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Abstract 

 

A thermodynamic description of the Sn-Ta system was developed using the CALPHAD 

(CALculation of PHAse Diagram) approach in combination with first-principles calculations.  A 

positive enthalpy of mixing of the body centered cubic phase was predicted, using special 

quasirandom structures (SQS), indicating the tendency to form a miscibility gap.  The finite 

temperature thermodynamic properties of Ta3Sn and TaSn2 were calculated by the Debye-

Grüneisen model as well as phonon calculations using the supercell approach.  The results from 

first-principles calculations along with the previously reported decomposition temperature of 

TaSn2, 868 K, were used to evaluate the Gibbs energy parameters of the TaSn2, Ta3Sn 

intermetallics and the liquid phase. No decomposition temperature of Ta3Sn has previously been 

reported in the literature but was predicted in this work to be 2884 K.  The calculated phase 

diagram agrees well with available experimental information of the Sn-Ta system and also 

compares well with the similar systems such as Nb-Sn and V-Sn. 
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1 Introduction 

 
In addition to extensive aerospace applications, titanium (Ti) alloys are being used increasingly 

in medical applications, due mainly to their mechanical properties and biocompatibility.  For 

applications, such as load-bearing implants, one of the leading issues is finding a biocompatible 

alloy with a Young’s modulus closely matching that of bone [1]. The current load-bearing 

implant materials such as stainless steels, Ti-6Al-4V, and CoCrMo alloys have a higher elastic 

modulus (normally between 110-230 GPa) compared to that of bone (10-40 GPa). This mismatch 

results in stress shielding so that the implant absorbs most of the stress to the joint leading to 

bone death and implant failure [1,2].  To be able to achieve materials with a lower elastic 

modulus, efforts have been aimed at investigating more complex multi-component systems of Ti.  

 

Currently, the biomaterial implant research of Ti alloys is focused on biocompatible elements 

that stabilize the body centered cubic (bcc, β) phase of Ti and help to lower its elastic modulus. 

Tantalum (Ta) is a biocompatible element and is considered to be a strong -stabilizers [3]. 

Recently, tin (Sn) has also been researched for use in Ti-alloys due to its biocompatibility and 

low cost [4]. Kuroba et al. [5] studied various Ti-alloys such as Ti-29-Nb-13Ta-2Sn (weight 

percentage, and similarly hereinafter unless specified otherwise), Ti-29Nb-13Ta-4Mo, and Ti-

29Nb-13Ta-6Sn for use as biocompatible implant materials. Kuroba and Hagiwara [6] also 

studied new Ti-Cu-Ni-Sn-Ta alloys for the artificial materials used in orthopedic surgeries. The 

Sn-Ta system is thus an important sub-system for this purpose [7].  A complete knowledge base 

of the thermodynamic description of Sn-Ta can be used to examine the effects of temperature 

and composition on phase stability for higher order systems and help to tailor experimental alloy 

selections to viable options. The Sn-Ta system has three solid solution phases and two 

intermetallic compounds, i.e. the bcc, body centered tetragonal (bct), and diamond solution 

phases, and the intermetallic compounds Ta3Sn with space group Pm n and TaSn2 (Ta1.2Sn1.8) 

with space group Fddd [8]. 

 

The CALculation of PHAse Diagram (CALPHAD) technique, in combination with first-

principles and phonon calculations based on the density functional theory (DFT), has been 
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proven to provide valuable data to model the thermodynamic properties of binary and ternary 

systems [9]. In the present work, thermodynamic data was predicted using first-principles 

calculations for the two intermetallics and for the bcc, bct and diamond solution phases.  The 

finite temperature properties of the phases were obtained using the Debye-Grüneisen model [10] 

and phonon calculations based on the supercell approach [11].  The DFT data was used to model 

the parameters of the Gibbs energy of each phase using the CALPHAD technique.  

