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In this paper, we report the calculated phase diagrams of V-Nb, V-Ta, and Nb-Ta alloys computed by combining

the total energies of 40–50 configurations for each system (obtained using density functional theory) with the

cluster expansion and Monte Carlo techniques. For V-Nb alloys, the phase diagram computed with conventional

cluster expansion shows a miscibility gap with consolute temperature Tc = 1250 K. Including the constituent

strain to the cluster expansion Hamiltonian does not alter the consolute temperature significantly, although it

appears to influence the solubility of V- and Nb-rich alloys. The phonon contribution to the free energy lowers

Tc to 950 K (about 25%). Our calculations thus predicts an appreciable miscibility gap for V-Nb alloys. For

bcc V-Ta alloy, this calculation predicts a miscibility gap with Tc = 1100 K. For this alloy, both the constituent

strain and phonon contributions are found to be significant. The constituent strain increases the miscibility gap

while the phonon entropy counteracts the effect of the constituent strain. In V-Ta alloys, an ordering transition

occurs at 1583 K from bcc solid solution phase to the V2Ta Laves phase due to the dominant chemical interaction

associated with the relatively large electronegativity difference. Since the current cluster expansion ignores the

V2Ta phase, the associated chemical interaction appears to manifest in making the solid solution phase remain

stable down to 1100 K. For the size-matched Nb-Ta alloys, our calculation predicts complete miscibility in

agreement with experiment.
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I. INTRODUCTION

Vanadium, niobium, tantalum, and their binary alloys

have been the subject of research due to their super-

conducting properties and low-temperature structural phase

transformations.1–5 Short-range order and superconductivity

of V-Nb, V-Ta, and Nb-Ta alloys have been examined for

understanding the influence of alloying on the superconducting

transition temperatures.2 Recently, V, Nb, and Ta have been

found to undergo a martensitic-like structural distortion 3–5 in

which they transform from the high-temperature bcc structure

to either a rhombohedral structure or to a tetragonal structure.

Apart from this, vanadium-based alloys are known to have the

desired combination of physicomechanical properties, com-

patibility with nuclear fuel, and high resistance to corrosion 6,7

making them potential structural materials for fast-neutron

nuclear power plants which can be operated at temperatures

exceeding 1000 K for increasing the thermodynamic efficiency

of electric power production.

The capability of vanadium to form a continuous series of

solid solutions with other refractory metals makes it possible

to design binary, ternary, and more complex alloys based on

it. Alloying is found to significantly increase the resistance

to creep and deformation of vanadium. Nb, Ta, and W are

found to harden vanadium significantly compared to Ti, Zr,

and Cr. In V-Nb-Zr-C alloy, the high-temperature strength

increases markedly with increasing Nb concentration. On the

other hand, it is known that the state of atomic order of the alloy

determines its hardness, strength, corrosion properties, and

electrical resistivity. Decay of the solid solution to ordering or

phase separation is known to significantly lower the hardness

and resistance to corrosion of many alloys. In other words,

the ordering or phase separation behavior of the alloy decides

many physical properties, including microstructure, transport,

and mechanical behavior. This means that knowledge of the

alloy phase equilibrium and phase transformation properties

is essential for effective design of the alloy.

The experimental phase diagram of V-Nb alloys shows a

continuous series of solid solutions without a miscibility gap.

The solid state part of the V-Ta phase diagram consists of a

major solid solution region and a two-phase region made up of

the V2Ta Laves phase and bcc solid solution. The Nb-Ta phase

diagram shows complete miscibility in the solid state without

any evidence for a solid-state transformation down to ambient

temperature.8,9 Recent first-principles study of phase equilib-

rium of similar refractory bcc binary alloys, such as Nb-Mo,

Nb-W, Ta-W, and Ta-Mo, has however predicted several inter-

mediate ground states.10 For V-Nb, V-Ta, and Nb-Ta systems,

while there exist a few CALPHAD studies, first-principles

studies of phase equilibrium do not exist in the literature.

This work aims to corroborate and complement these

experimental observations by more precisely locating the

position of the miscibility gap in these systems via first-

principles calculations. Although both V-Nb and Nb-Ta were

previously reported to exhibit complete solubility, we in fact

find that their miscibility gaps have rather different locations

(around 950 K for V-Nb but close to 0 K for Nb-Ta). This has

important implications for thermodynamic modeling in these

systems. Moreover, our analysis of the metastable bcc phase

diagram of the V-Ta system avoids masking by the V2Ta Laves

phase and enables the determination of the bcc miscibility gap.

