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A description of noncollinear magnetism in the framework of spin-density functional theory is

presented for the exact exchange energy functional which depends explicitly on two-component spinor

orbitals. The equations for the effective Kohn-Sham scalar potential and magnetic field are derived within

the optimized effective potential (OEP) framework. With the example of a magnetically frustrated Cr

monolayer it is shown that the resulting magnetization density exhibits much more noncollinear structure

than standard calculations. Furthermore, a time-dependent generalization of the noncollinear OEP method

is well suited for an ab initio description of spin dynamics. We also show that the magnetic moments of

solids Fe, Co, and Ni are well reproduced.
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The extension of the original density functional theory

(DFT) Hohenberg-Kohn-Sham approach to the case of spin

polarized systems was given under the name spin DFT

(SDFT) more than three decades ago [1]. While this for-

mulation was for arbitrary directions of the magnetization

vector field, even today most applications are based on a

restricted collinear version. This has the advantage of

computational simplicity: one then works with two sepa-

rate Kohn-Sham (KS) equations, one yielding the spin-up

orbitals the other the spin-down orbitals, whereas the gen-

eral formulation involves Pauli spinors. Nevertheless, there

exists a wealth of noncollinearity in nature. To give only a

few examples, it is widely seen in molecular magnets,

exchange frustrated solids (�-Fe, spin glasses), and all

magnets at finite temperatures.

Crucial for practical calculations using SDFT is the

approximation made for the exchange-correlation (XC)

energy functional. The Local Spin-Density Approxi-

mation (LSDA) and the Generalized Gradient Approxi-

mations (GGAs) are currently the most popular ones.

These have been developed for collinear magnetism, and

their use in noncollinear situations relies on the magneti-

zation, m�r�, and exchange-correlation magnetic field,

BXC�r�, being made collinear in a local reference frame

at each point in space [2]. This is only possible with purely

local functionals like LSDA [3,4], though it has been used

under additional approximations for gradient functionals

as well [5]. Such approximations (that lead to locally col-

linear magnetization and XC magnetic field) cause m�r� �
BXC�r� to vanish everywhere in space. As noted recently,

this fact renders the adiabatic time-dependent extension of

these functionals improper [6] for the study of spin dy-

namics because in the absence of external magnetic fields

and within adiabatic approximation, the local torque on the

spins [m�r; t� � BXC�r; t�] vanishes [7]. This is a serious

limitation since the dynamics of the spin degree of freedom

is responsible for a number of important phenomena such

as spin injection, the dynamics of Bloch walls, spin wave

excitations [8], and spin filtering, mechanisms crucial for

recent developments in spintronics [9]. The search for

approximate XC functionals which depend on all three

components of the spin magnetization m beyond the

form of the locally collinear LSDA has remained a major

challenge in the description of noncollinear magnetism.

In recent years, an alternative route to the construction of

approximate XC functionals has enjoyed increasing inter-

est. These involve functionals depending explicitly on the

single-particle KS orbitals which, through the KS single-

particle equation, are implicit functionals of the density

[10]. Technically, one needs to employ the Optimized

Effective Potential (OEP) [11] method to compute the local

XC potential. The simplest orbital-dependent approxima-

tion to the XC energy is the EXact eXchange (EXX)

functional which is the Fock exchange energy but eval-

uated with KS orbitals (i.e., orbitals coming from a local

potential). A number of successful EXX calculations have

been reported for semiconductors [12–14] and magnetic

metals [15]. However, for magnetic systems, again the

collinear formalism has been employed.

In this Letter, we extend the OEP formalism for SDFT to

noncollinear magnetic systems. Most importantly, we do

not rely on a condition of local collinearity and treat the

wave functions as Pauli spinors for high lying and Dirac

spinors for deep lying (3 Ha below the Fermi level) elec-
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trons. Using the EXX functional, we demonstrate with the

example of an unsupported Cr(111) monolayer, that (i) the

magnetization and BXC are generally not locally parallel in

contrast to what has been assumed in all calculations to

date, and (ii) that the noncollinearity is much more pro-

nounced than found with the LSDA functional. Against

popular belief [16], we find that this noncollinearity is not

restricted to just the interstitial region but spreads all the

way to the atom center. With the examples of bulk Fe, Co,

and Ni, we further show that our formalism can also be

effectively used for collinear magnets.

