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We present an efficient implementation of a surface Green’s-function method for atomistic modeling of
surfaces within the framework of density functional theory using a pseudopotential localized basis set approach.
In this method, the system is described as a truly semi-infinite solid with a surface region coupled to an electron
reservoir, thereby overcoming several fundamental drawbacks of the traditional slab approach. The versatility
of the method is demonstrated with several applications to surface physics and chemistry problems that are
inherently difficult to address properly with the slab method, including metal work function calculations, band
alignment in thin-film semiconductor heterostructures, surface states in metals and topological insulators, and
surfaces in external electrical fields. Results obtained with the surface Green’s-function method are compared to
experimental measurements and slab calculations to demonstrate the accuracy of the approach.
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I. INTRODUCTION

Atomic-scale modeling has established itself as a
workhorse tool in computational materials science. First-
principles methods are routinely applied to study the physical
and chemical properties of materials and material structures,
including surface structures [1–6]. The slab approach to
surface calculations, which models a surface structure with
just a few atomic layers, has become the de facto standard
for first-principles atomistic simulations of surfaces. This is
despite the fact that a physical surface is a semi-infinite system,
interfaced to the vacuum, unless the surface of an unsupported
ultrathin film or membrane is considered.

A slab is by construction finite in the direction perpendicu-
lar to the surface plane, and it therefore has two surfaces, which
are not always equivalent. As a consequence, the electronic
structure of the surfaces of the slab is altered by quantum
confinement along this out-of-plane direction. It means that
the accuracy of the slab approach to modeling a semi-infinite
surface may critically depend on the slab thickness [7,8].
This leads to a number of fundamental limitations on the
applicability of the slab model for surface calculations. For
example, converging surface properties such as work functions
and surface energies with respect to the slab thickness is
notoriously difficult [9,10], and using thin slabs can result
in an inaccurate electronic structure for both metal [11], and
semiconductor surfaces [12,13]. This drawback is well known
with the cluster approach to modeling periodic systems, where
the property of interest often exhibits a slow and sometimes
cumbersome convergence behavior with respect to the cluster
size [14,15].

Different alternative methods based on the surface Green’s-
function (SGF) formalism have been proposed to overcome the
drawbacks of the slab approach to surface modeling [16–23].
In the SGF method, the semi-infinite system is divided into a
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finite surface region and a semi-infinite bulk region, as shown
in Fig. 1. The bulk region acts as an electron reservoir, and the
surface region is coupled to this bulk region through the self-
energy as discussed in Refs. [24–26]. The electronic structure
of the entire surface system is calculated in a self-consistent
manner, accounting for charge transfer between the bulk and
surface regions, as well as for charge redistribution in the
surface region. It means that the surface region becomes an
open system interacting with the infinite reservoir of electrons
that provides a physically correct description of a semi-infinite
surface structure.

In spite of their advantages, the SGF-based methods have
not found broad application in computational surface science,
where the slab model continues to be the method of choice.
This might be partly because one of the most popular imple-
mentations of density functional theory [27,28] (DFT) is based
on the pseudopotential plane-wave basis set approach [29],
which allows one to accurately converge the DFT calculations
of material properties with respect to the basis set functions
in a simple, systematic manner [30,31]. This approach is
also computationally demanding for calculating large surface
structures. In the linear combination of atomic orbitals (LCAO)
approach, the Kohn-Sham (KS) single-particle Hamiltonian is
represented in a tight-binding-like matrix form, which can be
naturally adopted within the framework of the SGF formalism.
The DFT calculations done with LCAO basis sets usually
have a lower computational cost compared to that of the DFT
plane-wave calculations since a relatively small number of
localized basis functions is employed in practical calculations.
That has its downside, as the use of too few basis functions
may alter the computational accuracy.

Several implementations of the surface Green’s-function
formalism have been recently reported for both local-
ized [22,32] and plane-wave basis set methods [33,34]. The
latter takes advantage of a real-space representation for
the Bloch states within the framework of the embedding
method [35] or the maximally localized Wannier-function
approach [36]. The computational issues discussed in the
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FIG. 1. Illustration of a typical semi-infinite surface configuration. The Hamiltonians of the surface region (HS) and the principal layer
of the semi-infinite bulk region (HB), are coupled through the coupling terms VSB. A Dirichlet boundary condition is used at the boundary
between the bulk and surface regions. In the vacuum region, a Neumann or Dirichlet boundary conditions can be used. LS (LB) is the length of
the surface region (the bulk region principal layer) along the out-of-surface-plane (Z) direction.

previous paragraph still hold true for the plane-wave and
LCAO-based SGF implementations, and need to be properly
addressed to allow for both efficient and reliable SGF-based
surface calculations.

In this paper, we present an efficient, accurate, self-
consistent SGF method for first-principles calculations of the
total energy and electronic structure of surfaces that has been
implemented in the ATOMISTIX TOOLKIT (ATK) simulation tool
within the framework of the DFT pseudopotential LCAO basis
set approach [37,38]. The present implementation of the SGF
method takes an advantage of the highly optimized Green’s-
function methodology that has already been implemented
in the ATK code for two-probe device simulations [24,39].
We develop new optimized LCAO basis sets (see Appendix)
used in combination with recently developed SG15 optimized
norm-conserving Vanderbilt pseudopotentials [40]. This al-
lows for highly accurate LCAO calculations of material
structure properties, with an accuracy similar to that of
plane-wave based methods, and the computational efficiency
of LCAO-based methods. This is of particular importance for
an accurate description of the surface structures studied in our
work.

We apply the ATK-SGF method to several surface problems
that are inherently difficult to properly address with the
traditional slab approach, including the calculation of metal
work functions, band alignment in thin-film semiconductor
heterostructures, surface states in metals and topological
insulators, and the properties of adsorbates interacting with
surfaces in external electric fields. For these studies, the
ATK-SGF implementation has been combined with several
methodological developments: (i) a real-space multigrid ap-
proach for imposing nonperiodic boundary conditions, e.g.,
for work function calculations or surface calculations with
external electric field, (ii) an implementation of doping meth-
ods, e.g., for modeling doped semiconductor substrates [37],
(iii) a pseudopotential projector-shift method for resolving
the problems of DFT in describing correctly the band gap
of semiconductors (see Appendix), (iv) an implementation of
spin-orbit coupling, which is an important effect in topological
insulators [41], and (v) self-consistent energy calculations
directly within the SGF method, e.g., for studying adsorbates
on metal surfaces.

The paper is organized as follows. Section II describes the
methodology and basic computational settings adopted in this

work, as well as implementation details of the SGF method and
its computational efficiency. Section III shows how to calculate
work functions of metal surfaces that are well-converged with
respect to the system size, using the SGF method. In Sec. IV,
the SGF method is applied for understanding of the band
alignment in a semiconductor heterostructure such as a Si film
on doped Ge(001) substrates. Section V shows how the SGF
method can be used to calculate pure surface states in metals
and topological insulators. Section VI describes an application
of the SGF method for surface chemistry problems such as
the adsorption of iodine atoms on the Pt(111) surface in the
presence of an external electric field. The main conclusions
are summarized in Sec. VII.

II. METHODOLOGY

A. Electronic structure method

Our implementation of the surface Green’s-function
method is done within the framework of density functional
theory [27,28,42,43] using the norm-conserving pseudopo-
tential LCAO basis set approach [39,44]. The corresponding
Kohn-Sham (KS) Hamiltonian can be written as

Ĥ KS = −
h̄2

2m
∇2 + Vloc + Vnl + VH + Vxc, (1)

where the first term corresponds to the electron kinetic
energy, Vloc and Vnl are the local and nonlocal parts of
the pseudopotential, respectively, and the Hartree (VH) and
exchange-correlation (Vxc) potentials are given by the last two
terms.

Using an LCAO basis allows representing the KS Hamil-
tonian in a matrix form with the following matrix ele-
ments [24,39]

HKS
ij = 〈φi(r)|Ĥ KS|φj (r)〉, (2)

where φi(r) and φj (r) are localized finite-range numerical
orbitals [45,46]. To evaluate the Hamiltonian matrix elements
in Eq. (2), we follow the SIESTA method [39], where the VH

and Vxc terms are calculated on a real-space grid.

