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First-principles calculations of lattice dynamics and thermal

properties of polar solids
Yi Wang1, Shun-Li Shang1, Huazhi Fang1, Zi-Kui Liu1 and Long-Qing Chen1

Although the theory of lattice dynamics was established six decades ago, its accurate implementation for polar solids using
the direct (or supercell, small displacement, frozen phonon) approach within the framework of density-function-theory-based
first-principles calculations had been a challenge until recently. It arises from the fact that the vibration-induced polarization breaks
the lattice periodicity, whereas periodic boundary conditions are required by typical first-principles calculations, leading to an
artificial macroscopic electric field. The article reviews a mixed-space approach to treating the interactions between lattice vibration
and polarization, its applications to accurately predicting the phonon and associated thermal properties, and its implementations in
a number of existing phonon codes.
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INTRODUCTION

Lattice dynamics is the study of the collective atomic vibrations in
a crystal. The concept of phonons was introduced by Tamm1 in
1930 through an observation of the particle-like energetics of
atomic vibrations in a crystal, similar to the wave–particle duality
in quantum mechanics. Lattice dynamics has since become an
important branch of condensed matter physics and is critical for
understanding the thermal properties of crystalline solids at finite
temperatures.2,3 For example, the phonon densities of states are
required for evaluating thermodynamic properties of a crystal,4–6

such as thermal expansion coefficients, heat capacity, entropy and
lattice thermal conductivity.7–9 There exist excellent reference
books on lattice dynamics, e.g., by Wallace10 and by Born and
Huang.2

With the advances in density functional theory calculations,11–15

all the input data needed by lattice dynamics can now be
obtained by the first-principles approach solely based on the
crystal structure and atomic numbers. Currently, there are
essentially two implementations in wide use for the first-
principles calculations of lattice dynamics: the linear-response
approach16 and the direct approach.17,18 A general review of
first-principles approach to phonon theory was given by Baroni
et al.16 focused on the linear-response approach.16,19,20

The linear-response approach directly evaluates the dynamical
matrix at a predetermined reference coarse grid in the wave-
vector space through the density functional perturbation
theory.16,19,20 Then the backward Fourier transform of the
calculated dynamical matrix at the coarse wave-vector grid is
employed to extract the interatomic force constants on the
corresponding real-space grid. In contrast, the direct approach first
calculates the force constants using a predetermined reference
supercell of the primitive cell. In the literature, the direct
approach4,16,17,21,22 is also referred as the supercell method, the
small-displacement method or the frozen-phonon approach. The
features of the linear-response approach and the direct approach
are compared in Table 1. A collection of phonon/first-principles

codes, including YPHON,23 ShengBTE,8 PhonTS,7 Phonopy,18

ALAMODE,24 PHON,21 ATAT,4,22 PHONON,17,25–27 PWSCF/
QUANTUM ESPRESSO,14 ABINIT,15 CASTEP,13 CRYSTAL28 and VASP
(the Vienna Ab initio Simulation Package)11,12 that can be
employed to calculate phonon and related properties are briefed
in Table 2.
The present review focuses on the theory of lattice dynamics for

polar solids. Here a polar solid implies an insulator or a
semiconductor composed of cations with positive charges and
anions with negative charges. As a matter of fact, the majorities of
modern functional materials are made of polar solids, such as
the topological crystalline insulator group-IV tellurides,29 the
ferroelectrics and multiferroics,30 and materials for solar cells.31

The accurate descriptions of phonon properties have key roles for
the understandings and developments of these materials.
For certain optical atomic vibration modes, cations and anions

vibrate in opposite directions creating dipole–dipole interactions
and hence homogeneous electric fields, which have to be treated
with caution in phonon calculations. As an illustration, Figure 1
shows the effects of vibration-induced polarization within super-
cells. The supercell described in Figure 1a is commensurate with
the wavelength of the lattice vibration of interest, so the averaged
electric polarization is zero, and thus no macroscopic electric field
is generated. It should be pointed out that there are still internal
dipole–dipole interactions within an individual supercell, but they
are already accounted for in first-principles calculations of the
interatomic force constants.32,33 In Figure 1b, the supercell is
incommensurate with the wavelength of a lattice vibration, and
the corresponding phonon produces a nonzero-averaged electric
polarization and thus a nonzero artificial macroscopic electric field.
Figure 1c shows how the artificial electric polarization varies with
the supercell size (or the supercell geometry for the three-
dimentional case). In existing literature,2,34 polar effects were
mainly discussed in the long-wavelength limit. It has been shown
that the homogeneous field presents significant difficulties in
calculating the phonon frequencies of polar materials for the
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direct approach under the Born-von Kármán boundary
conditions.35