Furthermore, calculation of phase stability of V-Nb alloys

is also of interest because in the high-chromium ferritic-

martensitic steels, considered as a substitute for austenitic

steels in nuclear reactors, fine dispersions of two distinct

vanadium nitrides, V0.6Nb0.2Cr0.2N and V0.45Nb0.45Cr0.1N, are
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known to precipitate and remain stable against coarsening

leading to enhanced creep strength.11–16 Experience in carrying

out the phase equilibrium calculation of the binary systems

studied here would be a valuable input for the study of phase

stability of V-Nb(Cr)-N (qua)ternary nitrides.

We use density functional theory based total energy

calculations combined with the cluster expansion and Monte

Carlo techniques for calculation of phase equilibrium. Cluster

expansion consists of considering the alloy being made of

“geometric objects” (or figures), such as points, pairs, triplets,

and associating a characteristic energy J with each of these ge-

ometric objects. For a given underlying Bravais lattice, cluster

expansion then expresses the energy E(σ ) of any configuration

σ of the alloy as a linear combination of the characteristic

energies J and the correlation functions of every figure, like a

generalized Ising Hamiltonian. Finite-temperature properties

are calculated by resorting to Monte Carlo simulations using

the cluster expansion Hamiltonian E(σ ). Furthermore, our

cluster expansion Hamiltonian includes the strain energy due

to lattice constant mismatch of the constituents and the phonon

contributions besides chemical interactions, which are known

to improve the accuracy of the computed thermodynamic

properties.17–32

The paper is organized as follows: A brief review of the

formalism of the cluster expansion method and Monte Carlo

simulation is given in Sec. II. In Sec. III the results are

presented. The results are discussed in Sec. IV, and our findings

are summarized in the final section.

II. METHODOLOGY

A. Cluster expansion

Computation of phase equilibrium and ground-state struc-

ture of an A1−xBx binary alloy requires, in principle, calcu-

lation of the total energy for all possible configurations of

placing atoms A and B on N sites of the underlying Bravais

lattice. As the number of possible configurations 2N becomes

enormous even for a modest number of sites N , it is difficult to

calculate the energy quantum mechanically for an exhaustive

set of configurations. The cluster expansion method constructs

an Ising-like Hamiltonian for the energies of the different

atomic configurations. Detailed illustration of the method can

be found in many papers.18,20,26,33–39 Here a brief description

of the main aspects is given. In the cluster expansion, the alloy

is treated as a lattice problem in which the lattice sites are

fixed at those of the underlying Bravais lattice (fcc, bcc, etc.)

and a configuration σ is defined by specifying the occupation

of each of the N lattice sites by an A atom or a B atom. For

each configuration, one assigns a set of “spin” variables Ŝi

(i = 1,2, . . . ,N ) to each of the N sites of the lattice, with

Ŝi = −1 or +1 depending on the site i being occupied by an A

or B atom, respectively. For a lattice with N sites, the problem

of calculating the energies of the 2N possible configurations σ

can be exactly mapped into a generalized Ising Hamiltonian:

E(σ ) = J0 +
∑

i

Ji Ŝi(σ ) +
∑

j<i

Jij Ŝi(σ )Ŝj (σ )

+
∑

k<j<i

JijkŜi(σ )Ŝj (σ )Ŝk(σ ) + · · · , (1)

where the J ’s are the interaction energies of various order,

also known as the effective cluster interactions. The first

summation is over all sites in the lattice, the second over

all pairs of sites, the third over all triplets, and so on. The

primary advantage of the cluster expansion is that the J ’s

are the same for all configurations σ . Thus, once the J ’s are

known, the energy E(σ ) of any configuration can be calculated

almost immediately by simply calculating the spin products

and summing them using Eq. (1).

Equation (1) defines a set of linear equations, in which a

2N × 2N matrix of spin products multiplies a 2N vector of J ’s,

giving a vector of the energies of the 2N configurations. The

J ’s can then be solved exactly if the matrix of spin products

is nonsingular. Sanchez et al.33 have proven that the matrix is

indeed orthogonal which guarantees that the vector of J ’s in

Eq. (1) can always be determined.

Although the cluster expansion given by Eq. (1) contains,

in principle, many interactions, the energetics of bonding is

usually determined by relatively short length scales. Therefore,

a finite number of interaction parameters is expected to

provide the desired mapping of energetics with sufficient

accuracy. Then one can determine the J ’s from the energies

of a small set of ordered configurations, calculated directly,

for instance, by first-principles total-energy methods. Once

numerical values for the parameters J are available, the payoff

is fast access to many properties of interest, e.g., ground-state

structures, order-disorder transition temperatures, short-range

order, and composition-temperature phase diagrams, which

can be directly determined by experiments.

