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ABSTRACT: Noncovalent van der Waals (vdW) or dispersion forces are ubiquitous in
nature and influence the structure, stability, dynamics, and function of molecules and
materials throughout chemistry, biology, physics, and materials science. These forces are
quantum mechanical in origin and arise from electrostatic interactions between
fluctuations in the electronic charge density. Here, we explore the conceptual and
mathematical ingredients required for an exact treatment of vdW interactions, and
present a systematic and unified framework for classifying the current first-principles
vdW methods based on the adiabatic-connection fluctuation−dissipation (ACFD)
theorem (namely the Rutgers−Chalmers vdW-DF, Vydrov−Van Voorhis (VV),
exchange-hole dipole moment (XDM), Tkatchenko−Scheffler (TS), many-body
dispersion (MBD), and random-phase approximation (RPA) approaches). Particular
attention is paid to the intriguing nature of many-body vdW interactions, whose
fundamental relevance has recently been highlighted in several landmark experiments.
The performance of these models in predicting binding energetics as well as structural,
electronic, and thermodynamic properties is connected with the theoretical concepts and provides a numerical summary of the
state-of-the-art in the field. We conclude with a roadmap of the conceptual, methodological, practical, and numerical challenges
that remain in obtaining a universally applicable and truly predictive vdW method for realistic molecular systems and materials.
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1. INTRODUCTION

The ongoing challenges associated with modeling increasingly
large and more complex molecular and condensed-phase
materials have led to the universal realization that van der
Waals (vdW) dispersion interactions,1−4 commonly considered
to be only a small contribution to the total energy, are in fact a
crucial ingredient of both a qualitatively correct and
quantitatively accurate description of the binding properties
in a majority of molecular systems5−7 and materials.8−10 In fact,
it has become increasingly more apparent that the relevance of
vdW interactions extends well beyond binding and cohesive
energies, encompassing the structural,7,9 mechanical,11,12

spectroscopic,13 kinetic,14 and even electronic15,16 signatures
of condensed matter. With an influence that ranges from drug
binding in proteins and double-helix stability in DNA17 to pedal
adhesion in geckos18,19 and cohesion in asteroids,20,21 these
nonbonded forces are quantum mechanical in origin and arise
from the electrostatic interactions between the constantly
fluctuating electron clouds which constitute molecules and
materials.22 As such, vdW dispersion interactions are strongly
nonlocal, extending to distances exceeding 10 nm in nanoscale
materials,22−25 or even further in mesoscopic materials.26−28

With this context, the importance of understanding and
modeling vdW interactions in realistic systems can hardly be
overemphasized. However, our ability to accurately model these
interactions from first principles is severely impeded by the
prohibitively high computational cost of the high-level wave-
function methods of quantum chemistry, as well as the lack of
efficient yet accurate approximations to the many-body electron
correlation problem for large systems.29 In light of this fact, the
sophistication of approximate models for describing vdW
interactions has been steadily increasing, especially within the
context of electronic structure methods based on density-
functional theory (DFT). The majority of these commonly
used vdW-inclusive methods finds a theoretical basis in the
quantum-mechanical treatment of two fragments A and B (e.g.,
atoms, localized orbitals, or infinitesimal regions of the electron
density) separated by a distance RAB that places them outside of
density or orbital overlap, for which second-order perturbation
theory predicts the vdW interaction energy to be proportional
to RAB

−6 (to leading order). Only recently have more advanced
theoretical models been developed which go beyond this
pairwise-additive approximation, resulting in quantitative
improvements in the predictive capabilities of vdW-inclusive
DFT calculations and novel conceptual insights into the nature
of many-body vdW interactions. At this point, the existence of
advanced theoretical models for describing vdW interactions
coupled with the rapid increase in available computational
resources has allowed us to achieve the accuracy needed for
meaningful prediction of binding energetics between small

organic molecules,30 and vdW-inclusive methods are now even
being extended toward quantitative predictions of the proper-
ties and functions of technologically and biologically relevant
materials.9,10

Meanwhile, the steep rise in the number of applications of
vdW-inclusive methods to larger and more complex systems
has led to a more comprehensive understanding of their
inherent strengths and weaknesses, as well as a rough
delineation of their respective ranges of applicability. Despite
such substantial progress in the field of modeling vdW
interactions, many questions still remain unanswered and
significant further development is required before a universally
applicable approach emerges. For instance, the aforementioned
pairwise-additive interatomic vdW methods are frequently used
to describe adsorption of organic molecules on inorganic
surfaces.31−34 Despite the fact that such an approach effectively
ignores the relatively strong electrodynamic response screening
present in bulk materials, the results often have a reasonable
level of accuracy. Another example comes in the form of use of
the nonlocal vdW-DF family of functionals35−38 to describe
binding between molecules, which often leads to an acceptable
level of accuracy even though one would not expect the
employed homogeneous dielectric approximation to work well
for molecules. These examples highlight the need for a deeper
understanding of the physical reasons why these different
approaches often yield relatively good results outside their
expected domains of applicability, as this is a determining factor
in the development of more robust approximations.
In general, vdW interactions can be remarkably sensitive to

the geometry and electronic structure of a given system.
Therefore, these interactions not only affect the structure and
dynamics of the system, but can also have a visible effect on the
electronic charge distribution and other properties derived from
the charge density (e.g., multipole moments, work functions,
polarizabilities, electron affinities, etc.),15 in accordance with the
theoretical insight into vdW interactions advocated by
Feynman.39 This observation highlights the need for first-
principles-based methodsvdW methods that explicitly
depend on the charge density or orbitalsin which the vdW
interactions are treated in a fully self-consistent manner; as
such, these methods are the main focus of this work.
In this review, we will use the terms “van der Waals (vdW)

interactions” and “dispersion interactions” interchangeably.
Originally, vdW interactions encompassed (especially in the
chemistry literature) electrostatic (permanent moment−
permanent moment), induction (permanent moment−induced
moment), and dispersion (induced moment−induced mo-
ment) interactions. In the current work, however, this trio is
increasingly being referred to as noncovalent interactions, while
vdW interactions are reserved specifically for the dispersion
interactions, thus aligning the terminology with the physics
literature. This has perhaps been motivated by the ever-
increasing overlap between chemistry and condensed-matter
physics in the field of vdW interactions. Another matter of
terminology that extends well beyond semantics concerns the
use of the phrase “many-body”; here the communities
significantly differ in their association of a given physical (or
mathematical) entity with the label “body”. For example, a body
would typically refer to a molecule in the field of molecular
modeling, although it could also refer to an atom, as
demonstrated by the literature on the Axilrod−Teller−Muto
three-body (three-atom) potential.40,41 In the quantum
chemistry community, the coupled-cluster hierarchy is a
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particular class of methods within many-body perturbation
theory, and in this case, the bodies are electrons (electronic
excitations). In this review, we will use the term many-body
when referring to interactions between more than two bodies
(i.e., beyond pairwise), as the point of this term is to delineate
the degree of coupling in a given model. The meaning of the
term body will therefore change according to the context, and
we hope that our exposition will make it clear why such a fluidic
use of this term is indeed helpful in defining a general
conceptual and mathematical framework for describing vdW
interactions.
This review concentrates on the conceptual, methodological,

mathematical, and numerical aspects of various approaches for
treating vdW interactions based on first principles. For the
plethora of other aspects associated with vdW interactions, we
refer the interested reader to the following set of reviews, which
is by no means an exhaustive list but includes many works
which are complementary to that presented here.5−7,9,30,42−51

This review begins with a conceptual introduction to the
treatment of vdW interactions in molecules and materials of
increasing complexity, showcasing the critical ingredients
necessary for a qualitatively correct and physically sound
description of these interactions in different classes of systems.
We then proceed with a brief discussion of several recent

landmark experiments that clearly highlight the nontrivial

nature of vdW interactions at the nanoscale and demonstrate

that our understanding of these quantum-mechanical phenom-

ena is only beginning to emerge. This is followed by a

comprehensive theoretical basis for the description of vdW

interactions that provides a systematic classification scheme and

derivation for many of the popular first-principles-based

methods within the framework of the adiabatic-connection

fluctuation−dissipation (ACFD) theorem. A critical assessment

of the performance of these models in predicting binding

energetics, structural and electronic properties, as well as

equilibrium quantities from ab initio molecular dynamics is then

discussed, as we introduce the many challenges that arise when

these methods are applied to increasingly realistic and

experimentally relevant systems. We conclude this review by

presenting an outlook which not only summarizes the

achievements in the field of modeling vdW interactions in

the past decade, but also highlights the many remaining

challenges that we expect will keep this exciting field quite

active for some time to come.

Figure 1. Structural features, electronic properties, and environmental effects of relevance to noncovalent vdW interactions. Each of these distinct
system characteristics affects the underlying electronic structure and therefore the associated vdW interactions, leading to complications in the
accurate modeling of these interactions in realistic systems. A seamless and universally applicable vdW method must meet this challenge and
accurately describe these effects across the wide range of systems found in chemistry, biology, and physics.
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2. CONCEPTUAL UNDERSTANDING OF VDW
INTERACTIONS IN MOLECULES AND MATERIALS

In this section, we discuss the current conceptual understanding
of noncovalent vdW interactions in molecules and materials. By
considering a set of fundamental systems, we demonstrate how
the vdW energy depends on local (additive or weakly
nonadditive) and nonlocal (nonadditive) effects that originate
from the underlying electronic structure of the system. Our
focus here is on identifying and analyzing the ingredients
(Figure 1) that are necessary to correctly describe vdW
interactions across a wide array of systems characterized by
markedly different structural features (e.g., size, dimensionality,
geometry/topology), electronic properties (e.g., covalent/ionic
bonding, hybridization, oxidation state, charge transfer), and
environmental effects (e.g., solvation, interfaces, external
pressure).
Currently available vdW-inclusive methods are able to

describe how these structural, electronic, and environmental
considerations affect the vdW energy only to a certain extent
which varies from method to method. In general, these
methods can be classified based on the approximations that
they use for the two central quantities required for the
description of vdW interactions, namely the nonlocal micro-
scopic frequency-dependent polarizability α(r, r′, u) and the
effective interaction potential v(r, r′) between points r and r′ in
space. This classification scheme is illustrated in Figure 2 and
includes (a) the exact treatment of the electron correlation via

the adiabatic-connection fluctuation−dissipation (ACFD)
theorem,52−54 (b) fragment-based (or coarse-grained) many-
body vdW methods,55,56 (c) fragment-based (or coarse-
grained) pairwise vdW methods,57−61 and (d) nonlocal two-
point (fine-grained) density-functional approximations.35−37,62

For a quick overview, we present a condensed description of
the most widely used vdW methods in Table 1, which includes
a brief synopsis of each method as well as a critical assessment
of their performance in treating different aspects of vdW
interactions. Throughout this section we discuss the different
scenarios that arise in the modeling of the polarizability and
interaction potential in systems of increasing complexity. While
this section focuses on a conceptual picture of vdW
interactions, Section 4 will address these issues from a
mathematical point of view. We aim to dispel several myths
about vdW interactions and note that many of these points will
be revisited and reinforced by the more formal presentation in
Section 4.
The exact solution of the electronic Schrödinger equation

would automatically incorporate the exact vdW contribution to
the total energy of a many-electron system, as this contribution
is strictly contained in the electron correlation energy.
However, the explicit solution of the Schrödinger equation
for a system containing more than a few electrons is still a
computationally prohibitive task, even when many approx-
imations are used. For this reason, modeling of realistic
materials often starts with more tractable mean-field models,

Figure 2. Theoretical approaches used by different vdW models based on first-principles. (a) Exact treatment of the correlation energy in the
framework of the adiabatic-connection fluctuation−dissipation (ACFD) theorem, which uses the full nonlocal response function χλ(r,r′,u). This
response function can be viewed as describing the propagation of fluctuations throughout the molecule or material. (b) Fragment-based (coarse-
grained) many-body methods correlate fluctuations to infinite order by using model response functions in the ACFD formula. (c) Fragment-based
(coarse-grained) two-body methods compute the pairwise contribution to the vdW energy by correlating only two dipoles (or multipoles) at a time.
(d) Long-range pairwise functionals use an infinitesimal (fine-grained) representation of dipolar fluctuations and correlate only two dipoles at a time.
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such as the Hartree−Fock (HF) approximation, or the
alternative suite of density-functional approximations (DFAs),
which use the three-dimensional electron charge density, n(r),
instead of the exceedingly more complicated many-electron
wave function. However, these common approximations are
unable to describe the long-range electron correlation energy
and therefore fail to describe vdW interactions. This is true
even for the more advanced semilocal meta-GGA func-
tionals.63−65

Even in the simple case of an isolated many-electron atom,
an accurate calculation of its (frequency-dependent) polar-
izability is a complicated many-body problem. However,
substantial progress has been made in this regard with the
development of post-HF quantum-chemical methods and time-
dependent DFT (TD-DFT) calculations that can provide
reliable estimates of the dipole polarizability and dipole−dipole
vdW coefficients for all atoms between hydrogen and
plutonium (Z = 1 to 102).58,66−69 Calculations that treat
many-electron correlation effects explicitly (either wave-
function based or more recently TD-DFT methods) yield
electronic response properties with an accuracy of 2% to 10%
for gas-phase atoms.66−68,70,71 This high level of accuracy makes
the available free-atom polarizabilities and vdW coefficients
useful as reference data for vdW methods in more complex
systems, as for example in the Tkatchenko−Scheffler (TS)60

and exchange-hole dipole moment (XDM)59 methods.
However, since the resulting atoms-in-molecules coefficients
are inevitably approximate, we are faced with the question of

how the errors in asymptotic vdW coefficients affect the
binding energy at equilibrium distances.
The binding energy is a result of an interplay between the

Pauli repulsion and vdW attraction, so the vdW energy alone is
often larger (more attractive) than the net binding energy itself.
As an illustration, consider noble gas atom dimers, for which
interaction potentials of spectroscopic accuracy can be
constructed solely from highly accurate vdW coefficients in
conjunction with mean-field HF calculations.73,74 One can then
simply calculate that an error of 20% in the asymptotic vdW
coefficients of the xenon atom results in an error of
approximately 40% in the equilibrium binding energy (Figure
3). Already this simple example highlights the importance of
accuracy in the parameters used for including vdW interactions
in electronic structure calculations. Even errors of 10%, which
are typical, may lead to unacceptable errors of 20% in the
corresponding binding energies. A common way to circumvent
these errors is via fitting free parameters of a method to
reference binding energies, but this strategy is likely to fail for
systems outside the data set used for the fitting. As one might
expect, these levels of uncertainty in the asymptotic vdW
coefficients lead to even more serious problems in larger and
more polarizable systems. The vdW contribution to the binding
energy of a diindenoperylene molecule (C32H16) adsorbed on
the Cu(111) surface is approximately 5.3 eV.75 In this case, an
error of 20% in the vdW coefficient would translate to an error
of 1.0 eV in the equilibrium binding energyexceeding the
energy of thermal fluctuations (kT) at room temperature by a

Table 1. Approximate vdW Methods in Terms of Their General Properties and the Degree to Which They Incorporate Some
Effects Influencing vdW Interactions

Methoda
Hybridization, coordination and

chemical environment Ions/oxidation states
Accuracy of C6 coefficients of small

organic molecules
Polarization in

materials
Nonadditive
polarizability

D1/D2 No No 20% No No

D3 Only coord. effects Requires separate parametrization 5−10% No No

XDM Yes Yes, but strong charge transfer
requires parametrization

12% No Short-range

TS Yes Yes, but strong charge transfer
requires parametrization

5.5% No Short-range

MBD Yes Yes, but strong charge transfer
requires parametrization

6.2% Yes All ranges

vdW-DF1 Yes Yes 20% No Short-range

vdW-DF2 Yes Yes 60% No Short-range

VV10 Yes Yes 12% No Short-range

RPA Yes Yes 10% Yes All ranges

Method
Anisotropy in vdW

parameters Many-body vdW energy
Computational

cost
Amount of
fitting Applicability

D1/D2 No No Very low High Small molecules

D3 No Three-body Axilrod−Teller can
be added

Very low Intermediate Small and midsize molecules

XDM No Three-body Axilrod−Teller can
be added

Low Low Small and midsize molecules

TS No Three-body Axilrod−Teller can
be added

Low Low Small and midsize molecules

MBD Yes Infinite order Low Low Broadly applicable. Take care with metals

vdW-DF1 No No Intermediate None Small molecules and bulk solids, sensitive to
exchange functional

vdW-DF2 No No Intermediate Low Small molecules and bulk solids, sensitive to
exchange functional

VV10 No No Intermediate Low Small and midsize molecules

dRPA Yes Infinite order High None Broadly applicable
aD1,57 D2,107 and D358 are popular vdW methods that do not use electronic structure as input but are presented for comparison. XDM is the
exchange-hole dipole moment method.59 TS is the Tkatchenko−Scheffler method.60 MBD is the many-body dispersion method.88 vdW-DF135 and
vdW-DF236 are the nonlocal vdW density functionals. VV10 is the vdW functional of Vydrov and van Voorhis.62 dRPA is the direct RPA method;
see for example ref 108.
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factor of 35. We note that, in popular pairwise vdW corrections,
vdW coefficients of molecules on metal surfaces can be
overestimated by as much as 500%, because these approaches
miss the complex polarization effects in the extended surface
that are typically responsible for reducing the vdW coefficients
of atoms in metals by 50−500% with respect to the free-atom
values.76,77

The discrepancies in the vdW energy caused by small errors
in asymptotic coefficients can lead to qualitatively incorrect
conclusions about relative stabilities (not absolute energies) as
well, such as when studying molecular crystal polymorphs.78 In
systems of increasing size, the binding arises from an interplay
of short- and long-range interactions, so an accurate and reliable
vdW method must be able to describe the binding at both
equilibrium and asymptotic separations, as well as everything
in-between, on equal footing. For these reasons, the accuracy of
asymptotic vdW coefficients must be given a significant weight
when evaluating the performance of vdW-inclusive methods.
While accurate vdW parameters can now be obtained for

isolated gas-phase atoms, the situation in real molecules and
materials is vastly more complicated. Even for small molecules,
the molecular polarizability and vdW coefficients cannot be
accurately represented simply as a sum over free-atom
parameters. Dobson49 calls this difference between a free
atom and an atom in a molecule type-A nonadditivityit is
caused by the increased kinetic energy of the valence electrons
due to the confining molecular (instead of atomic) external
potential. In many organic molecules (see Hybridization in
Figure 1), the main effect is that orbital hybridization (i.e., a
relatively local effect) reduces the effective polarizability and
vdW coefficients of the atoms. For example, the C6 coefficient
of an isolated carbon atom is 46.6 (a.u.), but this value is
reduced to 29.8 for an sp-bonded atom and 22.1 for an sp3-
bonded atom.79 However, the hybridization (coordination
number) concept alone is insufficient to fully account for the
influence of the local chemical environment on vdW
coefficients. For example, consider the methane (CH4) and
carbon tetrachloride (CCl4) molecules. In both these
molecules, the carbon atoms are sp3-hybridized with 4-fold
coordination, and are therefore identical according to these two
measures of the local chemical environment. Yet the local
chemical environments experienced by these atoms are

substantially different, with the C−H bond distance of 1.1 Å
in CH4 compared to the C−Cl distance of 1.8 Å in CCl4. This
results in increased volume and lowered kinetic energy of the
valence electrons in CCl4 compared to CH4. The TS method is
able to capture these local environment effects and yields a
C6

C−C coefficient of 43.1 in CCl4 and 24.1 in CH4. As these
local chemical effects are important in capturing qualitative
trends in vdW parameters, they are now captured by most
vdW-inclusive methods (see Table 1). Indeed, it is quite
remarkable that the C6 coefficients of small molecules can be
obtained very accurately (i.e., to within 5.5%) only from the
knowledge of the relative volume of an atom in its environment
compared to the corresponding gas-phase atom.60

The local chemical environment (volume scaling) is only the
first effect in a series of electronic structure contributions to
vdW parameters. Another mostly local effect is caused by
charge transfer and different oxidation states in many-electron
systems (see Oxidation State/Solvation and Charge Transfer/
Ionic Compounds in Figure 1). In rock salt (NaCl), being a
classical example of charge transfer, simple volume-based
models cannot be used to calculate vdW coefficients
unambiguously, because there are multiple ways to assign
atomic densities to the Na and Cl atoms. One limit assumes
that NaCl consists of a superposition of Na and Cl free-atom
densities, yielding a polarizability of 182.7 (a.u.) per unit cell.
The other limit assumes Na+ and Cl− ions, yielding a
significantly reduced polarizability of 21.6.80 The large
difference between these two limits is caused by the change
in the polarizability from 167.7 for neutral Na atom to 0.9 for
Na+. Measurements of dielectric properties81 and high-level
calculations82 demonstrate that the polarizability of NaCl solid
is in fact closer to the sum of Na+ and Cl− ions. Large changes
in vdW parameters also occur for different oxidation states of
metal atoms in molecules and solids.83−85 In contrast to the
hybridization effects, charge transfer and oxidation states can
only be treated seamlessly by vdW methods that explicitly use
electronic structure information.35,36,55,59,60,62 Methods that
rely on atomic fragments require sophisticated definitions of
the atomic fragment densities to yield quantitative accuracy for
charge transfer and oxidation states.86,87

Another manifestation of electronic structure in vdW
parameters is their dependence on the contraction or expansion
of the crystal lattice (see Lattice Expansion/Contraction in
Figure 1). For instance, Zhang et al. demonstrated a substantial
linear dependence of αSi and C6

