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11.1 Introduction

Friction is the resistance to the relative motion of two sliding or rolling objects
imposed by nonconservative forces [1–3] and, in general, it occurs along with
dissipation of mechanical energy and wear. These forces are generated from
short- and long-range interactions between the sliding surfaces [4, 5]. The
interaction potential can be either attractive or repulsive depending on the
distance between surfaces and also on their relative lateral positions. The
moving objects are either in direct contact through asperities, or gaseous,
liquid or solid lubricants may be introduced between them to reduce the
friction.

The dry sliding friction of two surfaces that are in direct contact through
their asperities involves many interesting and complex phenomena, such as
adhesion, wetting, atom exchange, the breaking and formation of bonds,
as well as elastic and plastic deformation. During the relative motion,
phonons are generated and electron–hole pairs are created at the expense of
damped mechanical energy. Photons may even be emitted. The nonequilib-
rium phonon distribution generated locally is dissipated by phonon-phonon
and electron–phonon coupling. Simulations of dry sliding friction between
a metal asperity and an incommensurate metal surface have revealed unusual
atomic processes [6]. For example, the lateral force exhibits a quasiperiodic
variation with the displacement of an asperity; each period consists of two
different stick–slip processes involving structural transitions. It has also been
found that the perpendicular elastic deformation of the substrate that is in-
duced by the sliding object is crucial to the energy damping associated with
friction [7]. In certain conditions, due to the elastic deformation of the sub-
strate, the corrugation of the surface potential energy can be inverted under
high loading forces. This situation gives rise to the occurrence of a second
state (bistability) in the stick–slip motion and anisotropy in the hysteresis
curve [7]. It is also very well-known that the stiffer the sliding surfaces, the
smaller the friction coefficient [7].
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The dry sliding friction between atomically flat, commensurate or incom-
mensurate sliding surfaces is perhaps the simplest but most fundamental
type of friction in tribology. The relative motion of two commensurate sur-
faces can take place through repeating stick–slip stages, which can help us
to visualize the energy damping under weak elastic deformation. However,
the situation is rather complex if the sliding surfaces are incommensurate
and undergo an elastic or plastic deformation involving atom exchange and
wear. An atomic-scale analysis of the interaction between sliding surfaces is
required to understand the nature of nonconservative lateral forces and the
various mechanisms of energy damping. In fact, studies based on the Tomlin-
son’s model [8] or calculations made using the Frenkel–Kontorova model [9]
have revealed valuable information about the atomic processes involved with
friction. Furthermore, the inventions of the atomic force microscope [10] and
the friction force microscope [11, 12] have had a significant impact on the
science of friction and opened up a new field called nanotribology. Nowa-
days, various atomic processes can be easily observed, and lateral forces in
the range of a fraction of nanoNewton (1 nN = 10−9 N = 0.62415 eV/Å)
can be measured with precision using these microscopes. As the precision
of friction force measurement have increased and various atomic-scale pro-
cesses have been resolved, atomic-scale simulations involving several atoms
have also been performed using realistic empirical potentials [13–18]. More-
over, first-principles studies treating relatively small systems based on density
functional theory (DFT) [19] have appeared [20]. First-principles studies have
also led to the development of empirical potentials. Theoretical studies, on
the other hand, have started to investigate microscopic aspects of energy
transfer and energy damping processes [21–24].

Because of the heat generated by the dissipation of mechanical energy
and material losses resulting from wear, the objects in relative motion be-
come flawed after some operational time and are eventually destroyed. Since
friction results in much resource loss, lowering the friction coefficient has been
the principal goal in various fields of science and technology. Lubricants have
been used to lower friction coefficients and to eliminate the wear in the ma-
chining and transportation industries. Over the last decade, progress made
in materials science and surface coating technologies has led to a steady drop
in the friction coefficient.

