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First-principle molecular dynamics with ultrasoft pseudopotentials: Parallel
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We present a plane-wave ultrasoft pseudopotential implementation of first-principle molecular
dynamics, which is well suited to model large molecular systems containing transition metal centers.
We describe an efficient strategy for parallelization that includes special features to deal with the
augmented charge in the contest of Vanderbilt's ultrasoft pseudopotentials. We also discuss a simple
approach to model molecular systems with a net charge and/or large dipole/quadrupole moments.
We present test applications to manganese and iron porphyrins representative of a large class of
biologically relevant metalorganic systems. Our results show that accurate density-functional theory
calculations on systems with several hundred atoms are feasible with access to moderate
computational resources. @004 American Institute of Physic§DOI: 10.1063/1.1652017

I. INTRODUCTION core states. To deal with this difficulty, one usually employs
- . . . . norm-conservingNC) pseudopotential®P3g” to model the
There is increasing interest in studying the electronic . gNC) p P & .3 .

h . o interaction of the valence electrons with the ionic core
structure of complex biological molecules. This is an essen- . .
. . o -(nucleus-core electrons Parallel implementations of PW
tial step to understand, e.g., enzymatic and/or biomimeti

catalysis. Modeling biocatalytic systems is however Verycalculatlons based on NC PPs are well documented in the

challenging, because a proper description of the active Sitgterature(see, e.g., Refs. 537 . . .

needs the inclusion of a large number of atgifinem several ) For many eltimerlts such as A_I’ Si, and P, itis possible to
tens to a few hundregigreated at a high level of quantum Puild accurate “soft” NC PPs, i.e., PPs whose pseudo-
chemical theory. In this respect a good compromise in term8rPitals are slowly varying in real space. Typical soft PPs can
of accuracy and computational cost is provided by densityPe adequately described by PWs up to a cutoff of 20 Ry or

functional theory(DFT),2 whose use to model the elec- less. For other elements, however, this is not possible: very
tronic structure of protein active sites is becoming increaslarge PW basis sets are needed to accurately represent the
ingly popular. In combination with Car—ParrinelllCP)®  contractedp orbitals of the first-row elements O, N, F, and
first-principle molecular dynamicéMD), DFT allows us to  the 3d orbitals of the transition metal block. These orbitals
optimize molecular structures, study dynamical and finite-belong to elements whose NC PPs are necessarily “hard,”
temperature properties, and model reaction paths. typically requiring cutoffs of more than 70 Ry in order to

In most standard implementations, the CP method emyield sufficiently converged results. A consequence of the
ploys a plane-wavéPW) basis set. An advantage of PWs is delocalized nature of the PWs is that the presence of a single
that they do not depend on atomic positions and are free diard PP in a system requires the use of a correspondingly
basis-set superposition errors. Total energies and forces diigh cutoff for all the other PPs. This difficulty is particularly
the atoms can be calculated using computationally efficiengerious for metalorganic systems containing one or more
fast Fourier transforniFFT) techniques. Finally, the conver- transition metal centers. The high cutoff required for such
gence of a calculation can be controlled in a simple wayatoms translates into a very large number of PWs, which in
since it depends only upon the number of PWs included inurn implies long execution times and large memory require-
the expansion of the electron density. The dimension of a PWhents.
basis set is controlled by a cutoff in the kinetic energy of the  aAp approach that drastically reduces the PW cutoff
PWs, which is usually measured in Ry units. A disadvantag@eeded for elements that would be described by hard NC PPs
of PWs is their extremely slow convergence in describing,ag proposed by Vanderbfitwho introduced “ultrasoft”
(US) PPs. In this approach the normalized charge density is
dElectronic mail: giannozz@nest.sns.it the sum of two terms: a soft part represented in terms of
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smooth orbitals and a hard part which is treated as an aug- The total energy of a system &f, valence electrons,
mented charge. A closely related approach, the “projectorhaving one-electron Kohn—Shafi{S) orbitals ¢, , is given
augmented wave{PAW) method introduced by Bhl®is by
an all-electron rather than a PP electronic structure method. 52
The PAW approach proyides a simple and effective aIgoEtot[{(ﬁi}'{Rl}]:Z <¢i|—2—V2+VNL|¢i>+ Enln]
rithm for reconstructing all-electron orbitals from [ m
pseudo-orbitald® An efficient serial implementation of the
CP scheme with US PPs is described in Ref. 11. +Exc[n]+f drvigg(r)n(r)+U({R|}),

In this paper we present in detail a parallel implementa-
tion of the CP scheme using US PPs. We also provide further (1)
details on the procedures used in serial implementation. W, . . .
compare the relative efficiency of US and NC PPs in realistic\zlrgiren(r) 'S the electron densitfzy[n] is the Hartree en
calculations for large molecules, performed on parallel ma-
chines. Our test molecules are a reduced and an extended e? n(ryn(r’)
model of the active site of myoglobin, containing the iron—  Enln]= Ef f drdr’w, @
porphyrin motif. We focus on metalloporphyrin systems be-
cause they are representative of a large class of biomolecul&sd N] is the exchange and correlation energy({R}) is
which can be modeled efficiently with US PPs. Our benchthe ion—ion interaction energy, amy| indicate atomic posi-
marks indicate that US calculations are at least 2—3 time&ons. In the following, potentials have energy dimensions.
less expensive than NC calculations of comparable accuracyhe PP is composed of a local paf¢, given by a sum of

The use of a PW basis set implies that periodic boundartom-centered radial potentials
conditions(PBC9 are imposed, i.e., an isolated molecule has .
to be placed into a periodically repeated ax'supercell”). V(H) =) Vis(|r=Ry|) (3)
The supercell must be large enough to ensure that the total !
pqtgntial is \_/anishingly small at the box bogno_lary, th_us Mini-and a nonlocal pai/y,
mizing spurious interactions between periodic replicas. For
neutral systems with small dipole/quadrupole moments, su-
percells of reasonable size can be safely used. For charged
molecules, or molecules with large dipole/quadrupole mo-

ments, however. the error induced by PBC may be rathef/nere the functiongg!, and the coefficient® %) characterize
large unless exceedingly large supercells are used. the PP and are specific for each atomic species. For simplic-

We follow here a technique introduced by Makov and ity, weI consider a single atomic §pecies only in what fpllqws.
Payne(MP)*2 to eliminate the spurious electrostatic interac- 1N€ Sn functions, centered at sit,, depend on the ionic
tions in the latter case. The MP technique is approximaté)oSltlons through
because it is not self-consistent and takes into account only B (=B.(r—R). (5)
moments up to quadrupole. To check the accuracy of the MP
technique, we compare CP calculations on highly chargedn iS an angular momentum eigenfunction in the angular
manganese porphyrins, performed using PWs and US pp\ggriables, times a radial function which vanishes outside the
with calculations on the same systems using localized basfore region; the indices andmin Eq. (4) run over the total
sets which do not require PBC. The comparison shows thatumberN of these functions.
the MP correction yields results that to all practical effects ~ The electron density in Ed1) is given by
are indistinguishable from results obtained without PBC.