 

2 Review of previous work 

 

The Sn-Ta binary system was studied by Okamoto [8], Studnitzky and Schmid-Fetzer [12], and 

Basile [13].  Both of the intermetallic phases, Ta3Sn and TaSn2, were shown to have a very 

narrow homogeneity range. Basile [13] observed that TaSn2 is located around Ta1.2Sn1.8 which 

was then designated as Ta2Sn3 by Okamoto [8]. It seems that TaSn2 is a more compatible 

description of the stoichiometric compound based on the descriptions of similar systems (V-Sn, 

and Nb-Sn) [14–16], and thus will be used in the present work. Basile [13] determined TaSn2 has 

a peritectic reaction at 595 °C and used X-ray diffraction (XRD) to elucidate the lattice 

parameters of TaSn2,.   

 

Studnitzky and Schmid-Fetzer [12] used powder samples to study the Ta3Sn intermetallic phase 

and verified the results previously reported by Basile [13]. They cold pressed the pure element 

powders at 600 MPa and then heated the pellets at 1000 °C for up to 48 hours.  The resulting 

pellet was then cold pressed at 600 MPa again. Under these conditions TaSn2 was observed at 

400 °C, but was not present as the temperature increased to 600 °C.  In the work by Courtney et 

al. [17], Ta3Sn was studied to see how the temperature affects the long-range ordering parameter. 

In Courtney et al.’s work, Ta3Sn powder samples were sintered at 600, 700, 950, 1200, and 1450 

°C for 2, 4, 7, and 16 days, respectively.  Each sample was then studied using XRD at room 

temperature to examine the phases present and the long-range ordering. They concluded that the 

transition temperature of superconductivity for Ta3Sn varied by a maximum of 4 K based on heat 

treatment and sintering times due to long-range ordering that occurred. Courtney et al. also 

measured the lattice parameter of each sample and reported the average value of this cubic phase 

being 5.285 Å. 
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3 Methodologies 

3.1 First-principles thermodynamics  

DFT-based first-principles calculations can be used to predict the Helmholtz energy, F(V,T) as a 

function of temperature T and volume V via the quasiharmonic approach [10,18]: 

 

Eq. 1     

 

where E0 is the static contribution at 0 K without the contribution of zero-point vibrational 

energy, FVib the temperature-dependent vibrational contribution, and FT-el the thermal electronic 

contribution. At ambient pressure, the Helmholtz energy of the system is equal to the Gibbs 

energy, which is used in the CALPHAD modeling. In the present work, the E0 was calculated 

from the equation of state (EOS) fitted to the first-principles data points using the four-parameter 

Birch-Murnaghan (BM4) EOS [10]: 

 

Eq. 2     

 

The EOS fitting is achieved through an energy-volume (E-V) curve of seven different volumes 

based on the methodology discussed in details by Shang et al. [10]. The thermal electronic 

contribution was based on the electronic density of states and calculated with the Fermi-Dirac 

statistics [18]. The vibrational contribution can be obtained through the phonon quasiharmonic 

supercell approach or the Debye-Grüneisen method. The phonon supercell approach is a more 

accurate approach compared to the Debye model but it is also more computationally expensive. 

In the present work, both the phonon and Debye models were used for comparison. The 

vibrational contribution was obtained through phonon calculations at different volumes (five 

used herein) [18]:  

Eq. 3     

where g(ω) is the phonon density of states as a function of phonon frequency ω at volume V.  In 

addition, the Debye-Grüneisen model was used to estimate vibrational contribution [10]:  
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Eq. 4   

where θD is the Debye temperature, T the temperature, and D[θD(V)/T] the Debye function.  The 

Debye temperature can be calculated through:  