The lattice symmetry further reduces the number of

interaction energies that need to be determined. A set of lattice

sites, called a “figure,” has the same interaction energy as any

other figure that is related to it by the space-group symmetry

of the underlying lattice. A correlation function � can be

defined for each class of symmetry-equivalent figures F and

configuration σ as the average of the spin products over all

figures that make up F :

�F (σ ) =
1

MF

∑

f

Ŝi1
(σ )Ŝi2

(σ )...Ŝin (σ ), (2)

where f runs over the MF figures in class F , and the spin

indices run over the n sites of figure f . Equation (1) can then

be rewritten for the energy of formation of structure σ as

�HCE(σ ) = N
∑

F

DF JF �F (σ ), (3)

where DF is the number of figures of class F per site.

The important step of the cluster expansion method is the

determination of the J ’s. In the direct inversion method

of Connolly and Williams,40 energy of formation of Nσ

(≈30–40) ordered configurations are calculated directly. NF

figures are chosen, with NF � Nσ , such that the cluster expan-

sion of Eq. (3) is converged when the sum is restricted to these

NF figures. The correlation functions, �, and the calculated

energies of formation, �Hdirect(σ ), of these configurations are
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then used to fit the interaction energies JF , by minimizing the

following expression with respect to the NF values of JF :

Nσ
∑

σ

ωσ

∣

∣

∣

∣

∣

�Hdirect(σ ) − N

NF
∑

F

DF JF �F (σ )

∣

∣

∣

∣

∣

2

. (4)

Here ωσ are weights. The weights are chosen according to

ωσ = g/Nc(σ ), where Nc(σ ) is the number of point group

operations of configuration σ and g is the order of the point

group of the underlying Bravais lattice. The expression (4) is

minimized typically using the singular value decomposition

technique.

B. Density functional theory calculations

Electronic structure total energy calculations of ordered

configurations, required for the construction of the cluster

expansion Hamiltonian, are performed using the Vienna Ab

initio Simulation Package41,42 (VASP) with the generalized

gradient approximation (GGA)43–46 and the projector aug-

mented wave (PAW) basis47,48 with an energy cutoff of 400

eV. The first-order Methfessel-Paxton method49 of electronic

occupancy has been used with a smearing width of 0.2 eV.

Brillouin zone integration is carried out using a Monkhorst-

Pack k-point mesh.50 For constructing the cluster expansion

Hamiltonian and calculation of thermodynamic properties, the

Alloy Theory Automated Toolkit (ATAT) has been used.51–53

ATAT uses a script interface to VASP. This script defines a

parameter called KPPRA, which automatically sets up the

k-point mesh for similar systems. In this work KPPRA is

set to 8000, which, for bcc V, translates to a 20 × 20 ×

20 grid. These choices of basis cutoff and k-point grid ensure

convergence of the total energy within a few meV/atom.

C. Constituent strain energy

The conventional cluster expansion described above con-

siders the chemical interactions and their configuration depen-

dence. It ignores the strain energy due to the size mismatch of

the constituent atoms. The constituent strain energy, defined as

the energy required to maintain coherency along an interface

between bulk crystals A and B, is however significant in

general. It is required for the accurate calculation of phase

diagrams, miscibility gap temperature, short-range order,

etc.18,22–25,37,54–57 V-Nb and V-Ta alloys have a lattice constant

mismatch of 8.5%. Nb-Ta is a size-matched alloy. V-Nb and

V-Ta alloys could be expected to show appreciable atomic

relaxations. Therefore, the conventional cluster expansion of

Eq. (3) has to be modified such that it accounts for both

the chemical interactions and constituent strain energies, and

produces accurate formation energy for any configuration σ

with the atomically relaxed geometry and equilibrium volume.

The modified expression for �HCE(σ ) is given below:

�HCE(σ ) = N
∑

F

DF JF �F (σ ) + �ECS(σ ). (5)

Here the first term is the conventional cluster expansion

representing the chemical interactions and the second term

is the strain energy due to lattice constant mismatch.

The strain energy �ECS(σ ) of configuration σ is expressed

as

�ECS(σ ) =
∑

k

JCS(x,k̂)|S(k,σ )|2, (6)

JCS(x,k̂) =
�E

eq

CS(x,k̂)

4x(1 − x)
, (7)

where S(k,σ ) =
∑

j Sje
−ik·Rj is the structure factor and

�E
eq

CS(x,k̂) is the constituent strain energy. It is defined as

the energy change when the bulk solids A and B are deformed

from their equilibrium cubic lattice constants aA and aB to a

common lattice constant a⊥ in the direction perpendicular to

k̂, while they are relaxed in the direction parallel to k̂. It is

given by

�E
eq

CS(x,k̂) = min
a⊥

[

(1 − x)�E
epi

A (a⊥,k̂) + x�E
epi

B (a⊥,k̂)
]

,

(8)

where �E
epi

A (a⊥,k̂) is the strain energy required to deform A

biaxially to a⊥. The constituent strain energy corresponds to

the k → 0 limit of JCS(x,k̂) and takes on different values

depending on the direction in which this limit is taken.