11.2 Superlow Friction

11.2.1 General Theoretical Arguments

Whether superlubricity – which is somewhat analogous to superconductiv-
ity (i. e., a state of matter leading to zero electrical resistivity) or superflu-
idity (i. e., a liquid state with zero viscosity) – can be achieved has been
questioned. The absence of energy damping in mesoscopic objects has been
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pointed out previously [25]. This question can be clarified by examining the
energy damping agents involved in friction. These are long- and short-range
interactions between two surfaces and various elementary excitations, such
as phonons, electron–hole creation, charge density waves, and photon emis-
sion. High-energy excitations such as surface plasmons do not contribute to
the energy damping process. Bond-breaking or rebonding, atom exchange be-
tween surfaces and local surface reconstruction can damp mechanical energy
and or mediate excitations. Normally acoustic phonons with small excitation
energies can easily be excited and hence contribute to the energy damping
process. Experiments performed using a noncontact AFM [26] have shown
that the vibration of the tip over the sample gives rise to energy dissipation
even if its minimum spacing from the surface is greater than the range of the
short-range forces involved [27–30]. This argument eliminates the possibility
that an absolutely zero kinetic friction coefficient (µk = 0) can ever occur.
Apparently, superfluidity with µk = 0 cannot be achieved, but a superlow
friction coefficient is a target one can reach.

The interaction energy, Ei(ρ, z) between two flat surfaces is a function of
their spacing z and their relative lateral positions ρ = xi+yj. Usually, the in-
teraction energy is small and attractive (i. e., Ei < 0) for large z(z < 0), but
decreases (becomes more attractive) as z decreases. After passing through
a minimum, it then starts to increase and eventually becomes repulsive (i. e.,
Ei > 0). The attractive interaction energy is specified as an adhesion between
the two surfaces and involves the formation of bonds between the surfaces,
which may give rise to a high friction coefficient during the sliding motion.
Under loading forces, Ei can increase and become repulsive, in which case
elastic and or at least local plastic deformations may occur. Substances (solid
lubricants, inert gas atoms, etc.) may be placed between the surfaces in order
to weaken Ei. Under ultrahigh vacuum conditions, friction coefficients as low
as µ = 0.01 have been observed for MoS2 and diamond-like carbon (DLC)
coatings [31–33]. Even if the lubrication of surfaces coated with such low
friction coefficient materials appears to be desirable, the low friction coeffi-
cient can increase under different ambient and operational conditions. The
coating of surfaces with special materials that result in repulsive interactions
for a wide range of the loading force FN is desirable. The loading force will
then be balanced by the repulsive force derived from the interaction energy,
Fz(ρ, z) = −∂Ei(ρ, z)/∂z, and the atoms on one surface will be prevented
from merging into the other surface because a large gap is maintained between
the surfaces. In this way, bond-breaking, rebonding and severe deformations
can be eliminated. The flights of trains over superconductive rails is reminis-
cent of the sliding of one coated surface over another when there is a repulsive
interaction between them.

In order to reduce the energy damping during the relative motion and
hence to lower µk, one must also take the force constants (which determine
the vibrational frequencies of the atoms) into account. It is well-known that
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the stiffer the sliding surface, the smaller the friction constant. The principal
energy-damping agents are phonons, and phonons can be excited by any
elastic deformation. Therefore, such elastic deformations are not favored. In
this respect, coating materials comprising short and stiff surface bonds are
desirable for superlow friction.

11.2.2 Recent Experimental Progress

In an effort to lower the friction coefficient, Erdemir et al. [34–36] reported
superlow friction and wear between diamond-like carbon (DLC)-coated sur-
faces using a hydrogen-rich plasma. They achieved kinetic friction coefficients
µk as low as 0.001 and wear rates of 10−9 to 10−10 mm3/Nm in an inert gas
environment under 10 N load and sliding velocities of 0.2 – 0.5 m/s. It has
been shown that the magnitude and time-variation of µk are close correlated
with the hydrogen content of the source gas. This work by Erdemir and his
coworkers was a breakthrough in research into superlow friction and pro-
longed durability of moving parts in various mechanical applications ranging
from the automotive industry to nanotechnology.