B. Pseudopotentials and basis sets

Using a pseudopotential LCAO approach requires a careful
choice of the pseudopotential and LCAO basis set to do
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computationally efficient DFT calculations without compro-
mising the accuracy of the obtained numerical results. We
have developed three types of SG15 pseudopotential-based
basis sets corresponding to Ultra, High, and Medium accuracy
for all elements in the periodic table up to Z = 83. The
SG15-Ultra basis sets provide the accuracy of DFT-LCAO
calculations comparable to that of the state-of-the-art all-
electron calculations, whereas the SG15-Medium basis set
type allows for computationally cheap calculations with an
error that is of the same order as that due to the use of
approximate DFT functionals within the framework of local
density (LDA) or generalized gradient approximations (GGA).
Adopting the Medium basis set, we typically gain an order of
magnitude in the computational efficiency compared to the
Ultra basis set. In Appendix, we present the methodology to
generate these basis sets, and benchmark the corresponding
DFT-LCAO calculations against reference all-electron and
pseudopotential plane-wave DFT calculations to evaluate the
pseudopotential and basis set accuracy.

A reliable study of semiconductor physics problems usually
requires an accurate description of the band gap. Unfor-
tunately, the DFT approach based on local and semilocal
DFT density functionals fails to accurately calculate the
band gap of semiconductor materials [47]. To overcome this
problem we have introduced a set of adjustable parameters
for the pseudopotentials somewhat similar to the empirical
pseudopotentials proposed by Zunger and co-workers [48].
This approach allows for a good description of both structural
and electronic properties of semiconductors. This method has
been used for studying a Si thin-film on the Ge(001) substrate
in Sec. IV (more details on the generation of the parameters
can be found in Appendix).

C. Green’s-function method

Using a finite-range LCAO basis set allows for partitioning
the Hamiltonian of the semi-infinite surface into three distinct
matrix blocks that correspond to the Hamiltonian of the surface
region (HS), a single atomic layer (“principal layer”) of the
semi-infinite bulk region (HB) and the coupling matrices (VBB

and VSB), as illustrated in Fig. 1 [24]. The coupling matrices,
VSB and VBB, account for interaction between the surface
and bulk region atomic layers, and between the principal
layers of the semi-infinite bulk region, respectively. In the
ATK implementation, the coupling matrix, VSB, is expressed
in terms of the VBB matrix as described in Ref. [24], assuming
that a sufficiently thick layer of the material comprising the
semi-infinite bulk region is added to the surface region. The
infinite Hamiltonian matrix of the entire system can then be
written as

HKS =

⎛

⎜

⎜

⎜

⎝

. . .
...

...
...

...
. . . V

†
BB HB VBB 0

. . . 0 V
†
BB HB VSB

. . . 0 0 V
†
SB HS

⎞

⎟

⎟

⎟

⎠

. (3)

Using Green’s-function formalism [49], the density matrix of
the surface region, DS, can be expressed as

DS = −
1

π

∫ μB

−∞

Im[GS(ǫ)]dǫ, (4)

where μB is the bulk chemical potential, and GS is the finite
Green’s-function matrix of the surface region

GS(ǫ) = [(ǫ + iδ)SS − HS − �(ǫ)]−1, (5)

where SS and HS are the overlap and Hamiltonian matrices
associated with the basis set functions centered inside the
surface region, respectively; � is the self-energy matrix
describing the coupling of the surface to the semi-infinite bulk
region, i.e., accounting for open boundary conditions imposed
on the surface region. In most cases, the initial guess for
the Hamiltonian HS can be constructed from a superposition
of atomic densities. Obtaining the initial guess for HS from
a conventional calculation of a slab corresponding to the
surface region is also possible for systems exhibiting difficult
convergence behavior, which is the case of the calculation
including noncollinear spin-orbit coupling carried out in this
work for the Bi2Se3(111) surface, presented in Sec. V B.

Given the density matrix, the electron density, n(r), is
constructed as

n(r) =
∑

ij

[DS]ijφi(r)φj (r) + nsp, (6)

where nsp is the “spill-in” corrective term related to density
matrix components in the bulk region and the bulk–surface
boundary [25,37]. Including this term is crucial to describe cor-
rectly the charge density at the boundary between the surface
and bulk regions, by accounting explicitly for the density in the
surface region due to those basis functions in the bulk region,
which tails penetrate into the surface region. For a more exten-
sive description, we refer the reader to Ref. [37]. The electron
density, the Hartree and exchange-correlation potentials and
the surface Green’s function can then be obtained by solving
the Kohn-Sham and Poisson equations together with Eqs. (1)–
(6) in a self-consistent manner, using a procedure equivalent to
that described in Ref. [24], but for a system formed by a central
region coupled to a single electron reservoir. Depending on the
actual physical problem of study, the Poisson equation can be
solved with the Dirichlet, or mixed (Dirichlet + Neumann)
boundary conditions as shown in Fig. 1.

D. Implementation details

The numerical implementation of the SGF method is an
extension of the development done for simulating two-terminal
devices in the ATK [24,25]. In the SGF method, a single
electron reservoir is only needed to impose the open boundary
condition on the surface region. This means that the integral
in Eq. (4) comprises only the equilibrium part of the Green’s
function, which can be efficiently evaluated using complex
contour integration. Subsequently, the density matrix in Eq. (4)
can be written as

DS =
∑

k

wkGS(zk), (7)

where the complex energies zk and the weights wk are
determined as described elsewhere [24,25].

To calculate the Green’s-function matrix, GS, we have to
compute the self-energy matrix (�) of the semi-infinite bulk
region, which will be called the electrode in the following.
For that, we first obtain the electrode matrices, HB and VBB,
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from a bulk calculation using periodic boundary conditions.
The self-energy matrix in Eq. (5) can then be computed
directly from propagating and evanescent modes [50,51],
which can be efficiently calculated with an iterative method as
proposed in Ref. [52]. Here we adopt a more efficient recursive
method for the self-energy matrix calculation that does not
require an explicit calculation of the electron modes in the
bulk electrode [53]. Using the recursion method proposed in
Ref. [53], we exploit the sparsity of the bulk Hamiltonian
matrix, and find that this method gives the best balance between
stability, accuracy, and computational efficiency.

The Green’s-function matrix is eventually calculated with
the Sweep method optimized for application to the surface
configuration [54]. This method allows for finding the Green’s-
function matrix in O(N ) steps, where N is the number of
diagonal blocks in the block tridiagonal Hamiltonian matrix.
The Hamiltonian matrix elements are preordered to give an
optimal block tridiagonal structure [22]. Alternatively, the
MUMPS [55] and PEXSI [56] libraries, which allow for lower
memory consumption and parallel scaling to a larger number
of computing processors, can also be employed. We find,
however, that their serial performance is worse than that of
the Sweep method, in general.

A significant advantage of using Green’s-function tech-
niques is that the complexity of the calculation scales as
O(MαN ) instead of the typical O(M3N3) scaling of DFT
calculations using periodic boundary conditions, where 2 <

α � 3, and M is the dimension of the matrix corresponding to
each of the N blocks in the block tridiagonal Hamiltonian
matrix. The actual value of α depends on the particular
implementation of matrix operations adopted for Green’s-
function matrix calculations. The time required for a single
Green’s-function SCF cycle therefore scales linearly with
the number of surface atomic layers, instead of the usual
cubic scaling. Figure 2 shows a comparison of the CPU
time per self-consistent cycle needed to calculate a surface
configuration of length LS and a slab configuration having an
equivalent length. For a length LS = 13.5 nm, corresponding
approximately to the width of the depletion layer in bulk silicon

FIG. 2. CPU time per self-consistent (SCF) cycle as function
of the length of the surface region LS (see Fig. 1) for a surface
configuration (red filled circles, solid line), compared to the CPU
time per SCF cycle of a slab configuration (blue filled diamond,
dashed line) with the slab thickness equivalent to LS. The system
considered is a 2 × 2 unreconstructed Si(100) surface.

at an n-doping level of n = 1018 cm−3, one can see that a slab
calculation is more computationally expensive than an SGF
calculation by a factor of 5.

The Hartree potential term VH in Eq. (1) is obtained
by solving the Poisson equation with a Dirichlet boundary
condition at the electrode-surface interface and a Neumann
boundary condition in the vacuum. These mixed boundary
conditions are exact for a semi-infinite surface in the absence
of an external electric field. External fields can be included by
imposing Dirichlet and Neumann boundary conditions also in
the vacuum region, enabling simulations of surface structures
in external electric fields. In both cases, the Poisson equation is
solved using either a multigrid solver or the two-dimensional
(2D) FFT method introduced in Ref. [25].

