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Abstract

Time-dependent density functional theory (TD-DFT) is nowadays routinely applied

to molecular and nanoscaled condensed-phase materials for the calculation of electronic

excitation energies and their associated optical transition probabilities. In this paper,

we derive and implement expressions within the linear response TD-DFT framework

for rates of transition between the ground and excited states induced by an external

point charge. Symmetry considerations are given for the coupling between electronic

states of well defined parity in two extreme limits of the point charge’s position, and

a general method to determine the range of point charge positions over which elec-

tric dipole selection rules hold for describing a given point charge induced electronic

excitation is presented. The point charge induced transition rates for particular elec-

tronic excitations from linear response TD-DFT were validated through comparison to

excited state populations from real time TD-DFT simulations following an impulsive
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point charge perturbation, then evaluated on a three-dimensional grid to map their

spatial dependence for a small polybenzoid. This method, when combined with in-

formation about excited state energy gradients, represents a first step toward an ab

initio framework for probing the structural response of materials under electron beam

irradiation due to inelastic scattering.

Introduction

Most of the widely-applied ab initio approaches for the calculation/prediction of ob-

servables measured by optical spectroscopies fall under the umbrella of time dependent

electronic structure theories (TD-EST). Electronic excitation energies and associated

transition probabilities probed by linear absorption spectroscopy can be accessed in

TD-EST formalisms either through direct simulation of the electronic dynamics in

the time domain,1–8 or through application of response theory in the frequency do-

main.9–16 Time-dependent self consistent field (TD-SCF)17 methods, which include

both time-dependent Hartree-Fock (TD-HF) and Kohn-Sham density functional the-

ory (TD-DFT), are frequently employed in this context due to their favorable scaling

with respect to system size. TD-DFT in particular exhibits one of the highest accuracy-

to-expense ratios of all excited state electronic structure methods, and in many cases

provides a tractable first principles treatment of relatively large systems of acceptable

accuracy.

In the time domain, or “real time” (RT) TD-EST simulation approach, excita-

tion energies and transition probabilities are resolved by propagating a system initially

prepared in its ground state forward in time following a “kick” from an impulsive elec-

tric field. Fourier transforming the expectation values of electric/magnetic multipole

operators collected during the ensuing electronic dynamics gives access to the corre-

sponding frequency-dependent polarizability tensors, the traces of which are propor-

tional to rotationally-averaged cross sections for various photophysical processes.1,18–20

These same quantities can also be solved for directly to first order in the strength of a
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monochromatic time-dependent perturbation through linear response theory.16,21,22

Given the long-standing pervasiveness of TD-EST methods for modeling optical

spectroscopies, it is somewhat unexpected that their use to treat the electronic ex-

citations induced by nearby charged particles has garnered only modest attention.

Historically, the theoretical treatment of charged particles incident upon materials has

most commonly been formulated from the vantage of the incident particle as a scatter-

ing problem in the momentum representation.23–28 Modern first principles treatments

of the scattering of incident charged particles by materials include multiple scattering

Green’s function approaches wherein the material’s electronic structure is approxi-

mated at varying levels of sophistication,29–33 as well as methods couched in the kine-

matic treatment of the scattering.34,35 However, Tsubonoya, Hu, and Watanabe have

recently reported the first simulations of low-energy electron wave packet diffraction

by graphene nanoflakes, in which the incident electron wave packet and material’s elec-

tronic degrees of freedom were co-propagated within a real time, real space TD-DFT

framework.36

A common application of computational methods for modeling the interactions

between materials and swift charged particles is the simulation of electron energy loss

spectra. In electron energy loss spectroscopy (EELS) experiments, the electronic struc-

ture of a material is probed by analyzing the distribution of kinetic energies lost by

individual electrons from an electron beam by way of their interaction with the ma-

terial. Most often, only beam electrons that are scattered by the material through

very small semi-angles are collected in EELS experiments.37 When only these small

momentum-transfer scattering events are measured, the selection rules for electronic

transitions within the material are typically consistent with those for optical excita-

tion in the long-wavelength limit that emerge from the electric dipole approximation.38

Computational methods geared toward the simulation of EELS spectra generally treat

the interactions between materials and beam electrons at this same level of approxi-

mation.