11.3 Theoretical Method

The structures of sliding surfaces contain several types of defects (such as
asperities of different shapes and sizes, vacancies, impurities, domains, etc.).
A realistic simulation of dry sliding friction must include all of these defects.
Hence, atomistic models of sample surfaces require a large number of atoms.
In this respect, the classical molecular dynamics (CMD) method that uses
empirical potentials to represent atomic-scale interactions is convenient for
simulating friction processes. Recently, various processes have been simulated
and new structures have been predicted by using empirical potentials devel-
oped for certain systems. Since numerical calculations using these empirical
potentials are not time-consuming, large systems comprising several thou-
sands of atoms have been treated. However, the main drawback of CMD sim-
ulations appears when a completely new system is treated, particularly when
the characteristics of the surface atoms (such as their effective charges and
bonds) deviate dramatically from those of the bulk structure. Under these
circumstances, whether the empirical potential can be parameterized using
the bulk properties becomes questionable. On the other hand, first-principles
calculations can provide reliable results for the optimized atomic structure,
mechanical, electronic and magnetic properties and phonon density of states
of a given system, if it involves a small number (200–300) of atoms. Vari-
ous mechanisms behind the energy dissipation and estimations of the friction
coefficient with upper and lower limits can be elucidated. In this respect,
first-principles calculations are superior to classical methods if the system
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can be represented by 200–300 atoms. Besides, first-principles methods are
complementary to CDM in that they reveal the correct charge and bond
structure and hence aid the development of reliable empirical potentials.

11.3.1 Details of First-Principles Calculations

In this study, the atomic processes and forces involved in sliding friction were
investigated by carrying out calculations from first principles within DFT.
These calculations were proven to yield accurate predictions for many metal
and insulator surfaces. Here we present the crucial parameters for the first-
principles calculations.

The sliding friction is treated either via a supercell method using periodic
boundary conditions or by finite-size surfaces using a local basis set. In the
supercell method, where the wavefunctions are expressed in momentum space,

Ψn,k(r) =
∑
G

an,k+G exp[−i(k + G)r] . (11.1)

The magnitude of the largest wave vector sets the cutoff energy, �
2|k +

G|2/2m, and hence the number of plane waves used in the expansion. The
ionic potentials are represented by ultrasoft pseudopotentials ([37]; numeri-
cal calculations were performed by using the VASP package [38]) and so the
cutoff energy is taken to be 300 eV. The exchange correlation potential is rep-
resented via the generalized gradient approximation [39]. The Brillouin zone
corresponding to the supercell is sampled within the Monkhorst-Pack special
k-point scheme [40].

The sliding surfaces are represented by two infinite slabs made from
atomic layers of the coating materials. The atoms in the slabs fall into two
different categories, which are treated differently. The first category of atoms,
those at the back surfaces of both slabs, are kept fixed in their ideal config-
urations, xi, yi, zi. The layers of fixed atoms represent the sample or coating
layers far away from the sliding surface. They are not affected from the fric-
tion process. By displacing all of the fixed atoms of one slab relative to the
fixed atoms of the other slab, one can achieve a lateral displacement of two
slabs and induce a loading force. The atoms at the surface region of the
slabs facing each other form the second category, and are relaxed, unlike the
atoms from the first category which are fixed at given xi, yi, zi positions. In
this way, the processes involved in the relative sliding of the two slabs, in-
cluding atomic displacements, elastic and plastic deformations, etc., can be
modeled from first principles. The atomic positions are optimized by a conju-
gate gradient method. The lateral components Fx, Fy and the perpendicular
component Fz of the net force induced between the two slabs are calculated.
We did not include long-range van der Waals forces since they are negligible
compared to the perpendicular force Fz induced under high loading force FN.
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11.4 Atomic-Scale Study of Superlow Friction
Between Hydrogenated Diamond Surfaces

11.4.1 Atomistic Model

In this section we will present our study of superlow friction between two
hydrogenated diamond(001)-(2×1) surfaces performed using a first-principles
plane wave method [41]. Hydrogenated DLC (H:DLC) coatings have complex,
amorphous structures showing various irregularities. The sliding surfaces can-
not be commensurate and they contain irregularly distributed asperities and
perhaps voids. We believe that determining the structure of the DLC is itself
an important goal, and this issue was addressed previously [42]. However, even
if the structure of the H:DLC realized in superlow friction [34–36] as well as
the physical and chemical processes associated with friction are stochastic in
nature, the local bond orders and the C–H bond topology are expected to be
similar to various hydrogenated diamond surfaces. Therefore, the interaction
between the H:DLC surfaces and the nature of the interaction between these
surfaces can be understood by the present model. Clearly, our study does not
promise to provide a realistic simulation of the experiment yielding superlow
friction [34]. Our objective in this atomic-scale study is to better understand
the physical mechanisms involved in the superlow friction observed between
hydrogenated DLC-coated surfaces [34]. We hope that the components of the
superlow friction revealed in our study will be useful in the development of
new coating materials that are stable under the operating conditions desired.
In particular, our objective is to develop coating materials that are stable
under ambient conditions and to oxidation.