Eq. 5     

where s is the Debye temperature scaling factor, γ the Grüneisen parameter determined by B’ the 

pressure derivative of bulk modulus, B0 the equilibrium bulk modulus, M atomic mass, and V0 

equilibrium volume. Here, the equilibrium properties V0, B0, and B’ are estimated from the EOS 

of Eq. (2). Moruzzi et al. [19] estimated the scaling factor to be 0.617 for nonmagnetic metals, 

but this value has been shown to be less accurate for other materials. For the present work, the 

scaling factor of TaSn2 and Ta3Sn were calculated from the Poisson’s ratio [20],  

 

Eq. 6    

 

where υ is the Poisson’s ratio, which can be calculated from the elastic stiffness constants in 

terms of the Hill approximation [21]. The elastic stiffness constants were determined by applying 

a + 0.01 strain to the crystal lattice and the set of stresses are determined with first-principles 

calculations [22]. The elastic stiffness constants are then determined from Hooke’s law as 

follows: 

Eq. 7   

 

To calculate the enthalpy of formation of the bcc phase across the entire composition range, the 

enthalpy of formation of Ta and Sn in the bcc phase were calculated with five different 

compositions of Ta1-xSnx, where x=0.0185 (Ta53Sn, 54 atoms), 0.25, 0.5, 0.75, and 0.9815 

(TaSn53, 54 atoms). For x=0.0185 and 0.9815, calculations were performed on a diluted 54 atom 

cell where all atoms but one was Sn or Ta (Ta53Sn and TaSn53). For x=0.25, 0.5, and 0.75, 16-
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atom special quasirandom structures (SQS) in the bcc phase developed by Jiang et al. [23] were 

used to mimic the behavior of random structures.  The relaxation of these structures is 

complicated because the local atomic relaxations can cause the structure to lose the bcc lattice 

symmetry.  To preserve the lattice symmetry, the calculations were carried out with different 

relaxation schemes to determine the lowest energy while retaining the bcc lattice symmetry.  The 

structures were first relaxed by constraining everything but the cell volume. Then the structure 

was relaxed again constraining everything but the cell volume and shape. Finally, the structure 

shape, ions and cell volume were allowed to relax. The symmetry and energy were compared for 

each step and the structure with the lowest energy that retained symmetry was used for each 

composition. The selected structure was then spilt into five volumes and a static calculation and 

EOS fitting were performed. The enthalpy of formation was plotted as a function of composition 

and then used for the modeling.   

 

In the present work, the Vienna ab-initio Simulation Package (VASP) was used to perform the 

first-principles calculations [24]. The projector augmented-wave (PAW) [25,26] method was 

used to describe the electron-ion interactions with exchange correlation functional being 

elucidated by the generalized gradient approximation (GGA-PBE) as implemented by Perdew, 

Burke, and Ernzerhof [27]. A sigma value of 0.2 and a plane wave energy cutoff of 1.3 times 

higher than the highest default cutoff was adopted. The Brillouin zone sampling was done with 

Blöchl corrections [26] using a gamma centered Monkhorst-Pack (MP) scheme [28]. The k-

points grid for diamond-Sn, bcc-Ta, TaSn2, and bcc-Sn were 4x4x4, 6x6x6, 10x10x5, and 6x6x6 

respectively. The k-point grids for the bct-Sn, Ta3Sn and bcc SQS calculations used an 

automated k-point mesh generator in VASP with the length of the subdivisions specified as 80. 

The energy convergence criterion of the electronic self-consistency is set as 10-4 eV/atom for all 

of the calculations. The Sn was treated with the d electrons as valance, and the Ta was treated 

with the p electrons as valance. 