All time-demanding steps are parallelized in the ATK,
including calculation of the Green’s-function matrix in Eq. (5),
the real-space density in Eq. (6), the real-space potentials
in Eq. (1), and Hamiltonian in Eq. (2). In particular, the
SGF calculations are parallelized over k points and contour
integration points for the Green’s-function matrix calculation.

E. Computational details

In this paper, the ATK-DFT calculations have been done
using the GGA-PBE exchange-correlation functional [57]
and the SG15-Medium combination of norm-conserving
pseudopotentials and LCAO basis sets, unless otherwise
stated. We have adopted a real-space grid density that is
equivalent to a plane-wave kinetic energy cutoff of 100 Ha,
and the Monkhorst–Pack k-point grids for the Brillouin zone
sampling [58]. For the bulk electrodes, three-dimensional grids
have been used to sample the 3D Brillouin zone. In order
to properly converge the self-energy matrices � entering in
Eq. (5), very dense k-point grids have been used in the direction
normal to the surface plane [24]. For the SGF calculations, the
system is periodic only along the directions parallel to the
surface plane, so that 2D k-point grids have been used in
this case. The choice of the actual k-point sampling depends
on the system considered, and will be reported in each of
the following sections. The broadening of the Fermi–Dirac
distribution is chosen to be of 0.026 eV. The total energy
and forces have been converged at least to ∼10−4 eV and
0.01 eV/Å, respectively.

III. WORK FUNCTION CALCULATIONS

The work function W is a fundamental electronic property
of a surface. Knowing the work function values for metal
surfaces is of particular importance in electronics [61] and
(photo)electrochemistry [62]. The work function is the energy
required to remove an electron from the Fermi level (EF) of a
cleaved crystal to the vacuum level,

W = −eφ − EF, (8)

where e is the elementary charge, e > 0, and φ is the
electrostatic potential in the vacuum region near the surface
plane.

Work function calculations based on the DFT approach
most often employ a slab model for the surface structure. This
often requires using a dipole correction to eliminate a spurious
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FIG. 3. The macroscopic in-plane averaged electrostatic differ-
ence potential 〈δVE〉 [59] calculated throughout the surface and slab
structures for the SGF model (blue solid line) and the ATK slab model
(red solid line), respectively. For both surface models, the 〈δVE〉

potential is calculated for 14-monolayer Ag(001) slab or surface
region, and is projected onto the Z axis (normal to the surface plane).
Boundary conditions of Dirichlet or Neumann type are indicated for
both SGF and slab models of the surface.

interaction between periodically repeated slab images [63].
Furthermore, the computed work function may converge
slowly with respect to the number of atomic monolayers
in the slab. So, accurate work function calculations can be
computationally intensive within the framework of the slab
approach. In this section, we demonstrate that employing the
ATK-SGF based approach for calculating work functions of
metal surfaces resolves these issues.

a. Methods. The fundamental difference between the slab
and SGF methods for ATK-DFT surface calculations is illus-
trated in Fig. 3, which shows the macroscopic in-plane aver-
aged electrostatic difference potential,〈δVE〉 [59], throughout
the Ag(001) surface structure for the slab model and the SGF
model of the surface. Both model structures of the Ag(001)
surface are effectively comprised of 14 atomic monolayers.
There exists, however, a crucial difference between the slab
and SGF-modeled surface structures, as the SGF-modeled
Ag(001) surface region is matched to that of bulk Ag region
as discussed in Sec. II.

For work function calculations, we impose a Dirichlet
(Neumann) boundary condition on the right (left) side of the
slab, see Fig. 3. It means that the electrostatic potential is zero
near the surface in the vacuum on the right side of the slab, and
the slab-calculated work function (Wslab) of the corresponding
surface is given by the slab chemical potential Eslab

F ,

Wslab = −Eslab
F . (9)

For the SGF model, a Neumann (Dirichlet) boundary condition
is adopted in the vacuum (at the interface between the surface
and bulk regions) as shown in Fig. 3. In this case, the chemical
potential of the entire surface system is that of the bulk region,
and the SGF-calculated work function, WSGF, is then given as

WSGF = −e〈δVE〉vac − Ebulk
F , (10)

where Ebulk
F is the Fermi energy of the bulk region and 〈δVE〉vac

is the macroscopic in-plane averaged electrostatic difference
potential far away from the surface in the vacuum [64].

FIG. 4. The Ag(001) work function calculated as a function of a
number of atomic monolayers in the surface region, using the ATK-
SGF method (red filled circles), the ATK (blue filled diamonds), and
VASP (gray filled squares) slab models.

For the sake of comparison, we have calculated work
functions using both the SGF and slab method. The slab model
has been employed within the framework of the LCAO and
plane-wave (PW) based approaches as implemented in the
ATK and VASP codes, respectively [31,38]. We have used a
1×1 surface primitive cell and vacuum layers with a thickness
of ∼12 Å. The 2D Brillouin zone (BZ) of the surface has been
sampled with a 15×15 k-point grid, and a 15×15×101 k-
point grid has been adopted for sampling the 3D BZ of the
bulk metal. We have done ion relaxation for the top layers of
the metal surface, converging the forces to a maximum value
of 0.01 eV/Å. For the ATK work function calculations, three
ghost atoms have been added to the surface structure near the
surface to accurately account for the electron density decaying
into the vacuum [65]. All the other ATK computational details
are given in Sec. II E. For the VASP calculations, we have
employed a kinetic energy cutoff of 400 eV and a dipole
correction [63] in the out-of-surface-plane direction.

b. Results. Figure 4 shows how the Ag(001) work func-
tion, which is calculated using the slab (SGF) model, converges
with respect to the number of atomic monolayers in the
slab (surface region). This figure suggests that rather thick
slabs are needed to converge the work function, whereas
the SGF-calculated work function is almost independent of
the surface region thickness. The main reason for this fast
convergence is that the SGF-calculated electronic structure of
the surface region is coupled to that of the semi-infinite bulk
region, meaning that the bulk states are taken into account in an
exact manner for any thickness of the surface region. In the slab
approach, one would have to increase the slab thickness signif-
icantly to accurately describe the bulk states as seen in Fig. 4.

To demonstrate that the SGF method for work function cal-
culations is accurate for various metal surfaces, we have com-
puted the work functions of 11 transition metal surfaces such
as the Ag(100), Au(111), Co(111), Cr(110), Cu(100), Ir(100),
Pd(100), Pd(110), Pt(111), Rh(100), and Ru(001) surfaces. For
the work function calculations, we have built metal slabs and
surface regions with the thickness of 13 atomic monolayers,
using experimental lattice parameters of bulk metals.

Figure 5 shows that the work functions calculated with
the ATK-SGF and PW-slab approaches agree with the
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FIG. 5. DFT-calculated vs experimental work functions. The
work functions are calculated using the ATK-SGF method (red filled
circles) and the VASP plane-wave slab method (gray filled squares).
The measured work functions are taken from Ref. [60].

experimental data within a mean error of ∼0.26 eV and an
absolute error of ∼0.5 eV [60]. This figure also suggests that
the work function values calculated with the PW-slab approach
are in a good agreement with the SGF-obtained work functions,
provided sufficiently thick (13 atomic monolayers) slabs are
adopted for the slab calculations. The absolute (mean) error
between the SGF- and slab-calculated work functions is in
the range of ∼0.1 eV (∼0.07 eV), which is smaller than the
computational absolute (mean) error ∼0.5 eV (∼0.26 eV)
estimated by comparing the calculated work functions to
measured ones in Fig. 5.

In conclusion, we demonstrated that using the SGF method
for work function calculations is more advantageous, com-
pared to the slab method, as the SGF-calculated work function
converges much faster with respect to the thickness of the
surface model structure. The ATK-LCAO results obtained
in this section suggested that the ATK-LCAO basis sets
(see Appendix) combined with the SG15 optimized norm-
conserving pseudopotentials [40] provide the accuracy of
LCAO-based work function calculations that is similar to that
of PW-based calculations.

IV. BAND ALIGNMENT IN SEMICONDUCTOR

HETEROSTRUCTURES

In this section, we address the issue of how to calculate the
electronic structure of a semiconductor surface in an accurate
manner, and how the band alignment between the surface and
a semiconducting thin-film can then be defined and calculated
from first-principles atomistic simulations. We demonstrate
that the SGF approach resolves several severe limitations
of the slab approach for the band-structure calculations of
semiconductor surfaces and interfaces.