The nonanalyticity in JCS(x,k̂) as k → 0 corresponds to

infinite-range real-space elastic interactions. Including these

long-range terms explicitly (rather than trying to cluster

expand them) removes the k → 0 nonanalyticity of JCS(x,k̂).

Numerical calculation of the constituent strain energy

�E
eq

CS(x,k̂) is done in three steps. First, the epitaxial energies

of each of the pure constituents are calculated. That is, for

pure A and B, the total energies are calculated for several

different values of a⊥, while in each case, the unit cell

is allowed to relax in the direction perpendicular to the

interface to minimize the total energy. This series of energies,

�E
eq

A,B(k̂,a⊥), is then interpolated to all values of a⊥ between

aA and aB using a polynomial. This process is repeated for

five principal directions of k̂: (001), (011), (111), (201), and

(311).

In the second step, �E
eq

CS(x,k̂) is determined by using

the total epitaxial energy of �E
eq

A (k̂,a⊥) and �E
eq

B (k̂,a⊥)

in Eq. (8), where the equilibrium in-plane lattice constant

a⊥, common to both A and B, is chosen to minimize the

strain energy, and �Eepi(k̂,a⊥) = Eepi(k̂,a⊥) − Eepi(k̂,aeq).

The constituent strain energy �E
eq

CS(x,k̂) is determined for

arbitrary composition x and a finite number of directions k̂.

Figure 1 shows the constituent strain energy for V-Nb, V-Ta,

and Nb-Ta alloys. Each of the energies �E
epi

A and �E
epi

B are

positive definite by definition and, hence, the coherency strain

must be positive definite. For V-Nb and V-Ta, the constituent

strains are positive and anisotropic. For both the alloys, it is

evident from Fig. 1 that all the curves are skewed to the V side.

Figure 1 also shows that (111) is the softest and (100) is the

hardest interface orientations. The constituent strain energy of

the size-matched Nb-Ta alloy consists of positive as well as

negative values for the different principal interface orientations

k̂ and is negligibly small in magnitude, which implies that

as expected, the constituent strain contribution to the free

energy is unimportant for size-matched alloys. Moreover, we

made a comparison of the maximum of the elastic strain

energy of V-Nb and V-Ta alloys with those of Mo-Ta, Cu-Au,
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FIG. 1. (Color online) The constituent strain energy �E
eq

CS(x,k̂)

of V-Nb, V-Ta, and Nb-Ta systems as a function of composition x for

several principal interface orientations k̂.

Cu-Ag, and Ni-Au alloys from the literature.10,22,23 Figure 2

gives the comparison, which shows that the constituent strain

energy scales with the magnitude of size mismatch of the

alloy.

Finally, the constituent strain energy for arbitrary interface

orientations k̂ is interpolated by fitting the results obtained for

the principal interface orientations to an expansion in Kubic

harmonics:

�E
eq

CS(x,k̂) =

lmax
∑

l=0

cl(x)Kl(k̂). (9)

Typically four or five terms are used in this expression as

anharmonic effects are known to be significant.

D. Phonon entropy

The cluster expansion, including the constituent strain,

described above, gives energies of arbitrary lattice configu-

ration at 0 K and ignores the vibrational excitations. Early

theoretical calculations of phase equilibrium have indicated

that the phonon contribution should be included for improving

the accuracy. Sanchez et al.,58 in their study of the Ag-Cu alloy,

have shown that even a crude model of the vibrational entropy
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FIG. 2. (Color online) Comparison of the maximum of the con-

stituent strain energy corresponding to principal interface orientations

for V-Nb and V-Ta alloys with those of Mo-Ta, Cu-Au, Cu-Ag, and

Ni-Au alloys from the literature (Refs. 10 and 22). The constituent

strain energy scales with the magnitude of size mismatch of the alloy.

markedly improved the computed solubility with respect to

the experimental data. Asta et al.,19 in their work on the

phase stability of the Cd-Mg system, have demonstrated that

the nonconfigurational contributions to the free energy, such

as phonon entropy, must be considered in any theoretical

study of phase stability which hopes to obtain accurate

results. In the case of Ni-Au alloys,59 the nonconfigurational

entropy of formation is shown to be essential to reconcile

the experimental and theoretical miscibility gap temperatures.

Recent first-principles theoretical studies60–62 establish that the

vibrational entropy contribution is indeed essential for accurate

calculation of alloy phase equilibrium.