Of course, when a material interacts with a very distant charged particle, it ex-
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periences an electric field that is effectively homogenous over its entire volume (see

Figure 1 for a graphical sketch of this statement). In the limit where the material and

the charged particle approach infinite separation, the interaction between the external

point charge and the material is completely captured by just the lowest order (dipole)

term in its multipole expansion. Otherwise, the charged particles comprising the ma-

terial can be close enough to the external particle to appreciate the point source nature

of its associated electric field, and experience spatially inhomogenous forces that are

not solely described by the dipole term.39 So, outside of the regime where the electron

beam is focused far away from the material whose electronic structure it is interrogat-

ing (i.e. the “aloof” beam geometry40,41), some of the beam electrons incident on the

material are inelastically scattered through larger angles. While the electric dipole ap-

proximation may suffice for the calculation of EELS spectra, a proper accounting of the

larger angle inelastic scattering events that promote electronic transitions disallowed by

electric dipole selection rules is mandatory to a complete description of the electronic

response of materials perturbed by the impact of charged particles. EELS experiments

which also measure beam electrons scattered (through non-dipole interactions) into

larger angles, while less common, have also been reported.42,43

Accurate ab initio approaches for modeling the electronic response of materials

to point-source electric fields are needed to provide insight into the mechanisms of

radiolytic damage sustained by materials during electron microscopy and spectroscopy

experiments. In this study, we present a tractable first principles method based on TD-

DFT for resolving the distribution of excited electronic states populated in a material

following brief exposure to an external point charge. We apply both real time and

linear response TD-DFT to model the response of some simple low-Z materials (an

isolated carbide ion (C4−), benzene (C6H6), and pyrene (C16H10)) to a point charge

perturbation. The full scalar potential of this point charge is included in the electronic

Hamiltonian to relieve any need for multipolar expansions of the electrostatic potential.

This is done in the same spirit as pioneering work from List et. al., where oscillator

strengths for optical transitions were calculated using the full semiclassical matter-field
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Figure 1. A sketch showing the qualitative range of validity of the electric dipole
description of the interaction between an atom and an external point charge.
Electric field lines are indicated in black, and negative(positive) atomic charge
density in blue(red). Top panel illustrates the electric field from a distant point
charge, which is essentially homogeneously dipolar over the volume of the atom.
Bottom panel illustrates the inhomogenous electric field experienced by an atom
when a point charge is placed near to its nucleus.

interaction operator without resorting to multipolar expansion.44,45

The remainder of this paper is structured as follows. We first describe an approxi-

mate method of accounting for beam electrons in the electronic Hamiltonian. We then

provide an overview of the theoretical formalism on which the developed computational

methods are built, and give the working equations for RT and LR TD-DFT. Calcula-

tions of the carbide ion and benzene molecule are then presented, which demonstrate

when contributions to point charge-induced electronic transition rates from terms be-

yond first order in the multipolar expansion become important. We then present a

general method to determine the range of separation distances over which an exter-

nal point charge produces an electric field with effectively homogeneous polarization

over the volume of a nearby material. Finally, to showcase the practical utility of the

methodology, we present point charge position-dependent electronic excitation rates

for a small polycyclic aromatic hydrocarbon, and conclude with perspective on fu-

ture directions for the TD-EST description of electron beam induced excitations and

structural modifications of materials.
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Methodology

All calculations were performed in a locally modified version of NWChem.46,47 In ad-

dition to the LR and RT TD-DFT calculations of electronic excitations induced by the

presence of point charges, NWChem was also used (unmodified) to optimize molecular

geometries, calculate LR-TD-DFT excited state energy gradients,48 and produce real-

space electron density data for ground and excited states.46 Atomic units (AU) have

been used throughout this paper unless otherwise noted.

Impulse Approximation Description of Relativistic Elec-

trons

Because electrons in all but the heaviest atoms exhibit velocities that are a small

fraction of the speed of light, the scalar (electric) potential dominates in the interaction

between external electromagnetic fields and most atoms, molecules, and condensed-

phase materials. As such, it is common to omit the vector (magnetic) potential from the

matter-field interaction Hamiltonian. The Lorentz invariant expression for the scalar

potential of a charged particle translating at constant velocity is given in the retarded

timeframe by the Liénard-Wiechert potential.49 In the zero velocity limit, the Liénard-

Wiechert scalar potential reduces to the classical electrostatic (Coulomb) potential.

For charged particles translating at speeds approaching that of light, however, the

matter–beam interactions become shorter in duration than the electrostatic treatment

would suggest due to the reduction of the the electric field intensity emanated by the

moving charge along its direction of propagation.50 In the ultra relativistic limit, a

moving point charge’s associated electric field is nonzero only in the plane transverse

to its velocity. In this case, only the portion of a charge distribution that lies in this

plane is perturbed by the fast point charge at any given instant.
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Figure 2. Schematic showing the electrostatic impulse approximation to the
electric potential of an ultrarelativistic electron utilized in the current study. A
piecewise description of the scalar potential of a swift electron is adopted, in
which the system experiences an impulsive electrostatic potential only at the
time that the point charge would be passing through the plane containing the
atomic center(s).