In statistical thermodynamics, a phonon represents a
quantized vibrational mode characterized by a frequency
at a given reciprocal lattice wave-vector point.2,10 An accurate
thermodynamic calculation4–6 requires the phonon frequency
distribution, i.e., the phonon density of states, calculated over a
fine mesh in the wave-vector space. Although in principle the
phonon frequencies at any wave-vector points can be calculated
by the first-principles approach, it is still computationally too
expensive to account for all mesh points in the wave-vector space.
To reduce the computational cost, a practical approach is to first
calculate either the force constants for a predefined supercell in
the real space or the dynamical matrix for a predefined grid in the
reciprocal space,16 and followed by Fourier interpolations to
evaluate phonon properties at arbitrary wave-vector points. For
polar solids, such a strategy has only been implemented in the
linear-response approach until recently when a mixed-space
method becomes available.21,36,37 The mixed-space approach
makes it possible to accurately calculate the phonon properties
for polar solids within the framework of direct approach for
phonon calculations.9,28 The mixed-space approach has also been
extended to lattice thermal conductivity calculations7–9,38 where
the third-order force constants are needed.
By this review, we will show that (i) the Born-von Kármán

boundary conditions39 still apply when the phonon frequencies

are calculated at the exact wave-vector points;40 (ii) The effects of
vibration-induced polarization on phonons at an arbitrary
wave-vector point can be understood in the real space; and
(iii) The longitudinal optical–transverse optical (LO–TO) phonon
splitting34,40 can be predicted accurately at the exact wave-vector
points by the direct approach without explicitly handling the
effects of macroscopic electric fields.
The present paper is organized as follows: 'Basic lattice

dynamics of polar solids' describes the basics of lattice dynamics
and the fundamentals of the mixed-space approach. 'Helmholtz
energy and quasiharmonic approximation' outlines the
first-principles thermodynamics based on the phonon theory;
More discussions of the mixed-space approach are given in 'The
mixed-space approach'. 'Computational procedure' summarizes
the common procedures in phonon calculations; 'Phonon
software packages have implemented the mixed-space approach'
briefs the implementation of the mixed-space approach in several
software packages. Extensive applications of the mixed-space
approach are summarized in 'Recent calculations using the
mixed-space approach'. 'Other phonon software packages' briefs
a list of other phonon codes implemented differently from the
mixed-space approach for polar solids. 'Software packages for
both electronic and phonon calculations' introduces a few widely
in use first-principles codes for both electronic and phonon
calculations. Finally, the last section is the 'Summary'.

Table 1. The linear-response approach versus the direct approach

Features Linear response approach Direct approach

Implementation in DFT Calculate the dynamical matrix in the reciprocal space Calculate the interatomic interaction force
constants in the real space

Advantage Dynamical matrix can be accurately calculated at any
arbitrary q (wave-vector) points

Straightforward to determine the total energy as a
function of atomic displacements

Disadvantage Extensive programming required and it sometimes has
special requirements for the form of pseudopotential in
DFT calculations

Phonon frequencies can be accurately calculated
only at q points that are commensurate with
supercell geometry

Limitation on k point mesh k point meshes for electronic structure and phonon
calculations should be compatible

No need

Additional calculations for polar
materials

Separate calculation of dynamical matrix at Γ point,
Born effective charges and dielectric constants;
additional calculation to separate coulombic
contribution from dynamical matrix

Separate calculation of Born effective charges and
dielectric constants

For accurate phonon dispersions or
density of states for polar solids

Forward Fourier interpolation using the interatomic
force constants followed by adding the coulombic
contribution back.

Adding coulombic contribution as a constant term
to the interatomic force constants followed by
forward Fourier interpolation

Abbreviation: DFT, density functional theory.

Table 2. A collection of phonon/first-principles codes

Codes Abilities Method to compute polar
effects on phonons

PWSCF/QUANTUM ESPRESSO14 Electronic structure; phonon Linear-response approach
ABINIT15 Electronic structure; phonon Linear-response approach
CASTEP13 Electronic structure; phonon Linear-response approach
CRYSTAL28 Electronic structure; phonon Mixed-space approach
VASP11,12 Electronic structure; phonon Not available
YPHON23 Phonon Mixed-space approach
ShengBTE8 Phonon; thermal conductivity; thermodynamic properties Mixed-space approach
PhonTS7 Phonon; thermal conductivity; thermodynamic properties Mixed-space approach
Phonopy18 Phonon; thermal conductivity; thermodynamic properties Mixed-space approach
ALAMODE24 Phonon; thermal conductivity; thermodynamic properties;

anharmonicity
Mixed-space approach

PHONON17,25–27 Phonon; thermodynamic properties Only accurate at the Γ point
PHON21 Phonon; thermodynamic properties Not available
ATAT4,22 Phonon; thermodynamic properties Not available
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BASIC LATTICE DYNAMICS OF POLAR SOLIDS

As phonons represent waves of collective atomic vibrations in a
periodic pattern, we can choose to model a system by a repeated
parallelepiped, i.e., a supercell. To formulate atomic vibrations
within such a supercell, it is convenient to start from equations of
motion for the atoms. For a polar solid, the forces can be divided
into two additive contributions—analytic and nonanalytic.20