 

3.2 CALPHAD modeling 

CALPHAD modeling was used to evaluate the parameters of the Gibbs energy function for each 

individual phase [9]. The Gibbs energy functions of pure elements were adopted from the SGTE 

(SSUB) database [29]. In the present work, the bcc and liquid phases were modeled in 
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conjunction with the two intermetallics Ta3Sn and TaSn2. Dilute first-principles calculations of 

Ta in Sn were done for the diamond and bct phases. However, there is little solubility of Ta in 

these phases and there is no description of pure Ta in these phases available in SGTE. So no 

binary interaction parameters were introduced in the modeling similar to other Sn systems such 

as Nb-Sn and V-Sn [16,14]. In the present work, the energy of the liquid and bcc solution phases 

were modeled as:  

 

Eq. 8   
 

 

where xTa and xSn are the mole fractions of Ta and Sn, respectively.  is the molar Gibbs 

energy of pure element, i, in the specific phase being modeled taken from the SGTE database 

[29].  The last term represents the excess mixing energy, XS

m
G

 , expressed as [30]:  

 

Eq. 9    . 

 

Here,  is the interaction parameter and can be defined as:  

 

Eq. 10      

 

where a and b are parameters being modeled.  

 

For the intermetallics, the Gibbs energy in per mole unit formula used in the present work is of 

the form [31]:  

 

Eq. 11    

 

where a and b are model parameters determined from the enthalpy of formation and the heat 

capacity.   
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The data from the first-principles calculations were accounted for in the parameter optimization 

together with experimental information using the PARROT module in Thermo-Calc software 

[32]. 

 

4 Results and discussion 

4.1 First-principle calculations 

 

To evaluate the accuracy of phonon calculations for the present system, both the dispersion 

curves and the phonon density of states (DOS) are plotted for bcc-Ta, bct-Sn, TaSn2, and Ta3Sn 

in Figure 1, Figure 2, Figure 3, and Figure 4, respectively.  The bcc-Ta phonon dispersion curve 

in Figure 1 is compared with values obtained by Taioli et al. [33] using neutron scattering, 

showing good agreement. The longitudinal modes (LO) and the transverse modes (TO) measured 

by Raman spectroscopy [34] (open square) along with the previous theoretical predictions at the 

M point (filled square) for bct-Sn are compared with the calculated phonon dispersion curve in 

Figure 2. The substantial difference for the LO mode may be due to the temperature and pressure 

differences as pointed out by Olijnyk [34]. No imaginary phonon frequencies are obtained in the 

phonon DOS plots for bcc-Ta, bct-Sn, TaSn2, Ta3Sn, indicating that they are all mechanically 

stable at 0 K.  
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Figure 1: Calculated phonon dispersion curve of bcc-Ta, compared with neutron diffraction experiments 
(○) [33] along with the phonon DOS.  
 

 
Figure 2: Calculated phonon dispersion curve of bct-Sn on the left and phonon DOS on the right. The 
open squares (□) are the LO and TO modes from Raman [34] and the filled squares the theoretical 
prediction of the LO and TO modes at the M point [34].  
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Figure 3: Calculated phonon dispersion curve for TaSn2 at 0 K and the phonon DOS. 

 

 

Figure 4: Calculated phonon dispersion curve of Ta3Sn at 0 K on the left and the phonon DOS on the 

right. 
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The calculated lattice parameters at 0 K from the EOS fitting and with the Debye and phonon 

models at 298 K are compared to available experimental and previous DFT results in Table 1. 

The lattice parameters of Ta are compared with the experimental lattice parameters by Predmore 

and Arsenault [35] at room temperature and the previous 0 K DFT results by Shang et al. [36] 

who used the GGA-PW91 exchange correlation functional. The Sn lattice parameters are 

compared to experimental work by Allen et al. [37] at 298K and calculations by Arróyave et al. 

[38]. The properties of the TaSn2 and Ta3Sn intermetallics have not been calculated previously 

and are compared to experimental values by Calvert et al. [39] and Courtney et al. [17], 

respectively. The results show a less than 0.5% difference when compared with other DFT 

results at 0 K. There is a less than 2% difference between the DFT 0 K results and the 

experiments, which are listed in Table 1. The variance is due to the fact that the calculations are 

at 0 K and the experiments are at a higher temperature. When comparing the calculated lattice 

parameters at 298 K to the experiments, all of the predictions improve to show a less than 1% 

difference with the exception of Sn, which shows a less than 2% difference.  
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Table 1: Lattice parameters from first-principles calculations compared with experimental values. 