The paper is organized as follows: In Sec. I, we recall  n(r)=2>, |[&i(N)|>+ > Qhu(r){ il B BN &) |, (6)
the main aspects of US—PP implementation in the serial case. : nmi|
In Sec. Ill, we describe our parallel implementation. In Sec,yhere the sum runs over occupied KS orbitals. The augmen-
IV, we compare the computer performances of US and NGgation functionsQ!, (1) =Qum(r—R,) are localized in the
PPs for a reduced and an extended model of the myoglobiggre, The ultrasoft PP is fully determined by the quantities

active site. In Sec. V, we compare CP calculations with IO-VIIoc(r)! Dfﬁ%y Qu(r), andB,(r). The functionQ, .(r) are

calized basis-set calculations not requiring PBC. The teSfiefined in terms of atomic orbitals asQ,(r)

vNL=r§I DO Br){ B, (4)

systems are highly charged isomerirfssesubstituted Man-  — aex 1y a8y PSk (1) PS(r) | where 42 are atomic

ganese porphyrins. Section VI contains our conclusions.  yneelectron orbitalgnot necessarily boundand ¢ PS are

IIl. PLANE-WAVE ULTRASOFT PSEUDOPOTENTIAL the corresponding pseudo-orbitals. TQg(r) are pseud-

IMPLEMENTATION ized as Qescrlbeq in Ref. 11. Thls.enables us to treat the
) ) Qnm(r) with Fourier transform techniques.

A. Kohn-Sham equations with ultrasoft The KS orbitals obey generalized orthonormality condi-

pseudopotentials tions

The implementation of CP molecular dynamics within a _ N s
US-PP framework is described in Ref. 11. Here we briefly (ilSURDI b)) =3 @
note the main formulas, using the same notation of Ref. 11whereSis a Hermitian overlap operator given by
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ergy dissipation in a MD run. They may be incorporated in
) (8 the Euler equations of motion by introducing Lagrange mul-

S=1+n§| Gl B B

tipliers Aj;
and
- OE o1
= +>, A;iSé;, 19
o= [ drQunt) @ Tt NS 49
The orthonormality conditiori7) is consistent with the con- N IE ot S
servation of the charggédrn(r)=N, . Note that the overlap Fi=M/R;=— R, +i2j Aij( il (9_RI|¢J'>- (20)

operatorS depends on ionic positions through tlﬁh). - _
The ground-state orbitalg; minimize the total energy At equilibrium, Eq.(19) reduces to the electronic KS equa-
Eg. (1) subject to the constraints E(}) tions (10) or (11). A unitary rotation brings thé. matrix into

diagonal form:A;j; = ¢€;6;; . The equilibrium for the ions is
= s 10  achieved when the ionic forcdg in Eq. (20) vanish.
S (r) —asa), (10 In deriving explicit expressions for the forces, E80),
one should keep in mind that the electron density also de-

where thee; are Lagrange multipliers. Equatiddl) is the pends OrR, throughQLm a”dBL- Introducing the quantities
KS equation

Hlg)= €Sl ), (12) Prn= 2 (il Bo)(Bul i), (21)
where
2 and
H=— o= V2+ Vet > Dbl BB (12)
2m e wLm=; Aij<¢j|:3:1><ﬁlm|¢i>! (22)

Vit IS a screened effective local potential
we arrive at the expression

Vert(1) = Vigr) +Vig(r) + paye(1). (13 _
, . . J ViR
Mye(r) is the exchange-correlation potential Fi=— ?_f dr S n(r)
JR, IR,
OEx ] n]
M1 = “on(r) (14

IQnm(T) ap;
_f drveﬁ(r)z %Plnm_g Dlnm aF:m
andVy(r) is the Hartree potential nm ! nm !

n(r’ Jwnm
VH(r)zezf dr’ﬁ. (15) +n2r:4] Gnoi R, (23
The “screened” coefficient®! — appearing in Eq(12) are ~ whereD}, andVeq have been defined in Eqel6) and(13),
defined as respectively. The last term of E¢23) gives the constraint
contribution to the forces. Since the PW basis set does not
D'nm:Dﬁ?%ﬂLf drVe(r) Qnm(r). (16  depend on atomic positions, Pulay-type correctidd® not
appear in the expression for the forces.

They depend on the KS orbitals throuyly, Eq. (13), and
the charge density, E@6).

C. Discretization of the equation of motion
and orthonormality constraints

B. Molecular dynamics with ultrasoft pseudopotentials The equations of motion Eqé19) and (20) are usually

coordinates evolve according to a classical Lagrangian ~ 1he following discussion, including the treatment of Re
dependence of the orthonormality constraints, applies to the

Verlet algorithm when using the Fourier acceleration scheme
of Ref. 14. In this framework the fictitious electron mass is

a7 represented by an operat@r, whose matrix elements be-
tween PWs are given by

e=pZ [P 33 MR- Ea({ohiR)),

subject to a set of constraints

2n2
Mj({¢i}a{Rl}):<¢i|S|¢j>_5ij:0' (18 ®GG':ma{ﬂaMZi) 06,6 (29
Here w is a fictitious mass parameter for the electronic de- mE

grees of freedomiM, are the masses of the atoms, dfg  where G, G’ are the wave vector of PWE, is a cutoff
and S are given in Eqs(1) and(8), respectively. The holo- (typically a few Ry which defines the threshold for Fourier
nomic orthonormality constraints E¢L8) do not cause en- acceleration. The fictitious electron mass dependsGoas
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The solution of EQ.(28) is found using a modified

scheme allows us to use larger time steps with negligibleversior{! of the iterative procedure of Ref. 15. The matBix

computational overhead.
The electronic orbitals at time+ At are given by

-1 EtOI

*
i

Bi(t+ A1) =2¢;(t) — ¢i(t— A1) — (A1)?O

—; Ajj(t+ADSH) ¢(1) |, (25)

whereAt is the time step, an&(t) indicates the operat@®
evaluated for ionic positionR,(t). Similarly the ionic coor-
dinates at time + At are given by

(At)?

M,

aEtOt

ZA.J(t+At><¢>(t>| R 24yt }

is decomposed into hermitiarBf) and antihermitian B,)
parts

B=B,+B,, (32
and the solution is obtained by iteration
ANFUB 4B AT =1—A—\(WB, —BI\(™
—amMcam. (33
The initial guess\(%) can be obtained from
ANOB +BANO=1-A. (34)

Here theB,- and C-dependent terms are neglected because
they are of higher order it (B, vanishes for vanishing
At). Equations(34) and (33) have the same structure:

ABy+BpA =X, (35)

whereX is a Hermitian matrix. Equatiof85) can be solved
exactly by finding the unitary matriXJ that diagonalizes
B,:UTB,U=D, whereDj; =d; ;. The solution is obtained

(UT\U);;=(UTXU);; /(di+d)). (36)

When X=1—A Eq. (36) yields the starting\(?), while
A1) is obtained from\(" by solving Eq.(36) with X

(26)
The orthonormality conditions must be imposed at each timérom
step
(Di(t+AD[S(t+A)|pj(t+AL)) =&, (27)
leading to the following matrix equation:
A+\B+BW\T+rCAT=1, (28)

where the unknown matrix is related to the matrix of
Lagrange multipliersA at time t+At via A= (At)?A*(t

given by Eq.(33). This iterative procedure usually converges
in ten steps or less.