When assessing how simple we can make our model, two features are
of particular importance. These are the full relaxation of surface atoms at
any instant of the sliding process, and the accurate calculation of the vari-
ations in the lateral force components under the constant loading force FN.
Diamond(001)-(2×1) surfaces are represented by two slabs facing each other
at a specific distance. Each slab consists of six layers of carbon atoms. Car-
bon atoms at the back surface of each slab are saturated with hydrogen
atoms. The atomic structure of each individual slab is first optimized and
then the carbon atoms at the sixth layer (at the back surface of the slab)
and saturating H atoms (i. e., those atoms from the first category) are kept
at their equilibrium positions. We believe that such a configuration mimics
the semi-infinite slab (or a thick coating).

Figure 11.1a illustrates two diamond (001)-(2×1) slabs with H-saturated,
fixed back surfaces. The other surfaces of the slabs face each other and are
free when the distance d between them is large. The structural parameters
of the bare surface, which reconstructs to form dimer bonds, are successfully
reproduced. Contour plots calculated for the self-consistent surface charge
density are presented in Fig. 11.1b. The dimer and back bonds are clearly
seen to have covalent character.
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Fig. 11.1. a Two diamond(001)-(2×1) slabs used to model the sliding of two
diamond(001) surfaces over each other. Carbon atoms at the back surfaces of the
slabs are saturated with H atoms. The positions of these carbon atoms and those
of the saturating H atoms are fixed at the configuration corresponding to that
obtained from the optimization of individual (free) slabs. The distance between the
back surfaces of the slabs is D, and that between the two sliding surfaces facing
each other is d. The crystal directions are identified by Cartesian axes shown in the
inset. C and H atoms are shown by filled and empty spheres, respectively. b Charge
density contour plots for the bare diamond(001)-(2×1) slab for a vertical plane
passing through the dimer bond. (Reproduced from [41])

We first calculated the normal force Fz which originates from the short-
range interaction between the surfaces of the slabs. To this end, we kept the
distance D between the back surfaces of the slabs at each preset value and
calculated the total energy of whole system, ET(D, ρ), and the total force
on one of the slabs. Here the total energy and total force are obtained after
optimizing the positions of atoms in the second category. We note that, since
the two slabs are pressed against each other by fixing D, the calculated forces
on the atoms at the back surface balance the external (loading) forces which
maintain D at a preset value. Therefore, the total calculated vertical force
on one of the slabs is equal to the vertical interaction force Fz . By definition,
the loading force FN = −Fz. The variation of Fz is plotted in Fig. 11.2
with respect to the separation between slab surfaces before relaxation, do,
as well as the actual separation, d, after the relaxation. The interaction is
weak and repulsive for d > 2.75 Å, but Fz becomes attractive as D decreases
and then jumps to contact, attaining a value of approximately −6 eV/Å.
Strong bonds form between the sliding surfaces of two diamond(001)-(2×1)
slabs near equilibrium separation corresponding to Fz � 0. Once a normal
force is applied in order to press the slabs against each other, atoms from
different surfaces become close to each other at d ∼ 1.5 Å and subsequently
Fz becomes repulsive. Under these circumstances, since the sliding motion
can involve local deformations, bond-breaking and rebonding, the dynamical
friction coefficient µk as well as the wear rate are expected to be high. In
fact, the dynamical friction coefficient has been measured to be equal to 0.65
for sliding DLC-coated surfaces which are free of hydrogen.
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Fig. 11.2. Calculated normal force
Fz generated when two diamond(001)
slabs are pressed towards each other
by decreasing D and hence d. do and
d correspond to the distance between
two sliding diamond(001)-(2×1) sur-
faces before and after relaxation, respec-
tively.(Reproduced from [41])