In this preliminary study, we will only consider the interactions of isolated atoms

and planar molecules with swift electrons. For time-domain simulations of the response

of these “flat” systems to the passage of an ultrarelativistic electron, the scalar potential

can be qualitatively approximated by an electrostatic potential impulse activated at

the instant that the beam electron enters the plane containing the atomic center(s)

(Fig. 2). While this may be a crude approximation to the true potential experienced

by a material subjected to a finite velocity beam, it is only under this treatment that the

perturbation is restricted to transferring population from the ground to excited states

(and not between excited states.) The final state from the RT-TD-DFT simulation of

a material subjected to the impulsive point charge perturbation described above can

be compared directly to transition rates evaluated within first-order time dependent

perturbation theory (using Fermi’s golden rule and LR-TD-DFT.)

The operator, V̂ , for the electrostatic potential energy of a material exposed to a

particle with charge q located at position rpc is given by:

V̂ (q, rpc) =
q

|r̂ − rpc|
, (1)

where r̂ is the position operator in the space of the material’s electronic coordinates.
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Conveniently, V̂ (q, rpc) is already present in the electronic Hamiltonian to account

for the electron-nuclear attraction potential, so its matrix elements are immediately

available to be used for our purposes here with no additional software development

effort.

In an EELS experiment, each beam electron performs two essential tasks: it per-

turbs the material, and it reports on the final state of the material through its energy

loss. In contrast, the state of the material is known at all times during the RT-TD-DFT

simulations. This allows for a material-centric perspective of the inelastic scattering

process to be adopted, where only the state of the material following its perturbation

by an external point charge is considered. Disregard for the final state of the scat-

tered electron motivates the choice to express the system’s electronic state in a basis

of spatially-localized (Gaussian) functions, rather than the delocalized functions (e.g.

plane waves) that would provide a more natural basis for the scattering states of the

beam electron. The electronic states of molecular species and materials which lack

long-range structural periodicity (e.g. nanoscaled, amorphous, polycrystalline or oth-

erwise disordered materials) is most quickly-convergent when expressed in a spatially

localized basis, and even crystals idealized as infinitely-extended periodic lattices will

see their periodicity destroyed by the application of a point-source electric field.

The TD-DFT Formalism

As TD-DFT is now a well established method, we only provide a brief overview of

the formalism and necessary working equations here and refer readers to references 51

and 13 for a complete derivation and review of the method. In the Kohn-Sham (KS)

density functional theory, the many-body Schrödinger equation is recast as an effective

one-electron problem for a fictitious system of non-interacting electrons (described by

KS orbitals, {φi}) evolving under an external potential that is designed to produce the

density (ρ(r)) of the fully-interacting system from that of the non-interacting one.52,53

The equation of motion for the KS orbitals is the time-dependent Kohn-Sham

equation:17,54
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i
∂φi(t)

∂t
= F̂ φi(t) (2)

The KS operator, F̂ , is:

F̂ = ĥ+

∫

dr′
ρ(r′)

|r− r′|
+

δExc [ρ(r)]

δρ(r)
(3)

where:

ĥ = −
1

2
∇2 −

m
∑

k=1

Zk

|r−Rk|
(4)

and m is the number of nuclei in the system, Rk and Zk are the coordinates and charge

of the kth nucleus, r are electronic coordinates, and Exc is the exchange-correlation

energy functional. In the spin-restricted treatment for closed-shell systems, the total

density is given by:

ρ(r) = 2
occ.
∑

i

|φi(r)|
2 (5)

, where the summation in Eq. (5) runs over all doubly-occupied KS orbitals. The

KS orbitals can be expanded in a finite basis of contracted, atom-centered Gaussian

functions, {χµ}.

φi =
∑

µ

Cµi(t)χµ (6)

Henceforth, Greek characters (µ, ν, λ, σ) will index these basis functions, lowercase

Roman characters (i, j/a, b) will index the (occupied/virtual) KS orbitals of the KS-

DFT ground state, and capital Roman characters (IJ) will index the (all electron)

energy eigenstates.

The one particle reduced density matrix (1RDM) P can be expressed in the con-

tracted Gaussian function basis through the orbital expansion coefficients from Eq. (6):
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Pµν(t) = 2

occ.
∑

i

C∗
µi(t)Cνi(t) (7)

The KS matrix elements are given in the contracted Gaussian function basis by

Eq. (8).