+At). In Eq.(28) the dagger indicates Hermitian conjugate D. Ultrasoft pseudopotential implementation

(A=\"). The matrices\, B, andC are given by
A =(i|S(t+A0] ),
Bij = (0~ S(1) (1)[ S(t+AD)| ¢y),

Cij=(0 'S gi(|S(t+A1[O 7 S() (1)),
with

(29

— OE (1)
b () — b (f— At) — 2@-1"0 "/
di=20i(1) — ¢i(t—At) - (A1)°O FYTa

(30

The solution of Eq(28) in the ultrasoft PP case is not obvi-
ous, because Eq26) is not a closed expression fd,(t
+At). The problem is that\ (t+ At) appearing in Eq(26)
depends implicitly orR,(t+ At) throughS(t+ At). Conse-

quently, it is in principle necessary to solve iteratively for

R,(t+At) in Eq. (26).

A simple solution to this problem is given in Ref. 11.

A(t+At) is extrapolated using two previous values
AP (t+ AL =244 () — Ajj (= At). (31)

Equation(26) is used to findR{%)(t+ At), which is correct to
O(At%). FromR{?(t+At) we can obtain a new set{"(t

in the serial case

1. Plane-wave expansion

Let {R} be the translation vectors of the periodically re-
peated supercell. The corresponding reciprocal lattice vectors
{G} obey the conditionsR;-Gj=27n, with n an integer
number.

The KS orbitals can be expanded in a PW basis up to a
kinetic energy cutofEﬁ’f

2 b O,
\/—GE{G 1
where( is the volume of the cell, anfiG""} is the set ofG
vectors satisfying the condition

2
k4 Gl2< g™
2m|k Gl EC ’

o (r)= (37

(38)

andk is the Bloch vector of the electronic states. In crystals,
one must use a grid & points dense enough to sample the
Brillouin zone(the unit cell of the reciprocal lattigeln mol-
ecules, liquids, and in general if the simulation cell is large
enough, the Brillouin zone can be sampled using only the

+At) and repeat the procedure until convergence ik=0 (I') point. An advantage of this choice is that the orbit-
achieved. It turns out that in most practical applications theals can be taken to be real inspace. In the following we

procedure converges at the very first iteration. Thus, the opwill drop the k vector index. Functions in real space and
erations described above are generally executed only ondkeir Fourier transforms will be denoted by the symbols, if

per time step.

this does not originate in ambiguity.
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The ¢;(G)s are the electronic variables. The calculationthe function to be transformed: ideally the Fourier compo-
of H¢; and of the forces acting on the ions are the basiment corresponding tm;=N,/2, and similarly forn, and
ingredients of the computation. Scalar prodL(c;b@|/3L> and  ng, should vanish. In the following, we will refer to the set
their spatial derivatives are typically evaluatedGnspace. of indicesn, n,, n; and to the corresponding Fourier com-
An important advantage of working i@ space is that atom- ponents as the “FFT grid.”

centered functions likggl, and Q| , are easily evaluated at The soft part of the charge densityng(r)
any atomic position, for example =2j|¢j(r)|2, contains Fourier components up to a kinetic
. soft__ wf e i P
ﬁL(G)=Bn(G)e"G'R'. (39) energy cutoffE.” =4E;" . This is evident from the formula
Thus Nl G)= 2 2 ¢F(G—G')¢(G'). (45)
G'efGYy |
I\ _ * —iGR
<¢’i|ﬂn>_G %Wf} $; (G)Bn(G)e =™, (40) In the case of NC PPs, the entire charge density is given by
¢ Nsor(T) -
and Vi Should be expanded up to the saEﬁé“ cutoff since
Py all the Fourier components ¢ up to E‘C”f are required.
< &; (9_R”> ——i > G¢(G)By(G)e CR. (41  Letus call{G°™ the set ofG vectors such that
! Ge{GM 7
2 soft
The kinetic energy term is diagonal @& space and is easily 2mG <Ec (46)
calculated

The soft part of the charge density is conveniently calculated
—(V2¢;)(G)=G?¢;(G). (42 in r space, by Fourier transforming;(G) into ¢;(r) and
summing over the occupied states.
The exchange-correlation potential(r), Eq.(14), is a
function of the local charge density and—for gradient-
corrected functionals—of its gradient at pomt

Pxe(T) = Vxe(n(r), |V N(r)]). (47)
The gradientVn(r) is conveniently calculated from the
space’) technique. The idea is to switch fro@ to r space, charge density I1& space, using{n)(G) = ~i1Gn(G). The

back and forth, using FFT, and to perform the calculation inHartree _potentlaVH(r), Eq. (15), is also conveniently cal-
L ) . culated inG space
the space where it is more convenient. The KS orbitals are

In summary, the kinetic and nonlocal PP termsHip; are
calculated inG space.

2. Dual space technique

The local potential ternVx¢; could be calculated i
space, but it is more convenient to use a differ€iual

first Fourier transformed tor space; then \(eq¢;)(r) 47 n(G)*

=Ver(r) ¢;(r) is calculated inr space, wher&/ is diago- Vu(G)= 5 o (48)

nal; finally (Vegey)(r) is Fourier transformed back to

(Verty)(G). Thus in the NC—PP case, a single FFT grid, large enough to
In order to use FFT, one discretizes thespace by a accommodate th&;i"“} set, can be used for orbitals, charge

uniform grid spanning the unit cell density, and potential.

F(my.my.mg)=f(r ) The use of. FFT is mathematically equivglent to. a pure
L2 My Mz, Mg’ G-space descriptiofwe neglect here a small inconsistency
. ay as (43 in exchange—correlation potential and energy density, due to
rml,mZVmszmlN—+m2N—+m3N—, the presence of a small amount of components beyond the
! 2 3 {G>™ sed. This has important consequences: workingsin
wherea,, a,, ag are lattice basis vectors, the integer indexspace means that translational invariance is exactly con-
m; runs from 0 toN;—1, and similarly form, andmgs. In  served and that forces are analytical derivatives of the energy
the following we will assume for simplicity that;, N,, N; (apart from the effect of the small inconsistency mentioned
are even numbers. The FFT maps a discrete periodic functiocabove. Forces that are analytical derivatives of the energy
in real space (my,m,,mg) into a discrete periodic function ensure that the constant of motidine., the sum of kinetic
in reciprocal spacd(ny,n,,n3) (wheren; runs from 0 to and potential energy of the ions in Newtonian dynamiss

N;—1, and similarly forn, andns), and vice versa. conserved during the evolution.
The link betweerG space components and FFT indices
is
~ 3. Double-grid technique
f(n1,N2,N8) =F(Gny n; ), Let us focus on US PPs. 1@ space the charge density is
(44)

. = ! + ! + 1
Crpng ng =ML M2 ¥ Do, N(G) =N G+ > QiGN b BN(BAlS). (49
wheren,;=n; if nj=0, n;=n;+N; if nj<0, and similarly L
for n, andng. The FFT dimensiondl;, N,, N3 must be big  If E is the cutoff for the KS orbitals, the cutoff for the soft
enough to include all non-negligible Fourier components ofpart of the charge density E§°ﬁ= 4E‘Q’f. The augmentation
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term often requires a cutoff higher thﬁi"“, and as a con- Eg‘m. The computational cost can be significantly reduced if
sequence a larger set Gfvectors. Let us calf GI®"§ the set  we take advantage of the localization of g, in the core
of G vectors that arc needed for the augmented part region.

