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First-Principles Calculations for Insulators at Constant Polarization
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We develop an exact formalism for performing first-principles calculations for insulators at fixed
electric polarization. As shown by Sai, Rabe, and Vanderbilt (SRV) [Phys. Rev. B 66, 104108 (2002)],
who designed an approximate method to tackle the same problem, such an approach allows one to map out
the energy landscape as a function of polarization, providing a powerful tool for the theoretical
investigation of polar materials. We apply our method to a system in which the ionic contribution to
the polarization dominates (a broken-inversion-symmetry perovskite), one in which this is not the case (a
III–V semiconductor), and one in which an additional degree of freedom plays an important role (a
ferroelectric phase of KNO3). We find that while the SRV method gives rather accurate results in the first
case, the present approach provides important improvements to the physical description in the latter cases.
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In 1993 King-Smith and Vanderbilt [1] introduced a
theory for computing the electric polarization of an infinite
solid, showing for the first time that this property was,
indeed, a well-defined quantity for an insulating material.
Their theory of the bulk polarization (TBP) is based on
computing the electronic contribution to the polarization as
a Berry phase of the valence-band Bloch wave functions
transported across the Brillouin zone. A practical numeri-
cal scheme to compute it was given in the same paper [1],
and it is now widely used in first-principles calculations.
Later, Souza, Íñiguez, and Vanderbilt (SIV) [2] used the
TBP as the cornerstone for a method to calculate the exact
ground state of an insulator in the presence of an electric
field by minimizing an electric enthalpy functional ex-
pressed in terms of occupied Bloch-like states on a uniform
grid of points in reciprocal space. It is therefore possible to
compute from first principles many interesting properties
of materials related to their behavior under electric fields.

In this Letter we propose a method to do first-principles
calculations not at constant electric field, but at constant
electric polarization. In this way, it would become possible
to map the energy E of an insulator as a function of its
polarization P. There are several reasons why this is useful.
First, it allows for an exhaustive search for competing local
minima and for saddle points in a system with a compli-
cated energy surface. These features would otherwise be
hidden in a standard optimization procedure, which would
be likely to find only a single minimum of the energy.
Second, knowing E�P�, we can calculate various properties
related to derivatives of E with respect to P, such as the
linear and nonlinear dielectric susceptibilities. While
methods of density-functional perturbation theory [3] can
also be used to access these susceptibilities, our approach
is advantageous in that it does not require much special-
purpose programming and yields nonlinear susceptibilities
with very little extra effort beyond that needed to obtain the
linear ones. And third, Landau-Devonshire theories have
historically provided an important avenue to the under-
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standing of ferroelectric materials, based on an expansion
of the energy in powers of polarization. The ability to
compute E�P� may open the door to the first-principles
derivation of Landau-Devonshire descriptions, as opposed
to the usual empirical formulations, for a wide range of
ferroelectric materials.

The problem of performing simulations at constant po-
larization in the context of first-principles calculations has
been addressed previously. In particular, Sai, Rabe, and
Vanderbilt (SRV) [4] developed an approximate method to
do this and applied it to obtain E�P� for several perovskite
systems of interest. A similar approach was used by Fu and
Bellaiche to study the electromechanical response of solids
under finite electric fields [5]. Our method relies on many
of the ideas of the SRV one, but it is instead an exact
method because it incorporates the SIV theory of finite
electric fields [2].

Our goal is to find the minimum energy E of a system of
atoms for which the electric polarization takes some target
value Pt. The system has both ionic and electronic degrees
of freedom, and we use vectors X and � to represent them.
Vector X has 3N � 6 components given by the Cartesian
coordinates of the N atoms in the simulation cell and the 6
components of the strain tensor. On the other hand, � con-
tains the one-electron wave functions of the system. We are
therefore facing a standard constrained optimization prob-
lem that can be solved by introducing a Lagrange multi-
plier � and searching for the minimum of E� � � �P� Pt�
or, discarding the constant term, the minimum of E�� �P.
Defining� � ��E, where � is the volume of the unit cell
of the material under consideration, we have

min
X;�

�!P�Pt

fE�X;�� � � � P�X;��g � min
X

E!P�Pt

fmin
�
fE�X;��

��E � P�X;��gg

� min
X

E!P�Pt

H�X;E�; (1)
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where �! P � Pt indicates a minimization over the val-
ues of � that impose the constraint P � Pt. The function
H�X;E� is the electric enthalpy that is minimized in the
SIV method to find the electronic ground state of an
insulator in the presence of an electric field E [2].

Therefore, the problem of finding the minimum energy
of a system that is constrained to have polarization P is
equivalent to finding the ground state of a system under an
electric field E that imposes polarization P. However, the
apparently straightforward approach of doing calculations
at different values of the electric field to find E�P� para-
metrically will not work in general. Figure 1 illustrates
why this is so for a typical double-well potential character-
istic of ferroelectric perovskites. In this case, several values
of the polarization correspond to the same value of the
electric field, since E � ��1�dE=dP�, and an optimization
using the SIV theory will most likely find the point that has
the lowest energy of the three, i.e., the global minimum of
H�P�. With extra care it might be possible to find the
secondary local minimum of H�P�, but not the third solu-
tion, which is a maximum (or, in 3D, a saddle point) of
H�P�. It follows from this line of reasoning that one cannot
map the region of E�P� that has negative curvature, and it
may also prove difficult to map nearby regions of positive
curvature.