In a cluster expansion, a Hamiltonian for the alloy system

is constructed by fitting the ground-state energies of typically

30–40 ordered configurations. Vibrational effects can be

formally included by fitting to vibrational free energies,

rather than ground-state energies. This requires computation

of the force-constants tensor and phonon spectrum for the

30–40 structures, which is computationally expensive. On the

other hand, first-principles calculation of phonon properties

of Pd-V alloys has revealed that most of the variation in the

stiffness of a given chemical bond across different structures

can be explained by changes in the bond length.28 Based

on this, van de Walle and Ceder identified that the bond

stiffness versus bond length relationship is transferable and

showed that a linear relationship can be used as a first

approximation.29

A scheme based on bond-length-dependent transferable

force constants has been used successfully in several

studies.28,31,63,64 We use this scheme to compute the contri-

bution of lattice vibrations to the free energy of V-Nb, V-Ta,

and Nb-Ta alloys. This method proceeds by parametrizing

the bond-length dependence of the stiffness for each type

of nearest-neighbor chemical bond. This is achieved by

calculating the reaction forces from various imposed atomic

displacements away from their equilibrium positions, which is

done for a few high-symmetry ordered supercells for a range
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FIG. 3. (Color online) Nearest-neighbor bond stiffness (against

stretching or bending) as a function of bond length for V-Nb alloys.

Points indicate ab initio data and lines are linear fits representing the

transferable force constants relation used in the calculations of the

vibrational free energy.

of lattice parameters. In the present work, three structures,

consisting of the two end members and a binary structure,

were considered, for five values of the lattice parameter. The

parameters defining the bond-length-dependent transferable

force constants relation are then obtained from a polynomial

fit of the calculated forces as a function of bond length.

Figures 3–5 show that the linear relationship provides a reliable

description of the nearest-neighbor force constants in V-Nb,

V-Ta, and Nb-Ta alloys.

Once the bond-length dependence of bond stiffness is

known, the nearest-neighbor inter-atomic force constants for

any supercell configuration in the cluster expansion fit can be

predicted from the relaxed bond lengths that are obtained from

the VASP structure energy minimization. The standard lattice

dynamics based on a nearest-neighbor bond Born–von Karman

model29,65 then provides the phonon density of states and,

consequently, any thermodynamic property of interest, such as

the vibrational contribution to the free energy. Configuration

dependence of the vibrational free energy is parametrized

with a cluster expansion with temperature-dependent effective

cluster interactions.
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FIG. 4. (Color online) Nearest-neighbor bond stiffness as a

function of bond length for V-Ta alloys. Points indicate ab initio

data and lines are linear fits used in the calculations of the vibrational

free energy.

E. Monte Carlo simulation

The free energies and phase boundaries of the alloys

are calculated using Monte Carlo simulations in which

the energetics of the system is specified by the cluster

expansion Hamiltonian. The Monte Carlo simulations were

performed using the program EMC2 of ATAT, which is described

elsewhere.66
EMC2 samples a semi-grand-canonical ensemble

in which the chemical potential, �μ, and the temperature, T,

are specified with a conserved total number M (=
∑c

i=1 Mi) of

particles. The composition x ≡ {
Mi

M
; i = 2, . . . ,c} is allowed

to vary with a constraint of fixed
∑c

i=1 Mi = M . The method

of thermodynamic integration is used to determine the grand

canonical potential φα of each phase α as a function of �μ. The

grand canonical potential at the starting point of the integration

path is obtained from the high- or low-temperature series

expansion. We have used a 34 × 34 × 34 supercell for the direct

Monte Carlo simulations and a 8 × 8 × 8 supercell for the

k-space Monte Carlo simulations involving constituent strains.

The EMC2 program automatically determines the equilibration

and the averaging times for the given precision on the average

concentration of the alloy, which was set to �0.1% in the

current simulations.
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FIG. 5. (Color online) Nearest-neighbor bond stiffness as a

function of bond length for Nb-Ta alloys. Points indicate ab initio

data and lines are linear fits used in the calculations of the vibrational

free energy.

III. RESULTS

A. Effective cluster interactions and ground-state structures

1. V-Nb alloys

The effective cluster interactions (ECIs) of V-Nb alloy

are shown in Fig. 6. ECIs shown in Fig. 6(a) are solely

characteristic of chemical interaction and their configuration

dependence. Figure 6(b) shows ECIs which include the con-

stituent strain interaction in addition to chemical interaction.