We call “augmentation box” a fraction of the supercell,
containing a small portion of the dense grid in real space. An
augmentation box is defined only for atoms described by US
) o ) ) PPs. The augmentation box for atdris centered at the point
'”d typical situations, using pseuglzed augmented chargegy the dense grid that is closer to the positRn. During a
Ec""*ranges fromEZ™" to ~2-3E"". MD run, the center of théth augmentation box makes dis-

The same FFT grid could be used for both the augontinuous jumps to one of the neighboring grid points
mented charge density and for KS orbitals. This howevegnenever the position vectdr, gets closer to such grid
would imply using an oversized FFT grid in the most expen-point. In a MD run, the augmentation box must always com-
sive part of the calculation, dramatically increasing computeb|ete|y contain the augmented charge belonging tolthe
time. A better solution is to introduce two FFT grids: atom; otherwise, the augmentation box must be as small as

(i)  a coarser gridin r space for the KS orbitals and the POssible. Augmentation boxes of different sizes for different

soft part of the charge density. The FFT dimensionsdtoms could in principle be used, but in our implementation
N, N, N of this grid are big enough to accommo- theé same box size is chosen for all the atoms. Thus the

date allG vectors in{G™; and atomic species having the less localized augmented charge

(i)  a denser gridin r space for the total charge density determines the size of all the augmentation boxes.
and the exchange—correlation and Hartree potentials. 1he volume of the augmentation box is much smaller
The FFT dimension#1,;=N;, M,=N,, Ms=N; of  than thg volume of the supercell. The nymbeGqfectors in
this grid are big enough to accommodateGvectors ~ the reciprocal space of the augmentation box is smaller than
in {G‘c‘e“f}. the number ofS vectors in the dense grid by the ratio of the
volumes of the augmentation box and of the supercell. As a
In this framework, the soft part of the electron density consequence, the cost of calculations on the augmentation
Neof» IS Calculated ir space using FFTs on the coarse gridboxes increases linearly with the number of atoms described
and transformed iIG space using a coarse-grid FFT on theby US PPs.
{Gg‘)ﬂ} grid. The augmented charge density is calculate@ in Augmentation boxes are used twice in the calculation:
space on théG2®"S grid, using Eq.(49) as described in the
next sectionn(G) is used to evaluate the Hartree potential,(ii)

2

h
2 dens
o GP<EC™ (50)

to construct the augmented charge density,(Egand
to calculate the self-consistent contribution to the co-

Eq. (48). Thenn(G) is Fourier transformed in space on the efficients of the nonlocal PP, E(L6)
dense grid, where the exchange—correlation potential, Eq. ’ '
(47), is evaluated. In case(i), the augmented charge is conveniently calcu-

In real space, the two grids are not necessarily commengated inG space, following Ref. 11, and Fourier transformed
surate. Whenever the need arises to go from the coarse to they space. All these calculations are done on the augmenta-
dense grid, or vice versa, this is done@space. For in-  tjon box grid. Then the calculated contribution at each
stance, the potentidV¥ey, Eq. (13), is needed both on the point of the augmentation box grid is added to the charge
dense grid to calculate quantities such asihyg,, Ed.(16),  density at the same point in the dense grid. In dé3eit is
and on the coarse grid to calculatess;, Eq. (11). The  convenient to calculat®!,  as follows: for every US atom,
connection between the two grids occursGrspace, where take the Fourier transform of .« (r) on the corresponding

Fourier fllterlng is performedveﬁ is first transformed irG augmentation box gnd and evaluate the integra| of (H_ﬁ)
space on the dense grid, then transferred to the cdarse jn G space.

space grid by eliminating components incompatible with
E§°“, and then backtransformed mspace using a coarse-
grid FFT.

We remark that for each time step only a few dense-grid
FFT are performed, while the number of necessary coarsgH. PARALLEL ULTRASOFT PSEUDOPOTENTIAL
grid FFTs is much larger, proportional to the number of KSIMPLEMENTATION
statesNys.

Various parallelization strategies for PW—-PP calcula-
tions have been described in the literature. A strategy that
ensures excellent scalability in terms of both computer time
and memory consists of distributing the PW basis set and the

Let us consider the augmentation functids,,, which  FFT grid points in real and reciprocal space across proces-
appear in the calculation of the electron density, @§), in  sors. A crucial issue for the success of this approach is the
the calculation oD/, ,,, Eq.(16), and in the integrals involv- FFT algorithm, which must be capable of performing three-
ing aQLm/aR, needed to compute the ionic forces, E23). dimensional FFT on data shared across different processors
The calculation of th&,,, in G space has a large computa- with good load balancingThis algorithm can be generalized
tional cost because the cutoff for tig,,,, is the large cutoff to the US case as described in the following subsection.

4. Augmentation boxes
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A. Parallel FFT in the US case {GY", again using the same algorithm. The remaining col-
Partitioning a real-space FFT grid across processors i$mMns are not active for any set@fvectors and play no role.
straightforward. The FFT grid, Eq43), is subdivided in a After distributing all the columns across the processors,

number of slices equal to the number of processors, so th& One-dimensional FFT along direction 3 is done on local
each processor can take care of a different slice. The slicéidta(on a single processprHowever, the data on the planes
are cut along planes orthogonal to a chosen crystallographf&rthogonal to direction 3 are distributed across the proces-

direction. We label the crystallographic directions by 1, 2, 3.50rs. In order to perform FFTs in each of these planes, the
For instance, let us consider a FFT grid witl planes along corresponding data must be made local to a processor. This is

direction 3, which is distributed acrod, processors. IN,, achieved by a parallel transpose operation, performed with a
is a divisor of N5, good load balancing is achieved if single call to the appropriate Ml library routine. Two-

each slice contains the same numbbk (N,) of planes dimensional FFTs can then be performed on the planes, with
Processorp contains planes withms valugs such that: each processor operating on local data. Nonzero contribu-

(p—1)(Na/Ny)<ma=p(N3/Ny)—1. If N, is not a divisor tions are present only forn¢,n;) pairs corresponding to

of N, all the slices cannot be equal. In this case their di_act|ve columns. This fact can be exploited to reduce the

mension is chosen in such a way as to minimize load imbaI[]umber of FFT operations, by performing only the FFTs

. along direction 1(or 2) that include nonzero contributions.
ance. IfN, exceeds the number of planklg, this strategy . .
has to be refined. The strategy for parallel three-dimensional FFT that we have