Phase Space Group a (Å) b (Å) c (Å) Source 

bcc-Ta Im 3 m 3.316   This work (0 K) 

  3.328   This work phonon (298 K) 

  3.330   This work Debye (298 K) 

  3.30   Expt. [35] 

  3.32   DFT (0 K) [36] 

bct-Sn 
14I amd   5.939  3.214 This work (0 K) 

  5.959  3.236 This work phonon (298 K) 

  5.954  3.222 This work Debye (298 K) 

  5.83  3.18 Expt. [37] 

  5.93  3.23 DFT (0 K) [38] 

TaSn2 Fddd 5.641 9.766 19.200 This work (0 K) 

  5.652 9.786 19.238 This work phonon (298 K) 

  5.652 9.785 19.238 This work Debye (298 K) 

  5.63 9.80 19.18 Expt. [39] 

Ta3Sn Pm3 n 5.304   This work (0 K) 

  5.319   This  work phonon (298 K) 

  5.319   This work Debye (298 K) 

  5.29   Expt. [17] 

 

 

Table 2 shows the equilibrium volume, V, bulk modulus, B, and the derivative of bulk modulus 

B’ obtained by the EOS E-V fitting of the first-principles data at 0 K.  The Sn and Ta 

calculations are compared with previous first-principles calculations and available experiments. 

The volume shows a less than 0.5% difference between the previous DFT results and current 

DFT results for both Sn and Ta [35,40]. The comparison of the DFT results at 0 K and the 

experimental results at 298 K for volume show a slightly higher variance of less than 5 % due to 

the different in temperature [36,40]. The B comparison of previous 0 K DFT results and the 

present 0 K DFT results show a less than 7 GPa difference and the DFT results at 0 K vary by 

less than 11 GPa from the experimental results at 298 K [35,36,40]. The difference between the 
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current calculations and the previous values may be due to many reasons; e.g. the different 

choices in input parameters used by Peltzer et al. [40] and different exchange correlation 

functionals. Another reason is due to the temperature difference 0 K (calculations) versus 298 K 

(experiments). Figure 5 shows the enthalpy and entropy of Ta from the Debye and phonon 

approaches in comparison with the data from the SGTE pure element database [29]. Figure 6 

shows the comparison of the enthalpy and entropy calculated for Sn from the phonon and Debye 

model to the SGTE pure element database [29]. Both show excellent agreement.  

 

Table 2: Equilibrium volume V, bulk modulus B, and the first derivative of bulk modulus with respect to 
pressure B', from fitted equilibrium properties from the EOS at 0 K compared to experimental work and 
previous DFT studies. 

Phase V (Å
3/atom) B (GPa) B

’ Reference 

bcc-Ta 18.241 193.7 3.84 This work 

 17.9685 200  Expt. [35] 

 18.313 195.3 3.82 DFT [36] 

bct-Sn 28.431 47.7 4.61 This work 

 27.055 58.0  Expt. [40] 

 28.396 54.0  DFT [40] 

TaSn2 22.631 104.3 4.80 This work 

Ta3Sn 18.668 182.4 4.27 This work 
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Figure 5: Comparison of the enthalpy and entropy of bcc-Ta from the Debye model (solid line) and the 
quasiharmonic phonon calculations (red dotted line) to the SGTE data (blue dashed line) [29] 
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Figure 6: Comparison of the Gibbs energy of bct-Sn from the Debye model (solid line) and the 
quasiharmonic phonon calculations (red dotted line) to the SGTE data (blue dashed line) [29].  
 