Fµν(t) = hµν +
∑

λσ

Pλσ(t)(µν|λσ) + vxc,µν (8)

where:

(µν|λσ) =

∫

drdr′ χ∗
µ(r)χν(r)

1

|r− r′|
χ∗
λ(r

′)χσ(r
′) (9)

vxc,µν =

∫

drχ∗
µ(r)

δExc

δρ(r)
χν(r). (10)

The 1RDM and KS matrix can be re-expressed in an orthonormal basis,
{

χ′
µ

}

, by

way of the symmetric Löwdin transformation:

P′ = S
1/2PS

1/2

F′ = S
−1/2FS

−1/2,

where Sµν =
∫

drχ∗
µ(r)χν(r) . The TD-KS equation can be written in Liouville–Von

Neumann form as an equation of motion for the 1RDM in the orthogonalized basis:

i
∂P′(t)

∂t
=
[

F′(t),P′(t)
]

(11)

Expectation values of one-body operators and the electronic energy are calculated

according to Eqs. (12) to (13) (where Aµν are matrix elements of an arbitrary one-

electron operator, Â, in the nonorthogonal, Gaussian function basis).
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〈Â 〉 =
∑

µν

PνµAµν (12)

〈Eele〉 = 〈ĥ〉+
1

2

∑

µν

∑

λσ

PµνPλσ (µν|λσ) + Exc [ρ(r)] (13)

“Real Time” TD-DFT

The general solution to Equation (11) is given by:

P′(t) = U(t0, t)P
′(t0)U

†(t0, t) (14)

Evaluation of the matrix representation of the time evolution operator, U, requires

time-ordered exponentiation (denoted in Eq. (15) by T exp) of the KS matrix integrated

over the interval (t0, t).

U(t0, t) = T exp

(

−i

∫ t

t0

dt′F(t′)

)

(15)

In this work, Eq. (15) will be approximated by the Magnus expansion thereof, trun-

cated at second order.55,56 The KS matrix carries time dependence even in the absence

of any external perturbation through its dependence on the 1RDM. However, the KS

matrix may also be explicitly time-dependent through the addition of an external po-

tential, V̂ ext, to the KS operator defined in Eq. (3). In Eq. (16), both modes of time

dependence are indicated by the notation F
(

Vext(t),P(t)
)

.

U(t, t+∆t) =

exp

(

−i∆t

2

(

F(Vext(t),P(t))+F
(

Vext(t+∆t), e
−i∆tF(Vext(t),P(t))P(t)ei∆tF(Vext(t),P(t))

)

)

)

+O(∆3
t ) (16)

The cost of a RT-TD-DFT time step is essentially equivalent to that of two iterations
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of the self consistent field method when Eq. (16) is employed to integrate the electronic

Schrödinger equation. The population of the Ith energy eigenstate, ρI , can be accessed

indirectly through autocorrelation functions of the expectation value of observables57–59

(e.g. dipole moment) collected during the simulation according to the relation shown

in Eq. (17) (See Appendix 1).

F [〈µ(0)µ(t)〉] (ω) =
∑

IJ

ρI |〈ΨI | µ̂ |ΨJ〉|
2 δ(ω − ωIJ) (17)

Linear Response TD-DFT

Starting from Eq. (11) and solving for the response of a system initially in its ground

state to (first order in the strength of) a monochromatic perturbation yields a non-

Hermitian eigenvalue problem known as the linear response TD-DFT equation, whose

solutions are excitation energies, {ωI}, and one-particle transition densities
{

XI ,YI
}

referenced to the SCF ground state:13,21,60–63







A B

B∗ A∗













X

Y






= ω







I 0

0 −I













X

Y






(18)

Aia,jb = δijδab(Faa − Fii) + (ia|jb) + (ia|fxc|jb)

Bia,jb = (ia|bj) + (ia|fxc|bj),

, where:

(ia|fxc|jb) =

∫

drdr′φ∗
i (r)φa(r)

δ2Exc

δρ(r)δρ(r′)
φ∗
b(r

′)φj(r
′) (19)

, and the KS matrix and two electron integrals have been transformed from the basis of

non-orthogonal Gaussian functions to the KS orbital basis using the orbital coefficient

matrix for the converged SCF ground state, C0 (Eq. (20)).
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(ia|jb) =
∑

µνλσ

C0
µiC

0
νaC

0
λjC

0
σb (µν|λσ)

Fii =
∑

µν

C0∗
µiFµνC

0
νi

(20)

The ground to excited state transition moments for an arbitrary one-body operator

can be evaluated in the LR-TD-SCF formalism according to Eq. (21).22,61,64 For the

coupling between ground and excited states induced by an external point charge, the

relevant operator is V̂ from Eq. (1).