Both sets of ECIs show approximately the same pattern except

that the set of ECIs which includes the constituent strain

contains a three-body interaction parameter in place of a pair

interaction parameter of the set of ECIs which neglects the

constituent strain. We see that the first- and second-neighbor

pair interaction parameters are negative, which is related to the

tendency to phase separate.10,67 While the first- and second-

neighbor pair ECIs constitute the dominant interactions, it is

evident that the second-neighbor pair interaction is more than

twice stronger than the nearest-neighbor pair interaction. A

similar pattern of interactions is seen in the previous studies

of Ni-Au and Ni-Pt alloys.37,59

Figure 7(a) shows the energy of formation, �HCE(σ ),

versus the concentration of all bcc supercells containing
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FIG. 6. (Color online) Effective cluster interactions of V-Nb

alloys. (a) is characteristic solely of configuration-dependent chem-

ical interactions. (b) represents cluster expansion that includes both

the chemical and constituent strain interactions.

up to 12 atoms, predicted using the interactions shown in

Fig. 6. The direct enumeration approach35 has been used

for constructing the ground-state hull. The ground states are

identified as breaking points of the concentration versus energy

of formation convex hull. For an equiatomic V-Nb alloy, our

cluster expansion predict that the lowest energy of formation is

20 meV/atom, which is in agreement with the (23 meV/atom)

CALPHAD energy of formation of the bcc solid solution.68

Figure 7(b) depicts the ground-state search after the constituent

strain is included. The constituent strain has only shifted

the ground-state line slightly. Moreover, in agreement with

the experimental absence of long-range ordered phases, the

current cluster expansion does not predict any intermediate

ground states.
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FIG. 7. (Color online) Ground-state search of V-Nb alloys cover-

ing all bcc supercells containing up to 12 atoms. (a) is obtained with

conventional cluster expansion. (b) is obtained with a Hamiltonian

that includes the constituent strain interactions.
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FIG. 8. (Color online) Effective cluster interactions of the

V-Ta alloys. (a) is characteristic solely of configuration-dependent

chemical interactions. (b) represents cluster expansion that includes

both the chemical and constituent strain interactions.

2. V-Ta alloys

The effective cluster interactions of bcc V-Ta alloy are

shown in Fig. 8. The ECIs shown in Fig. 8(a) are characteristic

of chemical interaction only. Figure 8(b) shows the ECIs

representing both the chemical and constituent strain inter-

actions. It is evident that the constituent strain has additionally

introduced a three-body interaction, besides a set of five pair

interactions. The nearest-neighbor pair interaction is positive,

which is related to ordering tendency.10,67 The dominant

negative second-neighbor pair interaction, however, appears

to counteract with the ordering tendency. Figure 9(a) shows

the �HCE(σ ) versus the concentration of all bcc supercells

containing up to 12 atoms. For an equiatomic V-Ta alloy,

our cluster expansion predicts that the energy of formation is

17 meV/atom, which is comparable to the CALPHAD value
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FIG. 9. (Color online) Ground-state search of V-Ta alloys cover-

ing all bcc supercells containing up to 12 atoms. (a) is obtained with

conventional cluster expansion. (b) is obtained with a Hamiltonian

that includes the constituent strain to the conventional cluster

expansion.
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FIG. 10. (Color online) Effective cluster interactions of the Nb-Ta

alloys.

of 12 meV/atom of the solution phase.69 Figure 9(b) shows

the result of ground-state search after the constituent strain is

included. The constituent strain has shifted the ground-state

line slightly, without predicting any new ground states. We

note that the current cluster expansion assumes a bcc Bravais

lattice for the alloy and consider only bcc super structures,

ignoring the V2Ta Laves phase.

3. Nb-Ta alloys

The effective cluster interactions of Nb-Ta alloy are shown

in Fig. 10. Nb-Ta is a size-matched alloy. The Nb-Ta cluster

expansion includes many distant neighbor pair interactions.

However, the strengths of these interactions are an order

of magnitude smaller compared to that in V-Nb and V-Ta

alloys. Figure 11 shows the �HCE(σ ) versus the concentration

ground-state search for all bcc supercells containing up to 12

atoms. It is evident that the cluster expansion has predicted

several intermediate ground states. The formation enthalpy

of these ground-states are, however, very small, less than

−8 meV/atom. This indicates that the ordering temperatures

-8.0

-6.0

-4.0

-2.0

 0.0

 2.0

 4.0

0.0 0.2 0.4 0.6 0.8 1.0

E
ne

rg
y 

of
 f

or
m

at
io

n 
(m

eV
/a

to
m

)

Concentration of Ta

Nb-Ta predicted
known str
known gs

FIG. 11. (Color online) Ground-state search of Nb-Ta alloys

covering all bcc supercells containing up to 12 atoms.
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FIG. 12. (Color online) The calculated phase diagram of V-Nb

alloys compared with experiments. The liquidus and solidus are

the experimental phase boundaries (Ref. 9). The curves with label

CE represent results of the conventional cluster expansion. CS

and P represent results obtained by adding the constituent strain

and phonon contributions, respectively. The conventional cluster

expansion predicts an appreciable miscibility gap. The phonon

contribution lowers the miscibility gap temperature by about 24%.

for these phases will be very low70 and therefore cannot be

readily observed in the experiments.