The terms analytic and nonanalytic can be traced back to the
mathematical definition41 that a function is called analytic if and
only if its Taylor series expansion about a reference point
converges to the function at each point in some neighbourhood
of the reference point, otherwise it is nonanalytic. Under the
framework of first-principles calculations, the analytic contribution
accounts for all the forces under the restricted periodic boundary
conditions under which the averaged electric field is assumed to
be zero. The nonanalytic contribution accounts the additional
forces owing to a nonzero-averaged electric field.
The classical Newton’s second law of motion for describing the

atomic vibrations of a polar solid is given by

mj

∂
2uαðt; j; PÞ

∂t2
¼ -

∂EðUÞ
∂uαðt; j; PÞ

þ eZαðjÞUE: ð1Þ

where mj represents the atomic mass of the jth atom in the
primitive unit cell, t, the time, the α (α= x, y, z) component of the
atomic displacement from its equilibrium position of the jth atom
in the Pth reference primitive unit cell within a supercell. The first
term in the right-hand side of Equation (1) accounts for the
analytic force due to the short-range interatomic interaction,
where U represent the whole set of atomic displacements and
E(U) the total energy. The second term in the right-hand side of

Equation (1), with − e the electron charge, accounts for the
nonanalytic force due to the long-range coulombic interactions
shown as the dot product between the Born effective charge
(Z, a second-rank tensor, i.e., 3 × 3 matrix) and the averaged
electric field (E) induced by the atomic vibration. The Born
effective charges can be calculated as the change in electric
polarization divided by the amount an ion is displaced.20,42

The analytic contribution in the Harmonic approximation

Within the harmonic approximation, one can truncate the first
term E(U) in the right-hand side of Equation (1) at the second
order in Taylor series expansion

EðUÞ ¼ 1

2

X

N

P;Q

X

NP

j;k

X

3

α;β

Φ
jk
αβðP;QÞuαðt; j; PÞuβðt; k;QÞ; ð2Þ

where N represents the number of primitive unit cells contained in
the supercell, NP the number of atoms in the primitive cell P, and
α and β the Cartesian components x, y and z. Φjk

αβðP;QÞ is the
real-space interatomic force constant matrix representing the
interactions between the jth atom within the primitive unit cell
P and kth atom within the primitive cell Q under zero macroscopic
electric field.

The nonanalytic contribution due to the vibration-induced electric
field

The nonanalytic contribution accounts for the LO–TO splitting, i.e.,
the removal of degeneracy between the LO and TO phonons at
the Brillouin zone center.35 In particular, the LO–TO splitting
generally depends upon the direction along which the wave-

Figure 1. Vibration-induced polarization at a selected wave-vector point q= 2π(1/8,0,0). The horizontal (solid blue) arrows indicate the local
electric polarization of a primitive unit cell due to the optical vibration. The cosine type (blue dot-dashed) curves are used as a guide to eyes
for the periodicity of electric polarization. The open (blue) circles mark the positions of primitive unit cells. The dashed (black) lines in (a,b)
designate the supercell boundaries. (a) The supercell geometry (supercell size N= 8) is commensurate with the wave-vector, so the averaged
electric polarization is zero, and no macroscopic electric field is generated. (b) The supercell (supercell size N= 6) is incommensurate with the
wave-vector, and therefore, the average electric polarization is nonzero, creating an artificial macroscopic electric field. (c) The variation of the
averaged electric polarization with supercell size is shown by the vertical (solid red) arrows enveloped by the solid (red) curve. The solid (cyan)
circles in c mark the supercell sizes by which the averaged polarizations are zero.
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vector approaches the Brillouin zone center (mainly for non-cubic
solids),43 making the splitting discontinuous.
We now prove that the second term eZα(j)·E at the right-hand

side of Equation (1) can be explicitly formulated at any wave-vector
points, going beyond the long-wavelength limit by Cochran and
Cowley.34 On the basis of the Born effective charge and atomic
displacement, the averaged polarization44 can be evaluated by

P ¼ e

NVP

X

NP ;N

k;Q

ZðkÞUuðt; k;QÞ; ð3Þ

where VP is the volume of the primitive cell. The vibration-induced
polarization is parallel to the direction of the wave-vector q̂ and can
only have effects on the atomic vibrations along the direction of
the wave-vector q̂. It is noticed that a normal mode with a wave-
vector q is nothing but a collective vibration of some parallel
charged crystal planes with normal along q̂. As a result,
the induced electric field by the lattice vibrations can be
formulated as45

E ¼ -

4πP

q̂Uε1Uq̂
¼ -

4πe

NVP

X

NP ;N

k;Q

ZðkÞUuðt; k;QÞ
q̂Uε1Uq̂

; ð4Þ

where q̂Uε1Uq̂ represents a projection of the macroscopic dielectric
constant tensor into q̂. As E is along q̂, we can also project Zα(j) into
q̂ in evaluating eZα(j)·E and obtain

eZαðjÞUE ¼ -

4πe

NVP

X

NP ;N

k;Q

ZðjÞUq̂½ �α ZðkÞUq̂½ �Uuðt; k;QÞ
q̂Uε1Uq̂

: ð5Þ

For a normal mode2,10 in which the atoms oscillate at the same
frequency, ω, in a periodic pattern, the displacements u(t, j; P) can
be expressed as

uαðt; k; PÞ ¼ uαðj;qÞexpfiqU½RðPÞ þ rðjÞ - ioðqÞt�g; ð6Þ
where q is wave-vector, R(P) the position of the Pth primitive cell
in the supercell, and r(j) the position of the jth atom in the
primitive cell.
Then, inserting equation (6) into equation (5), we obtain

eZαðjÞUE ¼ -

4πe

NVP

X

NP ;N

k;Q

X

β

ZðjÞUq̂½ �α ZðkÞUq̂½ �βUuβðk;qÞexpfiqU½RðQÞ þ rðkÞ� - ioðqÞtg
q̂Uε1Uq̂

:

ð7Þ

The dynamical matrix

Substituting Equation (2) into Equation (1) together with utilizing
Equation (7), the equation of motion for the atoms can be
expressed in the reciprocal space, q,

-o
2wαðj;qÞ ¼ -

X

NP

k

X

3

β

D
jk
αβðqÞwβðk;qÞ; ð8Þ

where we have replaced uα(j; q) by wα(j; q) which is defined as

wαðj;qÞ ¼
ffiffiffiffiffi

mj
p

uαðj;qÞ: ð9Þ
D
jk
αβðqÞ in Equation (8) is called the dynamical matrix,10 which

takes the form

D
jk
αβðqÞ ¼ expfiqU½rðkÞ - rðjÞ�g DA

jk
αβðqÞ þ DN

jk
αβðqÞ

h i

: ð10Þ

DA
jk
αβðqÞ is called the reduced dynamical matrix,10 accounting for

the analytic contribution under zero-averaged electric field,
whereas DNjk

αβðqÞ results entirely from the effects of the vibration-
induced macroscopic field. They have the following forms

DA
jk
αβðqÞ ¼

X

N

Q

Φ
jk
αβðP;QÞ
ffiffiffiffiffiffiffiffiffiffiffi

mjmk
p exp iqU½RðQÞ -RðPÞf g; ð11Þ

DN
jk
αβðqÞ ¼

4πe ZðjÞUq̂½ �α ZðkÞUq̂½ �β
ffiffiffiffiffiffiffiffiffiffiffi

mjmk
p

VPq̂Uε1Uq̂

1

N

X

N

Q

expfiqU½RðQÞ -RðPÞ�g:

ð12Þ
The choice of the reference P is arbitrary due to the translational
invariance by which Φ

jk
αβðP;QÞ depends on P and Q only through

the difference R(Q)−R(P). Note that the prefactor term in the
right-hand side of Equation (12)

Δ
jk
αβðqÞ ¼

4πe ZðjÞUq̂½ �α ZðkÞUq̂½ �β
ffiffiffiffiffiffiffiffiffiffiffi

mjmk
p

VPq̂Uε1Uq̂
ð13Þ

is generally not continuous at q= 0 (except for cubic crystals),
which is the main reason why contribution given by Equation (12)
is called ‘nonanalytic’.
With Equation (8), determining phonon frequencies is reduced

to finding the eigenvalues for the secular equation

det Djk
αβðqÞ -o2ðqÞ

�

�

�

�

�

� ¼ 0: ð14Þ

There are generally 3NP eigenvalues whose roots ωj(q) (j= 1, 2, …,
3NP), are the normal phonon frequencies.

HELMHOLTZ ENERGY AND QUASIHARMONIC
APPROXIMATION

Once the phonon frequencies are obtained, all the thermo-
dynamic quantities can be calculated using statistical physics
without further approximations. Neglecting the electron–phonon
coupling and the thermal electronic contributions, it is a well-
demonstrated procedure5 to decompose the Helmholtz energy F
of a system at temperature T into two additive contributions as
follows

FðVP; TÞ ¼ EcðV Þ þ FvibðV ; TÞ; ð15Þ
where Ec is the static total energy per primitive unit cell at 0 K,
and Fvib is the vibrational contribution to the Helmholtz energy
given by46

FvibðV ; TÞ ¼ kBT

Z 1

0
ln½2sinh _o

2kBT
�gðo; VÞdo; ð16Þ

where kB is the Boltzmann constant and gðo; VÞ is the phonon
density of states.
The term ‘quasiharmonic approximation’ arises from the

approach that for a given volume, Fvib(V,T) is calculated under
the harmonic approximation, and the anharmonic effects are
included solely through the volume dependence of the phonon
frequency. Once the Helmholtz energy is calculated as a function
of volume and temperature, other thermodynamic quantities can
be calculated as usual, such as entropy S=− (∂F/∂T)V, enthalpy
H= F+TS and so on.

THE MIXED-SPACE APPROACH

The procedure presented in the above section represents a
combined solution to the phonon problem for polar materials that
(i) the long-ranged coulombic interactions are accounted for
through Equation (12) in the reciprocal space through Z and ε∞

calculated at q= 0; and (ii) short-ranged interatomic interactions
are accounted for through Equation (11) in terms of Φjk

αβ
ðP;QÞ by a

supercell in the real space. We therefore refer our solution as
mixed-space approach.
In this section, we discuss how the analytic and the nonanalytic

contributions are related to the supercell geometry and the type
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of wave-vector points for evaluating the normal vibration
frequencies of a polar solid. Let us first examine the nonanalytic
contribution to the dynamical matrix in Equation (12) from which
we can extract the mathematical geometry factor

f ðqÞ ¼ 1

N

X

N

Q

expfiqU½RðQÞ -RðPÞ�g: ð17Þ

The values for f(q) depends on whether q is one of the exact
wave-vector points10,16,47 in the direct approach.21,37 The exact
wave-vector points satisfy the following condition

qexUSi ¼ 2π ´ Integer ð18Þ
where Si with i= 1, 2, and 3 represent the three lattice vectors of
the supercell in the direct approach.