〈Ψ0| V̂ (rpc) |ΨI〉 =
∑

ia

Via(rpc)X
I
ia + Vai(rpc)Y

I
ia (21)

In order to map out the the dependence of the transition potentials between elec-

tronic energy eigenstates on the point charge position, rpc, one only needs to form

V(rpc) for different rpc and recompute its trace with the transition densities for each

transition of interest according to Eq. (21).

The point charge induced transition rates between the ground and excited states can

be approximated by application of the (state-to-state) Fermi’s golden rule expression65

given in Eq. (22).

w0I(rpc) = 2π
∣

∣

∣
〈Ψ0| V̂ (rpc) |ΨI〉

∣

∣

∣

2
(22)

Results

In each TD-SCF calculation reported in this study, the atomic or molecular system

was initialized in its optimized DFT ground state. For RT-TD-DFT simulations, the

TD-KS equation was integrated according to Eq. (16) with a 0.05 AU time step for a

total of 50,000 steps, yielding 2,500 AU of simulated electronic dynamics. With these

simulation parameters, the electronic energy was conserved to within 10−11 AU during

the perturbation-free evolution. Impulsive point charge perturbations were applied as
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described in the methodology section (see Fig. 2) during only the first time step of

each simulation. All spin-allowed excitations ranging from valence to core transitions

were allowed (i.e. no frozen core approximation was employed.) For molecular systems,

geometries were optimized in the electronic ground state at the same level of theory

employed in the LR/RT TD-DFT calculations.

In addition to performing time domain simulations of the impulsively-perturbed

systems, the matrix elements of the point charge potential between the DFT ground

state and LR-TD-DFT excited states were also evaluated to calculate Fermi’s golden

rule electronic transition rates.

Dipole Approximation Validity at Large Distances

In three separate RT-TD-DFT/6-31g(d) simulations of the benzene molecule, an impul-

sive point charge perturbation was applied at a distance of 100 a0 from the molecular

center of mass (COM) along each Cartesian axis, such that the resulting electric field

is 0.0001 AU in magnitude at the COM. Frequency domain autocorrelation functions

were computed from the dipole moment expectation values collected at each time step

of the simulations. To gauge the similarity of perturbations experienced by a system

from a distant point charge and an homogeneous electric field, analogous simulations

were performed in which a 0.0001 AU homogenous electric field impulse polarized along

each axis was applied to the system (in the same lab-frame as the previous simulations).

The rotational average of the (frequency domain) dipole autocorrelation function

resulting from application of these two types of impulse perturbations are plotted in

Fig. 3. While the same electronic excitations are promoted by the homogenous elec-

tric field and that of a distant point source, the excited state populations are not in

quantitative agreement due to the inhomogeneity of the field strength from the point

source over the volume of the molecule. Nevertheless, there are neither optically dark

transitions that are promoted by the distant point charge nor optically bright tran-

sitions that are not enacted by the distant point charge perturbation, demonstrating

that dipole selection rules for electron beam induced electronic excitation are upheld
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in the aloof beam geometry.
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Figure 3. Rotationally-averaged, frequency domain dipole autocorrelation func-
tions for benzene following application of a 0.0001 AU homogenous electric field
impulse in x, y, and z directions, as well as an impulsive point-source electric field
from a particle of elementary charge placed 100 a0 away from benzene’s center of
mass (COM) along x, y, and z.

Dipole Approximation Validity at Intermediate and Small

Distances

A series of real time TD-DFT simulations were performed for an isolated carbide ion in

which the impulsive point charge perturbation was applied at different distances from

the carbide center of mass. The 6-31+g(d) basis set was utilized, since its extra set of

diffuse functions for each (valence) angular momentum shell provides an adequate de-

scription of the carbide ion’s ground state electron structure, and also permits relatively

large amplitude fluctuations in the electron density. The dipole autocorrelation func-

tions reveal the changes in excited state population that result from applying the point

charge perturbation at these different distances. The distribution of electronic energy

eigenstates contributing to the superposition after the point source electric field pertur-

bation is applied (see Fig. 5) varies non-monotonically in the point charge’s placement.

The strongly dipole allowed (see Tab. 1), parity flipping 2p → 3s transition shows

appreciable transition rates over large distances, while the rates of parity-preserving
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transitions increase sharply with respect to the point charge’s proximity to the atomic

center.