Si−Si in zinc blende silicon on the
lattice constant using TD-DFT calculations.80 This behavior
cannot be explained by the coordination of the silicon, because
this is unchanged throughout the lattice contraction, but rather
can be related to the change in the electronic band gap.
Nonlinear dependence of vdW parameters on the lattice
constant can be observed in semiconductors, such as Ge, where
the small band gap becomes zero upon the metallic phase
transition induced by the lattice contraction. Such effects are
reliably reproduced only by methods that explicitly consider
electronic orbitals and their energies (e.g., RPA and TD-DFT
methods). Consistent treatment of vdW interactions in systems
with widely varying band gaps remains challenging because the
electronic response is difficult to extract from the electron
density alone. The linear increase of the polarizability with
lattice constant in semiconductor solids is reproduced
quantitatively by the many-body dispersion (MBD) meth-
od,55,88 which models the response of valence electrons by
overlapping quantum harmonic oscillators, qualitatively by

Figure 3. Potential energy curve of the xenon dimer as a function of
the interatomic distance R. The black curve represents the exact
potential energy curve,72 while the blue (red) curve was obtained by
increasing (decreasing) all (C6, C8, C10) vdW coefficients by 20%. This
change in the vdW coefficients yields an error of ±40% in the binding
energy at the equilibrium distance, illustrating the importance of highly
accurate asymptotic vdW coefficients for equilibrium predictions.
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nonlocal density functionals, in which the polarizability
depends on the electron density and its gradient,35,62 and not
at all by pairwise fragment-based methods.57−60

All effects discussed so far were mostly local: the local
behavior of the electron density is often sufficient to describe
coordination, charge transfer, oxidation states, and variation of
vdW parameters with small changes in structure. However, the
frequency-dependent polarizability is a nonlocal function that
explicitly depends on two points, r, r′, in space: α(r, r′, u). The
many effects in vdW interactions that require an explicit
nonlocal description necessarily have a nonadditive many-body
nature. For instance, the prototypical benzene molecule has a
strongly anisotropic response, with the in-plane component of
the polarizability being approximately twice as large as the out-
of-plane component. Already this well-known nonadditive
contribution is neglected by most vdW methods, which rely
on an isotropic definition of vdW parameters.35,57−60,62

However, many of these isotropic pairwise methods are able
to quite accurately approximate binding energies between small
molecules, and this suggests that the effects of anisotropy might
be partially compensated by the empirical damping functions
used in these methods and the lack of many-body vdW energy
terms (Axilrod−Teller and higher order). The importance of

nonadditive effects increases dramatically with system size and
lower dimensionality. For example, the in-plane component of
the polarizability increases in a strongly nonlinear fashion in
polycyclic aromatic hydrocarbons.89,90 This nonlinear increase
of polarizability then translates into vdW coefficients being
strongly nonadditive.91−93

Dobson calls these effects type-B nonadditivity,49 and they
depend sensitively on the size, structure, and dimensionality of
a given system. To illustrate these effects, we calculated the
nonlocal fully interacting polarizability tensor α(r, r′, u = 0) of
three molecules (Figure 4): adamantane C10H16, naphthalene
C10H14, and decapentaene C10H12. The polarizability matrix is
constructed using a self-consistent coupled dipole ap-
proach,55,94,95 which models the response of the valence
electrons to an internal electric field by a projection to a set of
overlapping and interacting dipole oscillators. Although the
polarizability matrix in Figure 4 is not the exact α(r, r′, u = 0),
as could be obtained by TD-DFT calculations, it provides a
reliable approximation to the polarization, as has been
demonstrated in numerous studies.55,92,95−97 The polarizability
tensor is a dense matrix for all three molecules, and a diagonal
isotropic approximation of such a tensor, as used in many vdW
methods, is clearly incomplete. The dependence of polarization

Figure 4. Nonlocal polarizability αAB of three hydrocarbon molecules with 10 carbon atoms: bulky, saturated adamantane; planar, aromatic
naphthalene; and linear, conjugated decapentaene. Solution of the dipole screening equation gives the nonlocal polarizability αAB ≡ αAB

ij (A, B label
atoms, i, j Cartesian coordinates). Three different visualizations of this quantity are shown: (a) Molecular structures and Cartesian components of
the total molecular polarizability ∑ABαAB. x, y, and z components are encoded with green, blue, and red, respectively. All arrows have the same scale.
(b) Visualization of αAB

ij for the subset of A and B being carbon atoms. Each 10-by-10 matrix corresponds to the αAB
ij matrix with i and j fixed. The

color encodes the sign (red for positive, blue for negative), and the intensity encodes the magnitude of a given matrix element. (c) Dependence of
the magnitude of αAB

ij on the distance between carbon atoms A and B in a log plot. The data points are fitted with a single exponential curve.
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on the geometry and bonding is nontrivial, with a much slower
decay in decapentaene compared to naphthalene and
adamantane. The possible effects of such nonlocal behavior
on the polarizability can be illustrated on two different
orientations of the benzene dimer: the sandwich and T-shaped
configurations. The plots in Figure 5 show, for instance, that

the higher symmetry of the sandwich configuration makes the
xz component of the polarizability tensor vanish, whereas this is
not the case for the T-shaped structure. The isotropic pairwise
approximation would be unable to capture the full complexity
of these polarization effects.
Polarization effects scale nonlinearly, so much stronger

effects can be observed in nanoscale molecules and materials
compared to the illustrative case of the benzene dimer. The
stability and mobility of defects in solids,14 polymorphism in
molecular crystals,7,13,98,99 adsorption of atoms and molecules
on surfaces,100,101 self-assembly of nanostructured materi-
als,12,92 and relative stability of secondary structure motifs in
peptides and proteins102 have all been shown to require explicit
nonlocal and nonadditive treatment of polarizability and vdW

interactions. In general, the presence of any environment (be it
liquid phase, crystal, or presence of edges and surfaces) will
strongly affect the polarizability and vdW interactions within
and between molecules and materials. Last but not least,
electromagnetic fields can also change the electron density
distribution and its response, thereby potentially influencing
vdW interactions. Our understanding of these complex
polarization effects is still fairly limited, and much current
work is dedicated to the study of the behavior of intermolecular
interactions in complex environments.
Particularly strong nonadditive and nonlocal effects (called

type-C by Dobson49) occur in nanoscale materials of reduced
dimensionality,23,49 such as in fullerenes, nanotubes, nanorib-
bons, and multilayered graphene, or in materials without cubic
(spherical) symmetry. The coupling between many electrons
over extended length scales leads to farsighted quantum-
mechanical fluctuations (as opposed to nearsighted correla-
tion103) that are responsible for long-range vdW forces.22 The
inherent delocalization of free electrons in metals coupled with
low dimensionality leads to an especially slow decay of the vdW
force between metallic chains and layers as a function of their
separation,23 a modification of the conventional asymptotic
behavior which dominates at very large distances (e.g., beyond
10−20 nm in bilayer graphene).104 In this context, Misquitta et
al.105,106 demonstrated that, upon closure of the band gap,
semiconducting nanowires may also exhibit unconventional
power-law behavior at intermediate separations, followed by
asymptotic convergence to the pairwise-additive limit.
The preceding discussion concentrated on describing many-

body effects in the vdW energy that stem from the
nonadditivity of polarizability in complex molecules and
materials. This is often the dominant many-body effect, but
there are other types of many-body contributions to the vdW
energy, which can be understood using higher-order
perturbation theory on isotropic fragments with fixed polar-
izability. This approach was originally used by Axilrod and
Teller,40 and independently by Muto,41 resulting in the so-
called Axilrod−Teller−Muto (ATM) three-body term, with a
characteristic decay of RABC

−9 , where RABC is the geometric mean
of the three mutual distances between fragments A, B, and C.
By continuing this perturbative expansion, one can derive an
expression for four-body and higher-order terms that decay
faster with respect to the distance between the objects. Because
of this short-range nature of higher-order terms, it is common
to argue that many-body terms beyond the three-body ATM
term are negligible for realistic interatomic distances found in
molecules and materials. However, the ATM expansion was
derived assuming fixed isotropic fragments and additive
localized polarizabilitiesassumptions that are not general
enough, as discussed above. In general, a subtle interplay
between nonadditive polarization and higher-order vdW energy
terms determines the many-body contributions to the vdW
energy, which can in turn be both attractive or repulsive. The
sign will sensitively depend on the topology, size, dimension-
ality, and polarizability density distribution. An empirical way to
account for this interplay is to renormalize the dispersion
coefficients that enter the pairwise and ATM terms. However,
such a procedure cannot be transferable, and more
sophisticated methods have been developed that include both
nonadditive polarization and higher-order many-body effects by
construction. This intriguing nature of many-body effects and
coupling between different terms in the many-body expansion

Figure 5. Nonlocal polarizability αAB of two essential configurations of
the benzene dimer: T-shaped and sandwich geometry. (a) A single
benzene molecule and the Cartesian components of the total
molecular polarizability ∑ABαAB. x, y, and z components are encoded
with green, blue, and red, respectively. All arrows have the same scale.
(b) Visualization of the full nonlocal polarizability αAB

ij of the T-shaped
and sandwich configurations of the benzene dimer with A and B
restricted to carbon atoms. See the caption of Figure 4b for a detailed
description.
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is analyzed in the theoretical part of this review, especially in
Section 4.8.3.
While the exact ACFD formulation (see Figure 2(a)) is able

to seamlessly include all the described nonadditive contribu-
tions to noncovalent vdW interactions, this is not the case for
many approximate methods discussed in this section. For quick
guidance, Table 1 provides a succinct description of a range of
approximate methods for modeling vdW interactions, together
with their ability to treat some nonadditive aspects of these
forces. We hope that this table together with the discussion in
this and the next two sections will aid understanding of the
reasons behind the good performance of some methods for
particular classes of systems, and the failures of varying degree
for other molecules and materials.

3. EXPERIMENTAL EVIDENCE FOR THE NONLOCAL
AND NONADDITIVE NATURE OF VAN DER WAALS
DISPERSION INTERACTIONS

Our understanding of vdW interactions in complex systems
relies mostly on theoretical concepts and the analysis of the
results of computer modeling. However, several recent seminal
experiments find unexpected collective behavior in vdW
interactions that simple models based on pairwise approx-
imations are unable to explain satisfactorily. These experimental
results are discussed here; taken together, they indicate a need
to revise our understanding of vdW interactions based on a
rigorous, explicit, nonlocal, and many-body description.
The group led by Stefan Tautz directly measured the force

gradients caused by the interaction of a single molecule
attached to a tip of an atomic force microscope with clean
(111) terraces of a gold surface.109 The high precision of these
measurements allowed them to confirm the well-known
Lifshitz−Zaremba−Kohn (LZK)110,111 Z−3 power law for the
interaction of a molecule with an underlying surface as a
function of their separation Z. This study also validated the
LZK approximation for a range of increasingly large molecules
derived from perylene. The most remarkable finding is that the
vdW attraction of perylene derivatives with the gold surface
scales nonlinearly with the number of carbon atoms. This
finding was attributed to a superlinear increase of the
polarizability with size, and was explained using calculations
at the RPA level of theory.109

Stronger nonlocality was observed in experiments carried out
in the group of Karin Jacobs, who studied the interaction of
nanoscale, mesoscale, and macroscale objects with polarizable
heterointerfaces composed of SiO2 thin films grown on a Si
surface.24,25 They studied the force between nanoscale proteins,
mesoscale bacteria, and macroscale gecko feet and SiO2/Si
interfaces by varying the thickness of the SiO2 thin film. This
allows determining the critical SiO2 thickness at which the
underlying Si surface becomes “invisible” for the interacting
object. The conventional pairwise treatment of vdW
interactions yields a critical thickness of approximately 1 nm,
after which the vdW interaction should vanish. Remarkably, the
experiments indicate that the measured force converges only
when a thickness of 10−20 nm is reached, indicating that vdW
interactions are more nonlocal and farsighted than expected
from simple models. In contrast, explicit many-body models for
vdW interactions predict much slower convergence of vdW
forces for heterointerfaces with complex dielectric profiles.92

Such interfaces are characterized by electric fields that
propagate far into the vacuum, which explains the observed
order-of-magnitude slower decay of vdW interactions.

Another manifestation of many-body effects is the recently
observed complete screening of vdW interactions by a single-
layer graphene or MoS2 adsorbed on a SiO2 surface by Tsoi et
al.112 This group carried out atomic-force microscopy experi-
ments on top of the SiO2 surface and the same surface covered
by a single-layer graphene or MoS2. Whereas for a pristine SiO2

surface the usual Lifshitz theory explains the experimental
observations, covering the surface with graphene or MoS2 leads
to measurements that can only be explained by assuming that
the tip interacts exclusively with the adsorbed single layer. A
possible explanation for this behavior is that the covering layers
are characterized by a strongly anisotropic polarizability tensor,
with in-plane fluctuations having a dominant role. Because
these fluctuations are not significantly modified by adsorption
on the insulating SiO2 substrate, the tip−substrate force is
dominated by the interaction with the 2D in-plane fluctuations,
making any contribution of the underlying SiO2 surface
negligible.
The nonlocality and nonadditivity of vdW interactions is also

manifested in the nontrivial behavior of nanoclusters adsorbed
on extended nanostructures.113,114 A simple additive model
would lead to a linear dependence of the adsorption density on
the accessible nanotube surface area. Instead, Rance et al.
observed quadratic dependence.113 Furthermore, the attractive
interactions increased nonlinearly for larger, more polarizable
gold nanoparticles.
While all these experiments provide a strong evidence for the

many-body nature of vdW interactions in complex materials, it
is expected that they are just the “tip of the iceberg” in the
ocean of molecules and materials. The complex interplay of
size, dimensionality, and polarization response will continue to
surprise us and lead to new insights into vdW interactions, and
ultimately to better control over the self-assembly of complex
polarizable molecules and materials into useful ensembles.114

4. THEORETICAL FRAMEWORK FOR VAN DER WAALS
MODELS

After summarizing the general concepts behind the current
understanding of vdW interactions in the previous section, we
now present a mathematical framework for discussing these
concepts and for describing the different vdW models with a
single terminology. We start with the exact adiabatic-
connection fluctuation−dissipation (ACFD) theorem for the
electron correlation energy and formulate a general classi-
fication of currently used approximations to this expression. We
will be concerned only with models that treat the correlation
between electrons explicitly via an interacting potential and in
which this potential has a correct asymptotic power-law
behavior. In this regard, we will not discuss semilocal density
functionals that, to some degree, capture the short-range part of
the correlation energy responsible for vdW interactions, such as
the Minnesota family of functionals,63,64 or the class of explicit
vdW models which can only be applied in situations with non-
negligible electron density overlap, such as the method of von
Lilienfeld et al. based on atomic pseudopotentials.115−119 We
also do not discuss ab initio methods that are based on
symmetry-adapted perturbation theory (SAPT),120,121 since
such approaches use a different definition of the noninteracting
reference system that can only be applied to systems with
distinct interacting fragments (although this limitation has been
a focus of recent work122).
Although the framework presented here is general and could

be used to discuss the modeling of vdW interactions even in
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fully empirical methods such as classical force fields, we will
focus only on first-principles approximations, that is, methods
which explicitly take into account the electronic structure of a
molecule or material via the electron density or orbitals. As
such, we limit the scope of this review to the context of
electronic structure methods, in particular density-functional
theory (DFT). In this case, a vdW model can be included in the
self-consistent Kohn−Sham (KS) equations via its dependence
on the electron density or orbitals, and hence can predict not
only the effect of the long-range electron correlation on the
total energy, but also its effect on the electronic structure. This
observation is closely related to the well-known Feynman
picture of vdW interactions,39 which essentially provides a
phenomenological connection between these two effects, and
which does not apply to models that depend only on the
geometry and topology of a molecule or material. (The
Hellmann−Feynman theorem applied to the electronic
Hamiltonian of two well-separated fragments implies that the
long-range electron correlation slightly disturbs the fragment
electron densities, and in a fully self-consistent method, these
distortions can be used to alternatively express the vdW forces
on atoms as pure electrostatic attraction between the nuclei and
the surrounding electron density. However, an electron
correlation method is needed to calculate the distortions in
the first place, so the Feynman picture does not practically solve
that problem.)
We begin this section with the introduction and discussion of

different variants of the polarizabilitya quantity that is central
to the description of the long-range electron correlation. This is
followed by a detailed analysis of the ACFD formula and
related equations, and by the presentation of a theoretical
framework for the development of systematic approximations
to this formula based on range-separation and the quantum
harmonic oscillator model. Finally, we introduce a general
classification scheme for such approximations and apply it to
the currently used vdW models, which are then reviewed
individually in detail in the subsequent sections.

4.1. From point polarizability to nonlocal polarizability and
back

The electrical polarizability, α, indicates the willingness of a
molecule or a material to respond (become polar) under the
influence of a perturbation of the electric field. As such, α is
only one of several commonly used response functions for
describing this behavior, each of which differs by expressing the
perturbation (cause) and polarization (effect) as different
quantities. Other typical response functions are the density
response function χ and the relative electric permittivity ε.
Originally, these quantities of classical electrodynamics were
considered as macroscopic, that is, they were “smoothed” over
the rapid variations in the fields and densities that occur in a
material on the length scale of individual atoms. However, they
can in fact also be used in the microscopic regime, now
phenomenologically describing the behavior of the electrons
that can be fully explained only by quantum mechanics. In its
simplest form, the (point) polarizability αpt determines the
(point) dipole p of a molecule or a crystal unit cell that is
induced by an external electric field E,

α=p Ept (1)

We will now generalize the point polarizability to a continuous
nonlocal time-dependent tensor quantity, α(r, r′, t, t′), relate
this form to the simple one above and to other response

functions, comment on why this is still not the full picture, and
finally show why this has anything and everything to do with
vdW interactions.
First, the field and the induced dipole may not have the same

direction in a general anisotropic material. In other words, the
induced dipole in some Cartesian direction, pi, may not depend
only on the component of the perturbing field in that direction,
Ei, but also on the other components, Ej. This can be captured
mathematically by considering the polarizability as a tensor
quantity α with Cartesian components αij, as was discussed in
Section 2 and shown illustratively in Figures 4 and 5. Second,
we switch to a continuous time-dependent description, where
both the external field and the response depend on the position
in space and in time. When a small perturbation in the external
potential Δϕ(r, t) (or the corresponding field E(r, t) =
−∇(Δϕ(r, t))) is applied, assuming fixed nuclear charges, the
material responds with a change in the electron (charge)
density Δn(r′, t′). The time-dependent point dipole p(t) = ∫ dr
Δn(r, t)r has its continuous analog in the polarization density
P(r, t), which can also be understood as a dipole density, p(t) =
∫ dr P(r, t). We note that there is no nontrivial point
counterpart to Δn, because the total charge in a material cannot
be changed by an applied external field, ∫ dr Δn(r) = 0 (unless
the field is strong enough to produce emission, which is a
completely different kind of effect). The induced charge density
and polarization density are related by

∇Δ = − ·n t tr P r( , ) ( , ) (2)

The response of the material is in general nonlocal; that is, the
polarization here and now does not depend only on the field
here and now. This effect can be captured with α being a
nonlocal function. In fact, it is this sole ability of the
polarizability to relate the response at a point r to a
perturbation at a point r′, which enables it to capture the
electron correlation. Thus, in the most general form, the
relationship between the polarization density and the polarizing
electric field is

∫ ∫ ∑ α= ′ ′ ′ ′ ′ ′
−∞

P t t t t E tr r r r r( , ) d d ( , , , ) ( , )i

t

j

ij j

(3)

where the integrals are over all space and time and the sum over
Cartesian components can be understood as multiplication of
the matrix α and the vector E. In what follows, we will often
drop the explicit sum and enumeration over Cartesian
components and simply write ∑jαijEj = (αE)i. Equation 3
would thus be written as

∫ ∫ α= ′ ′ ′ ′ ′ ′
−∞

t t t t tP r r r r E r( , ) d d ( , , , ) ( , )
t

(4)

Although α is the dipole polarizability, one can recover all the
higher induced multipoles from its fully nonlocal form, by first
calculating P, followed by Δn via eq 2, and from that any
induced multipole moment.
Now we follow the path back to the molecular isotropic

polarizability. To do so, one must first assume a static electric
field, and drop the dependence on time, i.e., E(r). (This will be
discussed in more detail later when discussing the vdW energy.)
Second, one must assume a spatially homogeneous electric
field, E(r) = E, for which

∫ α α= ′ ′ =( )P r r r r E r E( ) d ( , ) ( )loc (5)
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where we introduced a new quantity, αloc(r), termed here as a
local polarizability. Although αloc is now formally a local
quantity, it effectively contains the integrated nonlocal response
at point r to the (homogeneous) field at all points r′. This is
analogous to how the local exchange-correlation energy density
in the homogeneous electron gas is formally a local quantity at
point r, but contains integrated correlation contributions from
all points r′. Integrating over r′ in α(r, r′) reduces the amount
of information contained in α; hence, αloc is no longer able to
completely describe the response of a material to a general
inhomogeneous field. Indeed, using αloc to get a full response of
a material subject to an inhomogeneous perturbation would be
an approximation, akin to using the local density approximation
(LDA) in DFT when treating inhomogeneous systems such as
molecules.
Next, if one requires only the knowledge of the total point

dipole of a molecule or material in a homogeneous field, then

∫ ∫ α α= = =( )p r P r r r E Ed ( ) d ( )loc pt (6)

where αpt is now the anisotropic point polarizability, obtained
by integrating over both r and r′ in α(r, r′), i.e., αpt = ∬ dr dr′
α(r, r′). Finally, if one assumes an isotropic material, for which
the response is the same in all directions, αpt,ij = αptδij, then

α=p Ept (7)

which brings us back to the point polarizability in eq 1.
The nonlocal polarizability α(r, r′) is related to other

response functions, such as χ or ε by simple formulas, which
mirrors the fact that all these response functions carry
essentially the same information. The density response χ
relates a perturbation in the external potential to a response in
terms of the induced density,

∫ ∫ χ ϕΔ = ′ ′ ′ ′ Δ ′ ′
−∞

n t t t t tr r r r r( , ) d d ( , , , ) ( , )
t

(8)

By comparing eqs eqs 8 and 3, and using the relationships
between Δϕ, Δn, E, and p, we arrive at

∑

αχ

α

∇ ∇′ ′ = · · ′ ′

=
∂
∂

∂
∂ ′

′ ′

′t t t t

r r
t t

r r r r

r r

( , , , ) ( , , , )

( , , , )
ij i j

ij

r r

(9)

That is, the density response is the result of the divergence
operator applied to both r and r′ of the nonlocal polarizability.
We note that whereas α is a tensor, χ is only a scalar. As in the
case of Δn, χ has no nontrivial point analog, because ∬ dr dr′
χ(r, r′, t, t′) = 0 by charge conservation. For this reason, we will
use α rather than χ throughout this review. The relationship
between the density response χ (and hence the nonlocal
polarizability) and the relative permittivity ε is obtained directly
from their macroscopic definitions in the context of the
Maxwell equations, and in atomic units (ε0 = 1/4π) reads as

∫ε χ′ ′ = + ″ ″ ″ ′ ′−t t v t tr r r r r r r( , , , ) 1 d ( , ) ( , , , )1

(10)

where v(r, r′) = |r − r′|−1 is the Coulomb potential.
Although α, χ, and ε are fully nonlocal time-dependent

response functions, they still do not describe the response of a
material in its full complexity, but only within the linear regime.
In general, the response of a material is a nonlinear functional
of the perturbation, and the response functions presented

above are the corresponding first functional derivatives of these
quantities,

α
δ

δ
χ

δ

δϕ
′ ′ =

′ ′
′ ′ =

′ ′
t t

t

t
t t

n t

t
r r

P r

E r
r r

r

r
( , , , )

( , )

( , )
, ( , , , )

( , )

( , )
(11)

This additional complexity is however not significant for a
discussion of the electron correlation energy, because the
electron pair density, n2(r, r′), from which the correlation
energy can be calculated directly, can be fully recovered from
the linear response functions only. The fundamental reason for
this is that the Coulomb potential 1/|r − r′| acts between two
points in space, whereas the higher functional derivatives of the
nonlinear response depend on three or more positions in space.
Thus, these quantities essentially carry more information about
the electronic system than is needed for the calculation of the
correlation energy.
Before proceeding further, the final step is to transform these

linear response functions from the time domain to the
frequency domain. All approaches discussed in this review are
concerned with systems in equilibrium (stationary states in
quantum mechanics). Then, the response depends only on the
time difference t − t′. This allows one to Fourier transform the
polarizability α(r, r′, t − t′) to the frequency domain, α(r, r′,
u), with the frequency denoted as u; namely:

α α α′ ′ = ′ − ′ → ′t t t t ur r r r r r( , , , ) ( , , , 0) ( , , )
FT

(12)

The frequency-dependent polarizability α(r, r′, u) is often
called the dynamic polarizability. This transformation intro-
duces a new level of complication by making the polarizability a
complex quantity with real and imaginary components.
However, these two components have a clear physical
interpretation: the real part describes a non-lossy response of
a material and the imaginary part represents dissipation.