(i) if q is an exact wave-vector point, i.e., at q=qex (see
Figure 1a). This is the case that no corrections are needed in
calculating the dynamical matrix, i.e., the interatomic force
constants calculated by the direct approach can be used
directly in calculating the dynamical matrix. The internal
dipole–dipole interactions within the supercell are already
accounted at all exact wave-vector points except for the
point at q= 0.

(ii) f(q)≠0 if q is not an exact wave-vector point (see Figure 1b).
In this case, phonon properties are determined based on
the interatomic force constants obtained with a supercell
that is incommensurate with the wavelength corresponding
to the wave-vector q. As a result, an artificial electric field is
introduced by the incomplete supercell and must be
accounted for as a correction to those interatomic force
constants calculated under zero macroscopic electric field.

(iii) f(0) = 1. This is the limiting case as q→ 0 of case (ii) in which
all the local polarizations within the supercell would be
equal to each other. The long-wavelength limit q→ 0 of
Equation (12) recovers the results by Cochran and Cowley.34

COMPUTATIONAL PROCEDURE

An actual first-principles phonon calculation of polar solids can be
summarized as follows:13,37

(i) Calculate the interatomic force constants Φ
jk
αβðP;QÞ in the

right-hand side of Equation (11) in the real space,4,48 based
on a designated supercell; or calculate the dynamical matrix
D
jk
αβðqÞ in Equation (8) in the wave-vector space based on a

designated wave-vector grid.16

(ii) Calculate the dielectric constant and Born effective charge
tensors used in Equation (13) based on the primitive cell by
employing either the linear-response approach42 or the
Berry phase expressions of electric polarization.44

(iii) Combine the dielectric properties from step (ii) with
Φ

jk
αβðP;QÞ in step (i) to interpolate the phonon frequencies

at any wave-vector points.13,37

It should be reiterated that in step (i), an implicit condition is
that the averaged electric field or the macroscopic electric field is
zero. The enforcement of the zero macroscopic electric-field
condition is due to the periodic condition adopted in most
computer codes for the total electronic energy calculations. For
step (iii), a tedious procedure exists in several major computer
software packages employing the linear-response approach20,49

by separating the dipole–dipole interaction from the
short-range interactions. In comparison, except for the codes
based on the mixed-space approach,36,37 other computational
implementations25–27 of step (iii) in the direct approach are
inaccurate.

PHONON SOFTWARE PACKAGES HAVE IMPLEMENTED THE
MIXED-SPACE APPROACH

The mixed-space approach has been adopted in a number of
software packages, including YPHON,23 ShengBTE,8 CRYSTAL,28

PhonTS,7 Phonopy18 and ALAMODE.24 In these codes,
a generalized force constant Ψjk

αβðP;QÞ was introduced as

Ψ
jk
αβðP;QÞ ¼ Φ

jk
αβðP;QÞ þ ϕ

jk
αβðq̂Þ; ð19Þ

where

ϕ
jk
αβðq̂Þ ¼

1

N

4πe½ZðjÞUq̂�α½ZðkÞUq̂�β
VPq̂Uε̂1Uq̂

: ð20Þ

Therefore, the evaluation of the dynamical matrix in Equation (14)
becomes

D
jk
αβðqÞ ¼ exp iqU½rðkÞ - rðjÞ�f g

X

N

Q

Ψ
jk
αβðP;QÞ
ffiffiffiffiffiffiffiffiffiffiffi

mjmk
p exp iqU½RðQÞ -RðPÞf g:

ð21Þ
This greatly simplifies the computational procedure since one
only needs to add a constant term to the calculated force
constants by the direct approach. In this respect, the mixed-space
approach is a generalization of the approach for the specific case
of GaAs.50 It should be pointed out that the mixed-space approach
is significantly different from previous implementations
accounting for the presence of a macroscopic field51 in the
linear-response approach,14,20 where rather tedious and expensive
mathematical calculations are involved in order to decompose the
calculated interatomic force constants into the short-range
contributions and the long-range one from the polar effects.
YPHON23 is an open-source code (c++) for the calculations of

phonon dispersions and phonon density of states.
ShengBTE is a software package for computing the lattice

thermal conductivity of crystalline materials and nanowires with
diffusive boundary conditions by Li et al.8 Both the linear-response
approach and the mixed-space approach were implemented in
ShengBTE.
The CRYSTAL package performs ab initio calculations of the

ground state energy, energy gradient, electronic wave function,
and properties of periodic systems. Hartree–Fock or Kohn–Sham
Hamiltonians (that adopt an exchange-correlation potential
following the postulates of the density functional theory) can be
used. Like ShengBTE, PhonTS developed by Chernatynskiy and
Phillpot7 is a code mainly for thermal conductivity calculations.
The mixed-space approach has been implemented in PhonTS
exampled by the calculation of phonon lifetime and thermal
conductivity of UO2.

52,53

Phonopy is a Python code developed by Togo18 for phonon,
thermodynamic properties and thermal conductivity calculations.
The mixed-space approach has been implemented in Phonopy for
the phonon properties, replacing that by Parliński et al.25–27

In particular, a formulation for the evaluation of the third-order
force constants is also derived by Togo et al.,9 extending the
mixed-space approach.
ALAMODE (Anharmonic LAttice MODEl)24 is designed for

estimating harmonic and anharmonic properties of lattice
vibrations (phonons) in solids.