The Fermi’s golden rule transition rates from the ground to LR-TD-DFT excited

states for particular transitions are also reported in Fig. 6 across a range of separation

distances from the carbide COM. Since the perturbation is only applied during the first

time step in the RT-TD-DFT simulations (and ∆t << ~/|V0I |) rates/probabilities from

the first order perturbation theory accurately capture the weights of each excited state

contributing to the final state of the system from the time-domain simulations. The

peak at ∼2 eV (the 2p → 3s transition), for instance, shows close to zero transition

probability from LR-TDSCF at ∼1 Å separation and essentially zero population in

the RT-TD-DFT dipole autocorrelation function. More generally, the relative excited

state populations encoded into the intensity of peaks in the dipole autocorrelation

functions (Eq. (17)) are proportional to the transition probabilities from LR-TD-DFT,

as indicated by the near unity correlation coefficient in the linear fit of the the dipole

autocorrelation function intensities and LR-TD-DFT transition rates shown in Fig. 4.
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Figure 4. Plot of the dipole autocorrelation function intensities versus Fermi’s
golden rule transition rates evaluated over a range of distance (0.5 Å to 5.0
Å) for the identified transitions, along with lines of best fit and corresponding
coefficients of determination, R2.

To contextualize the findings of the ab initio results, consider the point charge

potential matrix elements between states of well-defined parity in two extreme limits
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Table 1. Excitation energies and transition dipole strengths (mod. squared) for
the dipole-allowed transitions of the carbide ion.

Transition Energy (eV) ‖µ0I‖
2 (AU)

2p → 3s 2.3880 4.6093
2s → 3p 12.147 0.1373
2p → 4s 25.864 0.1661
2s → 4p 29.409 0.1443
2p → 3d 53.490 0.5178
1s → 3p 275.66 0.0060
1s → 4p 294.80 0.0103

for the point charge’s position relative to the atomic center. The electric field that the

atom experiences from a point charge at infinite separation distance approaches perfect

spatial homogeneity, and is therefore even(gerade) in the center of mass coordinates of

the atom. Conversely, a point charge residing at the atomic center of mass produces

an odd(ungerade) electric field in this same coordinate system. Consequentially, both

parity preserving and parity flipping transitions can be induced by the point charge

perturbation depending on its location relative to the inversion center.

Take, for instance, the electrons occupying the 2s orbital of carbide in its elec-

tronic ground state. When a repulsive point charge is placed in the interior of their

spherically-symmetric charge distribution, the average forces they experience will be

oriented outward (radially). In the limit where the negative point charge is placed

directly at the atom’s center, the charge contributed by one proton is negated. In this

limit, the eigenstates of the perturbed electronic Hamiltonian for carbide are (neglect-

ing hyperfine splitting) identical to the more loosely-bound states of the unperturbed

boride ion. In terms of the energy eigenstates of the carbide ion, though, this cor-

responds to a transition to a state in which s orbitals of higher principle quantum

number become populated. Parity preserving transitions such as these are forbidden

by symmetry under the electric dipole approximation. That they are quite strongly

allowed under the full scalar potential of a perturbing charge in close proximity to the

atomic center (see Fig. 6 and Fig. 7) indicates that terms beyond the dipole in the

multipolar expansion are required to recover the nonzero rates for these transitions.
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The disagreement between transition dipole strength and EELS intensity for systems

exhibiting inversion symmetry has been appreciated experimentally in the case of elec-

tron beam excitation of optically-dark localized surface plasmon resonances in metal

nanoparticles66 and the hybridized modes of their dimers.67,68
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Figure 5. (left) Valence excitation region of the frequency-domain dipole auto-
correlation function, F [〈µ(0)µ(t)〉] (ω) for separation distances between the car-
bide COM and point charge ranging from 0.5 to 5 Ångstroms. (right) Carbon
k-edge region of the spectrum with differently scaled axes relative to valence re-
gion on left for clarity of presentation.

To summarize this section, we have shown that the proportionality between a

point charge induced electronic excitation’s probability and its corresponding tran-

sition dipole strength is broken when the distance between the external point charge

and the material’s bound electron density is small, showing zero dipole strength for

transitions that are significantly allowed under the full electric potential of the point

charge for certain positions (and vice versa.) This is the Fourier compliment to the

well-known caveat that the electric dipole approximation is valid only in the small

momentum transfer limit.39 However, since the position of a convergent electron beam

can now routinely be controlled with sub-Ångstrom resolution in modern aberration

corrected scanning transmission electron microscopes, methods for determining the

allowedness of electronic transitions for a given beam position may prove to be of