A. Ge(001) surface

First, we study the Ge(001) surface, using the SGF approach
and comparing it to the conventional slab approach. The band-
structure calculation of semiconductor surfaces is a challeng-
ing computational problem compared to that of metal surfaces
since, among other effects, the semiconductor energy gap has
a strong dependence on the slab thickness because of quantiza-
tion effects. We show that the SGF approach allows one to over-
come this particular drawback of the slab approach, accounting
for the bulk semiconductor states in an exact manner by impos-
ing open-boundary conditions on the semiconductor surface
structure.

a. Methods. For the slab calculations of the Ge(001)
surface, we have built a set of Ge(001) slabs with increasing
thicknesses, L/a = 3, 4, 5, 6, and 7, where the lattice constant
of bulk Ge optimized at the DFT level is a = 5.725 Å. The two
Ge(001) surfaces of each slab are passivated with hydrogen
atoms to saturate the Ge dangling bonds and remove any
localized surface band emerging in the band gap of Ge. A
vacuum layer with a thickness of 16 Å is added to separate
the neighboring slab images. The Brillouin zone (BZ) has
been sampled using an 8 × 8 × 1 Ŵ-centered k-point grid [58].
The energy gap of the slab has been obtained by calculating
the local density of states (LDOS) at the innermost position
of the slab, using a 24 × 24 × 1 k-point grid for the 2D
BZ, and by taking the energy difference between the highest
energy occupied state and the lowest energy unoccupied state
in the calculated LDOS. We have adopted the SG15-High
combination of norm-conserving pseudopotential and LCAO
basis set for germanium. The total energy has been converged
to ∼10−5 eV at least. Periodic boundary conditions are
imposed in both the in-plane and out-of-plane directions.

For the SGF calculations of the Ge(001) surface, we have
attached a semi-infinite bulk region to each of the Ge(001)
slabs discussed in the previous paragraph, after removal of the
passivating hydrogen atoms on the contacted side. We impose
the Dirichlet boundary condition at the boundary located at
z = 0 Å between the surface and bulk regions as shown
in Fig. 8(a), and the Neumann boundary condition at the
boundary located at the distance of 16 Å above the Ge(001)
surface in vacuum. All the other computational settings are
adopted as for the Ge(001) slab calculations. The LDOS
has been calculated at the boundary between the surface
region and the bulk electrode, using a 24 × 24 k-point grid
to sample the 2D BZ of the Ge(001) surface, and by taking
the energy difference between the highest energy occupied
state and the lowest energy unoccupied state in the calculated
LDOS.

Note that we have not performed any ion relaxation
for neither slab nor SGF model of the Ge(001) surface
intentionally, keeping the Ge(001) surface structure the same
in both slab and SGF calculations. That allows us to separate
the effect of the slab finite size from the effect of the ion
relaxation on the band structure of the Ge(001) surface.

b. Results. To compare the electronic structures of the
Ge(001) surface calculated with the slab and SGF models,
we have done slab (SGF) calculations of the energy gap for
the Ge(001) surface as a function of the thickness of the Ge
slab (Ge surface region) adopted for modeling of the surface. In
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FIG. 6. (a) Local density of states (LDOS) calculated for a slab
configuration (blue) or a surface configuration (red) with thickness
L = 3a, where the thickness L is given in units of the lattice constant
of bulk Ge, a. (b) Same as (a), but for L = 7a. The dashed vertical
lines indicate the extremities of the band gap of bulk Ge.

Fig. 6, we show the local density of states (LDOS) calculated
at the innermost region of the slab and of surface for two
representative thicknesses, L/a = 3 and 7. One can see that the
energy gap extracted from the LDOS decreases considerably
when increasing the thickness from L/a = 3 to 7, while
the energy gap in the innermost region of the slab remains
essentially constant and matches the band gap of bulk Ge. In
Fig. 7, one can see that the energy gap value for the Ge(001)
slab goes slowly to its asymptotic value (which coincides with
the band gap of bulk Ge in this case) upon increasing the
slab thickness. Contrary to the slab calculations, the energy
gap of the Ge(001) surface modeled with the SGF approach
is essentially constant across the system, as expected for a
surface free from surface states, and does not depend on the
value of L. The energy gap of the Ge(001) surface modeled
with the SGF approach shows no further dependence on L if
the surface region thickness L/a � 4, whereas there exists a
strong thickness dependence of the Ge(001) surface energy gap
for the slab model. This suggests that the SGF model of the Ge
surface accurately represents the bulk Ge states, eliminating
any quantization effects, unlike the Ge slab model where
quantization effects are sizable, even for L/a = 7, see Fig. 7.

B. Si film on the Ge(001) surface

In this section, we study a 〈001〉-oriented Si film interfaced
with the Ge(001) surface. The main goal of this study is to

FIG. 7. The conduction-band minimum and valence-band maxi-
mum calculated for bulk Ge (black dotted lines), the Ge(001) surface
(red solid lines, filled circles) modeled with the SGF approach, and
the Ge slabs (blue dashed lines, filled diamonds) with different slab
thicknesses L given in units of the lattice constant of bulk Ge, a.

show how the band alignment at the Ge(001)|Si interface can
be calculated for different doping levels of the Ge substrate,
using the SGF approach.

a. Methods. To keep the focus on application of the SGF
methodology to the band alignment calculation rather than on
understanding of the actual complex structure of the lattice-
mismatched Ge(001)|Si interface, we have adopted a simple
model to match a Si film on a Ge substrate, where the in-plane
lattice parameter of the (minimal) lateral unit cell of the Si film
is adjusted to that of the Ge(001) surface. This matching pro-
cedure gives rise to the lateral strain of 5.5 % in the Si film. The
Si film thickness is chosen to be 2.54 nm. The corresponding
Ge(001)|Si heterostructure is illustrated in Fig. 8(a).

We have studied the Ge(001)|Si heterostructure for three
different doping levels of the Ge(001) substrate, adopting
the atomic compensation charge method for doping the
semiconductor structure, see Refs. [37,66] for more details.
We have used the SG15-Medium (High) combination of
norm-conserving pseudopotential and LCAO basis set for
silicon (germanium). All other computational settings are as
for the Ge surface calculations in the previous section. In
addition, we have done ion relaxation for the top layers of
the Ge(001) surface, as well as for the entire Si film in the
heterostructure. The forces have been converged to a maximum
value of 0.005 eV/Å. The ion relaxation has been allowed in
the out-of-plane Z direction only, meaning that the Si film is
still strained in the in-plane X and Y directions.

b. Results. The high strain in the supported Si film
strongly reduces the energy gap of the corresponding Si
slab from 1.28 to 0.46 eV as seen in Fig. 9(b). Interfacing
the Si film with the Ge(001) surface gives rise to a charge
transfer from the Ge(001) to Si surface. Table I shows
the charge (QSi) induced in the Si film upon formation
of the Ge(001)|Si heterostructure for three doping levels of
the Ge(001) substrate. Note that QSi has been scaled with
respect to its value at p = 1020 cm−3,Qp−Si. The charge
transfer results in electron accumulation on the Si film. The
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FIG. 8. (a) The Ge(001)|Si interface structure and the macro-
scopic in-plane averaged Hartree difference potential, 〈δVH〉, calcu-
lated for the Si film on the p-doped Ge substrate (p = 1020cm−3). The
green solid, black dotted and dark magenta solid lines indicate the
regions of 〈δVH〉 corresponding to the Ge(001) surface, the Ge(001)|Si
interface, and the Si film, respectively. Note that for visualization
purposes the structure has been repeated in the XY plane, while only
a single lateral unit cell is used for the actual calculations. (b) The
macroscopic in-plane averaged Hartree difference potential, 〈δVH〉,
along the Z direction for the p-doped (blue), and n-doped (red, green)
Ge substrate.

electron accumulation further increases for increasingly larger
n-doping of the Ge(001) substrate.

Figure 8(b) shows the macroscopic in-plane averaged
Hartree difference potential 〈δVH〉 [59,64], for the different
doping levels. One can see that 〈δVH〉 in the Si film goes
upwards with respect to the potential in the bulk Ge region
upon increasing the n-doping level in the Ge(001) substrate.
This behavior of the electrostatic potential is due to the electron
transfer from the Ge(001) to Si surface. The corresponding
electric field that arises from the negative charge in the Si film
penetrates into the Ge(001) substrate. To quantify the band
alignment at the interface between the Si film and the
Ge(001) substrate, we have calculated the DOS across the
heterostructure for each doping level, see Fig. 9. In the case
of p-doping, the Ge(001) surface is in the hole accumulation
regime, and the charge transfer from the Ge(001) to Si surface
results in a short screening length for 〈δVH〉, see Fig. 9(a).
When the Ge(001) substrate is n-doped, the Ge(001) surface
is in the electron depletion regime that gives rise to a longer
screening length [see Fig. 9(c)] compared to the case of p

doping for comparable magnitudes of the doping level. For a
higher n-doping level, the screening length gets significantly
reduced as seen in Fig. 9(d), meaning that the space charge is
confined in the Ge(001) near-surface region. Table I suggests
that the charge redistribution across the entire heterostructure

gives rise to a doping-dependent potential barrier 	b at the
Ge(001)|Si interface.