4.2. Exact correlation energy from the nonlocal dynamic
polarizability

So far, we have not discussed the role that the nonlocal
dynamic polarizability plays in the description of vdW
interactions. This connection is formulated as an exact
expression for the electron correlation energy that is usually
referred to as the ACFD theorem. We will not repeat its
elaborate derivation here, as it can be found elsewhere,54,123 but
instead cover the physical ideas embodied in the derivation.
The connection between the correlation energy and the
polarizability starts with the realization that the response of a
medium to an electromagnetic field, which is captured by the
imaginary part of the dynamic polarizability, leads to dissipation
of the field in the medium. The fluctuation−dissipation
theorem then relates the behavior of this dissipation to the
charge density fluctuations that are present in every quantum-
mechanical system even at equilibrium. In essence, this theorem
claims that the relaxation of a system from a perturbed state
behaves according to the same laws both in the case when the
perturbation was caused by an external field (such as when
probing a molecule spectroscopically) or when it is an internal
spontaneous fluctuation.124 This enables one to describe the
density fluctuations in terms of dynamic response functions,
such as the polarizability, α(r, r′, u). Once we have the
description of these fluctuations, the electron correlation energy
then follows directly from their Coulomb interaction. In this
way, one obtains the full electron correlation energy, of which
the long-range part is responsible for vdW interactions. The
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reason why the ACFD framework is especially relevant for the

problem of vdW interactions is that it is possible to construct

good approximations to both α(r, r′, u) and the ACFD

expression itself when one is concerned only with the long-

range part of the correlation energy.
In the literature, the ACFD is typically written in terms of the

density response function χ(r, r′, u) (see eqs 8 and 12),

∫ ∫ ∬
π

λ

χ χ

= − ′

× ′ − ′ ′
λ

∞
E

u

u u v

r r

r r r r r r

d

2
d d d

( ( , , i ) ( , , i )) ( , )

c
0 0

1

0 (13)

where r, r′ are spatial coordinates, u is the frequency, v(r, r′) =

1/|r − r′| is the Coulomb potential, λ is a coupling strength that

connects the Kohn−Sham (KS) electronic system (λ = 0) to

the real system (λ = 1), χλ is the density response function of

the system at coupling strength λ, and χ0 is simply χλ for λ = 0,

that is, the density response function of the noninteracting KS

system. The integral over λ from 0 to 1 is the adiabatic-

connection that gives the other half of the name to the ACFD

formula and originates from the Hellmann−Feynman theorem

applied to the full electronic Hamiltonian with the electronic

repulsion term scaled by λ. The integral of χ over imaginary

frequencies is simply a mathematical trick, and is in fact

equivalent to the integral over real frequencies of the imaginary

part of χ,125

∫ ∫χ χ′ = ′
∞ ∞

u u u ur r r rd ( , , i ) d Im ( , , )
0 0 (14)

It is the form on the right-hand side which comes directly from

the fluctuation−dissipation theorem, because the imaginary

part of the response function, Im χ, accounts for dissipation.
The KS response, χ0, is directly given by the Adler−Wiser

sum over the KS orbitals ϕμ(r),
126,127

∑χ
ϕ ϕ ϕ ϕ

′ = −
* ′ * ′

ϵ − ϵ +
μν

μ ν

μ μ ν ν

μ ν

u f f
u

r r
r r r r

( , , i ) ( )
( ) ( ) ( ) ( )

i0

(15)

where ϵμ are the orbital energies and fμ are the occupation

numbers.
For the purposes of this review, we will express the ACFD

formula in an equivalent128 form in terms of the polarizability

α(r, r′, u) and the dipole potential T(r, r′),

∇∇′ = − ′

=
− ′ − ′ − | − ′|

| − ′|

′vT r r r r

r r r r r r I

r r

( , ) ( , )

3( )( )

r r

2

2

Using the relationship between α and χ in eq 9, the divergence

theorem,129 and the limit χ(r, r′)v(r, r′) → 0 for |r − r′| → ∞,

one can transform
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where the trace is over Cartesian components of αT. The
ACFD formula can then be rewritten as

∫ ∫ ∬
α α

π
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c
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0 (17)

Both the interacting αλ and noninteracting α0 are in general
nonlocal functions, but only the former contains information
about the electron correlation. To explain this point, we note
that the statement above, that α0 is the response of the KS
system of noninteracting electrons, does not mean that it is the
response one would get from a KS calculation in the presence
of an electric field. Indeed, in such a calculation the density and
hence the mean field for the electrons would change under the
influence of the perturbing electric field, so that all correlation
effects described by the exchange-correlation potential would
be propagated into the obtained response. In fact, with the
exact exchange-correlation functional, one would obtain the
exact α1 from such a calculation. On the other hand, the
response described by α0 assumes that the mean field for the
electrons (comprising the Hartree and exchange-correlation
potential) is not changed by the perturbing field. That is, α0

describes a process where each electron responds individually
to the perturbing field while moving within the mean field of
the unperturbed electrons. This is a crude approximation that
neglects the essential mechanism in which the response of an
electron is influenced by the response of all the other electrons.
In the aforementioned KS calculation in the presence of an
electric field, this mechanism is actually ensured by the self-
consistent adaptation of the mean field, whereas, in the Dyson
approach introduced below, it is achieved by direct coupling of
the electrons. In both cases, the response of an electron takes
into account all the other electrons as it must. An indirect
consequence of the approximations made in α0 is that its spatial
extent and nonlocal character are determined only by single-
electron behavior. As a result, α0 is exponentially localized in
materials with a finite gap;130 that is, α0(r, r′) goes
exponentially quickly to zero as |r − r′| increases. We note
that this may not be the case for α1 even in such materials,
because the long-range correlation between electrons can
induce long-ranged character in α1. It is this difference between
αλ and α0 that is exploited by the adiabatic-connection formula
in eq 17 to obtain the correlation energy.
The interacting polarizability αλ(r, r′,u) can be expressed in

terms of α0 by means of the self-consistent Dyson equation,
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(18)

where Txc,λ(r, r′, u) = T(r, r′) − λ−1∇r∇r′ f xc,λ(r, r′, u) is the
dipole potential accompanied by the exchange-correlation
kernel f xc,λ(r, r′, u) = δvxc,λ(r, u)/δn(r′, u), ⟨·⟩ denotes the
use of the shorthand implicit notation for the spatial integrals,
and the dependence on the frequency has been omitted for
clarity. The polarizability of the real system is expressed here as
an infinite sum over progressively more coupled terms built
from the polarizability of the noninteracting Kohn−Sham
system. Straightforward use of the ACFD formula together with
the Dyson equation to calculate the correlation energy from α0

is impossible due to the lack of knowledge of the exact
exchange-correlation kernel f xc. This quantity is notoriously
more difficult to approximate than the exchange-correlation
functional itself.
The ACFD formula in eq 17 and the Dyson equation in eq

18 are the two basic building blocks for the first-principles
description of vdW interactions. The latter is essentially the
exact expression for the response of a material, while the former
uses this response to give the exact correlation energy. So far,
we have discussed an exact theoretical framework without any
approximations. Now, we connect the ACFD framework to
DFT by introducing new effective quantities. In a typical DFT
calculation, the short-range part of the electron correlation is
obtained from a semilocal or hybrid density functional.131,132

However, the ACFD formula gives the total correlation energy,
including the short-range part, and if it was used in its full form,
the short-range part would be double-counted. To solve this
issue, the ACFD expression can be range-separated; that is, the
double integral over all space in eq 17 can be split into two
parts,
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′ = ′ − | − ′|
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f

r r r r r r

r r r r

d d d d (1 ( ))

d d ( )
(19)

where f(R) is some range-separating function for which f(0) = 0
and f(R) → 1 as R → ∞. The first and second terms on the
right-hand side correspond to the short- and long-range parts,
respectively. Such a range separation usually leads to
approximate approaches as described below; however, despite
being arbitrary, it is in principle exact if the treatment of the two
parts is done consistently. For a more rigorous introduction of
the range separation, see refs 133 and 134. The partition splits
the electron correlation energy into two parts,

= +E E Ec c,sr c,lr (20)

The short-range part, Ec,sr, can then be approximated with a KS
calculation, while the long-range correlation energy, Ec,lr, is
given by the long-range part of the ACFD formula, that is, by
eq 17 with ∬ dr dr′ replaced with ∬ dr dr′ f(|r − r|).

We note at this point that we do not identically equate the
long-range correlation energy with vdW dispersion interactions.
Whereas the former is uniquely defined by specifying a
particular range separation, the latter has no formal non-
perturbational definition. With that said, however, the overlap
of the two phenomena is large and it is safe to say that the long-
range electron correlation provides the microscopic explanation
of vdW interactions. It is in this context that we present vdW
methods as methods for calculating the long-range correlation
energy. We also stress that, at large enough distances, the
contribution of long-range electron correlation to the electronic
energy can be understood fully in terms of vdW interactions (or
corresponding retarted Casimir interactions). In particular,
although static (left−right, on-site) electron correlation is
manifest at large separations and is only partially captured by
semilocal density functionals, it is nevertheless caused by the
short-range part of the Coulomb potential. In other words,
issues with static correlation would persist in a hypothetical
world in which the long-ranged Coulomb potential would be
replaced with a short-ranged Yukawa potential.
The range-separating function f must depend on the

underlying density functional that is used for the short-range
correlation; more precisely, f must depend on the range to
which the functional is able to capture the electron correlation.
In addition, the range separation must certainly also be system-
dependent, as can be seen from the following examples. First,
consider the case of the homogeneous electron gas, for which
all LDA-based semilocal functionals give the exact energy; that
is, range separation is unnecessary in this case. In contrast, in
the case of nonoverlapping fragments, no such functional can
capture the electron correlation between these entities.
However, neither the functional nor the system dependence
are completely known or understood theoretically, and the
particular form of the range-separating function is thus a matter
of a long and unsettled debate in the literature. We will discuss
the various approaches to this range separation in the respective
sections below.
In analogy to the ACFD formula, the Dyson screening eq 18

can also be split into short- and long-range parts, albeit in a less
straightforward manner. First, the coupling potential, Txc,λ, can
be split as follows:

′
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where f is again some (in general different) range-separating
function, and we replaced the screened dipole potential in the
long-range part with the bare dipole potential, since it is
assumed that the range of the exchange-correlation kernel is
shorter than that of the range-separating function f. This
separation splits the n-th term in the Dyson equation into 2n

terms, each of which is formed by some particular combination
of Tsr and Tlr.
Now we contract all the short-range segments ...α0Tsrα0...

contained in these terms and introduce an effective short-range
screened polarizability αsr(r, r′) such that the Dyson equation
becomes

∑ α αα λ′ = ⟨ − ⟩ ′λ

=

∞

r r T r r( , ) ( ) ( , )
n

n

0

sr lr sr
(22)
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Here, only the long-range coupling is considered explicitly via

Tlr, whereas the short-range coupling enters implicitly in the
effective short-range screened polarizability αsr.
The range separation of both the energy in the ACFD

expression and α in the Dyson equation enables us to combine

these two equations, after performing one final simplification.
The functions used for range separating both of these quantities

should in principle be different. In the case of the energy, the

separation should be governed by the underlying semilocal or
hybrid density functional. In the case of the polarizability, the

separation should be constructed based on the model for αsr(r,

r′). However, we will invoke a final approximation here, done
by all vdW approaches known to us, by equating these two

range-separating functions. In principle, one can always
construct a model for αsr(r, r′) such that these two functions

match. Inserting eq 22 into the long-range part of eq 17 and

integrating over λ, we arrive at

∫ ∬∑

α

π
= −

−
′

× ⟨ ⟩ ′

=

∞ ∞
E

n

u

u

r r

T r r

( 1) d

2
d d

Tr[ ( ) ( , , i )]

n

n

n

c,lr
2 0

sr lr (23)

Starting at second order, eq 23 expresses the long-range
electron correlation energy as an infinite sum over all orders of
the long-range coupling of the short-range screened polar-
izability. To clarify the various shorthands, the lowest order
contribution Ec,lr

(2), written out in full form, is
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(24)

The structure of the individual terms in eq 23 is illustrated in
Figure 6b for the case of the benzene dimer. These terms can
be viewed as closed chains (loops) of quantum-mechanical

Figure 6. Schematic representation of the different types of interaction terms present in exact and approximate models for van der Waals interactions
as shown for the benzene dimer. (a) The legend for the individual quantities that are present in the different interaction terms. In the left column
from top, the long-range dipole potential Tlr(r,r′) (eq 21), its square, and the coarse-grained long-range dipole potential Tlr,AB (Section 4.4.1). In the
right from top, the short-range screened nonlocal polarizability αsr(r, r′) (eq 22), the local effective polarizability αeff(r) (eq 25), and the coarse-
grained local effective polarizability αeff,A (Section 4.7.2). The clouds around αeff hint at the effective spatial extent of the local polarizability. (b)
Examples of terms in the formally exact many-body expansion of the long-range correlation energy in eq 23. Points in space interact via chained
short-range polarizabilities and long-range dipolar interactions. The red and orange colors distinguish examples of the second- and third-order terms,
respectively. αsr(r, r′) is largest when spatially localized on atoms and decays exponentially (in nonzero gap materials) with distance (see Figure 4c).
On the other hand, αlr is damped at short distances, but decays only polynomially with distance. The terms in the figure illustrate contributions not
only from atoms, but also from bonds and even the tails of atomic densities (Section 4.3). (c) Examples of long-range correlation energy terms
captured by nonlocal density functionals (Section 4.6). In this case, only second-order terms are accounted for and the short-range nonlocal
polarizability is approximated by a density-derived effective local polarizability αeff(r) (Section 4.3). (d) Examples of terms in a coarse-grained version
of the full many-body expansion of the long-range correlation energy (Section 4.8). In this case, the second- (red) and third-order (orange) terms are
depicted. Here, the interactions terms occur only between whole atoms.
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events, in which a spontaneous fluctuation at some point
generates a perturbation at another, which produces a response
at yet another, which again generates a perturbation, etc., until
some fluctuation interacts with the initial one. The closed form
of these terms corresponds to the fact that these events are not
triggered by an external perturbing field, but are spontaneous
internal fluctuations.
Equation 23 represents a general framework in which one

can discuss all major vdW-inclusive methods in terms of the
various realizations and approximations of this expression.
When assessing a given vdW model, one can start with a
discussion of how αsr and Tlr are constructed, followed by a
discussion of how are they coupled. The fundamental
motivation for the separation of the whole problem into
short- and long-range components is that the explicit coupling
T is relatively easy to handle at long range and the properties of
a material captured by α can be reasonably modeled from the
electron density at short range, as we show in the next section.

4.3. Local effective polarizability from the electron density

In this section, we argue that it is reasonable to approximate
αsr(r, r′) by its local counterpart αeff(r). We already introduced
a local polarizability, αloc(r) = ∫ dr′ α(r, r′), which captures the
local response to a homogeneous perturbation at all points. The
main difference between αloc(r) and αeff(r) is that the former is
obtained from the full α(r, r′), whereas the latter comes from
αsr(r, r′), which is α0(r, r′) that was screened at short range
only. As argued above, α0 has mostly local character in finite-
gap systems, which implies that αsr(r, r′) is also mostly short-
ranged. That is, αsr(r, r′) describes only the response at points r
that are near the perturbing field at point r′. It is then
reasonable to assume that the electric field is approximately
homogeneous in this local neighborhood M(r) surrounding r,
and hence the response can be well described with a local
effective polarizability given by

∫α α= ′ ′
′∈

r r r r( ) d ( , )
Mr r

eff
( )

sr
(25)

This integration can be limited to the local neighborhood
because αsr(r, r′) goes quickly to zero for large |r − r′|. Since
αeff only depends on the local properties of a material, it turns
out that reasonably good approximations for this quantity can
be constructed using the electron density, its derivatives, or
other density-derived quantities, which essentially was the
motivation for range-separating the Dyson equation in the first
place. In addition, the effective local polarizability also
significantly simplifies the Dyson equation and hence our
central correlation energy expression, eq 23. Here, αeff(r) must
enter these equations as δ(r − r′)αeff(r′), where δ is the Dirac
delta function. For example, the second-order contribution in
eq 24 reduces in the following way after the substitution of
αeff(r):
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Several distinct regions of the electron density can be
considered when constructing a density model for αeff(r),
which may influence different types of materials as discussed in
Section 2. The inner-shell electrons are relatively unresponsive,
yet they cannot be safely neglected in all circumstances,
especially for heavier atoms. Most of the response comes from

the valence electrons, and hence, a good model must capture
the changes in the response associated with the formation of
covalent bonds. In this regard, the tails of the electron density
contain indirect information about the unoccupied electronic
states, and hence, they are useful in models of αeff. Ionic
(charge-transfer) states are reflected in the depletion and
accumulation of the electron density and its derivatives with
respect to neutral atoms. In all these examples, the response can
be in principle captured well by a semilocal model for αeff, and
the difficulties lie mostly in constructing a model that is general
enough to describe all the cases as well as the continuous
transitions between them on the same footing.

4.3.1. Anisotropy of αeff(r). The (point) polarizability of a
molecule is in general an anisotropic quantity. A well-known
example is the benzene molecule, in which the in-plane
components of the polarizability are approximately two times
larger than the out-of-plane component (see Figure 5a).
Because this quantity is coupled with the highly anisotropic
dipole potential Tlr, a proper account of the anisotropy in the
polarizability is crucial for an accurate estimate of the long-
range correlation energy Ec,lr. In the context of eq 23, the
contribution from the anisotropy emerges in two distinct ways.
First, αsr(r, r′) (or αeff(r)) introduces the anisotropy directly

into the expression for Ec,lr. This aspect of the anisotropy is
neglected in most vdW models. This approximation enables
one to write the polarizability as a scalar, αeff(r) ≈ αeff(r), which
simplifies the equations by making αeff and Tlr commute. For
example, the second-order contribution to Ec,lr in eq 24 reduces
to the familiar 1/R6 dependence on the distance R=|r − r′|:

∫ ∬

∬
∫

∬

π

α α

π
α α

= − ′

× ′ ′ ′

= − ′

× ′

′

= − ′ ′
| − ′|

| − ′|

∞

∞
⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

E
u

u u

u u u

C
f

r r

r T r r r T r r

r r

r r

T r r

r r r r
r r

r r

1

2

d

2
d d

Tr[ ( , i ) ( , ) ( , i ) ( , )]

1

2
d d

3
d ( , i ) ( , i )

Tr
1

6
( , )

1

2
d d ( , )

( )

c,lr
(2)

0

eff lr eff lr

0
eff eff

lr
2

6

2

6

(27)

where we introduced ∫ α α′ = ′
π

∞
C u u ur r r r( , ) d ( , i ) ( , i )6

3

0
,

which is a generalization of the Casimir−Polder integral, and f
is the damping function used for range-separating Tlr = f(R)T
(see eq 21). C6(r, r′) defined in this way is just a more general
form of the familiar atomic C6,AB coefficients.
Second, the anisotropy is also accounted for automatically by

the long-range coupling in eq 23. This follows from the Dyson
screening (eq 18), which was incorporated into the ACFDT
formula (eq 17). In this regard, αλ obtained from the Dyson
equation can be strongly anisotropic even if α0 was isotropic.