considerable practical value.
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Figure 6. Fermi’s golden rule rates for representative transitions, w0I , calcu-
lated according to Eq. (22) for the isolated carbide ion across a range of impact
parameters. For transitions involving p and d orbitals, the reported rates are the
summed rates for all degenerate excitations.
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Figure 7. Ground state radial probability density for carbide calculated at the
B3LYP/6-31+g(d) level of theory.
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Dipole Approximation Validity and Point Charge Proxim-

ity

A charged particle emanates an electric field with magnitude proportional to the in-

verse squared distance from the particle, so it is straight-forward to renormalize the

transition rates, w0I , at a given impact parameter with respect to the electric field

strength. In this way, the dependence of electronic transition rates on the degree of the

electric field’s polarization inhomogeneity can be isolated. Rates that have been renor-

malized with respect to the electric field intensity are plotted in Fig. 8 for representative

transitions. Since the polarization of the electric field from a point source approaches

homogeneity at large distances from the point source, the impact parameter at which

a renormalized transition rate in Fig. 8 converges to its long distance asymptotic value

indicates the critical distance where the electric field from the point charge becomes

effectively homogenous over the volume of the transition density. For point charges

positioned this distance or further from the material, the dipole description of the

field polarization holds exactly. Optically bright transitions in Fig. 8 are distinguished

from the dipole-disallowed transitions by their non-zero renormalized rates in the large

impact parameter limit. For the dipole-forbidden, but quadrupole-allowed 2s → 3d

transitions, the non-convergence of the renormalized rates at large impact parameters

is consistent with a priori knowledge of the dipole approximation’s inadequacy over

all impact parameters.

The range of impact parameters over which the dipole approximation holds for

a particular electronic excitation is ultimately determined by the spatial extent of

the corresponding transition density. A cursory visual comparison of the determined

dipole approximation validity range and the radial electron probability density (Fig. 7)

suggests a general rule-of-thumb though: terms beyond first order in the multipolar

expansion of the electronic transition probability can be non-negligible whenever a

perturbing point charge is placed into a region where a material’s electron density is

substantially nonzero.
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Point Charge Induced Electronic Excitation Maps

By evaluating the electronic transition rates for different point charge locations in and

around the volume of a material, the point charge positions which maximize a given

transition rate can be identified. We demonstrate this here for the pyrene molecule

described by the B3LYP/6-31g(d) model chemistry. The position-dependent transition

rates, w0I (Eq. (22)), were evaluated on a regularly-spaced grid with 0.1 Åresolution,

and are plotted as isosurfaces in Fig. 9. The position dependent breakdown of the dipole

selection rules is again demonstrated for this molecular system, with transitions to

excited states exhibiting zero transition dipole strength from the ground state becoming

strongly allowed for certain point charge positions.

One may suspect that for a given transition, regions in which electron density is

depleted in the excited state (i.e. negative difference density relative to the ground

state) would correspond to the regions where the probability of point charge induced

transition would be large. After all, the effect of the negative point charge is to repel

the like charged electron density. The difference densities (relaxed69 excited state

density minus the ground state density) of the three transitions for which the position-
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Figure 9. Spatial dependence of the transition rate from the ground to three
lowest energy excited singlet states of pyrene. From top to bottom: transition rate
(w0I) isosurfaces for the ground to first (3.72 eV, ‖µ01‖ = 2.8), second (3.79 eV,
‖µ02‖=3.5×10−4), and third (6.46 eV, ‖µ03‖=1.×10−10) singlet excited states,
with isovalues indicated by color in AU.
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dependent point charge transition rates are plotted in Fig. 9 were calculated, and are

shown as isosurfaces in Fig. 10.70 Owing to the fact that electron density that is repelled

by the beam must also be displaced in the direction of regions of positive difference

density for that same transition for strong coupling, the difference densities do not

show any appreciable correlation with the transition rate isosurfaces in Fig. 9.

Finally, we have also evaluated the excited state energy gradients (at the ground

state equilibrium geometry) in the three lowest energy excited states of pyrene. These

excited state forces determine the structural response of the material in the instants

following the electronic excitation. With the combined knowledge of excited state

forces and the spatial dependence of point charge induced electronic excitation proba-

bilities, one can begin to determine where an electron beam should be focused in order

to activate a particular local vibration through inelastic scattering. In the event that

the forces in the excited state are sufficient to overcome energetic barriers preventing

rearrangement/isomerization, electronic excitation by beam electrons can provide a

route to selectively manipulate the structure of materials. Such beam-induced isomer-

ization events have been observed during transmission electron microscopy imaging of