RECENT CALCULATIONS USING THE MIXED-SPACE APPROACH

Phonon and thermodynamic properties

Using the mixed-space approach, phonon and associated
properties have been studied for a variety of polar (and
non-polar) solids. Most of these calculations are based on the
direct approach using the output data from first-principles codes
such as VASP11,12 as input. Examples are firstly shown for several
energy conversion and storage materials.
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Polar crystal Li2S with the anti-fluorite structure and band gap of
4.4 eV is a major compound in Li-S batteries.54 Phonons of Li2S
have been calculated55 using the mixed-space approach. In
addition to a nearly perfect agreement between experimental
and calculated dispersions of Li2S, a large LO–TO splitting was
found for the T1u infrared (IR) mode of Li2S (~30% and
4120 cm−1).
Chalcogenide Cu2ZnSn(S,Se)4 (labelled as CZTSSe) with the

kesterite structure (space group P42c) and band gap 1.0 ~ 1.5 eV is
a photovoltaic absorber material that has helped achieving
significant recent improvement in photovoltaic device cell
efficiency (12.6%).56 Phonon frequencies at the Γ point and
phonon density of state of CZTS were calculated using the mixed-
space approach, a 64-atom supercell, and a combined PBEsol57

and HSE06. A gap band in the phonon density of state
(from 170 ~ 250 cm− 1) was predicted for CZTS, and especially a
negative thermal expansion was suggested at low temperatures
(e.g., o50 K) in terms of phonon density of states.
LiMPO4 (M=Mn, Fe, Co, and Ni) compounds with the olivine

structure (space group Pnma) are a class of cathode materials and
viable alternatives to the conventional cathode LiCoO2.

58 By
means of the mixed-space approach, a X–C functional of GGA+U
(refs 59,60; U is used to account for the strong on-site Coulomb
interaction in transition metals), and a 112-atom supercell, a
comparative phonon study has been performed for the anti-
ferromagnetic LiMPO4, and in turn, the associated thermo-
dynamics and bonding strength (the strongest one being P–O
bonding) have been reported.58

Li2CO3 with space group C2/c and band gap 5.0 eV has been
identified as a main component of the solid electrolyte interphase
—a passivating film that forms on Li-ion battery anode surfaces.61

Phonons of Li2CO3 were predicted using the mixed-space
approach (including the LO–TO splitting and using a 96-atom
supercell).
TiO2 with band gap ~ 3.0 eV has extensive applications such as

solar cells, photocatalysts and storage capacitors. Phonon and
associated thermodynamics of six TiO2 polymorphs including
rutile (space group P42/mnm), anatase (I41/amd), TiO2-II phase
(Pbcn), baddeleyite (P21/c), orthorhombic I (Pbca), and cotunnite
(Pnma) were obtained using the mixed-space approach and the
X–C of the local-density approximation (LDA),62 indicating that all
TiO2 polymorphs are dynamically stable62 and the pressure-
induced phase transitions and the pressure–temperature phase
diagrams of TiO2 were predicted.63

Besides phonons in energy materials, a long-standing issue has
been resolved regarding the occurrence of imaginary phonon
frequencies in cubic perovskites. These are in fact spurious as they
result from the methodology employed.64 For example, in
perovskites EuTiO3 (ref. 64) and SrTiO3,

65 a dynamic short-range
ordering model using the mixed-space approach as well as the
cubic force constants calculated from the low-temperature
tetragonal phases was used for phonon calculations. It was seen
that the spurious imaginary phonon frequencies in SrTiO3 and
EuTiO3 disappear, resulting in a remarkably good agreement with
experiments. A similar idea was used for Mott–Hubbard insulators
MnO and NiO,66 i.e., the dynamic matrices with the ideal cubic
symmetry recovered from the distorted antiferromagnetic
structures, the LO–TO splittings estimated using the mixed-
space approach, and the strong electron correlations accounted
for by the GGA+U method,59 which produced accurate phonon
dispersions for MnO and NiO. For room temperature multiferroic
BiFeO3,

67 the challenge in calculating its phonon properties is due
to the fact that BiFeO3 is a Mott–Hubbard insulator with band gap
~ 2.5 eV, involving a polar effect and strong correlation among the
d electrons of Fe. The mixed-space approach together with the
GGA+U method60 accurately predicted the phonon dispersions of
BiFeO3 and suggested that no gapped magnon modes68 exist and

contribute to the heat capacity of BiFeO3 in the temperature
range 5–30 K.
Accurate phonon properties have also been predicted for CaF2

and CeO2 with the fluorite structure.69 CaF2 is a typical superionic
conductor, its phonons have been studied by the PBE exchange-
correlation functional70 using a 192-atom supercell. CeO2 has
been used in catalytic converters in automotive applications and
as an electrolyte in fuel cells because of its relatively high oxygen
ion conductivity. In particular for considering the f-electron
system, phonon dispersions of CeO2 have been studied by a
HSE06 hybrid functional,71,72 showing better accuracy69 than the
previous predictions from e.g., PWSCF73 and ABINIT.74

In addition to the prototype α-Al2O3,
37 phonon and associated

thermodynamics were successfully predicted using LDA+U and
the mixed-space approach for another dense and continuous
coating material of Cr2O3.