We now describe how to perform a minimization of the
enthalpy H over the ionic degrees of freedom X and the
electric fields E that produce a desired polarization Pt in a
way that parallels the presentation in Sec. III.A of Ref. [4].
From now on, we assume that the optimization is done
while keeping the cell vectors fixed. (It is possible to
remove this constraint, but it is necessary to take into
account some technical subtleties related to the way in
which the stress tensor is computed in the presence of an
electric field. The details, together with examples, will be
presented elsewhere [6].) We begin with a trial guess (X0,
E0), and we expand H�X;E� and P�X;E� as low-order
Taylor series

H � H0 � F�X�
1

2
�XK�X��P�E; (2)

P � P0 �
1

�
Z�X�

1

4�
��E; (3)

where H0 � H�X0;E0� and P0 � P�X0;E0� (atomic units
P

E

FIG. 1. Sketch of energy as a function of polarization for a
double-well potential. The value of the electric field needed to
impose the polarization is the same at the three indicated points,
as their slopes are the same.
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are used throughout unless stated otherwise). The Fi �
��@H=@Xi� are the 3N components of the forces on the
atoms at finite electric field [2], the Kij � �@2H=@Xi@Xj�
are the 3N � 3N force-constant matrix elements, the
Zi� � ��@P�=@Xi� are the 3N � 3 Born effective charges,
and the ��� � 4��@P�=@"�� are the 3� 3 elements of
the dielectric susceptibility tensor. We can then predict that
@H=@Xi � 0 and P � Pt at an X � X0 � �X and an E �
E0 � �E given by

K �Z
�Z ��

4��

� �
�X
�E

� �
�

F
��P0

� �
; (4)

where �P0 � P0 � Pt. This system of linear equations can
be solved iteratively, refining �X and �E until F and �P0

both vanish. As mentioned before, F can be computed
exactly in the presence of an electric field according to
the SIV prescription [2]. The guiding tensors K, Z, and �
do not need to be computed exactly; replacing these by
approximate versions only results in a slower convergence
to the correct solution, without shifting the solution itself.
In particular, we normally find it sufficient to compute K,
Z, and � at zero electric field.

The scheme described here has been implemented to
work with the ABINIT [7] density-functional theory (DFT)
[8] code. Instead of performing a direct iterative solution of
Eq. (4), we have used a nested-loop algorithm for the sake
of robustness. Starting with some guess for X and E, we
keep the atoms fixed and vary the field in the internal loop
until the polarization is the target one, a problem that is
well behaved. Once this is achieved, we solve Eq. (4) to get
new values of X and E, and iterate until convergence is
achieved.

As a first example of how our method works, we apply it
to a soft-mode system studied by Sai, Rabe, and Vanderbilt
[4]. They have shown that breaking the inversion symmetry
in perovskites by modulating their composition in a cyclic
sequence of layers produces some interesting features in
their energy landscape, apart from making them promis-
ing candidates for new materials with useful piezoelectric
and dielectric properties. They presented results for
Ba�Ti-�;Ti;Ti� ��O3, where the two species that alter-
nate with Ti on the B site are virtual atoms that differ from
Ti in that their nucleus has a defect or excess of charge
equal to �. For different values of � they find the E�P�
curves that we reproduce in Fig. 2 (dashed lines). As �
increases, the double-well potential becomes asymmetric
(a feature not seen in normal perovskites) until one of the
minima eventually disappears at around � � 0:4.

We have repeated their study using the same DFT meth-
odology, but applying our exact method to compute E�P�
instead of their approximate one. We used the ABINIT [7]
code to do our calculations, with the Ceperley-Alder form
[9] of the local-density approximation (LDA) [10] to ob-
tain the exchange-correlation term in DFT, a plane-wave
cutoff of 35 Ha to define the basis set, a 4� 4� 4
Monkhorst-Pack [11] grid for computations in reciprocal
space, and Troullier-Martins [12] norm-conserving pseu-
1-2
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FIG. 3. Energy versus magnitude of polarization in the line
joining two nearest Al and As neighbors. The solid (dashed) line
is a polynomial fit of the values obtained using our (the SRV)
method.
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FIG. 4. (a) Side view of the ferroelectric phase of KNO3

(phase III), with the c hexagonal lattice axis running vertically.
(b) Top view of the same structure. (c) Energy versus polariza-
tion P � �0; 0; P�. (d) Angle of rotation of the NO3 group as a
function of polarization P.
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FIG. 2. Energy versus polarization along the c axis for the
broken-inversion-symmetry perovskite described in the text, for
different values of �. The solid (dashed) line is a polynomial fit
of the values obtained using our (the SRV) method.
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dopotentials [13] to model the ion-electron interactions.
The tetragonal unit cell vectors were kept fixed, with cell
parameters a � 7:547 a:u: and c=a � 3:036. Here, our
results (solid lines in Fig. 2) are very similar to the SRV
ones; the curves differ noticeably only for large values of
the polarization. This is not surprising, since the dielectric
behavior is dominated by the ionic response for soft-mode
systems like this one.