Figure 9 also shows a plot of 〈δVH〉 (overlaid on the DOS)
that defines the actual edges of the bands as demonstrated in
Ref. [37]. On the Ge side, this is achieved by shifting 〈δVH〉

of an energy equal to the difference between the Fermi energy
and the conduction band minimum (CBM) or the valence band
maximum (VBM) in bulk Ge. In the silicon thin film, 〈δVH〉

is shifted by an energy equal to the difference between the
Fermi energy and the CBM or the VBM in the corresponding
silicon slab. Figure 9 allows us to extract the band alignment
parameters such as the interface potential, 	b, which is given
by the distance between the Ge CBM at the interface and
in the bulk Ge region. The 	b potential acts as a barrier
for the electron injection from the Ge(001) substrate into
the Si film. Another band alignment parameter of relevance
is the conduction (valence) band offset 
Ec (
Ev) that we
define as the distance between the conduction band minimum
(valence-band maximum) in the bulk Ge region and the surface
region of the Si film. A positive sign of the conduction band
offset (
Ec > 0) indicates that there exists a potential barrier
for the electrons propagating from the bulk Ge region to the Si
film. The band alignment parameters extracted from the data
shown in Fig. 9 are listed in Table I. For each of the three
heterostructures with different doping levels, 
Ev and 
Ec

have the same sign, meaning that the band alignment is of type
II with staggered Ge and Si gaps. However, if the conduction
and valence band offsets are defined right at the Ge(001)|Si
interface, the p-doped heterostructure has a type III broken
gap. We notice that applying Anderson’s electron affinity rule
would result in a qualitatively different band diagram for the
Ge(001)|Si heterostructure compared to that obtained from
the present first-principles study. That suggests that using this
empirical rule might not reliably predict the band alignment
in complex heterostructures where microscopic details of
the interfaces between dissimilar semiconducting materials
matter.

Figure 9 also suggests that there exist Ge(001) states
that penetrate into the Si film, and this state penetration is
related to one of the mechanisms responsible for the electron
donation to the Si film, in agreement with earlier predictions
for semiconductor heterojunctions [67]. This is particularly
evident for the highly n-doped Ge(001) substrate as shown
in Fig. 9(d), where we see that the 〈δVH〉 potential in the Si
film virtually follows the DOS penetration profile related to
the conduction band states of the near Ge(001) surface region.

Using Fig. 9, one can conclude that some Si states
also penetrate into the Ge(001) substrate. In particular, for
the highly n-doped Ge(001) substrate this gives rise to a
nonmonotonic behavior of the 〈δVH〉 potential, which has a
minimum near the interface. Note that there exist no midgap
energy levels at the surface of the Si film as seen in Fig. 9,
confirming that hydrogen passivation of the Si(001) surface
has efficiently removed all the surface point defects related to
the Si dangling bonds. Similarly, we do not find any localized
interface states at the Ge(001)|Si interface. All the states at
the interface arise from penetration of either Ge substrate or
Si film states across the interface.

In conclusion, the present study demonstrated that the SGF
approach provides an insightful, accurate, computationally
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FIG. 9. Band diagrams showing the density of states (DOS) across the Ge(001)|Si heterostructure for (a) p-doped Ge(001) substrate with
p = 1020 cm−3, and n-doped Ge(001) substrate with (c) n = 1020 cm−3 and (d) 1021 cm−3. Notice that 〈δVH〉 in the Si region has been
shifted to match the energy gap of the Si film. (b) Band diagram of the unsupported Si film (Si slab) showing the 〈δVH〉 superimposed on
the DOS.

efficient way for calculation and analysis of complex semi-
conductor heterostructures at the microscopic level within the
framework of DFT. We have shown that the SGF approach is
superior compared to the commonly used slab approach as it
accounts for bulk states of semiconductor substrates in an exact
manner, unlike the slab approach that suffers from finite-size
effects.

V. SURFACE STATES

Electronic surface states are notoriously difficult to describe
using the slab method, as equivalent states localized on both

TABLE I. Band alignment parameters of the Ge(001)|Si interface
for the three different doping levels of the Ge(001) substrate. QSi

(Qp-Si) is the induced charge in the (p-doped) Si film, where Qp-Si =

0.49 × 1012 e/cm2. 	b is the Schottky barrier at the Ge(001)|Si
interface. 
Ev (
Ec) is the offset between the Si film and bulk
Ge valence (conduction) band maxima (minima). Note that the QSi

charge is calculated by integrating the electron difference density over
the Si film [59].

Doping level QSi − Qp-Si 	b 
Ev 
Ec

cm−3 e/cm2 eV eV eV

p = 1020 0 0.08 −0.41 −0.63
n = 1020 −2.44 × 1012 0.39 0.28 0.08
n = 1021 −6.70 × 1012 0.15 0.50 0.27

surfaces of the slab will interact strongly if the slab is not thick
enough. A posteriori corrections [68] are then needed to decou-
ple the surface states and to correctly model the field depen-
dence of the surface state properties. In this section, we show
that the surface states are naturally taken into account within
the framework of the SGF method, which deals with a single
surface only, and external fields can be applied by shifting the
potential near the surface in the vacuum in a simple manner.

We focus here on studying the Shockley surface state that is
present at the center of the Brillouin zone on the (111) surfaces
of noble metals [69], and the topologically protected surface
states that are present at the surface of topological insulators
(TIs) [70,71]. As an example of a Shockley-type surface
state, we consider the Ag(111) surface, for which accurate
experimental data from photoemission spectroscopy (PES)
and scanning tunneling spectroscopy (STS) are available. It
has also been demonstrated that external electric fields can
alter the surface state and change its overall properties [72,73].
As a prototypical TI surface, we consider a Se-terminated
Bi2Se3(111) surface. A previous work has also adopted a
SGF-type approach to describe the formation of surface states
on the Bi2Se3(111) surface, but that approach was based on a
parametrized effective Hamiltonian [70,74]. In the following,
we give a first principles, atomistic description of the surface
states that is not based on any adjustable parameters. For
both the Ag(111) and Bi2Se3(111) surfaces, the surface states
are identified in the surface band structure, which has been
described with the density of states (DOS) calculated along
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the M → Ŵ → K k-point path in the 2D Brillouin zone (BZ)
of the surface.

A. Ag(111) Shockley surface state

a. Methods. We have done the ATK-SGF calculations
using a surface region comprised of 27 atomic monolayers and
a vacuum layer with a thickness of 20 Å. This large number of
Ag(111) monolayers is used to increase the contribution of the
bulk Ag states to the electronic structure of the surface region
projected onto the 2D BZ of the (111) surface. We notice that
the Shockley surface state is highly localized at the surface,
and it can be accurately described by using just seven atomic
monolayers in the surface region. It means that we could adopt,
in principle, a smaller surface region, adding the DOS of bulk
Ag to the SGF-calculated DOS of the surface region.

The surface 2D BZ has been sampled using a 21 × 21 k-
point grid. The corresponding 3D BZ in the bulk electrode
has been sampled using 21 × 21 × 201 k points. Following
the procedure described in Ref. [65], we have included a layer
of ghost atoms above the top monolayer of the surface to
accurately describe the decay of the surface electron density
into the vacuum. The SGF surface calculations have been done
for different external electric fields applied perpendicularly
to the surface plane, ranging from Ez = −0.27 V/Å to
+0.27 V/Å, at a regular step of 
Ez = 0.054 V/Å. In the
SGF method, an electric field is imposed with the Dirichlet
boundary condition by shifting the electrostatic potential
value in the vacuum, while keeping the chemical potential of
the semi-infinite bulk region unchanged. Note that this pro-
cedure resembles an experimental measurement in which the
surface is exposed to an external field generated by a scanning
tunneling microscopy tip [72]. The Ag(111) surface structure
shown in Fig. 10 has been built using the DFT-PBE calculated
lattice constant of bulk Ag (aAg = 4.086 Å). Subsequently,
we have done ion relaxation for the top surface layers. More
information on the computational details of the ATK-SGF
calculations can be found in Sec. II E.

b. Results. Figure 10 shows the difference (
VH) in the
Hartree potential induced by the external electric field,


VH = VH − V 0
H, (11)

where V 0
H is the Hartree potential at zero field. Figure 10

suggests that applying the external field induces a perturbation
of the Hartree potential that is far beyond the Ag(111) topmost
monolayer, located at Zsurf = 68.64 Å. For the electric field
magnitude of Ez = ±0.27 V/Å, the oscillations of the 
VH

potential at Z < Zsurf , which are clearly seen in Fig. 10(b),
indicate that the field-induced perturbation of the surface
electronic structure is completely screened after the seventh
innermost Ag(111) monolayer only, with the screening being
somewhat more efficient for positive than for negative biases.