11.4.2 Force Variations in the Sliding Friction
of Two Hydrogenated Diamond Surfaces

First, we will examine the variation in the normal force when the sliding
diamond surfaces are hydrogenated. Dangling bonds of carbon atoms on
the two slab surfaces facing each other are saturated with H atoms to form
a monohydride phase, i. e., H:diamond(001)-(2 × 1). Upon the saturation of
the surface dangling bonds, the dangling bond surface states disappear and
a wide energy gap opens between the valence and conduction bands of the
slab. The surface charge density differs dramatically from that of the clean
diamond(001)-(2 × 1). In Fig. 11.3 we show the atomic configurations of the
H:diamond(001)-(2×1) surfaces and a contour plot of the surface charge den-
sity.

Fig. 11.3. a Atomic configurations of two diamond(001)-(2×1) slabs where the
dangling bonds on the surfaces facing each other are saturated with hydrogen atoms
to form a monohydride phase H:diamond(001)-(2×1). d is the spacing between these
surfaces, Fz the normal force, FN the loading force. b Contour plot of total charge
density of H:diamond(001)-(2×1) surface for a vertical plane containing the surface
dimer bond. (Reproduced from [41])



11 First-Principles Atomic-Scale Study of Superlow Friction 209

N
or

m
al

 F
or

ce
 F

 (
eV

/A
)

Z

o

Distance d (A)
o

1.5 2.5 3.0
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.5 2.5 3.0
-0.5

0.0

0.5

1.0

1.5

2.0

2.0

GGA

GGA

N
or

m
al

 F
or

ce
 F

 (
eV

/A
)

Z

o

Distance d (A)
o

F

F

F

F

x

y

z

N

∆y

∆x
<

<

Fig. 11.4. Left : Directions of the loading force FN, Fz, lateral force components
Fx,y, and lateral displacements, ∆x and ∆y. The lateral force component, which
acts in the opposite direction to the displacement, is indicated by the superscript
“<” symbol. Right : Variation in the calculated normal force Fz between the two
surfaces of H:diamond(001)-(2×1) as a function of their actual, relaxed separation d.
Fz is generated when two diamond(001) slabs are pressed towards each other by
decreasing D. The inset shows the variation in the same force between hydrogenated
Si(001)-(2×1) surfaces. (Reproduced from [41])

Moreover, Mulliken analysis indicates that 0.25 electrons are transferred
from the H atom to the C atom that is bound to it. This situation corre-
lates with the fact that the C atom is more electronegative than the H atom.
As a result, the H atom is positively charged. The depletion of electrons on
H atoms induces a repulsive interaction and hence a repulsive Fz , even for
d < 2.5 Å, between the H:diamond(001)-(2×1) surfaces. This is the most es-
sential feature for obtaining superlow friction coefficients from H:DLC-coated
sliding surfaces. The variation of Fz with spacing d is shown in Fig. 11.4. This
repulsive force Fz keeps the sliding surfaces wide apart at a distance d and
balances the loading force FN. As a result, the sliding surfaces are prevented
from approaching each other too closely. In this way, C–H bond deformation
is suppressed to a large extent. It is interesting to note that, like carbon,
silicon is also a Group IV element and has a diamond structure. A strong
attractive interaction is generated between clean Si(001) slabs. However, sim-
ilar to diamond(001) slabs, the attractive interaction turns repulsive upon the
hydrogenation of the Si(001) surfaces, which generates a strong repulsive nor-
mal force. It appears that H:Si(001)-(2×1) displays features similar to those
of H:diamond(001)-(2×1). We next examine whether this feature, namely
the repulsive normal force between surfaces, can lead to a superlow friction
coefficient.

11.4.3 Sliding Friction of Hydrogenated Diamond(001) Slabs

Having examined the perpendicular variation of Fz, we now address the fol-
lowing questions. (i) Does the repulsive interaction continue to keep the sur-
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faces wide apart if one of the diamond slabs is laterally displaced relative
to the other one? (ii) What is the range of FN where the repulsive inter-
action between the surfaces persists without any serious deformation? (iii)
Can one obtain an upper limit for the friction coefficient? To answer all of
these questions, we carried out a series of first-principles calculations for the
interaction energy Ei, normal force Fz , and lateral force FL corresponding
to different loading forces (and hence D) and displacements (∆x, ∆y) of the
upper slab. In these calculations, all of the atoms were relaxed except for the
C and H atoms at the back surfaces of both slabs. The latter atoms are kept
fixed in their ideal configurations after their planes are displaced to different
perpendicular and lateral positions by varying D and (∆x,∆y) in sequential
increments. We note that keeping the two back ends of slabs at a specific dis-
tance D but relaxing the other atoms induces a loading force FN(D), which
in turn is balanced by Fz. Fz itself is obtained from the sum of the perpen-
dicular components of the forces calculated for the fixed atoms on one of the
slabs, namely Fz =