4.3.2. Harmonic oscillator model of the dynamic
response. The exact dependence of the polarizability on the
frequency is in general unknown. Here, we briefly introduce the
model system of a quantum harmonic oscillator (QHO), which
is used to a different degree by many vdW approaches in
modeling the frequency dependence of the local effective
polarizability. Because of the harmonic force and associated
quadratic potential, the QHO is the simplest model for
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studying small perturbations of a system in equilibrium. In our
case, the equilibrium system is the electronic ground state, or
the ground-state electron density, and the small perturbations
are the quantum-mechanical charge fluctuations. The QHO
also happens to be a quantum system with equidistant energy
levels, which makes it a perfect tool for “counting” electronic
excitations, which in turn describe all response properties of
molecules and materials. It is for both these intertwined reasons
that QHOs are such a useful model for describing vdW
interactions, among others.
Many properties of a QHO can be derived analytically. In

particular, the dynamic (point) polarizability of a QHO is

α
ω δ

=
− −

u
q

m u u
( )

( i )
QHO

2

2 2
(28)

where q is the charge of the oscillator, m is its mass, ω is its
excitation (characteristic) frequency, and δ is an infinitesimally
small number. The oscillator may be considered also
infinitesimal, in which case m and q would be infinitesimals
dm and dq, respectively. The infinitesimal imaginary part in the
denominator is necessary to satisfy the Kramers−Kronig causal
identities for response functions, and its physical meaning is
simply that the absorption spectrum is a Dirac delta function
located at ω (in the imaginary part of αQHO). In other words,
the QHO only absorbs electromagnetic radiation correspond-
ing to its own excitation frequency. Furthermore, this
infinitesimal imaginary part disappears in the integral over the
imaginary frequency iu, as can be seen for example in the form
of eq 14 for αQHO
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The QHO model, with its single-frequency absorption
spectrum, is insufficient to describe the full spectrum of a real
atom. However, a frequency integral of such a complicated
spectrum (imaginary part of α) is a single number, and as such
can be effectively captured by an integral of a simple spectrum
characterized by a single frequency. The choice of such an
effective frequency necessarily depends on the particular form
of the integrand, and the use of a single effective frequency for
all cases constitutes the so-called Unsöld approximation.135 For
instance, consider the generalization of the Casimir−Polder
integral for the C6 coefficient in eq 27. This expression
demonstrates that the second-order correlation energy between
two atoms (with complicated absorption spectra) can be
captured exactly by the interaction between two QHOs (with
single-frequency spectra) as long as the pairs of atoms and
QHOs have the same C6 coefficient. The C6 coefficient for two
identical QHOs depends only on the static dipole polarizability
and the characteristic excitation frequency:
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A useful combination rule holds for the C6 coefficient of two
QHOs A and B (with different sets of parameters q, ω, and m):
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where C6,AA are the C6 coefficients between two identical
oscillators A from eq 31 and αA(0) are the corresponding static
dipole polarizabilities. However, using eq 32 for combining the
C6 coefficients of real atoms is precisely an example of the
Unsöld approximation, as the effective frequencies needed to
exactly capture the integrals in eqs 31 and 32 would in general
be different. On the other hand, it has been shown that this
approximation leads to a mean absolute relative error of only
3% in the C6 coefficients for heteronuclear atomic pairs.

60

4.4. Classification of approximate van der Waals methods

Here, we introduce a general classification of vdW methods
based on two independent approximations to the general
expression for Ec,lr in eq 23. The first one involves coarse-
graining spatial quantities such as α(r, r′), αeff(r), or T(r, r′).
The second approximation involves truncating the infinite
series, or the many-body expansion, in eq 23 to some finite
order. Methods that do not use either of these two
approximations (but use others instead) comprise the class of
models based on the random-phase approximation (see Section
4.5). Nonlocal density functionals, which will be discussed in
Section 4.6, constitute a class of truncated, but non−coarse-
grained methods. The many-body dispersion (MBD) frame-
work of coupled harmonic oscillators represents a class of
coarse-grained, but nontruncated models (see Section 4.8).
Finally, both the coarse-graining and truncation approximations
are used in the popular class of pairwise methods (see Section
4.7).

4.4.1. Coarse-graining the ACFD formula and Dyson

equation. Each of the spatial integrals (over r and r′) in the
ACFD expression in eq 17 can be partitioned into N parts with
the use of a set of functions, wA(r), which satisfy ∑A = 1

N wA(r) =
1 at each point r. When these functions are spatially localized,
they naturally define a set of N fragments. Using such a
partitioning scheme breaks the ACFD formula into N2 terms,
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One may now coarse-grain the two-point dipole potential,
T(r,r′), via

′ ′ ≈ ′w w w wr r T r r r r T R R( ) ( ) ( , ) ( ) ( ) ( , )A B A B A B (34)

in which T(RA, RB) is the dipole potential between the centers
RA and RB of fragments A and B. Such an approximation then
enables one to reduce the spatial integrals in the ACFD
formula,
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(35)

where we defined αAB = ∬ dr dr′ α(r, r′) wA(r) wB(r′) and TAB

= T(RA, RB), which are now coarse-grained versions of α(r, r′)
and T(r, r′), respectively. A simple, yet illustrative example of
such a coarse-graining procedure is any numerical, real-space
grid implementation of the ACFD formula, in which RA are
simply the grid points. In this case, the error associated with
approximating T(r, r′) with TAB would be considered a
numerical error arising from the use of a grid that is too coarse.
In the case of vdW models, however, one is only concerned
with the long-range part of T, Tlr, and hence the fragments A
can be much larger than grid points, while still maintaining a
reasonable level of accuracy. Here, the fragments are typically
chosen to be atoms, whereby an effective atoms-in-molecules
partitioning scheme wA(r) is used; however, other fragmenta-
tion schemes can also be used with good results. Using an
analogy from electrostatics, we now connect the coarse-graining
to the standard multipole expansion procedure. The electro-
static interaction energy of two charge distributions, nA(r), is

given by ∬= ′ ′ ′−E n v nr r r r r rd d ( ) ( , ) ( )n n
1

2 1 2 . The same

quant ity for two dipole distr ibut ions , PA(r), is

∬= ′ ′ ′−E r r P r T r r P rd d ( ) ( , ) ( )P P
1

2 1 2 . En−n can be expanded

into the multipole series q−q, q−p, p−p, p−Q, etc., where q, p,
and Q denote monopole (charge), dipole, and quadrupole
moments, respectively. Likewise, the dipole distribution
interaction energy EP−P can also be expanded into an analogous
series starting with the p−p term. Here, we consider only
charge distributions nA(r) that arise from dipole distributions
PA(r) via nA(r) = −∇·PA(r) and are therefore characterized by
zero monopole (charge) moments. It then follows that the
energies En−n and EP−P, as well as their multipole expansions,
would in fact be identical. Within this context, the coarse-
graining of eq 34 simply corresponds to considering only the
p−p term in the multipole expansion of EP−P.
The feasibility of such an approximation is determined by the

spatial extent of each wA(r) around RA relative to the distances
between the fragments. When the fragments are atoms, the
issue of considering only the dipole−dipole term is a well-
known and well-analyzed approximation. Some models
improve upon this approximation by including higher-order
terms from the multipole expansion, such as the dipole−
quadrupole or quadrupole−quadrupole terms. However, the
multipole expansion of Tlr(r, r′) = f(|r − r′|)T(r, r′) is not
simply the multipole expansion of T(r, r′) multiplied by the
damping function f(|r − r′|). Therefore, the coupling of the
higher-order moments is not separable from the damping
function itself; rather, it can be partially and effectively captured
in f, as this function often contains some empiricism anyway.
An alternative path to mitigate this error would simply involve
the use of a finer graining for α(r, r′). This returns to the fact
that the fully nonlocal dipole polarizability is sufficient for an
exact description of the long-range electron correlation.

As was done for the ACFD formula, one can also coarse-
grain the Dyson equation in eq 18:

∑α α α α

α α α
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≡ − ⟨ ⟩

λ λ λ

λ λ
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AB AB
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AC CD DB

AB AB

, 0, 0, xc, , ,

0, 0 xc, (36)

where the meaning of ⟨·⟩ has been extended to denote also
implicit summation over fragments in addition to implicit
integration over space. As a result, the many-body expansion of
Ec,lr in eq 23 can also be coarse-grained,
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(37)

The coarse-grained versions of these equations will serve as a
basis for discussing the pairwise and many-body dispersion
vdW methods. We note that the only approximation made so
far is the replacement of the full multipole expansion with the
dipole−dipole term. As long as all short-range correlation
effects are properly accounted for in αsr,AB, there is no reduction
in generality in this regard.

4.4.2. Truncating the many-body expansion of the
long-range correlation energy. In eq 23, Ec,lr is expanded in
the number of interactions of αsr via the coupling potential Tlr.
The second-order (i.e., the lowest-order) contribution corre-
sponds to two interactions, the third-order contribution to
three interactions, etc. These interactions occur between bodies
(atoms, molecules, points in space), which motivates the
terminology of two-, three-, and four-body contributions to the
interaction energy. We point out that the correspondence
between the m-body and n-th order contributions is not
straightforward. Starting at n = 4, some terms at n-th order
describe interactions between m < n bodies and hence
contribute to the m-body interaction energy. For instance, the
term at fourth order contains four Tlr between two bodies, and
so contributes to the 2-body interaction energy (at fourth
order). On the other hand, the lowest-order contribution to a
given n-body interaction energy is typically the largest, which
justifies the colloquial equivalence of these two distinct
expansions.
The lowest-order contribution to Ec,lr corresponds to two Tlr

(e.g., red lines in Figure 6b). The higher-order contributions in
eq 23 tend to cancel out in weakly polarizable systems or for
symmetrical geometries, which is the basis for pairwise schemes
and nonlocal density functionals. In general, the quality of this
second-order approximation is difficult to assess; however,
three universal factors can be distinguished. First, the increasing
number of the interactions Tlr decreases the magnitude of the
higher-order terms. This effect dominates at long range, where
Tlr is small, and indeed the asymptotic interaction between
finite bodies corresponds to the second-order truncation.
However, this requires that the correlation is treated to infinite
order within the interacting bodies to obtain their respective
nonlocal polarizabilities. Second, the increasing number of
terms within each order may increase the total magnitude of
the higher-order contributions. This effect is important in larger
molecular systems and materials. (The number of terms at n-th
order in a coarse-grained model with N fragments grows as
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O(Nn), and hence the relative number of terms in subsequent
orders grows as O(N).) The third universal factor is the
symmetry and dimensionality of the system. Whereas the
second-order terms always lower the total energy of the system
(i.e., stabilize), the signs of the individual higher-order terms
have an angular dependence. In high-symmetry crystals with
simple unit cells and lattices, the higher-order terms tend to
cancel out, leading to higher-order contributions that may be
collectively negligible. In contrast, this is not the case in low-
dimensional materials, in which nontrivial behavior in Ec,lr and
response properties can be observed.
In the present context, the often used Axilrod−Teller−Muto

(ATM) three-body potential constitutes a third-order con-
tribution to Ec,lr. The previous discussion makes it clear that
while such a correction may extend the applicability of a
second-order model, it does not provide a universal description
of vdW interactions. A more detailed discussion of these terms
can be found in Section 4.8, which deals with the many-body
dispersion framework.

4.5. Methods based on the random-phase approximation

Here, we discuss electronic structure methods within the
ACFD formalism that do not coarse-grain nor truncate the
expression for the correlation energy, but work with α0 in the
molecular orbital basis as obtained directly from a KS
calculation via eq 15. These methods construct a model for
the nonlocal polarizability in a way that is also applicable for the
short-range correlation energy, which distinguishes them from
the explicit models for Ec,lr discussed in the next three sections.
For the purpose of this review, we discuss these methods only
from the point of view of long-range electron correlation and
refer the reader elsewhere for a more general exposition.136,137

A starting point for the methods of this section is the
random-phase approximation (RPA), in which the exchange-
correlation kernel f xc(r, r′, u) = δvxc(r, u)/δn(r′, u) in the
Dyson equation (eq 18) is set to zero. Its name comes from the
original derivation of the approximation, in which the
fluctuations of electrons are assumed to be influenced only
by in-phase Coulomb contributions, whereas out-of-phase
terms are considered to be random and hence cancel out.
This was later shown to be equivalent to the f xc = 0 definition in
DFT. The application of RPA to the Dyson equation leads to a
conceptually simple method for the electron correlation energy,
which amounts to evaluating the expression eq 23 with αsr and
Tlr replaced by α0 and T, respectively, that is
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Using the explicit Adler−Wiser expression in eq 15 for the bare
response in the χ-representation, this expression can be
evaluated numerically in a straightforward manner, yielding
the total electron correlation energy.108 In DFT, α0 is obtained
from a KS calculation carried out with some approximate
density functional, and hence is only an approximation to the
true α0 that would be obtained with the exact functional. The
remainder of the total electronic energy is usually taken as the
sum of the kinetic, nuclear-electron attraction, Hartree, and
exact-exchange terms, which are themselves approximate due to
the fact that they were obtained from KS orbitals based on an
approximate density functional.

RPA treats not only the long-range but also the short-range
electron correlation explicitly via the coupling potential, both
on the level of the energy, Esr, in the ACFD formula, and the
level of the response, αsr, in the Dyson equation. This raises
two issues. First, the short-range correlation energy may be
inadequate, leading to an incorrect description of vdW systems
in equilibrium geometries, where this quantity plays a
significant role. Second, the fully coupled αλ may lack
contributions from f xc at short range, leading to inaccurate
molecular polarizabilities and hence incorrect long-range vdW
coefficients. Below, we discuss three different approaches to
mitigate these issues.

4.5.1. Range-separated random-phase approxima-
tion. The first attempt at correcting the behavior of RPA at
short range was given by Kurth and Perdew.138 They suggested
a correction to RPA, termed RPA+, given by

= − ++E E E Ec
RPA

c
RPA

c
GGA@RPA

c
GGA

(39)

where Ec
RPA is the RPA correlation energy, Ec

GGA@RPA is the
correlation energy calculated with a special GGA designed for
capturing Ec

RPA, and Ec
GGA is the correlation energy from a

standard GGA. The idea of the RPA+ approach is to remove
the incorrect short-range part of the correlation energy from
RPA with the use of a special GGA, and then reintroduce a
better approximation to it using a standard GGA, such as
PBE.139 The special GGA designed for this purpose was
constructed by replacing the LDA part of the PBE correlation
functional with an LDA parametrized to reproduce the RPA
correlation energy of the homogeneous electron gas. This was
later refined by specially constructing also the density-gradient
dependent part using additional properties of the short-range
behavior of RPA.140 Here, the short-range correlation energy,
Ec,sr, comes from a GGA density functional, while the RPA is
used only for the long-range part, Ec,lr. However, the range
separation is accomplished only approximately using Ec

GGA@RPA

and depends on how well this GGA functional describes the
short-range part of RPA. The issue of explicit range separation
of RPA was later attacked by Toulouse et al.134 In their work, a
range-separated version of the KS scheme was used, in which
only the short-range part of the electron correlation was
included in the exchange-correlation potential for the electrons,
while the long-range part was treated explicitly via the long-
range version of the ACFD formula. In such a scheme, the long
range Dyson equation in eq 22 is essentially solved with α0

instead of αsr; that is, the long range is treated as in RPA, but at
short-range, it is assumed that v(r, r′) and f xc(r, r′) partially
cancel each other.

4.5.2. Approximate exchange-correlation kernels. In a
different approach, the ACFD framework is used in full without
range separation, but a suitable approximation to f xc is
constructed. A straightforward nontrivial approximation can
be obtained from any density functional Exc[n] via

δ
δ

δ
′ ≈ − ′f u

E n

n
r r r r

r
( , , ) ( )

[ ]

( )xc

2
xc

2
(40)

where the kernel is approximated as local and independent of
frequency. This so-called adiabatic local density approximation
(ALDA) violates several known limits of f xc, which make it
unsuitable for use in the ACFD formula. Olsen and Thygesen
analyzed the ALDA in the homogeneous electron gas in
reciprocal space and noticed that whereas ALDA provides a
good description of the small-q (large-wavelength) behavior of
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the electron correlation hole, it decays too slowly to zero for
large q compared to the exact behavior. This observation lead
them to introduce the renormalized ALDA (rALDA) by
modifying the dependence of f xc in ALDA on large q.141−143 By
transforming back to real space and generalizing to
inhomogeneous densities, this defines a universal approxima-
tion to f xc and hence a method for obtaining the electron
correlation energy via the ACFD formula. Compared to RPA,
the short-range part of the coupling in the Dyson equation is
described more realistically here, which propagates into a better
description of both the short-range correlation energy and the
short-range effects in the polarizability.
A more straightforward, but computationally more demand-

ing approach is to approximate f xc with the exact exchange
kernel, f x, leading to the so-called tdEXX method.144,145 The
development of more accurate and sophisticated kernels is the
domain of TD-DFT and the associated study of response
properties, which is beyond the scope of this review. For a way
to make these approaches faster and hence more easily
applicable to studying vdW interactions, as well as for an
overview of this rich field, see, for example, ref 146 and the refs
therein.
4.5.3. Renormalized perturbation theory to second

order. Yet a different path to fixing the issues of RPA comes
from the standard many-body perturbation theory for electrons.
The Møller−Plesset correlation energy at second order (MP2)
consists of the Coulomb and exchange terms, of which only the
former is significant at all ranges (decays polynomially with
distance) whereas the latter is significant only at short range
(decays exponentially). In this context, RPA can be described as
an infinite-order sum of the so-called ring excitations, of which
the Coulomb term of MP2 is the first one (the higher orders
are combinations of the single Coulomb term). This
renormalization of the Coulomb term resolves many of the
deficiencies of MP2, such as its inapplicability to zero-gap
systems and its tendency to overestimate Ec,lr. In the same
breath, RPA neglects exchange effects, which are partially
captured at the MP2 level, which can lead to issues at short
range, where these effects become important. The second-order
screened exchange (SOSEX) is constructed in a similar way as
RPA by renormalizing the exchange part of MP2, that is, by
summing the corresponding type of the perturbation term to
infinite order. Together, RPA and SOSEX form a method that
extends well beyond MP2 via renormalization of both the
Coulomb and exchange terms, resulting, for instance, in a
description of one-electron systems free of self-correlation.
A renormalized form of the full second-order perturbation

theory (rPT2) can be obtained by adding the first-order
perturbation term, the so-called single-excitation (SE)
correction.147 This term is trivially zero in the standard MPn
scheme, because Brillouin’s theorem guarantees that single
excitations of the HF orbitals do not contribute to the
correlation energy. In a KS-based calculation, however, this
term is required because the KS orbitals are not stationary with
respect to the RPA and SOSEX energy expression. In addition,
the SE correction was found to approximately compensate for
the difference between the exact exchange energies evaluated
with HF and KS orbitals. In analogy to RPA and SOSEX, the
SE term can be summed to infinite order, leading to the
renormalized SE (rSE) correction. The resulting rPT2 method
combines the rSE, RPA, and SOSEX schemes.148 Klimes ̌ et al.
derived an alternative formulation of rSE, in which the singles
excitation energies are taken from the GW approximation.149 A

detailed discussion of many different flavors of RPA-like
approximations can be found in other publications.150−152

4.6. Nonlocal density functionals

Nonlocal density functionals derive their name from their two-
point dependence on the electron density via

∬= ′ ′ Φ ′E n n nr r r r r r
1

2
d d ( ) ( ) [ ]( , )c (41)

where Φ is a so-called nonlocal kernel, constructed to capture
the long-range part of the correlation energy. The first universal
functional of this type, called vdW-DF, was derived by Dion et
al.35 as a culmination of the body of work established by
Langreth and Lundqvist throughout the course of three decades
(for a detailed discussion of the vdW-DF class of nonlocal
functionals, see refs 38, 153, and 154. We start this section with
a review of the general approximations to the ACFD formula
leading to nonlocal functionals and continue with a detailed
description of particular functionals, including the vdW-DF
family. The section concludes with a discussion of the
relationships between nonlocal functionals and other vdW
methods.
Nonlocal density functionals represent the class of non-

coarse-grained and second-order truncated approximations to
the ACFD formula. In addition, they use an isotropic density-
dependent model for the effective polarizability αeff which was
defined in Section 4.3.1. We start the discussion by rewriting
the second-order contribution to Ec,lr from eq 27 in a different
form:
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where the functional dependence on the electron density is
explicitly denoted in all relevant quantities and the range-
separating function f is generalized to depend on the frequency.
Examples of the interaction terms under the spatial integral sign
are depicted in Figure 6c. Here, pairs of infinitesimal
fluctuations with properties described by αeff are correlated
via the coupling potential f 2/R6.
The use of αeff is the first of two local approximations used by

all nonlocal functionals. As described in Section 4.3, αeff(r) is
the local counterpart of the short-range nonlocal polarizability
αsr(r, r′) and in general can be constructed as an integral over
the local neighborhood surrounding r as in eq 25. We note that
eq 42 does not specify the explicit functional form for the
dependence of αeff on the electron density. In this sense, the
second local approximation commonly enters via the models
used for αeff(r), which depend only on the electron density and
its gradient,

α α ∇≈n n nr r r[ ]( ) ( ( ), ( ))eff eff (43)