The partition of theG space grid is more involved. The presented requires the number of proces$yde smaller
. o . than or equal to the number of plardg. The FFT fromr to
Fourier components of the quantities of interéstg., the

rhitals, the charge density, etare stored as vectofsne- G space uses the same algorithm in reversed sequence.
orbitals, the charge density, giare stored as vectotsne In calculations using only thé" point (k=0), the KS
dimensional arrays f(i)=f(G;), where the index spans

fthe th s & tors defined ab v th orbitals can be chosen to be real functions space, so that
one gwf © h ree Sgsih} ve(;: ?]rs egde;n avi)/\ée’ nargFe_l}/_ € $(G)=¢*(~G). This allows us to store only half of the Fou-
set{G¢'}, the se{G.™}, and the sefG™"5. ena IS° rier components. Moreover, two real FFTs can be performed

needed, the Fourier components have to be transferred to one 5 single complex FET. To this end the ausxiliary function
of the two grids(three-dimensional arraysdefined by Eq. is introduced: '

(44). The two grids are either the coarse grid, with dimen-

sionsN{, N,, N3, or the dense grid, with dimension$,, D(r)=;(r)+ij 1(r), (51)
M,, M. The Fourier components must be evenly distrib-

uted across processors in order to achieve optimal load balhose Fourier transforr®(G) yields

ancing for operations like scalar products. At the same time,

their distribution across processors should achieve good load O(G)+P*(G)
balancing in the FFTand minimize the amount of data com- $i(G)= 2 ' (52)
munication needed to perform the FFTs.
For each pain;, n; in Eq. (44) we define a “column” d(G)—D*(G)
in G space, including aIIGni,né,né with —Mj/2<ng $;+1(G) = 2 (53

<M/2. Since the KS orbitals have nonzero Fourier compo-
nent only forG vectors belonging to the s({;G‘cNf}, only a  Aside effect on parallelization is th& and —G must reside
subset of all the columns contributes to a one-dimensiona®n the same processor. As a consequence, pairs of columns
FFT of a KS orbital in the direction 3. We call these columnsWith Gy o7 oz @and Gy n; (with the exception of the
“active columns” for the sefG"}. In general, the number casen;=n,=0), must be assigned to the same processor.
of nonzero Fourier components is different for each active
column. ldeally, we would like to distribute the active col-
umns across the processors, so that each processor recei\ée
the same number of active columns and the same number of
Fourier components. Although not possible in general, this  All scalar productgf|g)==; f{g;, i=1, n wherei runs
can be achieved to a good extent with a simple algorithm: on a distributed grid, can be calculated by calling standard
(1) create a list of columns, ordered by decreasing number adptimized library routineslike BLAS from NetLib'®) on
nonzero Fourier component&) assign the column to the each processor, and subsequently by summing the partial re-
processors, following the order in the lig8) when all the  sults of all processors, using a call to standard Mnbrar-
processors contain at least one column, assign the followinigs. Scalar products between vectors for which only half of
column in the list to the processor with the smallest numbethe Fourier components are stored require a special treat-
of nonzero Fourier components. This algorithm works nicelyment. Letn, be the number of Fourier components stored on
when the number of columns per processor is large enougiprocessop. The contribution of this processor to the scalar
After assigning to the processors all the columns that ar@roduct is(f|g), =22, fi'g; if the G=0 components are
active for the se{G""}, we distribute across the processorsnot within the set ofn, components. If instead th&=0
the remaining columns, that are active for the @ﬁ"“}, components, identified hbiy=1, are stored on processarthe
using the same algorithm. Finally we distribute across theontribution of processop to the scalar product i¢f|g),
processors the remaining columns, that are active for the setf g, + 22i:2,np fro;.

S;Scalar products
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C. lterative orthonormalization

The scalar products in the matrix elements, Ezp),
needed to compute the Lagrange multipliers are calculated in
parallel, following the procedure of the previous subsection.
In the present implementation, the solution of the matrix
equation(35), involving square matrices of dimension equal
to the numberN,s of KS orbitals, is not parallelized but
replicated on all the processors. Usually the time spent in the
nonparallelized part of the iterative orthonormalization is
only a small fraction of the total time of the calculation.

To efficiently perform calculations on very large sys-
tems, using a large number of processors, the solution of E%.

; : - IG. 1. (Colon Reduced model: the iron—porphyrin—imidazole complex:
(35 shoyld also' be pa.ral'lellz.ed. The tlme'consur.nlng step eliow) Fe, (dark gray C. (blue) N, (light gray) H.

are matrix—matrix multiplication and the diagonalization of

the B matrix. Both calculations requir@(Nﬁ’s) floating-point

opgratlolns. A convenient parallelization approach is deA_ Models and computational details
scribed in Ref. 7.

The reduced model is composed of an iron—porphyrin—
D. Augmentation boxes imidazole complex, already investigated using the CP

; .19 ; ; _
The parallelization of the calculations performed on themEthOd by Roviret al, ™ the metallic pentacoordinated cen

. . . ter is bound to the four planar porphyrin nitrogens, with the
augmentation boxes is not obvious for two reas¢hseach . . . . A -

. : o . imidazole nitrogen occupying one of the axial sites, binding
augmentation box has a grid which is a portion of the dense

grid and is distributed across processors; g2)dthe boxes approximately orthogonal to the porphyrin plasee Fig. 1

follow the atoms in the MD evolution, causing the portion of The chemical formula igFeN;Cogtse]. A simple cubic cell

the dense grid to change with time. In the present implemen(?f size 15.875 A, containing a total of 46 atoms and 154

: . e electrons, is used. For the reduced model, we compare both
tation, we deal with these difficulties as follows. We keep on_ . . .
. : spin-restricted and unrestricte®< 2) calculations.
all processors a copy of all _the quantmes_ def|ne<_:l on the The extended model is composed of a large portion of
augmentation boxes. Calculations on the grid of a given augt-he myoglobin active site, defined by the full heme group
mentation box are performed only in the processors that con- ’

tain at least a fraction of the given augmentation-box grid. same coordination as for the reduced mogeus the 13

. L . surrounding residues which were comprised within a sphere
This causes some replication of the calculations. FFTs on the ; ) .
. ; of 8 A radius centered on the iron atofsee Fig. 2 The
augmentation box grid are performed locally on each proces-_. . .
O Initial geometry has been taken from the x-ray experimental

sor. In order to reduce the amount of replication, in the FFTSstructure of the @-myoglobin comple® and the included
from G to r space, the two-dimensional FFTs along planes yog P

orthogonal to direction 3 are performed only in the plane residues have been terminated by Njoups, resulting in a

belonging to the slice of the dense grid that is local to a giveﬁOtal of 332 atoms and 902 electrons. The chemical formula

processor. No communication is needed to copy the aug- [FeONs:Crodsza]- A simple cubic cell of size 25.4 A

X .  AU%as been used, ensuring a minimum separation of 5 A be-
mented charge in space from the augmentation-box grid to - . .
- . | tween periodic replicas. Such distance has been deemed suf-
the dense gridsee Sec. IID# In the calculation oD,,,, .- . . .
ficient based on previous experience with neutral molecules.

we evaluateQ,, in G space, transfo_rm It im space USING " Eor the extended model we discuss only the performances of
augmented-box FFT, evaluate the integral of Ef) in r : . . X
the more computationally demanding spin-unrestrict&d (

space and sum the final result over all processors. This ap:-2) calculations

roach keeps communications to a minimum, at the expense .
P b P For a correct comparison of performances we need to

gzr?alng;;ger of augmentation-box FFTs larger than in thecompare data of similar quality, in terms of accuracy of

. . . . chemical properties, obtained with algorithms of comparable
Augmentation-box grid related calculations constitute a prop g P

. . lity in terms of serial n rallel . In order
very small part of the overall computational cost, both mqua ty interms of serial speed and parallel speedup. In orde

. ) : to satisfy the first requirement, we need to determine a set of
computer time and in memory. Therefore the simple ap- . N

. . . cutoffs for the US and standard calculations yielding compa-
proach that we have presented is convenient even if some

, : r&lble structural properties. To this end we compared the op-
calculations are replicated on few processors and the lo : !