The 2D surface electronic band structure of the Ag(111)
surface is shown in Fig. 11(a) for Ez = 0 (green) and
±0.27 V/Å (violet and red). The bottom of the surface state
band (indicated by solid lines) is located at the Ŵ point, above
the highest occupied bulk state (indicated by dashed lines). At
zero field, the energy at the bottom of the surface state band
is ε − εF = −147 meV, in good agreement with the value of
−120 ± 1 meV obtained from PES measurements [75]. A fit

FIG. 10. (a) Field-induced difference in the macroscopic in-plane
averaged Hartree potential in the Ag(111) surface region, 
VH,
plotted in the out-of-surface-plane (Z) direction, for different external
electric fields, Ez. The interface between the semi-infinite bulk Ag
region and surface region is at Z = 0 Å. The black dashed vertical
line at Zsurf = 64.68 Å indicates the position of the Ag(111) top
monolayer. Ag atoms are shown as gray spheres. (b) 100 × zoom of
the inset (a) for Ez = ±0.27 V/Å.

of the parabolic dispersion of the surface state band using
the free-electron gas model, ε = (h̄k)2/2m∗, results in a value
for the electron effective mass of m∗ = 0.306 me, in close
agreement with the value m∗ = 0.31 ± 0.01 me measured with
STS [76].

Applying an electric field gives rise to a linear Stark shift
(
ε) of the surface state energy, which follows the sign of the
applied field. This behavior is clearly seen in Fig. 11(a), and
is consistent with several experimental [72,73] and theoretical
reports [68]. Figure 11(b) shows how the Stark shift computed
for the Ag(111) surface states depends on the external electric
field. A linear fit to the 
ε versus Ez data in Fig. 11(b) yields
a slope of 8 × 10−3 e·Å. It is evident that the field alters the
dispersion of the surface state bands, resulting in a variation of
the electron effective mass from m∗ = 0.301 me to 0.314 me

corresponding to Ez = −0.27 and +0.27 V/Å, respectively.
This is in agreement with the results previously reported for
the Cu(111) surface state [68].

Strikingly, the variation of the Stark shift, 
ε, is linear with
respect to the Ez even in the limit of a vanishing field, when the
shift calculated with the slab model would exhibit an avoided
crossing behavior as a result of the interaction between the
surface states at the two surfaces of the slab [68]. Figure 11(b)
also shows that the position of the lower band edge (LBE) of the
bulk bands remains fixed in the SGF-calculated band structure
of the Ag(111) surface, while Ez changes. We notice that this
physically correct behavior is not captured by the slab model,
as the Ag states of the thin slab structure are not pinned to the
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FIG. 11. (a) Band structure of the Ag(111) surface along the M →

Ŵ → K k-point path of the 2D Brillouin zone in the vicinity of the
Fermi energy and close to the Ŵ point, for applied fields of −0.27 V/Å
(left inset), 0.0 V/Å (center inset) and +0.27 V/Å (right inset).
The horizontal solid (dashed) lines indicate the lowest energy of the
surface states (highest occupied bulk states) at the Ŵ point. (b) Stark
energy shift (
ε) of the Ag(111) surface state against the Ez-electric
field applied. Filled circles and black solid line correspond to the
surface state (SS) and a linear fit of the calculated data, respectively.
The filled squares correspond to lower band edge (LBE).

true bulk Ag states, and therefore the corresponding bulk-like
bands of the slab can be shifted by the applied electric field.

B. Bi2Se3(111) topologically protected surface state

a. Methods. To study the topologically protected sur-
face states on the Bi2Se3(111) surface, we have con-
structed the Bi2Se3(111) surface structure, using a fully
relaxed bulk Bi2Se3 unit cell, where the forces and
stress were converged to 0.05 eV/Å and 1 GPa, respec-
tively. The surface region comprises 37 atomic mono-
layers, corresponding to 7.6 quintuple layers (QLs). The
principal layer of the bulk region consists of 3 QLs. For
the sake of simplicity, we have not done ion relaxation of the
surface. A noncollinear spin formalism including spin-orbit

FIG. 12. (a) Band structure of the Se-terminated Bi2Se3(111)
surface along the M → Ŵ → K k-point path in the 2D Brillouin
zone in the vicinity of the Fermi energy, close to the Ŵ point. (b)
Density of states at the Ŵ point. The red horizontal lines in both insets
indicate the position of the Fermi energy.

coupling has been employed in all the ATK-SGF calculations
of the topologically protected surface states [41]. The 2D
(3D) BZ of the surface (bulk) region has been sampled
with a 9 × 9 (9 × 9 × 201) k-point grid, and the broadening
of the Fermi–Dirac distribution for calculating the electron
occupation has been set to a rather small value of ∼0.004 eV.

b. Results. In Fig. 12(a), one can see the electronic band
structure of the Bi2Se3(111) surface, calculated with the
ATK-SGF method. This figure suggests that there exist two
topologically protected surface states inside the electronic
gap of bulk Bi2Se3, as the two surface states cross at the
Fermi energy (the Dirac point), around which the dispersion
is essentially linear. This is in agreement with previous work
where either the slab [41] or SGF approach [70,74] have been
adopted to study the topologically protected surface states.

By examining the ATK-SGF calculated surface DOS at the
Ŵ point [see Fig. 12(b)], we find that the electronic energy gap
of the bulk material is of 250 meV, and the conduction band
minimum is at 170 meV above the Dirac point associated with
the surface states, in good agreement with the values reported
in earlier angle-resolved PES measurements on Bi2Se3 single
crystals [71]. Importantly, a single narrow peak is present
at the Fermi energy, which is related to the spin-degenerate
state arising from the intersection between the two spin-locked
surface states. The peak has a Lorentzian shape with a width
given by the actual numerical value of the infinitesimal, δ,
used for computing the Green’s function of the surface region
in Eq. (5). This degeneracy between the two surface bands
arises naturally within the framework of the SGF formalism,
whereas in finite-size slab models of the topological insulator
surfaces, the interaction between evanescent states localized at
the two surfaces of the slab leads to an unphysical energy gap
opening that is inversely proportional to the slab thickness [77].
This allows us to conclude that the SGF method provides
an accurate description of the topologically protected surface
states, compared to the slab method.
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VI. SURFACE CHEMISTRY IN EXTERNAL

ELECTROSTATIC FIELDS

The properties of adsorbed species at electrochemical
metal-solution interfaces depend on the applied electrode
potential and hence the electric field. Several theoretical works
have considered the response of chemisorption binding ener-
gies and vibrational frequencies to a potential bias, using either
slab calculations or metallic clusters [78,79]. In particular,
Bonnet and co-workers have recently used the slab model in
combination with the effective screening medium [80] method
to investigate the vibrational response of carbon monoxide on
a platinum electrode from first principles [81]. Other works
have focused on the very high fields needed to rip atoms out
of the surface during field emission processes [82,83].

A slab is a confined system in the out-of-plane direction, so
any charging of adsorbates on the slab surface must be counter-
balanced by an opposite charge in the slab, altering the electron
chemical potential of the finite-size slab system. We notice
that no change of the chemical potential would take place in
a truly semi-infinite surface system. In the SGF approach, the
chemical potential of the surface with adsorbates is fixed by
an infinite reservoir of electrons (bulk region) coupled to the
surface region. The electrons are allowed to be transferred
between the surface and bulk regions in a fully self-consistent
manner. The adsorbates may therefore be charged with the
charges that originate from the bulk region without altering
the chemical potential of the surface system, unlike the slab
system.