∑
i Fz,i, where i is the index of a fixed atom from one

slab. Performing the same sum on the other slab yields Fz with the same
magnitude but in the opposite direction. Similarly, the lateral forces along
the x-axis (or the y-axis) are obtained from the sum Fx(y) =

∑
i Fi,x(y). Per-

forming ab initio calculations of Ei, Fz , Fx,y as a function of d (or D) at
different relative lateral positions yields a database of ∆x and ∆y values. In
these calculations, the values of D were varied in small steps to yield normal
forces over an appropriate range of interest.

Figure 11.5 presents the calculated variations in Ei and Fz as a function
of d for different lateral displacements, ∆x and ∆y, of the top slab. Here
we note that the interaction energy Ei = ET − ET,d=∞, where ET,d=∞ is
the total energy corresponding to very large d (or twice the total energy of
one slab in the absence of the other one). We note that the variations in
Ei and Fz are not smooth functions due to the discrete changes in D and
to the relaxation of the C–H bonds. Note that since Fz is always repulsive
and strong, even at significantly large spacings, so the sliding surfaces are
kept apart, even for large loading forces. As a result, the C–H bonds from
different surfaces neither merge nor interfere with each other. During the
course of sliding, the C–H bonds experience neither significant deformation
(i. e., bending, stretching or shrinking) nor wear through bonding–rebonding.

If the sliding motion were adiabatic, no energy would be damped during
the sliding motion of two commensurate surfaces such as those we treat here.
However, this is not the case; various rapid processes generate excitations
and give rise to energy damping. However, we will delay a discussion of the
microscopic theory of energy damping and dissipation to the next section and
instead we now present a global approach to estimating an upper limit for
µk using the variation in the lateral force obtained from the present calcula-
tions. To this end, we consider displacements along the x− and y−axes and we
derive the variation in lateral force under the given constant loading force us-
ing our database, namely FL=x(∆x,∆y = 0, FN) and FL=y(∆x = 0,∆y, FN).
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Keeping the loading force FN constant is the most difficult part of our study
and requires a large number of numerical calculations corresponding to dif-
ferent ∆x, ∆y and D values. We considered that the loading force FN =1
and 1.2 eV/Å per cell, which are actually values that are higher than the
loading forces used in the experiment [34] and in practical applications. In
this respect, our estimation of µk is a stringent test. The variations in Fx

and Fy are illustrated in Fig. 11.6. For the reasons pointed out earlier, the
variation in lateral force is not smooth. Since the lateral force is calculated
using coarse displacement steps of D, the elastic deformations of the slabs
and the C–H bonds induced by sliding are released suddenly. This gives rise
to the stick-slip process described by Tomlinson’s model [8]. Of course, there
are error bars involved in the calculation of forces. In particular, achieving
the constraint of a constant loading force via the limited number of data
points in the database generated through ab initio calculations can lead to
hysteric variations in the lateral force. Now, as an ad hoc approach to es-
timating µk in an energy-damping medium, we assume that the work done
by the lateral force FL (i. e., when it is parallel to the direction of motion as
denoted by F>

L ) is totally lost. Then the average friction force is calculated
by F f =

∫
F<

x dx/R, where R is the period of the motion.
Using the data in Fig. 11.6, we can extract the average friction force,

F f ∼ 0.05 eV/Å for FN = 1 eV/Å and F f ∼ 0.07 eV/Å for FN = 1.2 eV/Å.
Then the kinetic friction coefficient is calculated from µk = F f/FN to be ap-
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proximately 0.05 in both cases. A more realistic estimation could be obtained
from F f =

∫
(F<

x +F>
x )dx/R if the lateral force variation was calculated pre-

cisely. Although the force variations shown in Fig. 11.6 are too crude to obtain
precise values, µk has been calculated for the sake of comparison to be ∼ 0.01.