B. Phase diagrams

1. V-Nb alloys

The phase diagram of V-Nb alloys, obtained by thermody-

namic modeling of the experimental data, exhibit a continuous

series of solid solutions. X-ray diffraction patterns of several

alloys in the composition range 20–50 at. % Nb, with long-term

annealing (113 hours at 923 K and 170 hours at 1173 K), did

not show any phase other than the bcc solid solution. Melting

point as well as the cooling curve determination have also not

shown any solid-state phase transformations.8,9

The computed phase diagram of V-Nb alloys is compared

with the so-called experimental results in Fig. 12. The

phase boundary with label CE represents the result of the

conventional cluster expansion, which considers only chemical

interactions. The labels CS and P represent the results obtained

by adding the constituent strain and phonon contributions, re-

spectively. It is evident that the conventional cluster expansion

predicts a miscibility gap with a consolute temperature (the

critical temperature above which the components of a mixture

are miscible in all proportions) Tc = 1250 K. The constituent

strain does not change the miscibility gap temperature appre-

ciably, although it appears to alter the solubility of V- and

Nb-rich alloys. The phonon contribution, combined with the

constituent strain, has lowered the miscibility gap temperature

significantly to 950 K (about 24%). Our calculations thus

predict an appreciable miscibility gap for V-Nb alloys.

2. V-Ta alloys

The V-Ta phase diagram obtained by assessing the exper-

imental thermodynamic data exhibits complete miscibility in
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FIG. 13. (Color online) The calculated phase diagram of V-Ta

alloys compared with experiments. The solidus, liquidus, and phase

boundaries associated with the V2Ta are the experimental phase

boundaries (Ref. 9). The curves with label CE represent the results

of conventional cluster expansion. CS and P represent the results

obtained by adding the constituent strain and phonon contributions,

respectively. The horizontal line at 1073 K is incorporated to indicate

that the experimental phase diagram is not available below 1073 K.

the solid state above 1583 K. Below this, the phase diagram

consists of a major solid solution region and a two-phase

region made up of the bcc V-Ta solution and the V2Ta

fcc Laves phase.9,69 The experimental phase diagram is not

available below 1073 K, although CALPHAD models exist.

The current V-Ta phase diagram calculation uses a cluster

expansion based on bcc lattice and ignores the V2Ta phase.

Figure 13 compares the calculated phase boundaries with

experiments. The phase boundary with label CE represents

the result of the conventional cluster expansion. The labels

CS and P represent the result of adding the constituent strain

and phonon contributions. The phase boundary computed with

the conventional cluster expansion shows that the V-Ta is

completely miscible above 1160 K and phase separates below

this temperature. When the constituent strain is included, the

miscibility gap temperature is increased to 1325 K (about

12%). This shows that the constituent strain is significant

in V-Ta alloys compared to V-Nb alloys. When the phonon

contribution is also included, the miscibility gap temperature

is lowered to 1100 K. This indicates that the constituent strain

and phonon interactions have competing effects on the phase

transition temperature of V-Ta alloys. Moreover, we have seen

that the constituent strain energy, for high-symmetry interface

orientations, is slightly higher for V-Ta compared to V-Nb

alloys. The influence of the constituent strain energy on the

phase transition temperature is found to be correspondingly

more appreciable in V-Ta alloys than in V-Nb alloys.

3. Nb-Ta alloys

The Nb-Ta phase diagram, obtained by thermodynamic

modeling of the experimental data, shows complete miscibility

in the solid state without any evidence of a solid-state

phase transformation.9 Figure 14 shows the computed phase

boundary, which almost lies on the horizontal axis. This phase

054202-8



FIRST-PRINCIPLES CALCULATION OF PHASE . . . PHYSICAL REVIEW B 85, 054202 (2012)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  20  40  60  80  100

T
em

p
er

a
tu

e 
(K

)

Concentration of Ta

Nb-Ta Liquidus

Solidus

BCC(Nb, Ta)

CE
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matched Nb-Ta alloys compared with experiments. The solidus and

liquidus are experimental phase boundaries. The computed phase

boundary, with label CE, lies almost on the horizontal axis indicating

complete miscibility down to 40 K.

boundary is obtained with the conventional cluster expansion.