. . imized geometry of the triplet ground state for the reduced
balance is not optimal.

model from our US calculations and from published NC re-
sults, performed aEl"=70Ry!® Our geometrical param-
eters are converged to the same extent as those in Ref. 19 at
We report here a comparison of computer performanceE‘é”f=25 Ry and Eﬂens: 200Ry; in particular the critical
for US and standard PPs in CP calculations. Our tesFe—N distances in the porphyrin and in the imidazole are
systems—prototypes of systems containing the iron-found to be 2.00 and 2.12 A, respectively, versus 2.00 and
porphyrin motif—are a reduced and an extended model o2.14 A of Ref. 19, with the out-of-plane displacement of the
the active site of myoglobin. iron atom computed to be 0.14 versus 0.15 A. The overall

IV. TEST CASE: IRON PORPHYRINS
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TABLE Il. Performances of the US calculations, spin-restricted case at
higher cutoff. For US PPE!'=35 Ry, E¥*"=400 Ry, FFT grid size: 192,

120, 20 for the dense, coarse, and augmentation box grids, respectively. For
NC PPs:EY'=100 Ry, E®*"=400 Ry, FFT grid size: 192. The meaning of
the various columns is the same as in Table I.

us NC
Np M, Te T; M, Te Ti
8 167 44.7 50.1 307 118.7 143.7
16 93 20.9 23.0 157 50.5 57.2

all atoms, including H® The PW91 function&f is used in
all calculations.

B. Results

The results for the reduced models were obtained on a
32-node IBM SP3(4x375 MHz power3 processors per
node, while the extended model calculations were per-
formed on a 64-processor SGI Origi4x300 MHz MIPS
R12 000 processorsboth at the Keck Materials Science
Laboratory, Princeton University.

The reported execution times are an average over 20

y ; time steps of the measured wall tinithe sum of CPU and
: system time, differing by only a few percent from pure CPU
time).

The parallelization performances of the US versus NC—
PPs implementation for the spin-restricted case of the re-
duced model are shown in Table I. The execution times for a

the residual difference can be attributed to the different funcOf atomic positionsare about 15% larger than for a purely
tionals used: BPE¢22in Ref. 19, and PWSE in our calcu-  €lectronic steggorbital time evolution only, as expected. The

lations. We estimate that we can safely compare US—PP cafmall superlinear speedup observed both for US and NC PPs
culations performed &= 25 Ry to standard calculations at IS & consequence of caching: since the memory per processor
E‘Q’f=70 Ry. For a fair comparison we use the same Cutoﬂdecreasgs almost Imearly with th_e numper of processors, bet-
for the charge density in the US case as in the standard cal® caching can be achieved with an increased number of
(E%"=280Ry). We also performed calculations Eﬂ’f processors, thus increasing the serial speed of the code. It is
:3‘35 Ry for the US case £ =100 Ry for the standard worth noting that US calculations are faster by a factor of
case E%M=400Ry in both cacse)s ~2.5 with respect to the NC case and require half RAM
C . .
In order to compare algorithms of similar quality, all Memory and 1/4 disk space with respect to standard calcula-
tions.
The performances of US versus NC—PPs calculations at

FIG. 2. (Color) Extended model of the myoglobin active siteed) O, other
colors as in Fig. 1.

calculations were performed using the same ébgstandard

PPs are just a special case of US PA&e PPs used in the ) >
standard case tests were generated using the technique figher cutoff are shown in Table Il. The number of PWs is

. 2~ . .
Troullier and Martin€® In the US case, we use US PPs for @PProximately (35/23 =1.65 times larger than in the pre-
ceding case. Execution times should approximately be pro-

portional to the same factor. The factor is actually somewhat
TABLE |. Performances of the US and NC calculations, for the spin- larger(=1.9), b_Ut the cache effects ment_loned al?ove an_d the
restricted case. For US PREY =25 Ry, E%" 280 Ry, FFT grid size: 160, effect of the discreteness of the FFT grid explain the differ-
96, 16 for the dense, coarse, and augmentation box grids, respectively. Fence. Again, US calculations are faster by a factor-@t5
NC PPsEE{'=70 Ry, E¢*"=280 Ry, FFT grid size: 16(N, is the number  with respect to the NC case and require half RAM memory
of processorsM;, is an estimate of the RAM needed per processor in Mb; with respect to standard calculations
T, is the execution time per electronic time s{ep fixed atomy in s; T; is bl . ; d | howi
the same a3, per CP time stejgatoms moving, in s. In Ta le I we report spin-unrestricted results, showing
an approximate doubling of execution time and of memory

us NC requirements, in line with expectations.
N, M, T, T, M, T, T, Table IV contains the performances of US calculations
on the quintet stateS=2), which is experimentally known
4 190 49.5 56.2 357 136.1 1597 o be the ground spin state in myoglobin, of our extended
8 100 23.6 26.1 139 44.6 49.8 , wi dens._
16 57 10.7 121 77 210 209  Model of myoglobin aE;" =25Ry andE;.""=200Ry. The

scaling with the number of processors is excellent in this
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TABLE llI. Performances of the US calculations: spin-unrestricted calcula-
tions, same cutoffs as in Table I.