Because the polarizability in these methods is also
approximated as isotropic, the directional information in the
density gradient is not used; this leads to the further
simplification that only the norm of the density gradient enters
the formulas: αeff[n](r) ≈ αeff(n(r),|∇n(r)|). This leaves
potential room for further improvement, as the density gradient
in fact does contain information about the directionality of
bonds, for example, and hence the differential response of the
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electron density parallel and perpendicular to them (see Figure
5 in Section 2 and the discussion there).
The density gradient is the key ingredient for a successful

density-functional model of the local effective polarizability.
Although early nonlocal functionals did not depend explicitly
on the density gradient, even these approaches used this
quantity to determine hard cutoffs for the spatial integrals in eq
42 when treating nonoverlapping fragments.155 The usefulness
of the gradient is apparent from the fact that the ratio of the
density gradient to the density in the density tail region of an
atom or a molecule determines their ionization potential. The
ionization potential is approximately proportional to the
average excitation energy in the Unsöld approximation, which
is in turn inversely proportional to the polarizability, thus
establishing the connection. The dependence on the density
gradient enables αeff[n] to capture electron correlation effects in
the neighborhood of a given point, similar to how GGA
functionals achieve the same compared to LDA. From this
analogy, a natural idea is to extend the current functionals for
αeff to depend on the kinetic energy density in the spirit of
meta-GGA density functionals; such functionals have not been
suggested so far.
The dependence of αeff(r, iu) on the frequency in all nonlocal

functionals is approximated with that of an infinitesimal
harmonic oscillator:
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where dq = ndr and it is assumed that the ratio q/m
corresponds to that of an electron, that is, it is equal to 1 (in
atomic units). Here, the characteristic frequency ω corresponds
to the plasma frequency, the frequency of the macroscopic
oscillations in a homogeneous electron gas of the same density.
Using this form for αeff[n], the correlation energy expression in
eq 42 can be recast into the standard form for a nonlocal
functional in eq 41 with the nonlocal kernel

∫
π

ω ω

Φ ′ = −

×
+ ′ +

| − ′|

| − ′|

∞
u

n u n u

f n u

r r

r r

r r

r r

( , )
3

d

1

[ ]( )

1

[ ]( )

[ ]( , )

0

2 2 2 2

2

6

(45)

where the differences between distinct nonlocal functionals
reside in the specific functional forms of ω[n] and f [n].
4.6.1. A simple nonlocal functional. Vydrov and van

Voorhis designed a simple model for the local effective
frequency ω[n] and the range-separating function f [n], which
together form the VV10 nonlocal functional. Here, we provide
an alternative derivation of the VV10 nonlocal functional
equivalent to the original one. In VV10, ω[n](r) is
approximated with156

ω
π ∇

= +n n C
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n
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4

3
2

4

(46)

where C is an empirical parameter fitted to a reference set of C6

coefficients. There are three distinct ideas used in this
expression. First, the 4πn term is motivated by the
homogeneous electron gas. Second, the factor 1/3 comes

from the Clausius−Mossotti equation and makes the expression
exact for the limiting case of a jellium sphere in a vacuum.
Third, the gradient term is constructed as a local effective
correction to the characteristic frequency due to the nonzero
gap between occupied and unoccupied orbitals. In the density
tails of atoms, the gradient term goes to a constant which
smoothly damps the polarizability expression and avoids the
need for hard cut-offs.
The specification of ω[n] already fully describes the

asymptotic behavior of the functional, leaving out only the
short-range behavior. The construction of the range-separating
function f in VV10 is motivated by considering the overlap of
the two oscillators at short distances, which effectively
attenuates their mutual interaction. This is modeled with a
second pair of oscillators in which ω depends on the distance
between them and increases in such a way that they in fact
never overlap. The damping mechanism can be then written as
a range-separating function of the form

α α
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where α̃eff(r, iu, R) is the polarizability of an oscillator modified
by the presence of the other oscillator at distance R. The R-
dependent term in ω contains the second empirical parameter
of VV10, b, which effectively controls the onset of the range
separation. This parameter is fitted to reference interaction
energies and is specific for each semilocal functional, with which
the VV10 functional is combined.157 The two empirical
parameters, C and b, control two distinct properties of VV10:
C controls the local effective response, and b controls the range
separation. The VV10 nonlocal kernel was later slightly
modified by Sabatini et al. to enable efficient evaluation in a
plane-wave basis.158 Two reparametrizations of VV10 targeted
at binding in layered materials were presented by Björk-
man.159,160

4.6.2. vdW-DF functional. We start the discussion of the
vdW-DF functional with the model it uses for ω[n]:
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where ϵxc is the exchange-correlation energy density and Z is a
constant.161 The first equality is obtained by using ω[n] for a
calculation of the total exchange-correlation energy of a slowly
varying electron gas. In vdW-DF, ϵxc is then approximated with
a GGA functional. The GGA functional is used here only for
the parametrization of ω[n], and its choice is completely
independent from the functional used for calculating the short-
range exchange-correlation energy. Despite ω[n] in vdW-DF
having a completely different form from that of VV10, both
functionals feature a single parameter which controls the
essential density gradient term. In vdW-DF, however, the value
of this parameter is determined from first-principles arguments.
We find it remarkable that the functional forms of ω[n] in
vdW-DF and VV10 differ even in powers of n and |∇n|, yet
both functionals provide relatively accurate polarizabilities. This
agreement might deteriorate for heavier elements, where the
ratio of the density and the density gradient changes
significantly compared to the lighter elements.
The range-separation mechanism in vdW-DF is more

elaborate than in VV10, partly because it is constructed in
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reciprocal space. There are two distinct mechanisms that
saturate the vdW-DF functional at short range. The first one is
analogous to that in VV10: the local frequency ω is made to
increase as q2 for large q (short wavelengths), akin to ω
increasing with R−2 in VV10. This leads to a contraction of the
infinitesimal oscillators and a decrease of the local effective
polarizability αeff. The second mechanism comes from the
requirement that the vdW-DF functional evaluates to zero for
the homogeneous electron gas. This requirement forces the
nonlocal kernel to positive values at short distances R when
transformed back to real space. In VV10, this condition is
trivially satisfied by an a posteriori addition of a constant energy
term for a given number of electrons, wheras, in vdW-DF, this
requirement is built directly into the nonlocal kernel. As a
result, the range-separating function f [n](|r − r′|,u) in vdW-DF
has a complicated form and we do not present it here; however,
this function still serves merely to damp the nonlocal functional
at short range and goes to unity at long range.
The original vdW-DF functional used a particular value of

the parameter Z that was derived earlier in the context of
semilocal functionals. This choice provides relatively accurate
polarizabilities when used in conjunction with the GGA
functional for ω[n] in eq 48. By construction, Z controls not
only ω[n] and hence the long-range asymptotic behavior, but
also the onset of the short-range damping mechanism. This
seemingly elegant property introduces complications when one
wants to couple Ec,lr from vdW-DF with the short-range part
Ec,sr from some semilocal density functional. Essentially, there is
no way to adapt the range separation of vdW-DF without
modifying its asymptotic behavior at the same time. Hence,
instead of adapting a single parameter for a given semilocal
functional as is done in VV10, vdW-DF (with Z fixed by
enforcing the correct long-range behavior) requires some a
priori unknown semilocal functional that would complement it
in the short-range. The original work suggests that the revised
PBE (revPBE) functional162 is such a complement, but other
alternatives were found later, as discussed in the next section. In
any case, vdW-DF cannot be easily paired with a given density
functional that might be the best choice for the short-range part
of the electron correlation energy. Attempts at changing the
value of Z were also made, but this in general leads to incorrect
long-range behavior.36

The vdW-DF functional was implemented self-consis-
tently,163−165 which enables calculations of the electron density
polarization stemming from vdW interactions. Romań-Peŕez
and Soler used the fast Fourier transformation to efficiently
evaluate the nonlocal functional in periodic systems,166

avoiding the otherwise costly evaluation of the double integral
in eq 41.
4.6.3. Variations of vdW-DF. There are two popular ways

to modify nonlocal density functionals: first, by changing the
nonlocal functional itself, and second, by using a different
semilocal or hybrid functional for the short-range part of the
electron correlation energy. A simple modification of vdW-DF
can be done by changing its single parameter Z, which controls
the density gradient contribution to the local frequency ω[n].
The value used in the original formulation (vdW-DF) predicts
good C6 coefficients and was combined with the semilocal
revPBE functional. In the second version, vdW-DF2, Z is more
than twice as large, leading to larger values of ω[n] and hence
smaller polarizabilities and C6 coefficients, which turn out to be
severely underestimated. This is compensated at short range
with a change of the underlying semilocal functional: here,

PW86167 was suggested as a good candidate. The combination
of Z and the GGA functional used in vdW-DF2 gives more
accurate results for the binding energies of small vdW
complexes, where the short-range behavior dominates over
the long range.
More significant modifications of vdW-DF were presented by

Vydrov and van Voorhis. In vdW-DF-09, a different form for
ω[n] was used as well as a slightly different range-separation
mechanism.168 This modification makes the damping in-
dependent of the magnitude of the gradient term in ω[n], in
contrast to the original vdW-DF; this allows one to determine
the short- and long-range behavior of the functional separately
by fitting to reference binding energies and C6 coefficients,
respectively. This makes the nonlocal functional usable in
conjunction with any semilocal or hybrid functional. The idea
of having two distinct parameters in the nonlocal functional
that control the short- and long-range behavior turned out to
be decisive for achieving better accuracy. The follow-up to
vdW-DF-09, called VV09, can be considered a transition
between vdW-DF and VV10.37,169,170 Whereas the damping
mechanism was still constructed in reciprocal space as in vdW-
DF, the functional form for ω[n] in VV09 was already the same
as that used later in VV10.
Several attempts were made to find semilocal or hybrid

density functionals that would be more compatible with vdW-
DF than the original suggestion of revPBE.171 Cooper designed
a new GGA exchange functional, termed C09, whose gradient
behavior interpolates between that of a simple gradient
expansion of LDA to that of revPBE.172 Pernal et al. devised
a “dispersion-less” GGA functional by using the symmetry-
adapted perturbation theory without the dispersion component
as a reference.173 A different approach to the same problem was
suggested by Rajchel et al., in which electronic motion is treated
by full DFT within interacting fragments, but the interfragment
degrees of freedom are described by Coulomb and exchange
terms, resulting in an effective dispersionless description ready
to be supplemented by a vdW model.174 Klimes ̌ et al.
reparametrized the PBE and B88175 functionals (termed
optPBE and optB88) by fitting their parameters to reference
binding energies of a set of small vdW complexes.176,177 These
reparametrizations break some of the exact constraints used in
the construction of PBE and B88 with unclear consequences.
Wellendorf et al. used statistical methods, several reference sets,
and a relatively general form of a GGA exchange functional to
find an optimal short-range complement to vdW-DF2, called
BEEF.178 They found that the optimal exchange functional
significantly depends on the particular system under study. As
the original vdW-DF functional has better long-range behavior
than vdW-DF2, better results might have been obtained if
BEEF used vdW-DF. Hamada reparametrized B86b179 to better
suit vdW-DF2,180 while Berland and Hyldgaard devised a new
exchange functional that interpolates between the Langreth−
Vosko functional and revised PW86, and combined it with
vdW-DF.181 Several authors identified that vdW-DF is not
compatible with exact exchange and the use of hybrid
functionals leads to considerable overbinding when coupled
with the vdW-DF family.

4.7. Fragment-based pairwise methods

The simplest pairwise models of vdW interactions are
constructed using the following formula,
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where the sum is over pairs of fragments A and B (e.g., atoms),
RA is the position of fragment A, g is some short-range damping
function, and the C6 coefficient was defined via the Casimir−
Polder integral in eq 27. We use the term “fragment” when
referring to A and B to cover all vdW methods; the fragments
are atoms in most cases, but not in all.
The R−6 potential, which describes the asymptotic attraction

between two fragments at distance R, was derived for the first
time from quantum mechanics by Wang in 1927182 for the case
of two hydrogen atoms and later generalized by London.183−185

This potential served as a basis for vdW corrections to theories
ranging from the HF mean-field approximation,186 to the
Lennard−Jones potential, to semiempirical quantum-chemical
methods, long before having been used in DFT.79,187,188. In
2004, Grimme popularized this approach in DFT by illustrating
that even a simple empirical scheme of this kind improves the
performance of standard semilocal exchange-correlation func-
tionals for vdW-bound systems.57 This was then followed by
the development of several models for C6 coefficients that
explicitly take into account the electronic structure of a given
molecule or material, which are discussed here.
Equation 49 is a nontrivial generalization of the textbook R−6

potential between a single pair of fragments to a pairwise sum.
In this section, we show which approximations to the
expression for Ec,lr in eq 23 lead to this pairwise sum and
then present an overview of several particular pairwise models.
4.7.1. Fragment-based pairwise models from the

ACFD formula. Like the nonlocal functionals, the pairwise
methods use a second-order truncation of Ec,lr and an isotropic
local effective model for the short-range polarizability. Unlike
the nonlocal functionals, however, these methods also use
coarse-graining of the spatial quantities: αeff, Tlr, and the
damping function g. It then follows that the pairwise formula in
eq 49 is obtained from the second-order long-range correlation
energy in eq 27 by using the coarse-graining presented in
Section 4.4.1:
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This formula is identical to eq 49 after identifying f 2 ≡ g and
C6,AB = ∬ dr dr′ C6(r, r′)wA(r)wB(r′). Formally, this expression
could be obtained by replacing the double spatial integral in the
nonlocal functional formula (in eq 41) with a double sum over
pairs of fragments. In this view, the role of the model for the
local frequency ω in nonlocal functionals is played by the
models for the C6 coefficients in pairwise methods, and the
square of the range-separating function f corresponds to the
damping function g.
As discussed in Section 4.4.1, the coarse-graining is

equivalent to considering only the (lowest) dipole−dipole
term from the multipole expansion of the polarizability αeff(r)
wA(r) and the coupling potential T(r, r′). In pairwise schemes,

including the higher multipole terms is straightforward and
leads to the well-known series starting with C8/R

8 and C10/R
10.

We have also argued that these higher-order contributions can
be at least partially captured in the empiricism of the damping
function. This is further supported by the existence of simple
approximate recursive formulas for the higher-order Cn

coefficients based on the C6 coefficients and various integral
moments of the fragment densities.189,190

The accuracy and reliability of a given pairwise method is
influenced both by the particular model for the C6 coefficients
and the choice of the damping function g. The quality of these
two components can be evaluated separately, because only the
C6 coefficients determine the asymptotic behavior. Such a
distinction is useful, because the C6 coefficients and damping
function g influence the performance of a method in different
ways. For one, the relative importance of C6 and g for the
resulting vdW energies changes with system size. The C6

coefficients become more important in larger molecular or
crystal systems, whereas the damping function plays a
substantial role in small vdW complexes.
Another difference comes from the fact that the models for

C6 coefficients discussed here are typically based on some
underlying first-principles arguments and assumptions, whereas
the damping functions are mostly empirical. For the most part,
this is caused by the lack of general knowledge about the
behavior of the short-range part of the electron correlation
energy as described by the underlying exchange-correlation
density functionals in the range of typical vdW equilibrium
distances. Furthermore, all other noncovalent interactions
(electrostatics, induction, Pauli repulsion) also in general
contribute to the binding energies in this regime. When
damping functions are fitted to reference binding energies,
which is a common technique, any errors in the non-vdW part
of the energies propagate into the fitted parameters, making the
resulting vdW model less transferable. This complicates the
discussion of the vdW methods separate from the underlying
functionals. We note that this issue is in fact common to all
methods that use a density-functional approximation for the
short-range correlation energy, including the range-separated
RPA methods, the nonlocal functionals, as well as the many-
body dispersion framework that will be discussed in the next
section.

4.7.2. Models for C6 dispersion coefficients and other
vdW parameters. Although we set out to cover strictly vdW
methods that explicitly take into account the electronic
structure of a system, we open this section with a particular
family of methods that do not leverage any information about a
molecule or a solid besides its geometry. The DFT-D1,57 DFT-
D2,107 and DFT-D358 methods largely popularized the
approach of correcting DFT calculations for vdW interactions,
providing a context for further development of less empirical
models that use electronic structure as an input. As discussed in
Section 2, the spectrum of behaviors of vdW interactions in real
materials is vast, reflecting the intricacies of electronic structure
theory, and an effort to capture all this complexity purely from
geometry is a formidable task, akin to classical force fields
attempting to calculate the electronic energy without explicitly
considering electrons. This is reflected in more elaborate
constructions of the DFT-Dn methods with increasing n, as
they tried to cover a wider array of systems.
DFT-D1 used fixed atomic C6 coefficients that did not

depend on any molecular environment. The heteronuclear
coefficients were calculated using an expression that is
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equivalent to eq 32 with polarizabilities of all atoms considered
equal. The damping function was constructed using vdW radii
in such a way that it did not go to unity for R → ∞, leading to
incorrect asymptotic behavior. DFT-D2 followed the same
protocol (with some numerical reparametrizations) except for
the C6 combination rule, which used an expression equivalent

to eq 32 with α α = C C/ /A B AA BB0, 0, 6, 6, , arguably a more

reasonable model than in DFT-D1. DFT-D3 introduced several
changes. First, the damping was modified to satisfy the expected
asymptotic behavior ( f(R) → 1 for R → ∞). Second, fixed C6

coefficients were estimated from reference hydride dimers by
approximate decomposition of their long-range interaction into
contributions from the corresponding heavy atoms and the
hydrogen atoms. Third, the vdW radii were replaced with
atomic radii calculated as a distance at which an interaction
energy between the corresponding atoms calculated in a certain
special way58 equals an arbitrary threshold. Fourth, an
elementary dependence of the C6 coefficients on the environ-
ment was included via empirical geometrical factors that
estimate a coordination number of the atoms. The reference C6

coefficients are then interpolated for a given estimated
coordination number in a complicated but arbitrary way
motivated by numerical results. However, the true dependence
of the electronic structure on geometry is still much more
complex than what this comparably simple geometrical
interpolation captures, leading to unphysical bumps in the
potential energy surface of many molecular systems besides
simple organic compounds. Apart from these changes, C8

coefficients were added to the model as a fixed part, and
three-atom C9 coefficients and the corresponding 3-atom
potential as an optional part, which seems to improve the
accuracy of DFT-D3 for large molecular systems, but worsens it
for smaller systems, without a clear consensus of the crossover
regime. In general, it is the absence of the dependence of C6

coefficients on the environment in DFT-D1/2 and the difficulty
with which it was modeled based purely on the geometry in
DFT-D3 which motivated development of methods based on
electronic-structure information, described in the following.
Becke and Johnson devised a model for treating vdW

interactions based on the dipole moment of the exchange hole,
termed XDM. In a series of papers, they used this quantity to
construct a heuristic model for the C6 coefficients of isolated
atoms and molecules.191 Later, the model was generalized to
the case of atoms in molecules with the use of a partitioning
scheme devised by Hirshfeld.192 In this scheme, a reference set
of free-atom densities is used to construct the following
stockholder model for the partition functions wA,

=
| − |

∑ | − |
w

n

n
r

r R

r R
( )

( )

( )
A

A A

B B B

Hirsh
free

free
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where nA
free(r) is the (radially averaged) density of atom A in

vacuo (i.e., a free atom) at a distance r from the nucleus and 0 <
wA
Hirsh(r) ≤ 1 at each point in space by construction. (The

Hirshfeld-partitioned density of an atom A is then given by
nA(r) = n(r)wA

Hirsh(r).) The partitioned atomic C6 coefficients
were then combined with a damping function to formulate a
full vdW model in ref 193. The approach was also extended to
include higher-order Cn coefficients and modified so that the
dependence on the static molecular polarizability as an external
input was removed.194 Finally, all of these incremental
improvements were combined into a single general pairwise
method for vdW interactions in ref 195.

