
First-principles molecular dynamics

P. Giannozzi
Dept of Chemistry, Physics, Environment, University of Udine, Italy

XIX School of Pure and Applied Biophysics, Venice, 26 January 2015

Outline

1. First-principles molecular dynamics: when and what?

2. A quick look at the theoretical basis, with emphasis on Density-Functional Theory

3. Born-Oppenheimer and Car-Parrinello Molecular Dynamics

4. Technicalites you should be aware on: plane waves, pseudopotentials

5. Software and needed hardware

– Typeset by FoilTEX –



1. What is First-Principles Molecular Dynamics?

In First-Principles Molecular Dynamics (FPMD) the forces acting on nuclei are
computed from the electronic states, i.e. by solving, in principle exactly, the
many-body Schrödinger equation for electrons (nuclei are approximated by classical
particles).

FPMD is the method of choice whenever “force fields” do not give a sufficiently
accurate or reliable description of the system under study, or of a specific
phenomenon: typically, whenever bonds are broken or formed, or in presence of
complex bonding, e.g.: transition metals.

With FPMD, all techniques used in classical (with force fields) MD can be used;
moreover, one has access to the electronic structure and charge density, can in
principle compute excitation spectra: however, the heavy computational load of
FPMD, in spite of available efficient implementations, limits its range of application
to systems containing O(1000) atoms max, for rather short times (tens of ps).



An example of application

Below, the simplest model for the
myoglobin active site: iron-porphyrin-
imidazole complex. Yellow: Fe. Dark Gray:
C. Blue: N. Light gray: H.

To the right: extended model of the
myoglobin active site (including the 13
residues in a 8A sphere centered on Fe,
terminated with NH2 groups, containing
332 atoms, 902 electrons). Red: O, all
other atoms as in the above picture.



The need for first-principles MD

• High-level theoretical description needed, due
to the presence of transition metal atoms

• Complex energy landscape: many possible spin
states and local minima, not easy to guess from
static (single-point) calculations – Molecular
Dynamics may be better suited.

Interest: respiration, photosynthesis, enzymatic
catalysis...

Note however that sizable systems (hundreds of atoms in this case) are
needed in order to accurately describe the effect of surrounding environment:
efficient first-principles techniques are needed (P. Giannozzi, F. de Angelis, and
R. Car, J. Chem. Phys. 120, 5903 (2004); D. Marx and J. Hutter,
Modern Methods and Algorithms of Quantum Chemistry, John von Neumann
Institute for Computing, Jülich, NIC Series, Vol.3, pp. 329-477 (2000)
http://juser.fz-juelich.de/record/152459/files/FZJ-2014-02061.pdf)



2. The basics: Born-Oppenheimer approximation

The behavior of a system of interacting electrons r and nuclei R is determined by
the solutions of the time-dependent Schrödinger equation:
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 Φ̂(r,R; t)

where V (r,R) is the potential describing the coulombian interactions:

V (r,R) =
∑

µ>ν

ZµZνe
2

|Rµ −Rν|
−
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Zµe
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|ri −Rµ|
+
∑
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e2
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≡ Vnn(R) + Vne(r,R) + Vee(r)

Born-Oppenheimer (or adiabatic) approximation (valid for Mµ >> m):

Φ̂(r,R; t) ≃ Φ(R)Ψ(r|R)e−iÊt/h̄

NB: in order to keep the notation simple: r ≡ (r1, .., rN), R ≡ (R1, ..,Rn); spin
and relativistic effects are not included



Potential Energy Surface

The Born-Oppenheimer approximation allows to split the original problem into an
electronic problem depending upon nuclear positions:
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Ψ(r|R) = E(R)Ψ(r|R)

and a nuclear problem under an effective interatomic potential, determined by the
electrons: 
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Φ(R) = ÊΦ(R)

E(R) defines the Potential Energy Surface (PES). The PES determines the motion
of atomic nuclei and the equilibrium geometry: the forces Fµ on nuclei, defined as

Fµ = −∂E(R)

∂Rµ
,

vanish at equilibrium: Fµ = 0.