On the other hand, the electronic response is found to be
profoundly important to the dielectric behavior in the case
of a III–V semiconductor like AlAs, as can be seen in
Fig. 3. Here we employed ABINIT [7] using the LDA [9], a
plane-wave cutoff of 9 Ha, a 6� 6� 6 reciprocal space
grid [11], Troullier-Martins [12] pseudopotentials [14],
and a theoretically optimized lattice constant of a �
10:62 a:u: As can be seen in Fig. 3, there is a drastic
difference between the E versus P curves computed using
the SRV method (ionic response only) and the one found
with our new method (ionic and electronic response). In
order to quantify this difference, the dielectric constant in
both cases was computed from the curvature at the mini-
mum of each function as � � 1� 4�=�d2E=dP2�. When
computed with the SRV method, � � 3:0, while, when we
use our new method, � � 10:3. The experimental result is
� � 10:1 [2].
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Our last example involves potassium nitrate, which has
an interesting phase diagram that includes a reentrant
ferroelectric phase (phase III, R3m) and that has been
proposed as a promising material to be used in random-
access memory devices [15]. The unit cell of phase III
KNO3 is a five-atom rhombohedral cell that results in
alternating planes of K atoms and NO3 groups arranged
in such a way that the K atom is not equidistant from
the NO3 groups above and below it, but instead is slightly
displaced in the vertical direction, giving rise to a polar
structure. Figures 4(a) and 4(b) show the conventional
15-atom hexagonal cell that is most convenient for
visualization. The calculations are performed using
ABINIT [7], the LDA [9], a plane-wave cutoff of 30 Ha, a
reciprocal space grid with 6 inequivalent points, and
Troullier-Martins [12] pseudopotentials [16]. The theoreti-
cal structural optimization of bulk ferroelectric KNO3

gives hexagonal lattice parameters of a�9:68 a:u: and
1-3
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c�14:86 a:u:, to be compared with the ones found experi-
mentally at 91 �C, a � 10:37 a:u: and c � 17:30 a:u: [17].
As for the internal degrees of freedom, the distance be-
tween a K atom and the N atom above it is found to be z �
0:57c (experimentally, z � 0:59c [17]), while the N-O
distance is d � 2:35 a:u: (experimentally, d � 2:42 a:u:
[17]). The computation of the polarization gives
0:16 C=m2, higher than the experimental values of
0:08–0:11 C=m2 given in Ref. [18]. (This disagreement is
related to the reduction in volume found theoretically;
when we performed an optimization of the atomic posi-
tions using the experimental lattice constants, we found a
polarization value of 0:075 C=m2.)

Figure 4(c) shows the energy of the ferroelectric phase
of KNO3 as a function of the magnitude of the polarization
along the c axis. As in the case of perovskites, we can see a
double-well potential, but now the change of polarization
given by the movement of the NO3 atoms parallel to the c
axis is accompanied by a rotation of these groups in their
plane, as shown in Fig. 4(d). When doing SRV calcula-
tions, both the derivative of the energy and the angle of
rotation are continuous functions of the polarization, and
the NO3 group rotates from 0� to 60� as the polarization
goes from negative to positive, with the paraelectric con-
figuration that corresponds to the maximum of E�P� being
the highly symmetrical one in which z � 0:5 and the
rotation angle is 30�. However, when the new exact method
is used, this behavior changes noticeably: the E�P� curve
has a discontinuous derivative at P � 0, and the angle-
rotation curve is no longer continuous.

Although it may seem puzzling that the response of
the system changes so significantly just by including the
electronic response, this behavior can be understood on
the basis of a simple model in which the energy is a
function not only of polarization P, but also of the rotation
angle �. To understand the qualitative features, it is suf-
ficient to consider a low-order expansion E�P; �� �
cos6�� � cos12�� �P cos3�� P2. We assume that
�> 2

���
2
p

, in which case E�P� has two minima. Then,
depending on the value of �, the behavior can be continu-
ous (�< 1=4) or discontinuous (�> 1=4� in P. Here, it
appears that the system was already close to this critical
value of �, and inclusion of electronic effects happened to
shift the system from the continuous to the discontinuous
regime. A more detailed discussion of this material, and its
modeling along the lines sketched above, will be given
elsewhere. In any case, the ability of our approach to
describe the complexity of the structural behavior of
KNO3 under polarization reversal provides an excellent
example of the power of the method.

To summarize, we have presented a method for finding
the most stable structural configuration of an insulating
crystal when its electric polarization is constrained to take
on a given value. Our method builds upon an earlier
05640
approach [4] that makes the approximation of including
only the lattice response to applied electric fields. By using
the recently developed theory of finite electric fields [2] to
include also the electronic response of the system, we have
developed a new approach that is, instead, exact. We have
illustrated the method by obtaining E�P� curves for three
rather different kinds of insulating materials, and have
illustrated how the method is capable of describing the
complexity of the nonlinear structural and dielectric
response.
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