo-aquo and oxo-hydroxo
species, to the high total charge and to the large expected
difference in the quadrupole moment between the 2-Pyp and
4-Pyp porphyrins, we believe that the calculation of the rela-
tive energies of the two isomeric porphyrins represents a
severe test for PW calculations within PBC.

We consider a reduced model of the real systems, in
which the methyl groups bound to the aryl nitrogens are
replaced by hydrogens. The US–PP results are compared to
those obtained by using STOs in the frozen core approxima-
tion. US–PP calculations were performed by using a cutoff
of 25–200 Ry for the KS orbitals and density, respectively,
and a cubic cell of side 19.05 Å, ensuring a minimum sepa-
ration of 8 Å between periodic replicas, without any symme-
try constraints.

STOs results were obtained using the Amsterdam
density-functional~ADF! program;32–36 the frozen cores in-
clude 1s– 2p states for Mn, 1s states for O, N, and C. The
KS orbitals were expanded in an uncontracted Double-Zeta
STO, standard basis set II37 for all atoms with the exception
of the transition metal for which we used a standard basis set
IV,37 of Triple-Zeta plus Polarization quality. STO calcula-
tions were performed within C2v and CS symmetry con-
straints for speciesI and II , respectively.

B. Results

In Table V we compare the relative energy of the singlet
ground states30 of the two isomeric 2-Pyp and 4-Pyp porphy-
rins, for both the oxo-aquo and oxo-hydroxo species. For the
PP calculations we report both uncorrected and Makov–
Payne corrected energy differences. Table VI contains the
calculated values of the quadrupole moment used in Eq.~54!.

Results obtained with STOs localized basis sets compute
the oxo-aquo 4-Pyp system to be;26 kcal/mol more stable
than the 2-Pyp one. The Makov–Payne corrected US–PP
results are in excellent agreement with STOs results, while

FIG. 4. ~Color! 2-Pyp~upper panel! and 4-Pyp~lower panel! isomers of the oxo-aquo~left panel! and oxo-hydroxo~right panel! Mn~V! porphyrins. Mn is the
light blue atom, the green atom signals the C of the methyl group bound to a N in thearomatic ring, whose position differs in the two isomers. Other colors
are as in Fig. 2.

5913J. Chem. Phys., Vol. 120, No. 13, 1 April 2004 First-principle molecular dynamics

Downloaded 23 Mar 2004 to 192.167.204.253. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



uncorrected PP results indicate instead that the 4-Pyp isomer
is more stable than the 2-Pyp one by only 9.5 kcal/mol.
Moreover, in the case of the oxo-hydroxo species, the uncor-
rected results yield an incorrect energy ordering, with the
2-Pyp isomer computed to be more stable than the 4-Pyp one
by 7.0 kcal/mol. The discrepancy is resolved upon correcting
the total energies with the Makov–Payne term, resulting
again in an excellent agreement with the STOs energy dif-
ferences. Interestingly, the geometrical structures of the in-
vestigated charged systems calculated using the US–PP ap-
proach with PBC, turn out to quantitatively compare with
results obtained using localized basis sets~see Table VII! for
a comparison of main optimized geometrical parameters of
speciesI . The main discrepancy~0.03 Å! is computed for the
formally triple Mn[O bond, probably because of the lack of
polarization functions in the O STO basis set, which in turn
leads to an overestimate of such parameter. The agreement
between US PPs and STOs results suggests that the error
introduced on the electrostatic potential by the presence of a
charge in PBC does not significantly affect the structural
properties. On the other hand, the effect on the total energy is
sizable but mostly corrected by the use of Eq.~54!.

C. Conclusions

We believe that our results demonstrate that the Car–
Parrinello approach in conjunction with ultrasoft pseudopo-
tentials represents a valuable and relatively cheap tool to
describe the electronic and geometrical properties of com-
plex bioinorganic systems, including highly charged and
open-shell species. The study of the electronic and geometri-
cal properties of such systems can now be achieved at a
reasonable computational cost on conventional parallel ma-
chines with a limited number of processors. Moreover, a
simple correction allows us to calculate energy differences in
charged systems with an accuracy that is comparable to that
of localized basis-set calculations not using periodic bound-
ary conditions. First-principle molecular dynamics simula-
tions of extended bioinorganic systems may still be feasible
only on a state-of-the art massive parallel computer. The key

to reach such a goal is the availability of parallel machines
with increased performances and number of processorsand
highly optimized scalable algorithms. We believe that the
present parallel implementation of the Car–Parrinello
method using ultrasoft pseudopotentials provides such an al-
gorithm that will allow the simulation of the dynamical prop-
erties of such complex systems in the near future.
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