Solving the electronic problem: Hartree-Fock

Let us write the many-body electronic wave-function as a Slater determinant:

Ψ(r1, r2, ...rN) =
1√
N !

∣∣∣∣∣∣∣∣
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for N electrons, where (i) ≡ (ri, σi), σi is the spin of the i−th electron, the ψi

states are all different. Minimization of E yields the Hartree-Fock equations.

For the “restricted” case (pairs of states with opposite spin):

− h̄2

2m
∇2ψi(r) + V (r)ψi(r) + VH(r)ψi(r) + (V̂xψi)(r) = ǫiψi(r)

where i = 1, ..., N/2, V (r) is the external (nuclear) potential acting on each electron:

V (r) = −
∑

µ

Zµe
2

|r−Rµ|
,



VH is the Hartree potential:

VH(r) = 2
∑

j

∫
|ψj(r

′)|2 e2

|r− r′|dr
′

V̂x is the (nonlocal) exchange potential:

(V̂xψi)(r) = −
∑

j

∫
ψj(r)

e2

|r− r′|ψ
∗
j (r

′)ψi(r
′)dr′.

These are integro-differential equations that must be solved self-consistently.

In practice, HF is not a very good approximation. More accurate results
require perturbative corrections (Møller-Plesset) or to add more Slater determinants
(Configuration Interaction) in order to find more of the correlation energy, defined
as “the difference between the true and the Hartree-Fock energy”.

Solving HF and post-HF equations is the “traditional” approach of Quantum
Chemistry. An alternative approach, based on the charge density, is provided by
Density-Functional Theory (DFT)



Solving the electronic problem: Hohenberg-Kohn theorem

Let us introduce the ground-state charge density n(r). For N electrons:

n(r) = N

∫
|Ψ(r, r2, ...rN)|2dr2...drN .

The Hohenberg-Kohn theorem (1964) can be demonstrated: there is a unique
potential V (r,R) having n(r) as ground-state charge density. Consequences:

• The energy can be written as a functional of n(r):

E[n(r)] = F [n(r)] +

∫
n(r)V (r)dr

where F [n(r)] is a universal functional of the density, V (r) is the external
(nuclear) potential acting on each electron:

V (r) = −
∑

µ

Zµe
2

|r−Rµ|
.

• E[n(r)] is minimized by the ground-state charge density n(r).

Note: the energy E defined above does not include nuclear-nuclear interaction terms



Density-Functional Theory: Kohn-Sham approach

Let us introduce the orbitals ψi for an auxiliary set of non-interacting electrons
whose charge density is the same as that of the true system:

n(r) =
∑

i

|ψi(r)|2, 〈ψi|ψj〉 = δij

Let us rewrite the energy functional in a more manageable way as:

E = Ts[n(r)] + EH[n(r)] + Exc[n(r)] +

∫
n(r)V (r)dr

where Ts[n(r)] is the kinetic energy of the non-interacting electrons:

Ts[n(r)] = − h̄2

2m

∑

i

∫
ψ∗
i (r)∇2ψi(r)dr,

EH[n(r)] is the Hartree energy, due to electrostatic interactions:

EH[n(r)] =
e2

2

∫
n(r)n(r′)

|r− r′| drdr
′,



Exc[n(r)] is called exchange-correlation energy (a reminiscence from the Hartree-
Fock theory) and includes all the remaining (unknown!) energy terms.

Minimization of the energy with respect to ψi yields the Kohn-Sham (KS) equations:

(
− h̄2

2m
∇2 + V (r) + VH(r) + Vxc(r)

)

︸ ︷︷ ︸
HKS

ψi(r) = ǫiψi(r),

where the Hartree and exchange-correlation potentials:

VH(r) =
δEH[n(r)]

δn(r)
= e2

∫
n(r′)

|r− r′|dr
′, Vxc(r) =

δExc[n(r)]

δn(r)

depend self-consistently upon the ψi via the charge density.