The dipole moment of the exchange hole used by the XDM
model is calculated from occupied KS orbitals.196−198 The
exchange hole represents the electron density that is pushed
away from an electron due to the Pauli exclusion principle. The
combined charge of the exchange hole and the reference
electron is always zero, but it possesses a nonzero dipole
polarization density, Px(r), which was argued to correspond to
instantaneous quantum-mechanical charge fluctuations. The C6

coefficients are thus obtained from the square of the dipole
moment of the exchange-hole polarization as

∫α= | |C r P r
1

2
(0) d ( )6 pt x

2

(52)

where αpt(0) is an isotropic static point polarizability of the
given atom or molecule.
(For an alternative density-functional explanation for vdW

interactions based on the correlation hole, see ref 199.) To
obtain the atomic C6 coefficients, the integral above can be
coarse-grained with the Hirshfeld partitioning,

∫α= | |C wr P r r
1

2
(0) d ( ) ( )AA A A6, eff, x

2 Hirsh

(53)

where the static atomic polarizabilities αeff,A(0) are obtained by
scaling the reference free-atom polarizabilities66 via
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The integrated quantities Veff and Vfree in the numerator and
denominator are measures of the “volume” of the atom in a
molecule and the free atom, respectivelyquantities that
correlate with atomic polarizabilities.200 To get C6 coefficients
between different atoms, XDM uses the combination rule
derived in eq 32 for two harmonic oscillators. Similar
expressions can be used to calculate higher-order Cn coefficients
from the higher multipole moments of the exchange-hole
polarization density, Px. The XDM model can also be used
together with density-functional approximations for the
exchange hole,201,202 which removes the dependence on the
occupied KS orbitals.203 The triple-dipole ATM-like term can
be obtained from the exchange-hole dipole model as well.204

Two distinct damping functions were suggested for
XDM.195,203 The first one uses an approach based on
correlation energy ratios,
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where Ec,A is the correlation energy of a free atom and c is a
fitted empirical parameter. The second suggested damping
function follows a more common approach, which is based on a
ratio of length scales,
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where RA
vdW is a vdW radius for atom A and c1 and c2 are

empirical constants.
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Tkatchenko and Scheffler (TS) devised a pairwise method
for vdW interactions in which the free-atom scaling approach is
extended to all relevant vdW parameters, that is, the atomic
polarizabilities, C6 coefficients, and vdW radii,60 hence making
them all functionals of the electron density
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The TS approach effectively describes a larger portion of the
short-range correlation effects based on accurate free-atom
values, whereas the XDM model tries to recover them from the
properties of the exchange hole. The strategy of using free-atom
reference values could also be viewed as constructing the
polarizability model in such a way that it satisfies the exactly
known (free-atom) limits, an approach that has been
successfully used for exchange-correlation density functionals,
where it is known as satisfying exact norms. In the case of
density functionals for polarizability, this normalization was so
far used only in the atomic models (αeff,A)properly normed
point functionals, αeff(r), are yet to be developed. Finally, the
TS model for the C6 coefficients is combined with a logistic
damping function,
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The TS method can be straightforwardly combined with a
wide range of semilocal and hybrid functionals by adjusting a
single range-separation parameter.205 The value of the range-
separation parameter is close to 1 when TS is coupled with the
nonempirical PBE, PBE0, or HSE functional. Values slightly
larger are obtained for meta-GGA functionals,63,64,206 which
confirms that these functionals can effectively describe electron
correlation at intermediate interatomic distances.
In larger molecules and solids, many-body and screening

effects become important, which motivated several improve-
ments to the original TS approach. Bucǩo et al. applied
electrodynamic screening from eq 18 to the atomic C6

coefficients, leading to improvements in the description of
layered materials.207 Zhang et al. and Ruiz et al.76,80 used the
dielectric function of bulk materials to define atomic polar-
izabilities in solids as an alternative to the free-atom reference
data used in eq 57. Such renormalized bulk reference
parameters can be used to investigate cohesion in solids80,208

and adsorption of molecules on surfaces.76,77,101,209 Further-
more, the TS approach was also extended from DFT60 to the
density-functional tight-binding (DFTB) method,210 as well as
classical force fields.211,212

Sato and Nakai developed an atomic pairwise method that
can be considered a direct bridge to the class of nonlocal
functionals, by directly expanding an ALL-like density func-
tional into a multipole series around the atomic centers.213,214

They used the general formula for the dynamic polarizability of
an infinitesimal harmonic oscillator in eq 44,215 combined with
the characteristic excitation frequency from the vdW-DF-09
nonlocal functional of Vydrov and van Voorhis,168
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where λ is an empirical parameter to be fitted to a set of C6

coefficients. This formula shows yet another density functional
for the effective local frequency which was the main topic in the
section about nonlocal functionals. A molecular system
described by this local effective polarizability is then partitioned
into atomic fragments by means of the Becke scheme,216 which
is otherwise often used in DFT calculations to construct real-
space integration grids, but serves here as an alternative to the
Hirshfeld partitioning used by the XDM and TS methods. By
assuming that the contribution to the polarizability from areas
of significant atomic density overlaps is small, one obtains a
complete representation of αeff(r) in terms of the effective
atomic dipole polarizabilities αeff,A and higher moments. This
then leads directly to C6, C8, and higher-order coefficients via
the Casimir−Polder integral (the series is truncated after C10 in
practice). This method, named local response dispersion
(LRD), is then combined with the following damping function
(shown here only for the C6 coefficients)
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where c1 and c2 are parameters to be determined for each
underlying density functional by fitting to a set of accurate
interaction energies, and the atomic polarizabilities serve here
as measures of atomic radii. We note that essentially any
nonlocal density functional for vdW interactions could be
turned into a fragment-based pairwise method by the same
multipole-expansion technique used in LRD. A related
approach to LRD was presented by Heßelmann,217 in which
the polarizability model is replaced by a more rigorous form
obtained by directly approximating the expression for an
uncoupled response function.
Silvestrelli formulated a pairwise method, named vdW-

WF,218 where the interacting fragments are not atoms, but
maximally localized Wannier functions (MLWFs).219 MLWFs
are essentially a generalization of localized Boys molecular
orbitals to periodic systems; as such, they are the counterparts
to the periodically symmetrized Bloch functions, which are by
definition fully delocalized. The vdW-WF model is constructed
by approximating each occupied MLWF with a single Slater-
type s-function of the same spread S (spatial extent). Here, the
assumption of an exponential decay of the MLWF is
appropriate in systems with a nonzero gap, while the omission
of any angular structure is in general an approximation. Given
an approximate s-orbital, its dynamic polarizability is then
calculated using the ALL polarizability functional,155 where the
density gradient (of the approximate s-orbital) enters via the
definition of a MLWF-specific integration domain ΩA for the
following spatial integral,
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where nA(r) is the electron density of the MLWF A as
approximated by the square of the corresponding s-function
and k is a nonempirical constant. The C6 coefficients are then
directly obtained via the Casimir−Polder integral and the
damping function used in vdW-WF is the same as in the TS
model with the following modification. The atomic vdW radii
in gTS in eq 58 are replaced by distances from the centers of the
MLWFs at which nA(r) falls below a predetermined threshold;
the choice for this distance was the subject of a later
modification.220 The MLWF partitioning used in vdW-WF
significantly differs from the atomic partitioning used in the
XDM and TS models. Given that the ALL polarizability
functional is nonlinear in the input density (αALL[n1 + n2] ≠
αALL[n1] + αALL[n2]), using it with the individual fragment
densities as the input constitutes a different scheme than
evaluating the functional integrand with the total density and
then partitioning the integral according to the MLWF
fragments. Furthermore, the use of the approximate s-functions
for the MLWFs results in a partitioning of the total density that
is not exact, that is, ∑AnA(r) ≠ n(r).
Tao et al. developed a density functional for the point

dynamic polarizability (and hence the C6 coefficient), which
uses the static polarizability as an input,221
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where Ω is an integration domain, and a is a constant
determined by satisfying the exact high-frequency limit of
αpt(iu) and the limiting case of a classical metallic sphere
(consisting of a uniform electron density). The choice of the
integration domain in this functional guarantees that the input
static polarizability α(0) is recovered for u = 0. This model was
later extended to describe higher-multipole coefficients as
well.222 In the context of general vdW methods, this model is
not fully complete, as the C6 coefficient model is not combined
with a damping function, and still requires a prescription for the
input static polarizability. However, such a generalization could
be obtained in a straightforward manner, for example with the
approach used in the XDM or TS methods, and hence we
chose to present this model to illustrate the flexibility with
which density-functional models for the local effective polar-
izability can be constructed.
Besides developing new functionals for the C6 coefficients,

novel pairwise methods can be constructed by using alternative
partitioning schemes. For instance, Steinmann and Cormin-
boeuf adapted the XDM model by using the self-consistent
Hirshfeld partitioning scheme,61,223 which provides a more
robust description of ionic systems than the original Hirshfeld
partitioning.224 Similarly, Bucǩo et al. introduced this scheme
into the TS model,86,87 and demonstrated that it substantially
improves the performance of DFA+TS for systems with strong
local charge transfer. In these modified Hirshfeld schemes, the
original free-atom reference densities nA

free are modified into
generalized reference densities n0,A, which themselves depend
on the partitioned fragment densities nA. This makes eq 51 a
self-consistent equation that needs to be solved in an iterative
fashion. Several suggestions were made for the construction of
n0,A in terms of the fragment densities nA.

225 The most common
approach, used in the modified XDM and TS methods, is to
consider n0,A as a linear combination of the free-atom and free-
ion reference densities for a given species, where the

coefficients are determined in such a way that the charges of
the Hirshfeld density nA and the reference density n0,A are
equivalent.

4.8. Many-body dispersion framework

So far, we have covered three of the four classes of methods
which arise from the independent use of the second-order
truncating and coarse-graining approximations. In this section,
we conclude this overview by discussing the recent many-body
dispersion (MBD) framework, which represents a class of
nontruncated (akin to the RPA-based methods) and coarse-
grained (akin to the fragment-based methods) approximations.
The central idea of the MBD model is the approximation of the
dynamic response of a molecule or a material by that of a fully
coupled system of QHOs, where each oscillator corresponds to
some fragment of the system of interest. Apart from the
response properties of the QHO model discussed above, the
motivation for this approach comes from the fact that the
correlation energy of such a system can be evaluated exactly by
diagonalizing the corresponding Hamiltonian, which is given by
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where ξ = −m r R( )
A A A A is the mass-weighted displacement

of the oscillator A from its equilibrium position RA (i.e., the
fragment center), ωA is the characteristic frequency of the
QHO, and αA(0) is its static polarizability. The first two terms
in this Hamiltonian represent the single-oscillator kinetic and
potential energy terms, respectively, while the third term
corresponds to the interoscillator coupling. In the context of
vdW interactions, this model Hamiltonian was first introduced
by Bade226,227 in 1957 and used later by Mahan,228 Lucas,229

Renne and Nijboer,230 and Donchev231 in the investigation of
various qualitative aspects of long-range interactions between
particles. In recent years, a renewed interest in this approach
was initiated by the introduction of a general scheme for
parametrizing and range-separating this Hamiltonian to obtain
a universal and quantitative model for treating the energetic55,88

and structural232 effects of vdW interactions in molecules and
materials. In this section, we briefly review how the MBD
Hamiltonian emerges from the long-range correlation energy
expression in eq 23, discuss several properties of this approach
in the context of other vdW methods, and finally describe the
range-separated MBD method in particular. We note that the
term “MBD” may refer to the general framework (Section
4.8.1) as well as a specific method within this framework
(Section 4.8.2).

4.8.1. Many-body dispersion framework from the
ACFD formula. The starting point for obtaining the MBD
Hamiltonian as a model for electron correlation is the coarse-
grained version of the exact expression for the long-range
correlation energy in eq 37. In addition to the coarse-graining,
MBD also approximates the short-range polarizability in that
formula by a local effective polarizability, which leads to the
following expression:
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Although the local approximation to αsr(r, r′) in the MBD
framework is shared with both the nonlocal functionals and
pairwise methods, it is in general not required here that αeff(r)
be isotropic. We note that, here, the long-range correlation
energy is expanded into an infinite series, and such an
expansion could be converted to the class of pairwise methods
discussed in the previous section if truncated at second order.
To proceed further, the dynamic polarizability αeff(iu) is
approximated by the corresponding expression for a QHO in
eq 28. This set of approximations then enables one to perform
the integration in the frequency domain in eq 65 analytically,233

leading to the so-called plasmon-pole formula for the
correlation energy,
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where N is the number of fragments (depending on the system
and the choice of partitioning), the sum is over all 3N
characteristic frequencies of the system, ω̅p are the frequencies
of the fully interacting system (corresponding to α1), and ωp

are the frequencies of the noninteracting system (correspond-
ing to α0).
The plasmon-pole formulation of the correlation energy is a

general approach that can be used for many nontruncated
approximations to the ACFD formula, in particular the class of
RPA-based methods discussed in Section 4.5. In this
expression, the analytical integration in the frequency domain
is essentially performed by transforming the integral over
imaginary frequencies iu to the imaginary part of the integral
over real-valued frequencies u. In the latter form of the integral,
αeff,A(u) directly describes the absorption spectrum of a system
which is characterized by delta functions located at the
excitation frequencies for both the interacting and non-
interacting cases. Therefore, the integral over real-valued
frequencies is reduced to a sum of the excitation frequency
differences in eq 66. It can also be shown that the plasmon-pole
expression can be obtained as a difference between the ground
state energy of a system of coupled QHOs and the ground state
energy of a system of uncoupled QHOs, thereby establishing
the equivalence between the plasmon-pole formulation and the
Hamiltonian formulation in eq 64.233 In other words, whereas
the plasmon-pole expression is only an approximation to the
exact correlation energy of the full electronic system, it is in fact
exact for the correlation energy of a system of QHOs coupled
within the dipole approximation.
The Hamiltonian formulation of the long-range correlation

energy gives a useful insight into the nature of vdW
interactions. In the noninteracting limit (λ = 0), the charge
fluctuations are fully localized on the individual fragments; as λ
is increased toward the interacting limit (λ = 1), these localized
fluctuations couple to form plasmon-like delocalized charge
oscillations. These delocalized fluctuations have lower charac-
teristic frequencies on average than their localized counterparts,
and hence the coupling decreases (stabilizes) the total energy of
the system.
4.8.2. Range-separated many-body dispersion meth-

od. At first, Tkatchenko et al. developed a MBD method based
on fully screened atomic polarizabilities,55 which lead to a
double counting of the long-range correlation effects in some
cases. Later, this was avoided by using a range-separating
approach, in which the atomic polarizabilities are screened by
the surrounding atoms only at short range.88 Here, we describe

only the latter approach, termed MBD@rsSCS, where “rsSCS”
stands for range-separated self-consistent screening. To define a
particular method within the MBD framework, one needs to
specify the partitioning scheme, the models for the static
polarizabilities αeff,A(0) and the noninteracting characteristic
frequencies ωA, and the range-separating function f(R) which
defines Tlr. The MBD@rsSCS method partitions the electronic
system into atomic fragments by means of the Hirshfeld
scheme, which is also used in the XDM and TS pairwise
methods. The effective atomic polarizabilities αeff,A(0) are then
obtained in a two-step manner. First, the volume-scaling
approach of the TS method is applied to the reference free-
atom polarizabilities, while the characteristic frequencies are
kept unchanged. Second, the Dyson screening in eq 18 with
only the short-range part of the dipole potential is applied to
the atomic dynamic polarizabilities, which produces the short-
range nonlocal polarizability αsr,AB(iu). The range separation
used in this second step is the same that is later used to define
Tlr, which is used to obtain the long-range correlation energy.
In this regard, the short-range response and the long-range
coupling are constructed consistently in the MBD@rsSCS
method.
To obtain the local effective dynamic polarizabilities of the

atomic fragments, αsr,AB(iu) is then summed along one
fragment coordinate, αeff,A = ∑Bαsr,AB, which is equivalent to
eq 25 for the coarse-grained case when the neighborhood is
taken to be the entire system. Finally, the fragment polar-
izabilities are spherically averaged, and in this regard, the
MBD@rsSCS scheme does not use the full flexibility of the
MBD framework, which in general supports anisotropic local
effective polarizabilities. To fully specify MBD@rsSCS, the
range-separating function f(R) is of the same type as the
damping function in eq 58 used in the TS method, and is
parametrized on a reference set of small- and medium-sized
vdW complexes at various binding distances. The range-
separating functions f(R) used to define Tlr are in general much
smoother than the damping functions g(R) of the pairwise
methods, as the latter are in fact the square of the
corresponding f(R). With all relevant quantities determined,
the MBD@rsSCS long-range correlation energy is then
obtained by diagonalizing the general MBD Hamiltonian in
eq 64 and evaluating the plasmon-pole formula in eq 66. Bucǩo
et al. derived and implemented a formulation of MBD@rsSCS
for periodic boundary conditions in reciprocal space, which
results in faster and more easily converged calculations.234

4.8.3. General remarks about MBD and n-body
expansions. As briefly discussed in Section 4.4.2, the infinite
n-th order expansion of the long-range correlation energy in the
MBD framework is not equivalent to the general (and finite) n-
body expansion, where the latter is often used to discuss
beyond-pairwise corrections to the pairwise methods. Here, we
discuss the correspondence between various higher-order terms
of the gn(R)Cn/R

n type and the n-th order terms in MBD in
more detail.
To go beyond the pairwise approximation, the three-body

(triple-dipole) ATM term of the form g9(R)C9/R
9 is sometimes

used in the class of pairwise models. For the n = 3 case, the n-
body and n-th order expansions are equivalent, and hence, these
triple-dipole terms are contained in the third order of MBD.
However, the origins of the corresponding terms differ
significantly in MBD and in the beyond-pairwise models and
so does the effective contribution of these terms to the long-
range correlation energy. In particular, the three-body term in
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the beyond-pairwise methods is constructed independently of
the pairwise term; that is, the C9 coefficients are not in exact
correspondence with the C6 coefficients (via the general
Casimir−Polder integrals) and the damping function g9
contains parameters that are independent of the parameters
in g6. Therefore, the contributions of all the higher n-body
terms (n ≥ 3) in such a scheme influence the parametrization
of the three-body term. As such, the resulting three-body
energetic contribution effectively captures the effects of these
higher-order terms, thus raising the question of transferability.
In contrast, the three-body triple-dipole term arises automati-
cally in the MBD framework and is constructed with the same
atomic polarizabilities and long-range potential as the second-
order dipole−dipole term. In other words, the range-separating
function f and the polarizability αeff,A are the same for the
second, third, and higher orders. Furthermore, the higher-order
contributions in MBD have typically an alternating sign, as
given by eq 65, and hence their sum, that is, the difference
between the total long-range correlation energy and the
second-order approximation to it, can be significantly smaller
than the third-order contribution. Finally, the triple-dipole term
is an example of an n-th order term acting between n bodies, yet
there is also the other class of n-th order terms acting between
m < n bodies. For m = 2, these terms correspond to the higher-
order contributions to the two-body energy and these are not
accounted for explicitly in pairwise approximations; for
example, the lowest 4-th order two-body term would
correspond to the C12/R

12 term in the language of dispersion
coefficients.
The other class of higher-order Cn/R

n terms that come from
higher-order multipoles of the polarizability (dipole−quadru-
pole, quadrupole−quadrupole) can be in principle obtained in
the MBD framework in three ways. First, the higher multipoles
can be partially captured in the parametrization of the range-
separating function, as was the case with pairwise methods.
Second, additional oscillators and coupling potentials describ-
ing quadrupole oscillations could be added. The contributions
of such oscillators would reduce to the higher-order Cn/R

n

terms when evaluated at second order. Third, the higher
multipole terms could be evaluated as a perturbation to the
dipole-coupled Hamiltonian due to the full Coulomb coupling
by means of the perturbation theory. We note that none of
these approaches have been yet introduced in a working
method.

5. MODELS FOR VDW INTERACTIONS: APPLICATIONS

In this section, we continue with an assessment of the
numerical performance of vdW models in treating systems for
which vdW interactions play a key role. First, we discuss
benchmark databases that consist of small noncovalently bound
dimers, molecular crystals, and supramolecular complexes. We
then follow with a brief survey of other important results for
select systems, focusing on structural and electronic properties
beyond binding and cohesive energies. This section is then
concluded with a concise review of recent ab initio molecular
dynamics simulations that use approaches based on first
principles for describing vdW interactions.
Critical evaluation of exchange-correlation functionals

through benchmarking and extensive testing plays a central
role in DFT. Such an approach is particularly crucial for density
functionals with a higher degree of empiricism, but served also
to identify the robustness of many first-principles functionals,
for which theoretical reasons were often found only later. A

similar situation can be found in the field of vdW methods,
where critical assessment is essential for the more empirical
approaches, but is of great value even for the first-principles-
based methods covered in this review. There are several reasons
why a quantitative assessment is needed, as opposed to a
qualitative evaluation. First, it provides evidence for the level of
uncertainty in predicted quantities that one may expect when
using a particular method for a particular class of systems. This
becomes ever more important as computational chemistry and
materials physics play an increasingly predictive, rather than
supportive, role to experiment. Second, quantitative evaluation
can identify both specific and systematic issues of a given
method and hence provide guidance for further improvement.
This is particularly important as quantitative differences in the
relative energies of molecular systems and materialsthe
primary results of electronic structure calculationsoften
translate into qualitative differences in derived quantities such
as structural, thermodynamic, and response properties. In this
regard, the systematic verification of a given vdW method is
usually achieved through comparison against the results of
higher-level (more costly and more accurate) theoretical
methods or to experimental results with sufficient resolution.
The presented vdW methods consist of many ingredients

(models for response, partitioning schemes, range separation
approaches, treatments of higher-order contributions) which all
contribute to their overall performance. As a result of this
composition, evaluations of vdW methods are often interpreted
in terms of these individual ingredients. However, it is not
always clear to what degree the individual choices for the
ingredients contribute to the overall difference in performance
between different methods. Detailed analyses of the perform-
ance in this regard are rare and remain to be performed for
many popular vdW methods, even on simple model systems.
This presents one clear path forward for the development of
more robust and transferable vdW models, in which such
comparative analyses can be used to identify the best
ingredients from individual models, which can then be
combined to form new methods with better performance.