The elastic stiffness constants and polycrystalline elastic properties calculated by the Hill 

approach and the scaling factors for the Debye model are shown in Table 3. To ensure the 

accuracy of the scaling factor, the B calculated from cij is compared with the B obtained from the 

EOS fitting, showing a difference of less than 3%. Since the B from the EOS fitting is already 

compared to experiments, the elastic calculations and the scaling factor for the Debye model are 

thus deemed accurate. 
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Table 3: Elastic stiffness constants and elastic properties predicted using the Hill approach and the 
scaling factors used in the Debye model, calculated from the Poisson ratio, see Eq. 6. To ensure the 
accuracy of the calculated scaling factor, the bulk modulus (Bcij) calculated from the elastic constants was 
compared to the BEOS calculated from the EOS fitting Eq. 2. 

 TaSn2 Ta3Sn 

C11 (GPa) 166 313 

C12 (GPa) 79 120 

C13 (GPa) 62  

C22 (GPa) 189  

C23 (GPa) 68  

C33 (GPa) 187  

C44(GPa) 37 71 

C55 (GPa) 59  

C66 (GPa) 61  

Young’s Modulus (GPa) 135 210 

Shear Modulus (GPa) 53 80 

Poisson Ratio 0.288 0.31 

Scaling factor 0.789 0.74 

Bcij (GPa) 107 185 

BEOS (GPa) 104 182 

 

4.2 CALPHAD modeling results 

 

The PARROT module in the Thermo-Calc software [32] is used to optimize the parameters of 

the Gibbs energy function of the TaSn2 and Ta3Sn intermetallics as well as the binary interaction 

parameters for the bcc and liquid phases. The Gibbs energy parameters of the intermetallics are 

first estimated from the thermodynamic properties obtained by the phonon supercell method 

because the phonon calculations are regarded as more accurate than the Debye model. While the 

decomposition temperature of the TaSn2 intermetallic is known to be 868 K from experiments, 

the decomposition of the Ta3Sn intermetallic has not been reported in the literature. It is noted 

that both the Nb-Sn and V-Sn systems, which are quite similar to the Ta-Sn system, have the 

X3Sn phase forming through a peritectic reaction of bcc+Liquid→X3Sn [16,14]. Based on the 

assumption from similar works that Ta3Sn is also formed through a peritectic reaction, the Ta3Sn 

parameters are adjusted and the parameters for the liquid phase are evaluated. The evaluation of 
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the Gibbs parameters along with the results from the Debye model and the phonon 

quasiharmonic approach for TaSn2 and Ta3Sn are plotted in Figure 7 and Figure 8, respectively. 

As seen in both figures, the data from the phonon method correlates well with the current 

CALPHAD modeling. This is to be expected since this data was used to evaluate the parameters. 

It is noted in Figure 7, that the heat capacity and entropy of TaSn2 from the current CALPHAD 

modeling is higher than those from the first-principles calculations. This is due to the fact that 

the enthalpy and entropy values from DFT were adjusted with the experimental data of the 

peritectic temperature.  
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Figure 7: Heat capacity, enthalpy and entropy of TaSn2 using the Debye model (solid line) and the 
quasiharmonic phonon calculation (red dotted line) from first-principles calculations, compared with 
those from the current CALPHAD modeling (blue dashed line).  
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Figure 8: Heat capacity, enthalpy and entropy of Ta3Sn using the Debye model (solid line) and the 
quasiharmonic phonon calculation (red dotted line) compared with those from the current CALPHAD 
modeling (blue dashed line). 
 

The bct and diamond phases are treated as ideal due to the little solubility. As previously stated, 

the enthalpies of formation of the bcc phase for five different Sn-Ta compositions are calculated 
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and plotted in Figure 9, showing asymmetrical behavior. There is a discrepancy between the 

first-principles value and the CALPHAD modeling for the lattice stability of bcc-Sn. The first-

principles predicts a value of 15.48 kJ/mol-atom and the CALPHAD model gives 4.42 kJ/mol-

atom. This difference is expected to be due to the instability of Sn in the bcc phase. Wang et al. 