75 Furthermore, phonon-related proper-
ties have been investigated using the mixed-space approach for
many other polar solids such as nanograined half-Heusler
semiconductors,76 calcium fluoride at high pressure,32 the phase
diagram of bismuth ferrite,33 cubic SiC and hexagonal BN,37 ZnO,77

UN,78,79 Bi2S3,
80 Si, Ge, InAs and GaAs,38 GaN,81 CrN,82 WS2,

83

ZnSe,84 ZnS, ZnSe and ZnTe,85 SnO2,
86 TaO3,

87 UO2,
52,53,88

CaCO3,
89 Bi2SiO5 (ref. 90) and BaZrO3.

91 layered antimony
telluride,92 Phonon transport in SrTiO3,

93 self-consistent phonon
calculations for cubic SrTiO3 (ref. 94) and Si(SexS1− x)2.

95

Thermal conductivities of polar solids

The main heat carriers in nonmagnetic crystals are phonons and
electrons, with phonons dominating in semiconductors and
insulators. The phonon contribution to the total thermal
conductivity is the lattice thermal conductivity. One important
approach to studying phonon transport in solids is the Boltzmann
transport equation (BTE).96 However, many solutions of BTE rely on
the relaxation time approximation along with the Debye
approximation, neglecting the true phonon dispersions, and
several parameters are introduced to treat different scattering
mechanisms. Li et al.8 and Chernatynskiy et al.7 implemented
parameter-free iterative solutions in their software packages
(ShengBTE8 and PhonTS7) to solve the BTE based on the inputs
from firs principles. The programs compute converged sets of
phonon scattering rates and use them to obtain the lattice
thermal conductivity and many related quantities. The two main
inputs needed by their software packages are sets of second-order
(harmonic) and third-order (anharmonic) interatomic force con-
stants (IFCs) for a given crystal structure. Our mixed-space
approach has been implemented in both software packages to
derive the second-order IFCs, so as to account for the long-range
electrostatic interactions in polar compounds. To date, ab initio
calculations of lattice thermal conductivity have been applied by
Li et al. for many bulk systems such as Mg2Si, Mg2Sn and
Mg2SixSn1− x,

97 two-dimensional systems such as MoS2 (ref. 98)
and nanowires made of Si, diamond,99 InAs, AlN and BeO100 under
the diffusive boundary conditions. All these applications show
excellent agreement with experimental measurements, and an
accurate description of polar–polar interactions was found crucial
for theoretical predictions to be in line with experiments. As
claimed by Li et al.8,100 in their work for InAs of a well-known
direct-band gap III–V semiconductor, ‘Therefore it is ideally well
suited for validating our approach when isotope scattering and
polar bonds are introduced into the picture’. More examples of
lattice thermal conductivity calculations have been reported for
SnSe,101 MgO, GaAs, SiC, BN, BP, BSb, BAs, BeTe, and BeSe,102

InN,103 phosphorene104,105 and Si, Ge, InAs and GaAs alloys.106
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Phonon dispersions for systems with symmetry broken by
magnetism

There are systems such as MnO, NiO, and UO2 (refs 53,66) for
which the high-temperature phase is paramagnetic, and the low
temperature phase is antiferromagnetic. For these systems, it is
too expensive to calculate the phonons of the high-temperature
phase accurately. An alternative approximation to calculate the
phonons of the high-temperature phase is to use the force
constants calculated from the corresponding low-temperature
phase. In doing so, one primary problem to solve is the symmetry
broken by the magnetic degree of freedom. Using UO2 as an
example, the primitive cell of the antiferromagnetic structure
contains 6 atoms resulting in 18 phonon dispersions, whereas the
primitive cell of the paramagnetic structure contains 3 atoms
resulting in 9 phonon dispersions. A solution to the problem is to
restore the symmetry by a transformation as

Φ
αβ
st ðhigh symmetryÞ ¼ 1

S

X

N

r¼1

O - 1
r Φ

αβ
st ðlow symmetryÞOr ; ð22Þ

where Φ
αβ
st (high symmetry) represents the force constant matrix

of the high-symmetry structure, Φαβ
st (low symmetry) the force

constant matrix calculated from the low symmetry structure,
Or the space group operation of the high-symmetry structure, and
S the number of Or’s. Figure 2 shows the phonon dispersions of
UO2. It is observed that our calculated phonon dispersions show
great improvements over the previous calculations52,107–109 by
comparing them with the experimental data.52,110

OTHER PHONON SOFTWARE PACKAGES

PHON is an open-source code developed by Alfè21 to calculate
phonon frequencies following the direct approach by Parliński
et al.17 ATAT is a generic name that refers to a collection of
open-source alloy theory tools developed by van de Walle et al.4,22