5.1. Benchmark databases

In this section, we briefly discuss four benchmark databases for
noncovalent interactions that were used to test many of the
methods reviewed here. The tradition of such high-quality
noncovalent databases started with the S22 test set of Jurecǩa et
al.,251 which contains 22 binary complexes with a median
number of atoms of 19, molar mass of 131 g/mol, and binding
energy of 4.7 kcal/mol. The S22 set constitutes a representative
sample of hydrogen-bonded, vdW bound, and mixed
complexes. A similarly designed but more extensive set of 66
dimers (the S66 test set), with a median number of atoms of
20, molar mass of 126 g/mol, and binding energy of 4.1 kcal/
mol, was published several years later.252 The reference
energies in both these databases were obtained using high-
level coupled-cluster calculations with single, double, and
perturbative triple excitations (CCSD(T)) extrapolated to the
complete basis set (CBS) limit, which represents the gold-
standard electronic structure method in quantum chemistry.
The benchmark C21 database240 extends the analysis to
condensed-phase systems via 21 molecular crystals with
reference binding energies obtained from experimental
sublimation enthalpies. This work was later extended and
refined to cover 23 molecular crystals in the X23 database,253

with a median number of atoms per molecule of 10, molar mass

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.6b00446
Chem. Rev. 2017, 117, 4714−4758

4740

http://dx.doi.org/10.1021/acs.chemrev.6b00446


of 89 g/mol, and binding energy of 7.3 kcal/mol. The final
database considered in this section, the S12L set, deals with
large molecules and consists of 12 supramolecular complexes
with a median number of atoms of 134, molar mass of
1060 g/mol, and binding energy of 28 kcal/mol, with reference
binding energies obtained from experimental Gibbs free
energies of association, or alternatively from quantum Monte
Carlo calculations.254,255 Although the available data in the
literature are far from complete (i.e., binding energies of every
method discussed in this review on every one of these databases
have not been calculated to date), Figure 7 still illustrates the
following general trend: the differences in the predictions
among the individual vdW methods increase as the size and
complexity of the systems in question grow. In other words, the
reliability of the vdW methods seems to decrease with
increasing system size and complexity. However, this trend is
also accompanied by a corresponding decrease in the accuracy
and reliability of the underlying benchmark energies. In the
following, we elaborate on various reasons for this observation,
accompanied by an illustrative analysis of the differences
between particular methods on select systems from these
databases.
The S22 and S66 databases are relatively similar in design

and will be discussed together. Figure 7 shows that the error
ranges corresponding to the S22 and S66 databases are
narrowest among the four benchmark sets. (We note that the
error distribution is narrower for the S66 set due to its
increased size with respect to the S22 seta larger “sample”
leads to a smaller variance between methods.) The consistent
performance observed for these data sets illustrates that, after
intense development throughout the past decade, the majority
of popular vdW methods have managed to capture this first-
rung level of complexity of nonbonded interaction energies. In
the same breath, however, this does not mean that these simple
systems cannot provide further insight into the performance of
a given vdW model. On the contrary, a detailed analysis of a
particular system can reveal valuable information about the
relative contributions of different physical phenomena to the
total binding energy as well as the degree to which those

phenomena are accounted for in a given model. We will focus
on two systems from these data sets, namely the benzene dimer
and the adenine−thymine complex, each of which will serve to
illustrate different potential complications that may occur when
describing vdW interactions.
The benzene dimer has been the primary model system for

noncovalent interactions over the past 40 years.256−263 In
particular, the fine balance between the Pauli repulsion,
electrostatic (quadrupole−quadrupole) interactions, and vdW
dispersion results in an intricate potential energy surface (PES)
with many local minima.264 The nearly degenerate T-shaped
and parallel-displaced (PD) conformations of the benzene
dimer are contained in both S22 and S66 sets, but whether a
particular method reproduces this degeneracy is naturally not
reflected in the corresponding statistical errors. Another reason
why these two geometries are particularly interesting is
precisely the fact that they are two probes of the same PES
and hence the number of potential sources of error in their
description is limited. In this system, a physically sound
description of the anisotropy in the vdW interactions becomes
crucial for quantitative prediction of the finer details of the PES.
As discussed in Section 2, the PD conformation exhibits
alignment among the distinct in-plane charge fluctuations,
whereas such fluctuations are orthogonal in the T-shaped
conformation (see Figure 5). To capture these effects, a given
vdW model has to correctly describe both the monomer
screening and polarizability as well as the intermolecular
coupling of these anisotropic fluctuations (see the short-range
αsr(r,r′) and its long-range coupling in eq 22). This difficult
task may be one of the underlying reasons why many second-
order vdW methods, which neglect such effects, and even RPA-
based methods fail to predict this degeneracyboth versions of
vdW-DF either predict a difference of 0.6 kcal/mol (20%) at
the true equilibrium geometries36 or overestimate the binding
distances by as much as 0.5 Å;265 the error of the pairwise TS
method on the PD conformation is 0.8 kcal/mol,50 and all
RPA-derived methods reviewed in Section 4.5 overbind the PD
conformation by ∼0.7 kcal/mol.148 In contrast, the MBD
method, which explicitly accounts for the intra- and

Figure 7. Overall performance of vdW methods on four benchmark data sets. The selection includes the methods XDM, MBD, TS, VV10, RPA,
rPT2, vdW-DF, and vdW-DF2. When a vdW method specifies a particular exchange-correlation functional, results with that functional were taken;
otherwise, the PBE functional was considered. The blue and red data points reflect the mean and range of mean absolute percentage errors (MAPE)
and mean absolute errors (MAE), respectively, on a given data set. The dotted line denotes 1 kcal/mol. The displayed structures are illustrative
examples of systems of a given size and complexity. Data are collected from refs 36, 62, 88, 98, 142, 148, 157, 204, 205, and 235−250.
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intermolecular many-body effects, reduces the error of the TS
description to only 0.2 kcal/mol. Exceptions to this clear
distinction are some parametrizations of the XDM model238

and the VV10 functional,62 which predict the degeneracy within
a 10% margin, while being only second-order approximations.
However, the XDM predictions substantially depend on a
particular choice of the exchange-hole model, which suggests
that other effects may effectively cancel out with the higher-
order contributions in this particular system.
The adenine−thymine complex can be considered as a

prototypical biological system and is represented twice in the
S22 set: first, as a vdW bound stacked conformation; second, as
a classical Watson−Crick nucleobase pair. While the first case is
similar in character to the PD benzene dimer, the latter case
contains strong directional hydrogen bonds in which several
types of noncovalent binding contribute (electrostatic inter-
actions, induction, and dispersion), posing a difficult
challenge.266−268 Of all these interactions, only dispersion is
described by vdW models whereas the other components are
treated at the level of the underlying exchange-correlation
functional. In this regard, an accurate description of electro-
static interactions relies predominantly on the correct assign-
ment of permanent moments to the individual interacting
molecules. For the case of induction, this must also be
accompanied by a consistent treatment of the molecular
polarizabilities. In DFT, all these quantities are predicted only
approximately, yet these inaccuracies are rarely decoupled or
even discussed separately from the errors introduced by the
vdW models. A similar conclusion can also be made for the
Pauli repulsion, the magnitude of which can be relatively large
compared to the total binding energy, yet its description via
different exchange functionals can vary greatly. The decom-
position of the total binding energy of hydrogen-bonded
complexes into the individual components varies greatly with
distance,269 which may potentially lead to decreased trans-
ferability between different system sizes if some of the errors
mentioned above are effectively incorporated into the short-
range behavior or mutually compensate at a certain size range.
Indeed, while the Watson−Crick pair is described relatively
well by most vdW methods, with differences within 1.5 kcal/
mol (10%), the relative errors across the range of hydrogen-
bonded complexes of different sizes vary significantly.270 These
observations suggest that at least a part of the remaining errors
in the predicted binding energies can not only be attributed to
the vdW methods themselves, but rather also to the underlying
density functionals.
The fact that certain pairwise dispersion corrections are

seemingly able to achieve good accuracy for molecular crystals
stems from their more empirical nature and parametrization on
large molecular systems. Essentially all pairwise methods (D3,
XDM, TS) can be made accurate enough for the X23 database
by adjusting two empirical parameters.253 However, such
adjustments just serve the purpose of mimicking some of the
dielectric screening effects and can only be successful for
relatively symmetric systems. The true nature of dielectric
screening in arbitrary systems and geometries can only be
captured with explicit many-body approaches.
One large class of complex molecular environments consists

of molecular crystals. The X23 database contains 23 such
systems with a similar profile of the local intermolecular
bonding as in the S22 and S66 sets (ranging from hydrogen-
bonded to vdW bound and mixed complexes). While this might
lead one to expect a comparable range of errors for the different

vdW methods, Figure 7 reveals that there is in fact a significant
decrease in the reliability among the methods when treating
molecular crystals as opposed to gas-phase molecular dimers.
As a model case for discussion, consider the benzene crystal,
which is a natural extension of the benzene dimer from the
molecular databases, yet it is significantly more compli-
cated.271−274 For instance, the second-order, pairwise TS
method overestimates the lattice energy by 3 kcal/mol, while
treatment of the electron correlation to all orders within the
MBD method results in a prediction within 1 kcal/mol (though
a slightly better result is obtained with PBE0 compared to PBE,
suggesting small error cancellation in play). Similarly,
considering only individual pairs of benzene molecules in the
crystal within SAPT(DFT) or only double excitations within
the coupled-cluster method leads to overestimation of the
energy by 2 kcal/mol, while increasing the degree of correlation
decreases the error under 1 kcal/mol. In contrast, the DFT-D3
method achieves 1 kcal/mol without considering any many-
body effects, and their addition worsens the results by
approximately 1 kcal/mol.275 There are several possible reasons
for the increased complexity and less predictable behavior of a
crystal compared to the molecular dimer. First, the benzene
crystal contains individual pairs of benzene molecules in many
different orientations, each of which needs to be described with
the same level of accuracy; as such, the molecular crystal serves
as another indirect probe into the quality of the dimer PES.
Second, the solid state introduces stronger intermolecular
polarization in addition to the intramolecular polarization that
was already present in the isolated molecular complex; this
coupling of short- and long-range many-body effects further
increases the polarizability of a molecule within the crystal.
Third, the presence of the three-dimensional crystal lattice
effectively screens the long-range dipole correlations, resulting
in an overall decrease in the lattice energies. The total
contribution of the latter two competing long-range effects can
range from negative to positive in the prediction of lattice
energies and, hence, adds to the mixed conclusions regarding
the applicability of pairwise schemes and three-body corrections
for the description of molecular crystals.
To put these numerical differences into perspective, consider

that a correct ordering of crystal polymorphs necessary for
successful crystal structure prediction requires an accuracy of
only fractions of a kcal/mol.7,78,276,277 More than half of the
compounds in a pharmaceutically relevant data set show
polymorphism,278 and the energy differences between poly-
morphs are usually less than 1 kcal/mol and often even less
than 1 kJ/mol (0.24 kcal/mol). The X23 database contains two
polymorphs of oxalic acid, for which the experimental energy
difference between the α and β forms amounts to only 0.05
kcal/mol.240,253,279 Yet, current vdW-inclusive first-principle
approaches yield energy differences between about −1 and 1
kcal/mol. PBE+MBD has an absolute error in the difference of
only 0.12 kcal/mol but predicts the wrong ordering,7 whereas
PBE0+MBD correctly predicts the ordering with an absolute
error of 0.22 kcal/mol, illustrating how subtle the differences in
the two polymorphs are. The three polymorphs of glycine have
also been studied with a variety of methods, of which only
PBE0+MBD was able to correctly predict the relative stability
ordering as observed in experiment.78 Molecular crystals are
usually studied experimentally at finite temperature and
pressure, requiring that free energies are considered instead
of bare lattice energies. For instance, form I of the aspirin
crystal is much more abundant in nature than form II, yet both
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forms have almost degenerate bare lattice energies. The higher
stability of form I could only be explained by considering
harmonic free energies at room temperature.280 Thermal and
pressure effects are not only crucial for the stability under
thermodynamic conditions, but are also essential for the unit-
cell structure itself and a variety of response properties, such as
vibrational spectra and elastic constants.281 The most recent
structure prediction blind test for organic crystals282 featured a
practically relevant and highly polymorphic system involving a
quite flexible molecule. This flexibility leads to a much larger
number of local minima within a narrow energy window
compared to crystals containing only rigid molecules. While
most polymorphs have been found by at least one participant
within the top 100 predicted structures, the relative ordering of
the polymorphs is still challenging. That said, inclusion of
many-body effects in the description of vdW interactions and
accounting for free energies clearly improves the relative
stability prediction.
A related class of solid-state systems, which shares similar

features to the vdW binding motifs in molecular crystals,
consists of layered materials. To date, there is no systematic
benchmark database for such systems; however, we can still
learn from particular representative systems. We will consider
graphite, one of the prototypical layered materials for which
there is an abundant number of both experimental and
theoretical results,283−288 regarding both its energetic and
structural properties.289 Graphite features the same set of
many-body effects as found in molecular crystals, but these
effects are amplified by the extreme difference in response
properties between the in-plane and out-of-plane directions in
the graphene layers. The correlation of the long-range
fluctuating dipole waves within each layer decays very slowly
with distance, as demonstrated by the slow convergence of the
binding energy of multilayer graphene.9,22,92 On the other
hand, these correlations are nontrivially screened by the inner
layers, resulting in a competition between these two effects as
captured by the various correlation orders in eq 23. Although
approximate, RPA describes these effects at least on a
semiquantitative basis, and so can serve as a first-order
reference with the predicted binding energy of 1.11 kcal/mol
per carbon atom. Many vdW methods, including all nonlocal
density functionals and most atom-based pairwise methods, fall
short from this result, with predictions ranging from 0.46 to
1.86 kcal/mol per carbon atom. When structural data such as
lattice constants and bulk moduli are considered as well, only
methods that treat the dipole correlations to all orders are
capable of matching the experimental reference results. For
instance, while both the XDM and MBD methods provide
good estimates of the interlayer lattice parameter and the
binding energy, XDM underestimates the curvature of the
energy minimum more than 2-fold, whereas MBD predicts a
value within 15% of experiment.12,289

As a final benchmark data set, we consider the S12L (S30L)
set of 12 (30) supramolecular complexes.246,290 In these
systems, the total binding energies are mostly dominated by
vdW interactions and hence the choice of a particular
underlying density functional is of less importance than in
the previous data sets, which makes this database an ideal
playground for analyzing vdW methods. As a prototypical
example, we will discuss the so-called buckyball catcher
complex, as it was studied most extensively both theoretically
and experimentally. A prominent feature of this system is the
strong anisotropy in the polarizability of the pincers of the

catcher, which results in nonlocal dipole fluctuations spanning
the whole complex. This situation is partially analogous to the
mechanisms occurring in graphite and graphene, but the
screening of the dipole correlations is much weaker in this case
(in contrast to graphite) and there is no cancellation of the
higher-order effects due to symmetry (in contrast to graphene).
This results in the nonlocal fluctuations having a large
destabilizing contribution to the binding energy, which can
reduce this quantity by as much as 10 kcal/mol with respect to
a pairwise-additive decomposition of the long-range correlation
energy in the TS, VV10, and bare XDM model, resulting in 2-
to 4-fold reduction in the mean relative error.88,246 By
accounting for the effect of such fluctuations (either inherently
as in MBD or by higher-order corrections in the XDM, VV10,
or DFT-D3 models), the reference binding energies can be
predicted within 2 kcal/mol (5%), leading to many-body effects
playing a crucial role in the binding of supramolecular
complexes.
Apart from the established data sets discussed above, we

briefly list others that have not seen broader adoption. All data
sets mentioned below were benchmarked using the CCSD(T)/
CBS method. The X40 set comprises complexes of small
halogenated organic molecules and provides a good test of how
well a method handles strongly ionic and charge-transfer
compounds.291 The L7 set consists of larger organic complexes
than those included in the S22 and S66 sets, but smaller than
the supramolecular complexes in the S12L set.292 The 3B-69
data set is of particular interest to the discussion here, as it
benchmarks molecular three-body contributions to interactions
energies.293 An interesting approach was used by Faver et al.,294

who dissected a protein−ligand complex 1HSG into 21 smaller
fragment dimers bound by noncovalent interactions.
A final point in the discussion of the benchmark data sets

concerns the reliability of the underlying reference data. For the
S22 and S66 sets, well-converged state-of-the-art electronic
structure theory methods were used by several groups to obtain
the benchmark data. These efforts leave very little room for
potential improvement, with the possible exception of almost
degenerate structures such as the aforementioned benzene
dimer conformations, where an accuracy of less than 0.1 kcal/
mol is needed to decisively determine the most stable
geometry. The X23 set presents a more difficult challenge
not only for the approximate vdW methods, but also for the
computational techniques used for obtaining the benchmark
energetics. The common method of deriving these energies
from experimental sublimation enthalpies involves several
approximations, the particular choice of which can lead to
differences as large as 1 kcal/mol.240,253 In contrast, Yang et al.
recently calculated the lattice energy of a benzene crystal at the
CCSD(T) level with an estimated uncertainty of only ∼0.1
kcal/mol,295 which may mark a future path toward obtaining
suitably accurate benchmark energetics for molecular crystals.
Finally, the S12L data set is a difficult problem due to the sheer
size of the complexes in question and the fact that they have
not been isolated experimentally in the gas phase. The original
reference binding energies were obtained by subtracting the
vibrational and solvation contributions from the experimental
Gibbs free energies of association.254 The largest uncertainty in
this approach comes from the solvation contributions that are
obtained by using semiempirical models with uncertainties that
can exceed ±5 kcal/mol. Indeed, the differences between the
experimentally derived binding energies and those obtained by
the diffusion quantum Monte−Carlo (DQMC) method
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(statistically converged to 1 kcal/mol) are similar in magnitude
to the uncertainties in the solvation contributions.
Besides systematic benchmark databases, much work has also

been done on select systems bound by vdW interactions, which
are in some ways representative of a wider class of molecules or
materials. The vdW-WF method was tested on small dimers
and adsorption of small molecules on various surfaces in several
studies.296−299 Sorescu et al. performed an extensive study of
many different methods on a set of 26 nitrogen containing
molecular crystals.300 With the benzene dimer being such a well
studied complex, its natural extension is the adsorption of a
single benzene molecule on a surface. Such a system has an
appeal both from an experimental point of view as a model for
heterogeneous catalysis, as well as from a theoretical stance, as
it combines contributions coming from electrostatic inter-
actions (benzene quadrupole moment) and long-range polar-
ization induced in the surface. Typical choices for the surface
are a single graphene sheet301,302 and metallic surfa-
ces.100,208,303−305 In the latter case, the surface charge
fluctuations of the metallic electrons have a large effect on
the polarizability of the adsorbed molecule and substantially
change its response compared to the gas-phase case, thus
influencing the resulting binding energy. However, the metallic
response has an intricate many-body character, and a general
first-principles approximate method for the description of vdW
interactions in hybrid interfaces is yet to be seen. A further step
in complexity can be taken by studying the interaction of a
single graphene sheet with a metallic surface.143,306−310 Here,
the long-range response of a covalent two-dimensional zero-gap
semiconductor is coupled with the response of surface
plasmons of the metal, presenting a severe test for vdW
models. Maurer et al. summarized the performance of different
methods for graphene/Ag(111) binding energy, with results
ranging from 0.77 to 1.67 kcal/mol per carbon atom.311 This
work demonstrates the sheer complexity of describing vdW
interactions in complex nanostructured materials.

To fully assess the complicated nature of realistic systems
when testing approximate models, they need to be probed in
many different ways, either by using different configurations
and conformations, or by investigating other properties besides
binding energies, such as polarizabilities, stress tensors, and
work functions or dynamical properties. Such studies are the
topic of the following sections.

5.2. Structural and electronic properties

Up to this point, we have been concerned primarily with the
binding energy effects of long-range electron correlation, as
those are typically large in relative magnitude. In this section,
we discuss the effects of vdW interactions on structural and
electronic properties. While the energy ordering of different
conformers of the benzene dimer poses a significant challenge
to all vdW models, an even more sensitive probe into the
robustness of a given model and a gateway to obtaining
equilibrium structures as well as dynamical properties of
systems at nonzero temperatures is provided by derivatives of
the energy with respect to the nuclear coordinates, −dE/dRA.
Furthermore, the vdW models discussed here all directly
depend on the electron density and, therefore, via the
functional derivative of the energy, δE/δn, and the Hohen-
berg−Kohn variational principle, necessarily influence the
electron density and hence all electronic properties. Whereas
the structural effects have been recognized since the beginning
of the empirical treatment of vdW interactions, the electronic
effects have been largely neglected and it is only in recent years
that they have become the topic of investigation.
Although searching for local minima on a PES forms the

basis of most computational chemistry studies, it is used to
systematically evaluate the accuracy of vdW methods to a much
smaller degree than the corresponding binding energies.
Recently, several researchers attempted to close this gap.
Witte et al. investigated the performance of may electronic
structure methods in predicting the equilibrium geometries of
small to large molecular complexes.312 They found that the

Figure 8. Structural changes induced by vdW interactions as predicted by several methods. D3 is the semiempirical DFT-D3 model of Grimme et
al.58 (a) Errors in monomer distances of ten locally stable conformations of the benzene dimer with respect to reference DFT/CCSD(T) results.264

(b) Predicted structures of 76 conformers of 5 isolated small peptides using different methods are aligned with reference MP2 structures by
minimizing the root-mean-square deviation (RMSD) of the atomic coordinates. The minimized RMSDs are represented using their mean, quartiles,
and whiskers covering data within the 1.5-fold quartile range. The outliers are plotted as individual points. (c) The equilibrium geometries of the
buckycatcher−C60 complex as predicted by PBE+MBD (blue) and PBE+D3 (red). [Adapted with permission from Blood-Forsythe et al.232].
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nonlocal density functionals vdW-DF2 and VV10 perform
reasonably well on small systems with respect to CCSD(T);
however, the relative errors associated with vdW-DF2 increase
with system size, whereas the accuracy associated with VV10
was more transferable to larger systems. This issue can be
possibly traced back to the way that the vdW-DF2 functional is
constructed, as explained in Section 4.6. Compared to the
original vdW-DF functional, the second version uses a larger
density gradient contribution, leading to more rapid cutoff of
the tail densities in the polarizability density functional and
hence decreased C6 coefficients. When coupled with a more
attractive semilocal functional than the original revPBE, this
approach may reach better accuracy than vdW-DF on small
systems, but as the system size grows, the part of the binding
that comes from the short-range diminishes, while the
underestimation of the long-range contribution begins to
manifest itself.
Blood-Forsythe et al. investigated the performance of the