To derive the OEP equations in the general noncollinear

case, we start with the KS equation for two-component

spinors �i, which has the form of a Pauli equation. For

noninteracting electrons moving in an effective scalar po-

tential vs and a magnetic vector field Bs, it reads as (atomic

units are used throughout)

 

�

�
1

2
r2 � vs�r� ��B� �Bs�r�

�

�i�r� � "i�i�r�: (1)

This equation can be derived by minimizing the total

energy which, in SDFT, is given as a functional of the

density ��r� �
P

occ
i �

y
i �r��i�r� and the magnetization

density m�r� � �B

P
occ
i �

y
i �r���i�r�. For a given exter-

nal scalar potential vext and magnetic field Bext, this total

energy reads
 

E��;m	 � Ts��;m	 �
Z

��r�vext�r�dr

�
Z

m�r� �Bext�r�dr�U��	 � EXC��;m	

�
Xocc

i

"i �
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��r�vXC�r�dr
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Z

m�r� �BXC�r�dr�U��	 � EXC��;m	;

(2)

where U��	 � 1=2
RR
��r���r0�=jr� r0jdrdr0 is the

Hartree energy. The XC potential and XC magnetic field

are given by

 vXC�r� �
�EXC��;m	

���r�
and BXC�r� �

�EXC��;m	

�m�r�
;

(3)

respectively. The exact functional form of EXC��;m	 is

unknown and has to be approximated in practice.

Assuming that the densities (�, m) are noninteracting

(v;B)-representable one may, equivalently, minimize the

total-energy functional (2) over the effective scalar poten-

tial and magnetic field. Thus, the conditions

 

�E��;m	

�vs�r�

��������
Bs

� 0 and
�E��;m	

�Bs��

��������vs

� 0 (4)

must be satisfied.

If the functional derivatives in Eq. (4) are evaluated for

an XC functional that depends explicitly on the KS spinors,

one obtains the natural extension of the OEP equations to

noncollinear magnetism. By the usage of spinor valued

wave functions, we can stay within a single global refer-

ence frame, in contrast to the case where functionals

originally designed for collinear magnetism are used in a

noncollinear context by introducing a local reference frame

at each point in space. The most commonly used orbital

functional is the EXX energy given by

 EEXX
x �f�ig	 
 �

1

2

ZZ Xocc

i;j

�
y
i �r��j�r��

y
j �r

0��i�r
0�

jr� r0j
drdr0

(5)

where the label occ indicates that the summation runs only

over occupied states. In the following, we restrict ourselves

to an exchange-only treatment although generalization to

other orbital functionals is straightforward.

For the energy functional Eq. (2) using the EXX ap-

proximation to EXC, one obtains the following coupled

integral equations for the exchange potential and magnetic

field:

 Rv�r� 
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��������
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and
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where �ij�r� � �
y
i �r��j�r�, mij�r� � �B�

y
i �r���j�r�,

and j runs only over the unoccupied states. The matrix �

is given by

 �ij � �VNL
ij �y �

Z

�y
ij�r�vx�r�dr�

Z

m
y
ij�r� �Bx�r�dr;

(8)

where

 VNL
ij � �

Xocc

k

ZZ �
y
i �r��k�r��

y
k �r

0��j�r
0�

jr� r0j
drdr0; (9)

are the nonlocal matrix elements of the Coulomb interac-

tion between states i and j.
To ensure that our numerical analysis be as accurate as

possible, we use the full-potential linearized augmented

plane wave (FP-LAPW) method [17] implemented within

the EXCITING code [18]. Here, the single electron potential

is calculated exactly without any shape approximation, and

the space is divided into muffin-tin (MT) regions, where

atomic orbitals are used as a basis and interstitial region,

where plane waves are used as a basis. The deep lying core
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states (3 Ha below the Fermi level) are treated as Dirac

spinors and valence states as Pauli spinors. More impor-

tantly, the magnetization density and XC magnetic field are

both treated as unconstrained vector fields throughout

space. In our implementation of the OEP method, the

exchange fields are iteratively updated by subtracting the

residue functions Rv and RB from the exchange fields. In

other words, if i is the iteration number, then

 vi
x�r� � vi�1

x �r� � �Ri
v�r�;B

i
x�r� � Bi�1

x �r� � �Ri
B
�r�

(10)

is repeated until convergence is reached, with Ri
v and Ri

B

calculated by inserting vi�1
x and Bi�1

x into Eqs. (6) and (7).

� is the mixing chosen in such a manner as to achieve a

speedy convergence. In the collinear case, this method is

similar to the one previously suggested in Ref. [19].