Np M, Te T;
4 263 92.5 104.5
8 139 44.6 49.8
16 77 21.0 22.9

case too, with a slight superlinear scaling up to 32 proces-
sors. The ratio between execution times for electronic and
CP time steps is almost the same in the extended and in the
reduced models. A geometry optimization time step requires
less than 20 min in the spin-unrestricted case on 48 proces-
sors, with a total RAM usage of21 Gb. The total size of
the file containing the KS orbitals is 6.7 Gb. In this case NOgg. 3. (colon Isodensity contour plotcontour value 0.0pand selected
standard calculation was attempted; indeed, an extrapolatiaftegrated values of the spin density for the quintet state of myoglobin
from the results of Tables I, Ill, and IV points to a total extended model. Hydrogen atoms have been omitted for clarity.
memory requirement of more than 40 Gb.
A typical local geometry optimization requires250
time steps. An execution time of 20 min per time step thus/- ACCURACY OF PERIODIC BOUNDARY
translates into less than four days for the optimization 1o ONDITIONS
complete. This is a perfectly feasible calculation, not even  The use of PBC to describe molecules is perfectly ap-
requiring a state-of-the art massive parallel computer. On thgropriate for neutral molecules with small dipole/quadrupole
other hand, a typical MD run requires no less than 10 00Gmoments, provided that the chosen supercell is large enough
time steps, corresponding in the present case to a few ps @ minimize the spurious interactions between periodic rep-
simulation time. A true dynamical simulation would there- licas. This goal can usually be reached with supercells that
fore become accessible on a state-of-the art massive parallglave a few A of empty space between periodic replicas.
computer. Charged molecules should be described by charged su-
The relevance of simulating extended portions of myo-percells, but these have infinite electrostatic energy. A finite
globin active site can be understood by considering the spianergy is obtained by setting to zero the divergént0
density distribution of the quintet spin state of the extendedontributions to the energy, as if the system were neutral.
model, reported in Fig. 3 together with selected integratedrhis is equivalent to adding a neutralizing background. En-
spin density values. The spin density is mainly localized orergies obtained in this way will be referred to as “uncor-
the iron atom(~88%), even though a sizable contribution rected.” The direct comparison of uncorrected energies be-
(~12%) is computed to be delocalized over the rest of thetween different charge states is usually meaningless, because
system, with the largest contributions arising from the propithe error induced by PBC is large in this case. The long-
onate groups bound to the porphyrin ring. This finding is ofrange character of Coulomb interactions would require un-
particular interest, considering that CO rebinding in myoglo-practically large supercells. Uncorrected energies may also
bin has been recently related to a spin crossover from thge affected by a large error in molecules with large dipole/
quintet spin state, corresponding to unbound COquadrupole moments.
+myoglobin, to the singlet spin state characterizing the  Several techniques have been devised to overcome such
bound configuration of the CO—myoglobin compfé8gince  |imitation. The Hockney technigd® yields an exact treat-
explicit inclusion of the protein environment alters the spinment of charged species using PWs without imposing PBC.
distribution of the quintet state in our extended model, anThis is achieved by cutting the Coulomb potential in real
effect on the relative energy of the different spin states ca’pace beyond a suitably chosen cutoff that excludes all spu-
be expected. rious interactions between periodic replica, still taking into
account intramolecular interactions. This technique is rather
expensive, since it requires the definition of an enlarged FFT
grid for the Coulomb potential. A similar technicfdavhere
TABLE IV. Performances of the US calculations: spin-unrestricted calcula-the cutoff acts in reciprocal space allows for faster execution
tions for the extended modeEy"=25 Ry, E{*"=200Ry, FFT grid size:  with minor loss of accuracy.
224, 160, 20 for the dense, coarse, and augmentation box grids, respectively. A much simpler and approximate technique, due to Ma-
M, T, T, kov and PayngMP),'? consists of calculating the leading

N

P . . .
6 1067 011 p— electrostatic correction terms and removing them from the
32 656 1407 1690 uncorrected total energy. The MP correction is perforraed

48 441 992 1190 posteriorion the energy only: the effect of the charge on the
potential and on atomic forces is therefore neglected.
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FIG. 4. (Color) 2-Pyp(upper pangland 4-Pyp(lower panel isomers of the oxo-aqudeft pane) and oxo-hydroxdright pane) Mn(V) porphyrins. Mn is the
light blue atom, the green atom signals the C of the methyl group bauad\t in thearomatic ring, whose position differs in the two isomers. Other colors
are as in Fig. 2.

The Makov—Payne corrected enet§y;p for a cubic su- to charge differences between oxo-aquo and oxo-hydroxo

percell has the form species, to the high total charge and to the large expected
2, o difference in the quadrupole moment between the 2-Pyp and

Eyp=E+ 9 a qu' (54) 4-Pyp porphyrins, we believe that the calculation of the rela-

2L 3L3 tive energies of the two isomeric porphyrins represents a

severe test for PW calculations within PBC.

We consider a reduced model of the real systems, in
which the methyl groups bound to the aryl nitrogens are
replaced by hydrogens. The US—PP results are compared to
so that the dipole moment vanishiésTherefore, the calcu- those obtained by using STOs in the frozen core approxima-

. A . tion. US—PP calculations were performed by using a cutoff
lation of the Makov—Payne correction is straightforward . . :
. . . . ; of 25-200 Ry for the KS orbitals and density, respectively,
since it requires only calculation of the dipole and quadru- . . . -
and a cubic cell of side 19.05 A, ensuring a minimum sepa-
pole moments. ) S . ;
ration d 8 A between periodic replicas, without any symme-
try constraints.

STOs results were obtained using the Amsterdam

We want to verify the ability of PW—PP calculations density-functionalADF) program$*~**the frozen cores in-
with the MP correction to reproduce the electronic and strucclude 1s-2p states for Mn, § states for O, N, and C. The
tural properties of highly charged species. We compute th&S orbitals were expanded in an uncontracted Double-Zeta
energy difference between twoesesubstituted M) por- ~ STO, standard basis setfffor all atoms with the exception
phyrins: the oxo-aquo-MWV)TM-2-Pyridyl (2-Pyp and  of the transition metal for which we used a standard basis set
-Mn(V)TM-4-Pyridyl (4-Pyp porphyrins,| (see Fig. 4, and Iy, 37 of Triple-Zeta plus I_Do!arization quality. STO calcula-
between the corresponding oxo-hydroxo spedlesn which  tions were performed within £ and G symmetry con-
the axial water molecule has been replaced by a @gand.  straints for species andll, respectively.

We compare our results to calculations employing a localized
basis set of Slater type orbita(STO9. The oxo-aquo and

: . B. Results
oxo-hydroxo porphyrins, recently experimentally character-
ized as mimics of the halide oxidation reaction catalyzed by In Table V we compare the relative energy of the singlet
haloperoxidase¥®* have a charge-5 and+4, respectively, ground state¥€ of the two isomeric 2-Pyp and 4-Pyp porphy-
with four positive charges approximately localized on therins, for both the oxo-aquo and oxo-hydroxo species. For the
aryl nitrogens and, in the case of the oxo-aquo species, theP calculations we report both uncorrected and Makov—
residual positive charge located at the metal center; the twBayne corrected energy differences. Table VI contains the
isomeric porphyrins differ, both in the oxo-aquo and oxo-calculated values of the quadrupole moment used ir(&).
hydroxo form, for the position of the methyl-substituted ni- Results obtained with STOs localized basis sets compute
trogen in the aromatic ring attached to timesoporphyrin  the oxo-aquo 4-Pyp system to b&26 kcal/mol more stable
carbons, which should lead to a considerable increase of thban the 2-Pyp one. The Makov—Payne corrected US—PP
guadrupole moment from the 2-Pyp to the 4-Pyp isomer. Dueesults are in excellent agreement with STOs results, while

whereE is the uncorrected energg,is the net chargeQ is
the quadrupole momenis the Madelung constant, ahds
the supercell side. This is EQL5) of Ref. 12 with the correct
sign. When applying Eq54), the origin has to be translated

A. Models and computational details
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TABLE V. Energy differences\E,_, (kcal/mo) between the two isomeric  TABLE VII. Main optimized geometrical parametetd, degree for the

porphyrins, for the oxo-aqudirst row) and oxo-hydroxgsecond row spe- 2-Pyp and 4-Pyp oxo-aquo isométs, computed with localized STOs basis
cies, computed with localized STOs basis and with US PPs, with Makov—and with US PPsZ N-Mn-N,, denotes the angle parallel to the Mn—OH
Payne(MP) correction and uncorrected. plane, ZN-Mn—-N,, denotes the angle perpendicular to the Mn-,OH

plane.