MBD and TS methods together with the DFT-D3 model in the
description of the PES of the benzene dimer, a set of small
peptides, and a large supramolecular complex.232 For the
benzene dimer, they found an almost perfect agreement
between MBD and the reference structures of CCSD(T)
quality (RMS error of 0.01 Å), whereas both the pairwise TS
and D3 methods yield errors that are several times larger in
magnitude (Figure 8a). Comparing the differences between
MBD and TS for the individual conformations, it can be seen
that the pairwise approximation shortens the binding distances
in stacked conformations, whereas they are increased in the T-
shaped structures. This can be explained by the anisotropy in
the polarizability of the benzene molecule, which is neglected in
the pairwise approximation. Because the destabilizing many-
body effects are pronounced in cases where the larger
components of the polarizability are aligned, the binding
distances are shortened when these effects are neglected,
consistent with the observed behavior. Similar trends were also
observed in the prediction of the secondary structures of select
small peptides (Figure 8b), governed by subtle intramolecular
nonbonded interactions. The fragment separation in the
supramolecular buckycatcher complex was found to decrease
by 0.2 Å with the MBD model (Figure 8c), demonstrating a
distinct effect of many-body vdW interactions on the structure
of larger and more realistic molecular systems of interest.
After discussing the nuclear degrees of freedom of the total

molecular Hamiltonian, we turn to the electronic degrees of
freedom. The long-range electron correlation energy is typically
around 5 orders of magnitude smaller than the total electronic
energy, and accordingly the electron density changes associated
with vdW interactions are of a similar relative magnitude with
respect to the total electron density. This is the reason why
vdW methods can be applied in a perturbative fashion as an a
posteriori correction to the total energy, without affecting the
electron density, which is obtained a priori from the self-
consistent Kohn−Sham equations. On the other hand, for any
method that is formulated as a functional of the density, Ec[n],
one can derive the corresponding contribution to the exchange-
correlation potential, δEc/δn, and include it in the Kohn−Sham
equations, resulting in subtle changes in the electron density. In
fact, the Hellman−Feynman theorem shows that it is this
charge polarization induced by the long-range correlation of
quantum electron fluctuations that acts as the origin of the vdW
forces on the nuclei.39,313 Self-consistent implementations have
been recently provided for several vdW methods discussed

throughout Section 4, including RPA,314 nonlocal density
functionals,163−165 as well as the TS15 and XDM315 pairwise
methods. In many of these works, the effects of self-consistency
on the binding energies are reported as negligible and, in
general, the electron density is polarized in such a way that it
shifts slightly away from the atoms toward the intermolecular
regions. However, these conclusions were reached on small,
typically organic gas-phase molecular dimers. In contrast,
Figure 9 shows that the charge polarization induced by vdW

interactions on a metallic surface depends significantly on the
particular metal: whereas the charge density is accumulated
above the surface in the case of copper and silver, it is depleted
in the case of gold. The effects of this charge redistribution can
be directly compared to experiment via the surface work
function. This quantity is the energy associated with extracting
an electron from the surface and is directly influenced by the
dipole density of the surface, which is in turn connected to the
charge distribution along the direction normal to the surface. As
a result of the charge polarization shown in Figure 9, the work
functions of the coinage metals can be changed by as much as
0.3 eV due to long-range electron correlation.15 These work
functions can then be additionally tuned by noncovalent
adsorption of organic molecules on the metallic surface in
hybrid organic−inorganic interfaces.15,303,316

5.3. Molecular dynamics

After considering the effects of vdW interactions on micro-
scopic structural and electronic properties, we now consider
how these forces influence the macroscopic properties of
materials. As argued previously, a first-principles description of
vdW interactions is required to accurately treat the variety of
structural, electronic, and environmental features that influence
the properties of systems found throughout biology, chemistry,
physics, and materials science (see Figure 1). Ab initio
molecular dynamics (AIMD), in which PES is generated “on
the fly” from the electronic ground state without the need for
empirical input, provides such a framework. The AIMD
technique has been applied to many problems317−319 and
allows for a quantum-mechanical treatment of the structure and
dynamics of a given molecular system as well as its electronic
and dielectric properties, and potential chemical reactions. In
this section, we consider several examples of studies which
demonstrate that the predictive power of AIMD simulations

Figure 9. Charge density polarization of metallic surfaces due to long-
range electron correlation. Δn is the integrated difference between the
total electron densities obtained by the PBE functional and the self-
consistent PBE+vdWsurf method. [Reprinted with permission from ref
15. Copyright 2015 American Physical Society.]
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depends crucially upon the accuracy of the underlying potential
and, in particular, the inclusion of and choice for the respective
vdW description.
As a first example, we consider the effects of vdW

interactions on the structure and properties of liquid
water.323 Many AIMD studies demonstrated that vdW
interactions significantly influence the microscopic structure
and macroscopic equilibrium density324−326 of ambient liquid
water. However, the influence of vdW forces on its properties
largely depends on the particular vdW approach. For instance,
the semiempirical pairwise DFT-D approach of Grimme57

tends to reduce the intensity of the first maximum in the
oxygen−oxygen radial distribution function (gOO(r)) of liquid
water over a wide range depending on the underlying
functional.324,327,328 With the use of the nonlocal density
functionals from the vdW-DF family, one can obtain mixed
results in reproducing the second coordination shell in ambient
liquid water depending on the choice of the underlying
exchange-correlation functional.329−331 On the other hand,
AIMD simulations using a self-consistent (SC) exchange-
correlation potential that accounts for both exact exchange (via
the PBE0 functional) and vdW interactions (via the pairwise TS
model) are able to quantitatively reproduce the experimentally
derived gOO(r) of liquid water322 (see Figure 10a). In this case,
the PBE0 hybrid functional reduces the amount of self-
interaction error in the underlying exchange-correlation

potential and thereby weakens the hydrogen-bond strength in
liquid water relative to a GGA such as PBE; in doing so,
hydrogen-bonded molecules in the first shell move outward,
resulting in a marked increase in the population of molecules
located in the interstitial region, i. e., the region between the
first and second coordination shells (see Figure 10b). On the
other hand, vdW forces, as described by the TS method, are
nondirectional and strengthen the interactions between a given
water molecule and the molecules in its first and second
coordination shells (and stabilize broken hydrogen-bond
configurations in general), which causes the molecules in the
second shell to move inward and populate the interstitial region
(see Figure 10b). In terms of dynamical properties, one also
observes a significant increase in the predicted diffusion
coefficient of liquid water when going from PBE (D =
0.02 Å 2·ps−1) to PBE0+TS-vdW(SC) (D = 0.15 Å2·ps−1),
which makes it much closer to the experimental value of
0.23 Å2·ps−1.332 As such, both these effects work collectively to
yield a microscopic description of liquid water that is less
structured, more fluidic, and significantly closer to experiment.
As a second example, we consider the use of vdW-inclusive

AIMD (via the optB88-vdW nonlocal functional) to map the
molecular structure and energetics of liquid water films on
layered materials, such as graphene and hexagonal boron nitride
(BN), to the complex transport of water at the nanoscale.333

Here, AIMD simulations reveal that the structures of the liquid
water films, substantially influenced by vdW interactions, are in
fact very similar for both graphene and BN; however, slight
differences in the contact layer (that are not related to the
wetting properties of these interfaces) give rise to a remarkably
different water slippage of these sheets (see Figure 11). This 3-

fold increase in the friction on BN with respect to graphene is
not captured by force-field-based molecular dynamics simu-
lations, thus stressing the importance of a first-principles-based
description in predicting transport properties at complex
interfaces.
As a third and final case, we consider the role played by vdW

interactions in stabilizing key helical domains in the secondary
structure of gas-phase polypeptides.102,335−338 In a recent
AIMD study,334 it was shown that the inclusion of vdW forces
can explain the notable stability of polyalanine (Ac-Alan-LysH

+)

Figure 10. Individual and collective effects of vdW interactions and
exact exchange on the structure of liquid water. (a) The oxygen−
oxygen radial distribution functions, gOO(r), of liquid water obtained
from theory (via DFT-based AIMD simulations) and various
scattering experiments.320,321 (b) Contributions from the first and
second shells of neighboring water molecules to the gOO(r) of liquid
water. The arrows indicate systematic shifts in the main peak positions
and intensities of the computed distributions with the addition of self-
consistent vdW interactions and exact exchange in the underlying
exchange-correlation functional. [Adapted with permission from ref
322. Copyright 2014 AIP Publishing LLC.]

Figure 11. Similar structure but different friction of water on graphene
and hexagonal boron nitride surfaces. (a) Average density profile of a
liquid water film computed at the optB88-vdW level as a function of
the height from a graphene (GRA) and hexagonal boron nitride (BN)
sheet. (b) Comparison between the Green−Kubo estimate of the
friction coefficient of liquid water on GRA and BN (with shaded areas
representing the uncertainties in the coefficients). [Reprinted with
permission from ref 333. Copyright 2014 American Chemical Society.]
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helices up to a temperature of 725 K.339 Figure 12 illustrates the
fact that AIMD simulations at the PBE and PBE+TS levels of
theory paint very different pictures of the dynamical helix
structure over a wide range of temperatures. For instance,
AIMD simulations at 700 K with PBE+TS give a structure that
is comprised of both α and 310-helical motifs with an overall
helical structure that is preserved after 65 ps of simulation,
whereas PBE predicts that the α-helical motifs quickly
disappear within 5−7 ps, in contradiction to the experimental
evidence.

6. CHALLENGES AND OUTLOOK

Recent developments of sophisticated methods for modeling
vdW interactions have brought unprecedented insights into the
nature of noncovalent interactions in complex molecules and
materials. The development of vdW methods based on first-
principles vastly extended the applicability of density-functional
calculations in chemistry, biology, and materials science. The
continuing efforts to increase the accuracy and reliability of
these methods will further improve our understanding and
capacity to model the noncovalent interactions in large
molecular systems.
Despite all of these advances, a unified method that could

accurately model noncovalent interactions in a wide range of
molecular and extended systems has yet to become available.
All existing vdW-inclusive methods have their advantages and
limitations. Recognizing the limitations is perhaps the most
important area of current research, which will eventually enable
systematic developments toward a universally applicable
method. Aiming toward this goal, we present here a set of

challenges which we deem as particularly important to address
to enable progress in the field of modeling vdW interactions:

• Is it possible to develop an efficient density-based
method for vdW interactions which would allow reliable
description of the wide range of phenomena and systems
illustrated in Figure 1? Could such a unified method treat
neutral small and large molecules, salts, ions, metals, and
interfaces between these systems, on equal footing?
Besides developing improved methods, this goal also
requires creating systematic data sets of validated
structures, binding and cohesive energies, and response
properties for a wide range of noncovalently bound
systems.

• It has been convincingly demonstrated that the many-
body effects in the vdW energy are crucial for both
qualitatively correct and quantitatively accurate modeling
of large molecular systems. Can simple rules of thumb be
developed that would allow design of molecular systems
that exhibit desirable properties stemming from collective
many-body effects? While explicitly correlated quantum-
chemical methods allow achieving quantitative accuracy,
insights are more easily obtained from coarse-grained
models.22

• As the molecular size grows, eventually quantum
electrodynamic or Casimir-like effects, not considered
by existing vdW-inclusive methods, become important:
retardation due to the finite speed of light or thermal
field fluctuations, among others. Can we develop
methods that seamlessly cross from the vdW into the
Casimir regime? Can we devise rules based on system

Figure 12. Importance of vdW interactions in determining the thermodynamic stability of polypeptide helices. (a) Overall number of hydrogen
bonds recorded throughout AIMD simulations at the PBE+TS-vdW and PBE levels of theory, with the α-helical bonds (red) and 310-helical bonds
(blue) counted separately. (b) Snapshots of the helical conformations from the corresponding AIMD simulations. [Reprinted in part with permission
from ref 334. Copyright 2011 American Physical Society.]
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sizes and topologies for when such a crossover becomes
necessary?

• Can we develop efficient density-based methods for
modeling vdW interactions in systems subject to both
homogeneous and inhomogeneous electric fields,
between excited-state (and ground-state) molecules, or
in general molecules embedded in complex static or
fluctuating environments? How can we properly include
the effect of a generalized frequency-dependent bath on
vdW interactions in complex molecular systems?

• How do nuclear (classical or quantum) fluctuations at
finite temperature affect vdW interactions between
molecules? Do they compensate or accentuate many-
body effects? Are there novel phenomena resulting from
the coupling between quantum nuclear fluctuations and
long-range electronic correlations?

• The crucial role of vdW interactions in the structure and
stability of molecular systems is convincingly established
by now. What about the role of vdW interactions in
vibrational, mechanical, electronic, optical, and other
response properties of molecular systems?

• What is the role of solvents on intermolecular
interactions? This question combines the contribution
of both thermal effects and electrodynamic fluctua-
tions.340

We now proceed by raising methodological questions
relevant for the development of improved methods for vdW
interactions and for better understanding of long-range
electronic correlation in general:

• Is there a systematic way to combine semilocal density
functionals with long-range models for vdW interactions?
As density functionals become more farsighted and vdW
models become more nearsighted, what is the optimal
crossover between semilocal and nonlocal approaches to
electron correlation? How can balance between many-
body electronic effects in the semilocal functional and the
nonlocal electron correlation be achieved?341

• Is there a systematic way to combine classical force fields
that approximately model bonding and electrostatics with
methods for long-range vdW interactions? For example,
recent work by Martyna et al. lays the foundation for
quantum-mechanical force fields based on quantum
Drude oscillators.342−344 How much quantum mechanics
can (should) an empirical force field capture?

• Some of the vdW methods discussed in this review
provide a link between DFT, semiempirical density-
functional approaches, and classical force fields. For
example, the TS method was extended from DFT60 to
the tightbinding method210 and force fields.211,212 Can
such flexibility be transferred to other vdW methods?

• What is the nature of nonlocal fluctuations contained in
χ0(r, r′) and α0(r, r′)? How well can they be represented
locally? Could the freedom in the gauge of the α vector
field be used to some advantage?

• Can narrow-gap or zero-gap materials be described with
a local α0? Is the atom-dipole description, which is an
efficient approximation for finite-gap materials, efficient
also for metals?

• Is there a clear-cut theoretical distinction between dipole
and charge fluctuations? Can charge fluctuations be
modeled efficiently with semilocal dipole fluctuations
even in metallic systems?

• How good is the single-oscillator Unsöld approximation
in general? Can we systematically generalize this model
to a many-body approach with multiple frequencies per
site?

• How much can be achieved with finer coarse-graining of
the response? Apart from mitigating the dipole-
approximation error, can more complex electronic effects
be encoded in finely grained local response functions?

• Is the equivalence of electronic χ and α transferable to
the coarse-grained (oscillator) descriptions?

• How can the anisotropic local polarizability be
constructed in both the atomic case and density-
functional case? Can we use the directionality of the
density gradient?

• Can we have truly nonlocal functionals for αeff(r) =
∫ r′∈M(r) dr′ F(r, r′)?

• Can we have more exact constraints and limits on α[n]?
Can we go to meta-GGA functionals for α[n]? Can we
have point functionals that are exact for isolated atoms?

• When information from the density is used to construct
the local effective α[n], what is the “range” of such
models?

Finally, we mention a range of possible applications that
should enable better understanding of the strengths and
weaknesses of existing vdW-inclusive methods and guide the
development of the next generation of unified methods:

• Databases of high-quality binding or cohesive energies of
molecular systems at equilibrium geometries (S22/S66,
S12, C21/X23) have substantially contributed to the
development of better vdW-inclusive methods during the
past decade. Some of these methods are now able to
consistently achieve a relative accuracy of 5−10% and an
absolute accuracy of 1 kcal/mol on these data sets.
However, the performance seems to deteriorate once the
methods are applied outside the domain of those
databases. Substantially more reference data should
become available in the next few years for increasingly
heterogeneous and complex molecular systems, including
nonequilibrium geometries and transition states. It
remains to be seen how well existing vdW-inclusive
methods perform for such more complex benchmarks,
representing molecules in more realistic nonequilibrium
situations.

• The performance of the methods strongly varies with the
complexity and size of a system (Figure 7). For small
molecular dimers in the S22/S66 data sets, all methods
perform well, but this changes as the systems become
increasingly nontrivial. Can we better understand the
scaling of vdW interactions with size and complexity?
When do many-body or higher-multipole effects become
more important? Answering such questions would
require development of an efficient method that includes
both multipolar and many-body effects to infinite order
in perturbation theory.

• How well do current vdW-inclusive methods model
different phases of solids? The nature of bonding
strongly depends on the solid structure, and different
phases of the same building block (atom, molecule, or
cluster) can exhibit very different polarization responses.
Substantial understanding can be gained by analyzing the
performance of vdW-inclusive methods for cohesive and
elastic properties of different solid phases. This applies to
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both hard solids (semiconductors, ionic solids, met-
als)80,83 and molecular crystals when studying poly-
morphism.7,78,99

• Is the performance of vdW-inclusive methods uniform
across the periodic table? There is some evidence that
performance deteriorates for heavier elements and
materials with nontrivial electronic states, such as
narrow-gap semiconductors, metals, polarizable 2D
materials, and topological insulators. Many more bench-
marks are required to gain better understanding of the
performance for different elements in the periodic table.

• Hybrid interfaces between organic and inorganic systems
play an important role in fundamental science and
technological applications. The structure and binding of
such hybrid interfaces is often determined by vdW
interactions.209 Considerable experimental data is avail-
able for structures and energetics of such interfaces.
Continuous assessment of vdW methods for such
interface properties is necessary to enable predictive
simulations of hybrid systems.

• Do existing vdW-inclusive methods perform consistently
for dimers, clusters, and solids of polarizable elements,
such as semiconductors and metals? When going from a
dimer through larger clusters to a solid, the polarizability
scales nonlinearly, and this can have a strong influence
on vdW interactions.55,91,92 Do methods exhibit correct
scaling of vdW interactions with system size from dimers
to large clusters and extended solids?

• Biological systems provide a rich playground for the
assessment of vdW-inclusive methods. Much work has
been done evaluating different vdW methods on small
peptides,337 protein secondary-structure elements,334

DNA,17 crystals of biological molecules,13,17,78,345 and
ions interacting with biological molecules,346,347 among
other systems.

• Can we control intermolecular vdW interactions by the
presence of nanostructures? Experiments clearly demon-
strate that it is possible to dramatically enhance24,25 or
attenuate112 vdW interactions by the presence of
heterostructured surfaces with complex dielectric profiles.
Hence, it seems that it should be possible to design
molecular interaction profiles by carefully chosen
nanostructures with specific geometries and dielectric
properties.

• What is the role of microsolvation to full solvation on
vdW interactions between solutes? Similar to the
previous point, this field is highly controversial340 and
demands systematic experimental and theoretical inves-
tigations of a wide range of solutes in solvents of varying
polarity and polarizability.

7. CONCLUDING REMARKS

During the past decade, the atomistic modeling community has
started to understand the broad implications of vdW dispersion
interactions for a wide variety of molecules and materials. The
development of sophisticated first-principles approximations to
model vdW interactions lead to an exponentially growing
“black-box” use of these approaches in combination with semi-
local density functionals. However, as is the case with semi-local
density-functional approximations, all existing vdW-inclusive
methods have their advantages and limitations, and care must
be taken when applying these methods to systems outside of
their “comfort zone”. The contributions of many-body effects,

polarization screening, polarizability anisotropy, multipolar
expansion, nontrivial electronic states (metallic or topological),
coarse-graining of the electronic response functionall these
questionsremain open to debate in the modeling of vdW
interactions in realistic materials.
In this review, we presented a concise discussion of the

ingredients necessary for an accurate description of vdW
interactions in a wide range of materials (Section 2). The
various existing vdW-inclusive methods have been classified
according to their treatment of the microscopic polarizability
and the interaction potentialthe two fundamental quantities
required for the modeling of vdW interactions. We discussed
systems for which the polarizability can be reasonably
approximated with local models, and where such local
approximations fail. We emphasized the high accuracy in the
polarizabilities (and vdW coefficients) of 5−6% that is required
to obtain reliable results for the long-range vdW energy;
deviations of just 10% in these quantities can lead to
unacceptably large errors.
Based on recent landmark experiments probing the nontrivial

nature of vdW interactions at the nanoscale, we argued that the
ubiquitous many-body effects are crucial for both a qualitative
understanding and a quantitative description of the vdW
energy. Furthermore, these experiments demonstrate that our
understanding of quantum-mechanical vdW effects is still only
emerging (see Section 3).
We followed by introducing the theoretical framework for

calculating vdW interactions based on the adiabatic-connection
fluctuation−dissipation (ACFD) theorem in Section 4. This
part also discussed the crucial role of different response
functions and the relation between them as used by different
approximate vdW methods. We emphasize here that the exact
treatment of vdW interactions in arbitrary materials can be
formulated exclusively using the microscopic dipolar polar-
izability of the system.
Finally, we reviewed the performance of widely used vdW-

inclusive methods on a variety of molecular binding or cohesive
energy databases in Section 5. Although the performance is
generally very good for small molecular dimers, only some
available methods perform well for larger more complex
supramolecular systems and extended molecular crystals.
Current efforts directed at obtaining reliable benchmarks for
more realistic systems and applying vdW methods to
increasingly large molecules will provide significant insights
into the successes and limitations of different methods.
In summary, painstaking and systematic work on the

concepts, theory, and applications of vdW-inclusive methods
should eventually enable us to develop an efficient method for
vdW interactions with broad applicability in chemistry, biology,
physics, and materials science. Such a unified method should be
firmly based in the ACFD formalism and combine the best
features of interatomic approaches, nonlocal density func-
tionals, and many-body perturbation theory.
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J. J.; Sańchez-Portal, D.; Alcamí, M.; Arnau, A.; Vaźquez de Parga, A.
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Lundqvist, B. I. Van der Waals Density Functional for General
Geometries. Phys. Rev. Lett. 2004, 92, 246401.
(36) Lee, K.; Murray, D.; Kong, L.; Lundqvist, B. I.; Langreth, D. C.
Higher-Accuracy van der Waals Density Functional. Phys. Rev. B:
Condens. Matter Mater. Phys. 2010, 82, 081101.
(37) Vydrov, O. A.; Van Voorhis, T. Nonlocal Van der Waals Density
Functional Made Simple. Phys. Rev. Lett. 2009, 103, 063004.
(38) Berland, K.; Cooper, V. R.; Lee, K.; Schröder, E.; Thonhauser,
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(166) Romań-Peŕez, G.; Soler, J. Efficient Implementation of a van
der Waals Density Functional: Application to Double-Wall Carbon
Nanotubes. Phys. Rev. Lett. 2009, 103, 096102.
(167) Perdew, J. P.; Yue, W. Accurate and Simple Density Functional
for the Electronic Exchange Energy: Generalized Gradient Approx-
imation. Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 33, 8800−
8802.
(168) Vydrov, O. A.; Van Voorhis, T. Improving the Accuracy of the
Nonlocal van der Waals Density Functional with Minimal Empiricism.
J. Chem. Phys. 2009, 130, 104105.
(169) Langreth, D. C.; Lundqvist, B. I. Comment on “Nonlocal Van
Der Waals Density Functional Made Simple”. Phys. Rev. Lett. 2010,
104, 099303.
(170) Vydrov, O. A.; Van Voorhis, T. Vydrov and Van Voorhis
Reply. Phys. Rev. Lett. 2010, 104, 099304.
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Dobson, J. F. Cohesive Properties and Asymptotics of the Dispersion
Interaction in Graphite by the Random Phase Approximation. Phys.
Rev. Lett. 2010, 105, 196401.
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