It should be noted that during the sliding of commensurate surfaces the
lateral forces acting on each atom or cell are added constructively to yield
a high total lateral force. These lateral forces are, however, conservative, and
do not give rise to energy damping if the sliding motion is adiabatic. In the
case of incommensurate surfaces, the total lateral force is lower due to the
cancellations. H:DLC-coated surfaces can be viewed to be incommensurate
except that the disorder gives rise to higher energy damping. Consequently,
the above estimation of µk, obtained from hydrogenated diamond surfaces
with the assumption that all mechanical energy stored into elastic energy is
damped, is an upper limit for H:DLC-coated surfaces; however, it is still too
low.

11.4.4 Microscopic Theory of Energy Damping

The mechanisms of energy damping and energy transfer from sliding objects
or lubricants have been studied theoretically and experimentally [14, 20–22,
43–45]. In the sliding friction of commensurate surfaces, the elastic energy
(which is related to the interaction energy Ei) VT exhibits a periodical vari-
ation with the displacement; the period is determined by the lateral lattice
parameters of the sliding surfaces. In the present case, VT attains its max-
imum value when the dimer bonds of the two surfaces face each other, but
it becomes minimum when the upper slab is displaced by half of the unit
cell. During sliding, VT varies between maximum and minimum values. If
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the variation is adiabatic there will be no energy damping; mechanical en-
ergy is stored into elastic energy mainly through the deformation of C–H
bonds, and the first half of the period will be released as kinetic energy dur-
ing the second half of the period. As for the lateral force with components
Fx,y = −∂VT(r)/∂x, y it will have also the same period as VT. Moreover, it
is conservative for fully adiabatic sliding motion. First, it is parallel to the
direction of sliding, then it becomes antiparallel so that

∫
FL dη = 0 for full-

period displacement along the direction of the vector η = xi + yj. However,
the sliding motion is not adiabatic but instead involves sudden changes which
can create various types of excitations, in particular nonequilibrium phonons,
at the expense of the mechanical energy of the sliding objects.

In the sliding friction of hydrogen-saturated diamond(001)-(2×) surfaces
and also H:DLC, the characteristics of the C–H bonds are crucial to the
damping of mechanical energy. The C–H bonds are associated with a salient
surface phonon [46] stretch mode of �Ωq ∼ 360 meV and a bending mode of
150 meV. The C–H bonds are short and stiff and cannot be easily excited to
large amplitude vibrations in order to dissipate mechanical energy.

Excitation of phonons over the thermal equilibrium distribution with am-
bient temperature To is the prime mechanism in energy damping. It involves
two stages. (i) Excitation of nonequilibrium phonon distribution. (ii) Dissipa-
tion of excess phonons from the sample. Both processes are sample specific;
in other words they depend on the sample materials, the atomic structures
of the sliding surfaces and operational conditions. In particular, one needs
to know the phonon frequency spectrum (or the density of states D(Ω)). In
principle, the density of phonon frequencies can be calculated if the atomic
structures and force constants of the sliding objects are known. If the sliding
takes places over a number of asperities, the situation becomes even more
complex. In what follows we present a concise theory of a phononic energy
damping process through a single asperity.

Let us consider a mode frequency Ωq and denote the occupation numbers
of the corresponding phonon for the ambient temperature To and for high
temperature T as no

q and nq, respectively. Here, nq denotes Planck’s distri-
bution for a given Ωq and T . We take T > To. Therefore, the excess phonons
for this particular mode are expressed as

∆nq = n(Ωq, T ) − no(Ωq, To) . (11.2)

Here q is the mode index, including the polarization. The equilibrium state of
the sample (or asperity) can be expressed by the occupation number repre-
sentation as Ψ(no