US PPs
2-P 4-Py
STOs MP no-MP i P
US PPs STOs US PPs STOs

[ AE,_, 26.4 24.5 9.5
I AE,_, 11.5 11.1 -7.0 ' vin=0 1.54 1.57 1.54 1.57

f Mn-OH, 2.21 2.20 2.22 2.21

I'unen (@verage 2.04 2.02 2.04 2.02

ZN=Mn—Ny, 163.3 163.5 163.4 163.8
uncorrected PP results indicate instead that the 4-Pyp isom&MN-Mn—Neer, 167.8 166.6 166.9 165.4

is more stable than the 2-Pyp one by only 9.5 kcal/mol.
Moreover, in the case of the oxo-hydroxo species, the uncor-

rected results yield an incorrect energy ordering, with th&g reach such a goal is the availability of parallel machines

2-Pyp isomer computed to be more stable than the 4-Pyp ongith increased performances and number of processods

by 7.0 kcal/mol. The discrepancy is resolved upon correctinghigmy optimized scalable algorithms. We believe that the

the total energies with the Makov—Payne term, resultingyresent parallel implementation of the Car—Parrinello

again in an excellent agreement with the STOs energy difmethod using ultrasoft pseudopotentials provides such an al-
ferences. Interestingly, the geometrical structures of the i”gorithm that will allow the simulation of the dynamical prop-

proach with PBC, turn out to quantitatively compare with

results ob.tained usin.g Ioce}liz.ed basis s{eEg Table VI for  AcKNOWLEDGMENTS
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formally triple Mn=0 bond, probably because of the lack of cility of the Princeton Materials Institute and at ISTM Sup-
polarization functions in the O STO basis set, which in turnPort from the NSF(Grant No. CHE-0121432is acknowl-
leads to an overestimate of such parameter. The agreeme#figed. We wish to thank Professor J. T. Groves, Professor
between US PPs and STOs results suggests that the errbr G. Spiro, and Dr. A. Jarzecki for helpful discussions.
introduced on the electrostatic potential by the presence of B:D-A. thanks CNRProgetto Finalizzato “Materiali Speciali
charge in PBC does not significantly affect the structuralPer Technologie Avanzate I)"for financial support. P.G.
properties. On the other hand, the effect on the total energy #anks MIUR, Grant No. PRIN 2001-028432 for partial
sizable but mostly corrected by the use of Esf). support.

C. Conclusions 1p. Hohenberg and W. Kohn, Phys. R&26, B864 (1964.
) 2W. Kohn and L. J. Sham, Phys. ReMi0, A1133(1965.
We believe that our results demonstrate that the Car—*R. car and M. Parrinello, Phys. Rev. LeS6, 2471(1985.
Parrinello approach in conjunction with ultrasoft pseudopo- ‘D- R. Hamann, M. Scfiter, and C. Chiang, Phys. Rev. Le#3, 1494

: : (1979.
tentials represents a valuable and relatively cheap tool to, ™) Clarke, 1. Sich, and M. C. Payne, Comput. Phys. Commaa, 14

describe the electronic and geometrical properties of com- (1993
plex bioinorganic systems, including highly charged and ®D. Marx and J. Hutter, irModern Methods and Algorithms of Quantum
open-shell species. The study of the electronic and geometri-Chemistry(John von Neumann Institute for Computing, Fich, 2000,

. . pp. 301-449.
cal properties of such systems can now be achieved at &~ ¢,ya;70ni and G. L. Chiarotti, Comput. Phys. CommiiB3 56

reasonable computational cost on conventional parallel ma-(1999.
chines with a limited number of processors. Moreover, azD. Vanderbilt, Phys. Rev. B1, 7892(1990.
simple correction allows us to calculate energy differences in,?- E- Blchl, Phys. Rev. B50, 17953(1994.
. . B. Heteyi, F. De Angelis, P. Giannozzi, and R. Car, J. Chem. Phy5,
charged systems with an accuracy that is comparable to that;q; (2000.
of localized basis-set calculations not using periodic boundtk. L aasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt, Phys. Rev.
ary conditions. First-principle molecular dynamics simula-lzB 47, 10142(1993.
tions of extended bioinorganic systems may still be feasiblg,C: Makov and M. C. Payne, Phys. Rev.58, 4014(1995.

, P. Pulay, Mol. Phys17, 197 (1969.
only on a state-of-the art massive parallel computer. The key: Tass%ne E Mguri and Fﬁ_ C; Phys. Re\B® 10561 (1994).

R, Car and M. Parrinello, irSimple Molecular Systems at Very High
Density(Plenum, New York, 1989 p. 455.
TABLE VI. Quadrupole momentga.u) calculated with US PPs for the 165, de Gironcoli(private communication

2-Pyp @) and 4-Pyp Q,) isomers of the oxo-aquffirst row) and oxo-  7Message Passing Interface ForuMPl: A message-passing interface

hydroxo (second row species. standard Int. J. Supercomput. App8, 3/4 (1994).
18A large collection of highly optimized libraries for linear algebra can be
Q2 Q4 found at the URKhttp://www.netlib.org
19C. Rovira, K. Kunc, J. Hutter, P. Ballone, and M. Parrinello, J. Phys.
' 518.1 627.2 Chem. A101, 8914(1997).
I 412.8 522.8 205 E. V. Phillips and B. P. Schoenborn, Natdt®ndon 292, 81 (1981).

2IA. D. Becke, J. Chem. Phy84, 4524(1986.

Downloaded 23 Mar 2004 to 192.167.204.253. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 120, No. 13, 1 April 2004 First-principle molecular dynamics 5915

223, P. Perdew, Phys. Rev. #, 8822(1986. %ON. Jin and J. T. Groves, J. Am. Chem. S&21, 2923(1999.

2], P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, D. J. Singh, and*N. Jin, J. L. Bourassa, S. Tizio, and J. T. Groves, Angew. Chem., Int. Ed.
C. Fiolhais, Phys. Rev. B6, 6671(1992. Engl. 39, 3849(2000.

%Code CP, available at the URhittp://www.democritos.it/scientific.php 32T, Ziegler, V. Tshinke, E. J. Baerends, J. G. Snijders, and W. Ravenek, J.

2N, Troullier and J. L. Martins, Phys. Rev. &5, 1754(1992. Phys. Chem93, 3050(1989.

267 computer code for US-PP generation can be downloaded at the URESE. J. Baerends, D. E. Ellis, and P. Ros, Chem. PByd42 (1973.
(http://www.physics.rutgers.edufhv/usppy 34E. J. Baerends and P. Ros, Chem. Plys1 (1973.

273. N. Harvey, J. Am. Chem. Sott23 142 (2007). 35E. J. Baerends and P. Ros, Chem. Plgygl1 (1975.

28R. W. Hockney and J. W. Eastwood, @omputer Simulation Using Par-  %6E. J. Baerends and P. Ros, Int. J. Quantum Ctgh2, 169 (1979.
ticles (McGraw—Hill, New York, 1983, p. 211. STADF STO’s basis set database is available at the URitp:/

2G. J. Martyna and M. E. Tuckerman, J. Chem. PHys) 2810(1999. tc.chem.vu.nl/SCM/Doc/atomicdatabase

Downloaded 23 Mar 2004 to 192.167.204.253. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