The phonon contribution was found to have no appreciable

effect on the phase boundary. The constituent strain is ignored

as it vanishes in size-matched alloys. This calculation thus

predicts complete miscibility of Nb and Ta and the solution

phase is stable down to 40 K in agreement with experiment.

IV. DISCUSSION

The chemical and the constituent strain interactions are

the two key factors governing ordering or phase-separation

behavior of an alloy. The chemical interactions give attractive

contribution to the free energy of formation. The constituent

strain gives a repulsive contribution. The vibrational entropy

captures the variation in the phonon properties associated with

alloying which alters the stiffness of the chemical bonds.

According to the experiments, V-Nb forms a solid solution

without a miscibility gap. On the other hand, our calculations

predict an appreciable miscibility gap with Tc = 950 K. Our

cluster expansion covers all bcc supercells containing up to

12 atoms. Including structures with more atoms per unit cell

would modify the ECIs. Furthermore, the transferable force

constants scheme of lattice dynamics calculation is approxi-

mate. These factors are likely to influence the computed phase

boundaries. On the other hand, generally, in high-melting

alloys, the slow atomic diffusion at low temperatures often

prevents direct observation of either phase separation or

ordering, and only the high-temperature disordered solid-state

behavior is observed. Therefore, it is likely that miscibility gap

predicted by our first-principles calculations is overlooked in

the experiments due to slow kinetics.

The solid-state part of the V-Ta experimental phase diagram

consists mainly of two regions: (i) a bcc V-Ta solution region

and (ii) a two-phase region made up of V2Ta and the solution

phase. Table I gives the physical properties and ground-state

structures of V-Nb, V-Ta, and Nb-Ta alloys. V-Nb and V-Ta

alloys have nearly the same size mismatch. This indicates

that both the alloys should have same the constituent strain

TABLE I. Physical properties and ground-state structures of

V-Nb, V-Ta, and Nb-Ta alloys. Given are constituent size mismatches

�a/ā = 2(aA − aB )/(aA + aB ), electronegativity difference on the

Pauling scale �χ , and low-temperature phases.

System �a/ā �χ Low-Temperature Phases

V-Nb 8.54% 0.03 Solid solution

V-Ta 8.57% 0.13 V2Ta and solid solution

Nb-Ta 0.03% 0.10 Solid solution

energies. On the other hand, the electronegativity difference

of V-Ta is significantly higher compared to that of V-Nb.

Electronegativity difference often controls the charge transfer

and hence the bonding. This means that, due to the large

electronegativity difference, chemical interactions dominate

in V-Ta alloys which leads to the ordering transition at 1583 K

with the formation of the V2Ta phase from the solution phase.

Our calculation for V-Ta alloys, which ignores the V2Ta

phase, predicts a miscibility gap with consolute temperature

Tc = 1100 K, which is appreciably lower than 1583 K.

Formation of the V2Ta phase is driven by the dominant

chemical interaction in the alloy, which appears to manifest

by making the solution phase remain stable down to 1100 K.

V. SUMMARY AND CONCLUSION

We have computed the phase equilibrium of V-Nb, V-Ta,

and Nb-Ta alloys by combining density functional theory

total energy calculations with the cluster expansion and

Monte Carlo techniques. For V-Nb alloys, the phase boundary

computed with the conventional cluster expansion produces a

miscibility gap with a consolute temperature Tc = 1250 K.

Including the constituent strain to the cluster expansion

Hamiltonian does not alter the miscibility gap significantly,

although it appears to influence the solubility of V- and Nb-rich

alloys. The phonon entropy, combined with the constituent

strain, lowers the miscibility gap temperature significantly

to 950 K. The predicted miscibility gap of V-Nb alloys is

appreciable compared to the complete miscibility claimed by

the experiments. While the accuracy of the cluster expansion

can be improved by considering structures with more atoms

and better lattice dynamics models, it is also likely that, in

the alloys with high-melting point, the slow atomic diffusion

at low temperature prevented observation of phase separation

or ordering. For bcc V-Ta alloys, this calculation predicts a

miscibility gap with Tc = 1100 K. For these alloys, both the

constituent strain and phonon contributions are found to be

significant. The constituent strain increases the miscibility gap

while phonon entropy reverses the effect of the constituent

strain. In V-Ta alloy, the ordering transition occurs at 1583 K

from bcc solid solution to the V2Ta Laves phase due to the

dominant chemical interaction associated with the relatively

large electronegativity difference. Since the current cluster

expansion ignores the V2Ta phase, the associated chemical

interaction appears to manifest in making the solid solution

phase remain stable down to 1100 K. For Nb-Ta alloys, our

calculation predicts complete miscibility in agreement with

experiment.
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