For phonon calculations, it appears that neither codes can yet
handle the vibration-induced polarization effects.
PHONON is a commercial code for phonon and thermal

properties developed by Parliński et al.17,25–27 As an example,
Figure 3 illustrates the phonon dispersions of α-Al2O3 calculated
using the PHONON package by Lodziana and Parliński111 in
comparison with those calculated using YPHON37 and measured
from the inelastic neutron scattering by Schober et al.112 It can be
seen that the application of PHONON code for phonon dispersion
calculations of polar solids appears inaccurate due to an artificial
implementation of the Gaussian smear extrapolation25–27

in accounting for the vibration-induced polarization effects.
Practically, PHONON code was applied to many polar
solids including, for example, ZrO2,

17 alkaline-earth metals and
their hydrides,113 LiBeH3,

114 CoO,115 Fe2SiO4 spinel,116 Li2O and
Li2CO3,

117 LiF,118 CsCl and BaCl,119 hafnia and zirconia,120 PuO2,
121

CeO2, ThO2 and (Ce,Th)O2 alloys,122,123 LiFePO4,
124 MnO,125

ZnO,126 BeO127 and BiFeO3.
128

SOFTWARE PACKAGES FOR BOTH ELECTRONIC AND PHONON
CALCULATIONS

The codes widely in use include the open-source packages
PWSCF/QUANTUM ESPRESSO,14 and ABINIT,15 and the commercial
packages CASTEP,13 CRYSTAL28 and VASP.11,12 For phonon
calculations of polar materials, PWSCF, QUANTUM ESPRESSO,
ABINIT and CASTEP employ the linear-response approach. If one
wants to calculate phonons of a polar solid using CRYSTAL
(starting from CRYSTAL1428), then the mixed-space approach is
the only choice.
VASP only calculates the phonon frequencies at the exact wave-

vector points. Although VASP can calculate the dielectric constant
and Born effective charge tensors, the current version of VASP
(version 5.4.1.05 Feb16) does not report the LO–TO splitting.34,40

PWSCF is one of the core packages of open-source QUANTUM
ESPRESSO.14 We employed PWSCF to perform the linear-response
calculations of phonon properties of Ni, Al, NiAl and Ni3Al,

5 and
MgO.129 Linear-response approach is also employed for to phonon
calculations by ABINIT,15 which is an open-source package using
pseudopotentials and a planewave basis. The linear-response
approach relies on the availability of pseudopotentials in specific
formats. For example, the CASTEP13 code requires the use of the
Norm-conserving pseudopotentials.130 To account for the polar
effects on phonon calculations, these linear-response codes

Figure 2. Phonon dispersions of UO2. Open circles: measured data
by Pang et al.;52 solid squares: measured data by Dolling et al.110 The
lines represent the present calculations. The (red) dot-dashed lines
along the [ζζ0] direction emphasize the three phonon dispersions
that were not reported by the calculation of Pang et al.52

Figure 3. Phonon dispersions for Al2O3. (a) Calculated using
PHONON by Lodziana and Parliński.111 (b) Calculated using YPHON
by Wang et al.37 The symbols represent the inelastic neutron
scattering data by Schober et al.112

Lattice dynamics of polar solids
Y Wang et al

7

© 2016 Shanghai Institute of Ceramics, Chinese Academy of Sciences/Macmillan Publishers Limited npj Computational Materials (2016) 16006



commonly use the following computational procedure14,19,130 for
the evaluation of the dynamical matrix at an arbitrary q points:

(i) Calculate the dynamical matrices at a predetermined
reference coarse grid

(ii) Remove the long-ranged coulombic contribution from
the dynamical matrices that are calculated at the coarse
wave-vector grid

(iii) Make backward Fourier-transform of the dynamical matrices
to obtain the interatomic interaction constants and

(iv) For an arbitrary q point outside the coarse wave-vector
grid, make forward Fourier-transform of the interatomic
interaction constants followed by re-adding the long-
ranged coulombic contribution to get the dynamical matrix
at the arbitrary q points.

These steps were based on the belief from previous
conclusions14,19 that for solids having TO–LO splitting (e.g.: polar
semiconductors), as the force constants in real space involves
long-ranged interatomic interactions due to the nonanalytic term,
Fourier interpolation is no longer possible. In contrast to this
belief, we note that by using the mixed-space approach, the
Fourier interpolation is possible and computationally efficient.
One example was given by Zhao et al.80 in their phonon
calculations of Bi2S3 nanostructures using QUANTUM ESPRESSO.
Instead of using the linear-response approach as implemented in
QUANTUM ESPRESSO, Zhao et al.80 employed the mixed-space
approach and they found the mixed-space approach is more
efficient without sacrificing the accuracy.

SUMMARY

This paper reviews a mixed-space formulation to treat the
contribution of vibration-induced polarization to phonon disper-
sions in the direct or supercell approach. It decomposes the
interatomic force constants into two contributions: one for all
internal interactions within the supercell under zero macroscopic
electric field and the other one accounts for the effects of nonzero
macroscopic electric field arising from supercells that are
incommensurate with the wavelengths of the lattice vibrations.
The theory naturally gives rise to the analytic and the nonanalytic
contributions to the total force constants at any wave-vector
points, without the assumption of the long-wavelength limit made
by Cochran and Cowley.34 It provides a useful methodology
separating the dipole–dipole interaction from those short-range
interactions for Fourier interpolation.16,20,49 It has been success-
fully applied in calculating the phonon and thermal properties of a
wide range of polar materials and implemented in several broadly
used software packages for calculating phonon properties.
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