graphene with beam energies well below the knock-on threshold,71 suggesting a non-

trivial role for electronic excitations in facilitating the isomerization. While the role of

excited state vibrational evolution and nonadiabatic relaxation through conical inter-

sections in the photoisomerization of molecular systems72,73 (and photoinduced phase

transitions in condensed matter74,75) is well recognized, the potential for harnessing

these processes to induce localized structural modifications in materials through selec-

tive electron beam exposure is yet to be widely appreciated. The ability to engineer

local structural modifications of materials with convergent electron beams could rep-

resent a milestone on the pathway to atomically precise materials manipulation and

manufacturing technologies.
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Figure 10. Charge density difference isosurfaces (isovalue = ±0.001 e/a3
0
) for the

three lowest energy transitions of pyrene (presented in the same order as Fig. 9.)
Red(blue) indicates depleted(excess) density relative to the ground state.
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Figure 11. Changes in forces on nuclei upon electronic excitation to the three
lowest energy singlet excited states in pyrene (presented in the same order as
Fig. 9.) Force vectors are scaled identically for all three electronic transitions.
Note that all forces lie in the plane of the molecule for these particular transitions.
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Summary and Conclusions

In this paper, methods for evaluating rates of point charge induced transitions between

electronic states in materials using linear response TD-DFT were presented, and shown

to be consistent with the final populations of excited electronic states from real time

TD-DFT simulations following an impulsive point source electric field perturbation.

We also presented a straight-forward method to determine the validity of the electric

dipole approximation to the electric potential between a material and external point

charge at a given spatial separation. It was shown that the dipole approximation fails

to capture certain allowed transitions in materials that exhibit inversion symmetry.

More generally, terms beyond the dipole in the expansion of the scalar potential are

essential to a correct description of the selection rules when the perturbing charge

is located near to or inside of a material’s distribution of bound electron probability

density. This scenario is ubiquitous in routine operation of EELS and electron mi-

croscopy instrumentation, so the methods put forth here will allow a more complete

understanding of energy transfer from electron beam to the excited electronic states

of materials, and therefore the structural damage that samples sustain under electron

beam irradiation.

Furthermore, we’ve shown how the point charge induced electronic excitation rates

can be used in conjunction with excited state energy gradient calculation to deduce the

instantaneous vibrational response in materials to a point charge perturbation applied

at specific position. This represents a humble first step toward the theory-guided

engineering of number-conserving (i.e. non-“sputtering”) structural transformations of

materials mediated by inelastic electron scattering.

In followup studies, the Authors plan to utilize the methods detailed here to inves-

tigate the response of nanophase materials to electron beam perturbations. Extensions

of the method to utilize the relativistically correct form for the scalar potential of

a swift charged particle are also planned, as well as simulations of the coupled elec-

tronic and vibrational response of the material via a mixed quantum-classical dynamics
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scheme76,77 capable of reproducing electron beam induced structural modifications of

materials.

Appendix A

The autocorrelation function of an operator, Â, is an even function defined by:

〈

Â(0)Â(t)
〉

= lim
t′→∞

1

t′

∫ t′

0
dτ Â(τ)Â(τ + t) (A.1)

Expressing the product of operators Â(τ)Â(τ+t) in the electronic energy eigenbasis,

{ΨI}, and recognizing that energy eigenstate populations {ρI} are constants of the

motion for a closed system (rendering the microcanonical ensemble average and time

average equivalent) gives:

〈

Â(0)Â(t)
〉

=
∑

I

ρI 〈ΨI | Â(0)Â(t) |ΨI〉 (A.2)

Resolving the identity and making use of the definition of the time evolution oper-

ator gives:

〈

Â(0)Â(t)
〉

=
∑

IJ

ρI 〈ΨI | Â(0) |ΨJ〉 〈ΨJ | Â(t) |ΨI〉 (A.3)

=
∑

IJ

ρI 〈ΨI | Â(0) |ΨJ〉 〈ΨJ | Û
†(0, t)Â(0)Û(0, t) |ΨI〉 (A.4)

Since {ΨI} are the solutions to the time independent Schrödinger equation, ĤΨI =

ΨIEI , the time evolution and (time-independent) Hamiltonian operators commute, the

autocorrelation function expression simplifies to:

〈

Â(0)Â(t)
〉

=
∑

IJ

ρI 〈ΨI | Â |ΨJ〉 〈ΨJ | Â |ΨI〉 e
−i(EI−EJ )t (A.5)

Defining ωIJ = EI − EJ , letting Â = µ̂, and Fourier transforming yields Eq. (17)

directly.
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