We here consider atomic iodine adsorbed on the Pt(111)
surface [84,85], which is a system of relevance for dye-
sensitized solar cells [86]. We show that the SGF method
is a natural choice for studying the chemical properties of
adsorbates on the surface in an external electrostatic field, as it
allows charging of the iodine atom from the electron reservoir,
instead of the limited electron supply in a slab system.

a. Methods. We have constructed a 2×2 Pt(111) surface,
using a crystal structure of bulk Pt with the DFT-optimized
lattice parameter, aPt = 3.956 Å. We have adopted three
atomic (111) monolayers for the principal layer of the bulk
region, and nine atomic (111) monolayers for the central
region. The vacuum thickness has been set to 20 Å. The
Neumann boundary condition has been imposed in the vacuum
region. The 2D Brillouin zone has been sampled using a
6×6 k-point grid. The top six monolayers of the Pt(111)
surface have been relaxed within the framework of the DFT
approach, see Sec. II E for more computational details. For
surface calculations with adsorbates, atomic iodine has been
placed in the fcc hollow site, and the iodine atom and top
six monolayers of the Pt(111) surface have been relaxed,
converging forces to 0.05 eV/Å.

To calculate the equilibrium separation distance between
the iodine atoms in a single I2 molecule, we have adopted
a large unit cell with the sufficiently thick vacuum padding
around the molecule to avoid iteration between the repeating
images. Ŵ-only k points sampling and 4 meV broadening of the
Fermi-Dirac distribution are used for this calculation, yielding
an I–I equilibrium bond length of 2.73 Å.

The potential-energy profile for the interaction of a single
iodine atom with the Pt(111) surface has been calculated by

displacing the I atom away from its equilibrium position on the
surface along the surface normal in steps of δd = 0.25 Å. For a
given Pt(111)–I separation distance d, the energy of the system
has been calculated by using the grand canonical potential, as
defined for an open system coupled to an electron reservoir,

�[ρ] = E[ρ] − e δnbulk μbulk, (12)

where E is the total energy of the surface region, ρ is the
electronic density in the surface region, and δnbulk is the
number of electrons exchanged with the electron reservoir
with chemical potential μbulk. The adsorption energy 
� is
then evaluated as


�(d) = �I/Pt(111)(d) − �Pt(111) − 1
2EI2 − 
CP(d), (13)

where �I/Pt(111) and �Pt(111) are the grand canonical potentials
of the Pt(111) system with and without adsorbate, respectively.
EI2 is the total energy of a I2 molecule, which is equivalent
to �I2 since an isolated molecule cannot exchange particles
with a reservoir. The counterpoise (CP) correction 
CP(d) is
similar in spirit to the standard Boys-Bernardi CP correction
to account for the basis set superposition error [88],


CP(d) = (�I*/Pt(111)(d) − �Pt(111)) + (EI/Pt(111)*(d) − EI)

+ 1
2

(

E∗
I2

− EI2

)

, (14)

where E∗
I2

is the total energy of a fictitious I2 molecule in
which one of the two iodine atoms is assumed to be a ghost
atom, �I*/Pt(111) is the grand canonical potential of the I/Pt(111)
surface in which the iodine atom is treated as a ghost atom,
and EI/Pt(111)* is the total energy of the corresponding I/Pt(111)
slab in which the platinum atoms are treated as ghost atoms.

Field-dependent potential profiles have been obtained by
imposing the Dirichlet boundary condition with different elec-
trostatic potential values in the vacuum region, corresponding
to external electric fields in the range from −6 to +6 V/Å.
We notice that, due to the use of a LCAO basis set, the
present approach is not suitable for describing field-emission
processes, in which electrons are moved from the surface to
the vacuum, due to an applied electrical field [89].

b. Results. Figure 13 shows the potential profile calculated
using the DFT-SGF method for an iodine atom interacting
with the Pt(111) surface. The equilibrium adsorption energy
obtained from this profile agrees well with the measured and
plane-wave DFT-calculated energies [87]. The Pt(111)–I sepa-
ration distance, d, is defined with respect to the top monolayer
of the Pt(111) surface, and the equilibrium separation distance
d0, obtained with the DFT-SGF method is of 2.28 Å.

Figure 14(a) suggests that applying an external electrostatic
field has a significant impact on the SGF-calculated potential
profile for fields in the range from −6 to +6 V/Å. The
potential-energy profile in the vacuum region is pushed down
for increasingly large negative fields, lowering the energy
barrier for desorption, whereas positive fields have the opposite
effect. This behavior is opposite compared to that found for
field-induced desorption of Na [78] and Al [83] adatoms on
Al(111), and can be ascribed to the propensity of the iodine
adatom to form a stable anion, rather than a stable cation, due to
its halogenic character. The equilibrium I–Pt(111) separation
distance d0 is also affected by the electrostatic field change,
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FIG. 13. Zero-field potential-energy curve (solid lines, filled
circles) for atomic iodine adsorbed on the Pt(111) surface, calculated
using the SGF method. Cubic interpolation of the PEC near the
minimum yields an adsorption energy of −1.45 eV at an equilibrium
I–Pt(111) separation distance (d0) of 2.28 Å. The measured and
plane-wave DFT-calculated adsorption energies (dotted lines) are
taken from Ref. [87].

as illustrated in Fig. 14(b). In this figure, the Mulliken charge
on the iodine atom is shown as function of the applied field

FIG. 14. (a) Finite-field potential-energy curves for atomic iodine
adsorbed on the Pt(111) surface, for electrostatic fields ranging from
+6 V/Å (red) over zero field (green) to −6 V/Å (black). For all
the curves, zero energy is chosen at the equilibrium position of the
adsorbate. (b) Equilibrium I–Pt(111) separation distance d0 (solid
line) and Mulliken population (dashed line) on the iodine atom as
a function of the applied field. Positive Mulliken population means
accumulation of electrons on the iodine atom.

strength. As the field turns more negative, electron charge
accumulates on the iodine atom, and the I–Pt(111) separation
distance increases due to the larger anionic character of the
adatom. As the I–Pt(111) distance is increased, the Mulliken
population on the iodine atom remains essentially constant for
negative applied fields, whereas it becomes increasingly more
negative for positive values of the applied field, reaching values
of −0.37 (Ez = +3 V) and −0.85 (Ez = +6 V) at d = 5 Å.
In conclusion, we notice that this charge accumulation on
the iodine atom does not require a corresponding charge of
opposite sign in the near-surface region, as it is taken from
the semi-infinite bulk region instead. That shows a crucial
difference between the traditional slab and Green’s-function
approaches for surface chemistry calculations.

VII. CONCLUSIONS

In this work, we presented the state-of-the-art imple-
mentation of the Green’s function formalism [16–22] for
accurate first-principles simulations of surfaces within the
framework of density functional theory. Unlike the slab
model that is traditionally used in computational surface
science, the Green’s-function approach allowed us to model
the surface as a truly semi-infinite system by coupling a
surface region to an electron reservoir. We were able to do
first-principles calculations of surface systems that are free
from the drawbacks present in the slab calculations, which are
affected by finite-size effects. Furthermore, the computational
cost of the Green’s-function based surface calculations was
shown to have a linear scaling with respect to the length of
the surface region. For large systems, it provides a better
alternative to the slab calculations that have a cubic scaling
with respect to the slab thickness.

Using the Green’s-function approach was shown to improve
the accuracy of both quantitative and qualitative description
of surface properties that are notoriously difficult to address
using the slab approach, including metal work functions,
surface states of metals and topological insulators, and
energy gaps of semiconductor surfaces. We demonstrated
the actual advantages of using Green’s functions for several
advanced physics and chemistry studies of surfaces. The
adopted approach allowed us to accurately calculate the work
functions of several transition metal surfaces. We found that
the first-principles Green’s-function approach combined with
the analysis of physical properties based on the projected
density of states and Hartree difference potential makes
possible to quantitatively determine the band diagram across
semiconductor heterostructures such as an ultrathin Si film
on a doped Ge substrate in atomistic simulations. We found
that it is crucial to adopt the surface Green’s-function method
for correct description of topologically protected states in
the Bi2Se3 topological insulator, as well as the effect of an
external electric field on the surface state of the Ag(111)
surface. The charge transfer effects for metal surfaces with
adsorbates such as iodine atoms on the Pt(111) surface, turned
out to be naturally captured within the framework of the
Green’s-function formalism that allows describing the surface
structures coupled to an electron reservoir.