[41] concluded and discussed the same discrepancy when comparing first-principles DFT results 

to SGTE data for Os and Ru. Wang et al. calculated the lattice stability of bcc and fcc structure 

for Os and Ru, both stable in the hexagonal cubic phase at standard temperature and pressure, 

and concluded a difference of approximately 40 and 60 kJ/mol for Ru and Os, respectively. 

Wang et al. attributed this difference to the fact that when using first-principles calculations of 

unstable structures, frequencies of some of the phonon modes would become imaginary and thus 

the results would be less accurate. On the other hand, the CALPHAD technique can extrapolate 

lattice stabilities from binary solutions for which an alloying element has stabilized the otherwise 

unstable structure. These enthalpies of formation calculated from the SQS first-principles 

calculations are used to evaluate the bcc binary interaction parameters in the present CALPHAD 

modeling. The enthalpy of formation of the bcc phase is negative at the Ta rich side and becomes 

positive at the Sn rich side. This is common for X-Sn systems [16,14], such as the Nb-Sn system 

[16] shown in Figure 9. It should be noted that Toffolon et al. [16,15] used experimental data on 

the Sn-rich bcc phase to evaluate the Nb-Sn system’s bcc interaction parameters. Due to the 

asymmetry of enthalpy of formation for the bcc phase, a subregular 1L interaction parameters is 

introduced.  
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Figure 9: Enthalpy of formation of the bcc phase of the Sn-Ta system as a function of composition at 298 
K and ambient pressure from the current CALPHAD modeling (solid line) and from the first-principles 
calculations (dots), showing asymmetric behavior. This was compared with data of the Nb-Sn system 
from Toffolon et al.[16] (dashed red line) which was modeled using experimental data, showing similar 
asymmetric behavior. 
 

The interaction parameters obtained in the present work are listed in Table 4. Based on these 

model parameters, the phase diagram is calculated and shown in Figure 10. The melting 

temperature of Ta3Sn is predicted to be 2884 K. Both the intermetallics decompose 

incongruently similar to those in the Nb-Sn and V-Sn systems. As seen in Table 4, both 

intermetallic phases have a negative enthalpy of formation and a negative entropy of formation. 

This goes along with previous predictions by Arroyave and Liu [42] where they showed that the 

enthalpy and entropy of formation have the same sign. The calculated enthalpy of mixing of the 

liquid phase is plotted in Figure 11. The interaction parameter for the liquid phase allows for an 

accurate representation of the phase stability in Figure 10 but may need to be slightly adjusted if 

experimental data would come available. 
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Table 4: Modeled parameters in SI units in the present work for the phases in the Sn-Ta binary system. 
These parameters were incorporated with the SGTE data for the pure elements [29]. 

Phase (model)  Modeled Parameters 

bcc_A2 (Sn, Ta) 0
, 70451bcc

Ta Sn
L     

 1
, 112237bcc

Ta Sn
L     

Liquid (Sn, Ta) 0
, 17118Liq

Ta Sn
L    

TaSn2 2 2 29678 4.202TaSn o bct o bcc

Sn Ta
G G G T      

Ta3Sn 3 3 68844 6.000Ta Sn o bct o bcc

Sn Ta
G G G T      

 

 

 

Figure 10: Calculated Sn-Ta phase diagram using the present thermodynamic description. 
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Figure 11: Enthalpy of mixing of the liquid phase as a function of composition at 298 K and ambient 
pressure in the Sn-Ta system. 
 

 

5 Conclusion 

 

The present work incorporates the thermodynamic data from DFT-based first-principles 

calculations and the available experimental data in the literature to model the Gibbs energies for 

the bcc and liquid solution phases and the stoichiometric Ta3Sn and TaSn2 phases of the Sn-Ta 

system.  First-principles calculations are used to predict the enthalpy of mixing of the bcc phase 

for the evaluation of interaction parameters in the phase.  The decomposition temperature of 

Ta3Sn is predicted to be 2884 K.  
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