In order to explore the impact of treating noncollinear

magnetism in the way outlined above, we compare our

approach with the standard LSDA functional using the

example of an unsupported Cr (111) monolayer. We set

the lattice parameter of the Cr monolayer to that of the Ag

(111) surface. The result is a topologically frustrated anti-

ferromagnet, known from LSDA calculations to exist as a

noncollinear Néel state with the net magnetization direc-

tion of the three nonequivalent atoms pointing at 120� to

each other. In Fig. 1, we show the magnetization density

and B field for both the LSDA and EXX functionals. Both

find, as they must, the noncollinear Néel state, and in fact

the EXX and LSDA MT averaged moments are similar,

being 2:60�B and 2:0�B, respectively. The details of the

XC density and field however are very different with the

EXX functional producing a lot more structure, in contrast

to its fairly homogeneous LSDA counterpart. In the past,

the LSDA results (of the kind shown in Fig. 1), which show

almost no noncollinearity in the MT region, led to the

conclusion that it is sufficient to treat only the interstitial

region as noncollinear [16]. The present Letter shows that

orbital functionals such as EXX are more sensitive to the

atomic shell structure, and this sensitivity also manifests

itself in the magnetization density and exchange B field.

This is clear from the flower petal-like structure visible in

the magnitude of EXX density and B field. The Néel walls

are also much narrower in the EXX case. Adding LSDA

correlations to the EXX functional does not significantly

change these results. A striking feature of the EXX B field

is that, unlike its LSDA counterpart, it is not locally

parallel to the magnetization density.

Another appealing property of the EXX functional that

could have consequences in future time-dependent exten-

sions is the nonvanishing cross product of the magnetiza-

tion density and EXX Bx field. This is interesting because

the equation of motion for the spin magnetization reads

 

dm�r; t�

dt
� �m�r; t� � �BXC�r; t� �Bext�r; t�	 � r � Js

(11)

where Js is the spin current and � the gyromagetic ratio. In

the time-independent LSDA and conventional GGA, m�r�
and BXC�r� are locally collinear, as is clear from Fig. 1, and

therefore m�r� � BXC�r� vanishes. This also holds true in

the adiabatic approximation of time-dependent SDFT

which, by Eq. (11), implies that these functionals cannot

properly describe the dynamics of the spin magnetization.

In contrast, already at the static level, for the EXX func-

tional m�r� � Bx�r� does not vanish (see Fig. 2). In fact, in

the ground state of a noncollinear ferromagnet without

external magnetic field, m�r� � BXC�r� exactly cancels

the divergence of the spin current, r � Js; i.e., these terms

are equally important, and it is essential to have a proper

 

FIG. 1 (color). Fully noncollinear magnetization density and B

field obtained using the LSDA and exchange-only EXX func-

tionals for an unsupported Cr monolayer in Néel state. Arrows

indicate the direction, and information about the magnitude (in

atomic units) is given in the color bar.

 

FIG. 2 (color). m�r� �Bx�r� for an unsupported Cr mono-

layer, in the same plane as Fig. 1, obtained using the EXX

functional. Arrows indicate the direction, and information about

the magnitude (in atomic units) is given in the color bar.
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description of m�r� � BXC�r�. These results indicate that a

time-dependent generalization of our method could open

the way to an ab initio description of spin dynamics. How

well this functional really performs in describing the spin

dynamics remains a question for future investigations.

We now turn to the question of the calculation of mag-

netic moments of collinear solids with the present formal-

ism using the EXX functional. For the collinear magnets

Fe, Co, and Ni, we find moments of 2:71�B (2:12�B),

1:77�B (1:71�B), and 0:50�B (0:55�B), respectively,

where the LSDA results are indicated in brackets.

Surprisingly, a previous OEP calculations [15,20] found

much larger moments of 3:40�B, 2:25�B, and 0:68�B,

respectively. This discrepancy may be attributed to the

following facts: first, the previous calculations used the

atomic sphere approximation for the scalar potential and

the atomic moment approximation for the magnetization.

In our Letter, there is no shape approximation for the scalar

potential, and the magnetization is treated as an uncon-

strained vector field. Second, and more important, in the

present Letter, a coupled set of equations is solved to

numerically invert the response function. This has the

advantage of automatically including the response of the

system to a constant magnetic field which is important for

spin-unsaturated systems. This response needs additional

treatment in the case where a decoupled set of equations is

used and the response is inverted in a constant-free basis, as

done in all past calculations [15,20]. We suspect that this is

the major reason for the present discrepancy.

To conclude, we have presented a generalization of the

widely used OEP equations for noncollinear magnetic

systems. The resulting method does not need any assump-

tion of local collinearity for m�r� and BXC�r�, and there-

fore extends ab initio approaches to noncollinear

magnetism substantially beyond the LSDA. In particular,

a time-dependent extension of the noncollinear OEP

method naturally leads to a new and promising ab initio

approach to describe spin dynamics.

Finally, we note that since the formalism presented here

treats KS wave functions as spinors, it can be used in

conjunction with spin-orbit coupling. In particular, in

f-electron systems, both spin-orbit coupling and the ex-

change field are of crucial importance, where the latter is

well known to be poorly treated by LSDA/GGA. Hence,

the present Letter opens new interesting routes for future

extensions.
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