1, n
o
2, . . . n

o
q, . . . n

o
3N), with 3N being the degrees of freedom

in the motion of N atoms of the system. Subsequent to a deformation, the
occupation number state becomes Ψ(n1, n2, . . . nq, . . . n3N ). Here, the crucial
problem is to relate the excess phonon density, ∆nq, to the deformation. In
principle, a given deformation state in terms of the displacements of indi-
vidual atoms, ui,x, ui,y and ui,z, can be expressed in normal coordinates by
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using the appropriate transformation. In other words, this problem reduces
to finding the vibrational states of a system (consisting ofN atoms connected
by springs) when its preset deformation is suddenly released. In order to pro-
vide a fundamental understanding of the phononic dissipation, one can follow
a simpler approach and relate the deformation uq to the number of excited
phonons by using a semiclassical equation,

δVq =
∑

q

MΩ2
qu

2
q/2 . (11.3)

Here, δVq is the mechanical energy used to excite ∆nq excess phonons with
frequency Ωq, namely δVq = �Ωq∆nq. We note that the amount of energy
damped by phonons upon the release of one of the deformed states is the
sum of the phonon excitation energies over the mode index q, VT =

∑
q δVq.

Knowing nq = ∆nq + no
q, and using Planck’s distribution, one can estimate

the local temperature T corresponding to the excited phonons.
Having calculated the excited phonons subsequent to the release of one

deformed state, we now discuss the dissipation of excess phonons. The process
is closely related to the transfer of energy through molecules and has been
treated in several theoretical and experimental studies. The decay of nq to
no

q is usually expressed by a rate equation,

nq(t) = no
q + nq(t = 0) exp[−R(Ωq)] . (11.4)

Here R(Ωq) is sample-specific and obtained from scaling arguments. Model
calculations on a Cu asperity consisting of 14 atoms by Buldum et al. [22]
showed that low-energy modes experience the highest excitation probabili-
ties but the lowest decay rates. Therefore, low-energy modes determine the
phononic energy damping. Moreover, calculations based on nonequilibrium
statistical mechanics and Keldysh Green’s function formalism [24] show that
the excess phonon distribution dissipates within a picosecond if the couplings
to the substrate are strong.

11.4.5 Effect of Oxidation

The most serious issue is that the superlow friction coefficient obtained from
H:DLC-coated surfaces cannot be sustained under ambient conditions [34,35].
The oxygen atom could potentially destroy the superlow friction when the
H:DLC coating is exposed to the air. In what follows, we clarify the effect
of oxygen on the hydrogenated DLC coating leading to superlow friction.
To test the effect of oxygen, we placed O atoms at different sites on the
H:diamond(001)-(2×1) surface. Upon relaxation, the system attains the min-
imum energy configuration, whereby O atoms break surface bonds to form
new C–O–C or C–O–H and C–O bonds, and hence they become attached to
the surface. Fortunately, they attack the C–H bonds to form C–O–H radi-
cals. Charge transferred to O from H and C makes the O atom negatively



11 First-Principles Atomic-Scale Study of Superlow Friction 215

Fig. 11.7. Calculated atomic
configurations showing the ef-
fect of an oxygen atom on
the H:diamond(001)-(2×1) sur-
face. a–d The oxygen atom is
placed at different sites in the sur-
face unit cell before the relax-
ation of the surface. a’–d’ Atomic
structure and bonding after re-
laxation of the system. The ad-
sorbed oxygen atom is negatively
charged. (Reproduced from [41])

charged, as shown in Fig. 11.7. In this way, the interaction between two atoms
on different surfaces can be attractive when they carry charges of different
polarities. As a result, the steady and strong repulsive interaction between
the H:diamond(001)-(2×1) surfaces gradually becomes weaker or turns at-
tractive. Eventually, the superlow friction ends.

11.5 Conclusions

This work reports on an extensive study of the interaction between two
bare and hydrogenated diamond(001)-(2×1) surfaces. The interaction be-
tween bare surfaces is strongly attractive up to a small distance between
surfaces d ∼ 1.5 Å, at which point it becomes repulsive. Hydrogen atoms do-
nate charge to the carbon atom and become positively charged. This appears
to be the most important ingredient of the superlow friction. The repulsive
interaction persists at any relative position of the sliding surfaces, and is
strong even at large distances from each other, preventing C–H bonds from
merging. Strong and stiff C–H bonds and the stiff diamond crystal prevent
large amounts of energy from being dissipated. It was found that oxygena-
tion of surfaces under atmospheric conditions destroys the steady repulsive
interaction.
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