In conclusion, the present results suggested that the
Green’s-function approach to surface calculations is a superior
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tool compared to more traditional approaches to surface mod-
eling. Given the demonstrated advantages of this approach,
in this work, we showed how one may increase the accuracy
of DFT-based surface calculations, and how the applicability
of first-principle, atomistic modeling can be extended towards
challenging problems in surface science.

APPENDIX: PSEUDOPOTENTIALS AND BASIS SETS

The accuracy of the DFT calculations based on the
pseudopotential LCAO approach depends on the choice of
pseudopotentials and basis sets. We employ norm-conserving
pseudopotentials in the Kleinman–Bylander form [90]. The
basis functions are atom-centered orbitals constructed by
solving the Schrödinger equation for a single atom in a
confinement potential [39,91].

We have implemented in the ATK high-accuracy pseudopo-
tentials and localized basis sets for all elements up to Z = 83
(Bi), excluding lanthanides. We have used the SG15 suite of
optimized norm-conserving Vanderbilt pseudpotentials from
Ref. [40]. For a number of chemical elements, we have im-
proved the pseudopotential quality by adding a nonlinear core
correction [92]. Both scalar-relativistic and fully relativistic
versions of all the pseudopotentials are available in the ATK
software package. The fully relativistic pseudopotentials allow
for DFT calculations with spin-orbit coupling included [93].

To construct high-accuracy LCAO basis sets, we have first
taken a large set of pseudo-atomic orbitals similar to the
“tight tier 2” basis sets used in the FHI-aims package [91].
These basis sets typically have five orbitals per pseudopotential
valence electron, a range of 5 Å for all orbitals, and include
angular momentum channels up to l = 5. We find that such a
large LCAO basis set gives essentially the same computational
accuracy as fully converged plane-wave calculations. We have
then reduced the range of the orbitals by requiring that the
overlap of the contracted wave function must change less than
0.1% with the original wave function. Such a reduction of the
orbital range decreases the number of matrix elements that
needs to be evaluated, and at the same time this does not
alter the accuracy of LCAO calculations. In the following, this
LCAO basis set will be called Ultra.

From the Ultra basis set we generate two reduced basis sets,
High and Medium. The High basis set is generated by reducing
the number of basis set orbitals such that the DFT total energy
of suitably chosen test systems does not change by more than
1 meV (per atom). For each element, the test set consists
of the element in its experimental (300 K) bulk structure at
different lattice constants (that allows for computing the 


value [94,95]), and dimers and octamers of the element at
different inter-atomic distances. We see from Table II that the

TABLE II. 
 values calculated with different basis sets. The
plane-wave (PW) value is obtained using QUANTUM ESPRESSO with
the same SG15 pseudopotentials [95].

Medium High Ultra PW


 (meV) 3.45 1.88 2.03 1.3

TABLE III. Summary of ATK-LCAO calculations for rock salts
and perovskites test sets. The shown RMS errors are calculated
relative to all-electron calculations. The test sets and the VASP results
are taken from Ref. [96].

Medium High Ultra VASP

Rock salt latt. const. (%) 0.40 0.24 0.23 0.15
Perovskite latt. const. (%) 0.36 0.24 0.18 0.13

Ultra and High basis sets have essentially the same 
 value,
indicating that they are equally accurate. The Medium basis
set is constructed by further reduction of the High basis set,
while keeping the 
 value below 4 meV.

In order to further validate the constructed SG15 pseu-
dopotentials and basis sets, we have performed benchmark
calculations for rock salt and perovskite crystals, as described
in Ref. [96]. For each bulk structure, the equation of state is
calculated at fixed internal coordinates, and the equilibrium
lattice constant and bulk modulus are then computed. Results
are benchmarked against the scalar-relativistic all-electron
calculations [96]. Table III shows the root-mean-square (RMS)
deviations from the all-electron reference for the calculated
lattice constants and bulk moduli. For the sake of compari-
son, statistics for plane-wave VASP [31] calculations is also
included in this table. We see that the accuracy of the DFT
calculations done with the SG15 pseudopotentials and High
(or Ultra) LCAO basis sets is comparable to that of plane-wave
calculations, while the use of the Medium basis sets gives a
slightly larger deviation from all-electron results.

We find that for typical atomistic simulations with less than
500 atoms, the LCAO calculations done with the Medium basis
set is twice as fast as that done with the High basis set, which
allows for 10 times faster LCAO calculations compared to the
ones done the Ultra basis set. Furthermore, using the Medium
basis set typically permits one to do LCAO calculations an
order of magnitude faster than plane-wave calculations. In
summary, the Ultra basis set enables essentially the same
accuracy of LCAO-based DFT calculations as plane-wave
calculations, at similar cost for typical 200-atom systems.
Using the Medium and High basis sets gives somewhat less
accurate results of LCAO-based DFT calculations, allowing
for an order of magnitude speedup.

1. Accurate semiconductor band gaps

It is known that density functionals based on local density
approximation (LDA) and generalized gradient approximation
(GGA) do not allow for an accurate calculation of energy band

TABLE IV. Empirical pseudopotential projector shifts employed
in the PPS-PBE method with the SG15-Medium combination of
pseudopotential and basis set. The shifts αs, αp , and αd are applied
to s, p, and d orbitals, respectively.

αs αp αd

Si +21.33 eV −1.43 eV
Ge +13.79 eV +0.22 eV −2.03 eV
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FIG. 15. Band structures of bulk Si and Ge, calculated with the
PPS-PBE method. Note that the fundamental Ŵ-L band gap of bulk
Ge calculated using the PBE functional is zero, in contradiction with
experiment, whereas the PPS-PBE calculated band gap and other
band energies agree with the experimental data in a semi-quantitative
manner. The fundamental gaps for bulk Si and Ge are ESi

g = 1.14 eV
and EGe

g = 0.64 eV, respectively.

gaps of semiconductors [47]. To overcome this issue we have
introduced empirical shifts of the nonlocal projectors in the
SG15 pseudopotentials, in spirit of empirical pseudopotentials
proposed by Zunger and co-workers [48]. The pseudopotential
projector shifts (PPS) have been adjusted to reproduce techno-
logically important properties of semiconductors such as the
fundamental band gap and lattice constant. In the PPS method,
the nonlocal part of the pseudopotential, V̂nl, is modified in the
following way:

V̂nl → V̂nl +
∑

l

|pl〉αl〈pl|, (A1)

where the sum is over all projectors pl , and αl is an empirical
parameter that depends on orbital angular momentum quantum
number, l. We note that this approach does not increase the
computational cost of DFT calculations.

We have applied the PPS method in calculations for Si,
Ge, and SiGe alloys, using the GGA-PBE functional [57] and

TABLE V. Material parameters computed for Si, Ge, and SiGe
calculated using ATK and the PBE (first column), and PPS-PBE (third
column) approaches. The second column shows the corresponding
HSE values calculated using VASP and taken from Ref. [97]. The
experimental reference values, taken from Refs. [97–99], are shown
in the fourth column.

PBE HSEa PPS-PBE Exp.b

Si
a (Å) 5.468 5.435 5.443 5.430
B (GPa) 90.4 97.7 102.5 100.8
Eg (eV) 0.58 1.14 1.10 1.17
m∗


 (me) 0.19 0.22 0.19

Ge
a (Å) 5.815 5.682 5.735 5.658
B (GPa) 60.9 71.3 67.4 77.3
Eg (eV) 0.00 0.72 0.69 0.74
m∗

L (me) 0.09 0.14 0.08

SiGe
a (Å) 5.62 5.56 5.54
B (GPa) 72.0 95.3 86.5
Eg (eV) 0.69 0.89 0.97
m∗ (me) 0.20 0.22 0.19

aVASP, Ref. [97].
bFrom Refs. [97–99].

the combination of SG15-pseudopotentials and Medium basis
sets described in the previous section. The corresponding
PPS parameters are listed in Table IV. Figure 15 shows the
PPS-PBE calculated band structures of bulk Si and Ge. We
find that shifting the pseudopotential projectors allows us to
significantly improve not only the band gap values (compared
to experiment), but also other band energies corresponding to
higher conduction band valleys in Si, Ge, and related alloys.

Furthermore, Table V compares the material parameters
computed with the PPS-PBE and standard PBE approaches for
Si, Ge, and a SiGe alloy to the material parameters obtained
with the computationally more expensive HSE hybrid func-
tional [100]. The PPS-PBE calculated lattice constants, bulk
moduli, and fundamental band gaps are in significantly better
agreement with experimentally measured material parameters
than the parameters calculated with the PBE approach, and are
on par with HSE predictions, in general.
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