The energy can be rewritten in an alternative form using the KS eigenvalues ǫi:

E =
∑

i

ǫi − EH[n(r)]−
∫
n(r)Vxc(r)dr+ Exc[n(r)]



Exchange-correlation functionals: simple approximations

What is Exc[n(r)]? Viable approximations needed to turn DFT into a useful tool.
The first, ”historical” approach (1965) is the Local Density Approximation (LDA):
replace the energy functional with a function of the local density n(r),

Exc =

∫
n(r)ǫxc(n(r))dr, Vxc(r) = ǫxc(n(r)) + n(r)

dǫxc(n)

dn

∣∣∣∣
n=n(r)

where ǫxc(n) is calculated for the homogeneous electron gas of uniform density n
(e.g. using Quantum Monte Carlo) and parameterized.

Generalized Gradient Approximation (GGA): A more recent class of functionals
depending upon the local density and its local gradient |∇n(r)|,

Exc =

∫
n(r)ǫGGA (n(r), |∇n(r)|) dr

There are many flavors of GGA, yielding similar (but slightly different) results. GGA
is the ”standard” functional in most FPMD calculations, with excellent price-to-
performance ratio, but some noticeable shortcomings.



Spin-polarized extension: LSDA

Simplest case: assume a unique quantization axis for spin. Energy functional:

E ≡ E[n+(r), n−(r)] = Ts +

∫
n(r)V (r)dr+ EH + Exc[n+(r), n−(r)]

nσ(r) = charge density with spin polarization σ
n(r) = n+(r) + n−(r) total charge density.

Minimization of the above functional yields the Kohn-Sham equations:

[
− h̄2

2m
∇2 + V (r) + e2

∫
n(r′)

| r− r′ |dr
′ + V σ

xc(r)

]
ψσ
i (r) = ǫσi ψ

σ
i (r)

Exchange-correlation potential and charge density:

V σ
xc(r) =

δExc

δnσ(r)
, nσ(r) =

∑

i

fσi |ψσ
i (r)|2

Note the extension to fractional occupancies (i.e. metallic systems): 0 ≤ fσi ≤ 1.
Noncolinear magnetism (no fixed axis for magnetization) can also be described.



“Standard” DFT: advantages and shortcomings

+ Computationally convenient: calculations in relatively complex condensed-
matter systems become affordable (GGA marginally more expensive than LDA)

+ Excellent results in terms of prediction of atomic structures, bond lengths, lattice
parameters (within 1÷ 2%), binding and cohesive energies (5 to 10% GGA; LDA
much worse, strongly overestimates), vibrational properties. Especially good for
sp−bonded materials, may work well also in more ”difficult” materials, such as
transition metal compounds

– The infamous band gap problem: ǫc − ǫv (or HOMO-LUMO in quantum
chemistry parlance) wildly underestimates the true band gap (mostly due to
missing discontinuity in Vxc for integer number of electrons)

– Serious trouble in dealing with strongly correlated materials, such as e.g.
magnetic materials (trouble mostly arising from spurious self-interaction)

– No van der Waals interactions in any functional based on the local density and
gradients: van der Waals is nonlocal, cannot depend upon charge overlap



Advanced DFT functionals

• DFT+U. LDA and GGA are often unable to find the correct occupancy of atomic-
like electronic states, leading to qualitatively wrong results – but when occupancy
is correct, results are not bad. DFT+U adds a Hubbard-like term, accounting for
strong Coulomb correlations in systems with highly localized, atomic-like states:

EDFT+U [n(r)] = EDFT [n(r)] + EU [n(r)],

where (simplified, rotationally invariant form):

EU [n(r)] =
U

2

∑

σ

Tr[nσ(1− n
σ)],

U being a (system-dependent) Coulomb repulsion (typically a few eV) and n
σ is

the matrix of orbital occupancies for a set of atomic-like states φm:

n
σ
mm′ =

∑

σ

∑

i

fσi 〈ψσ
i |Pmm′|ψσ

i 〉, Pmm′ = |φm〉〈φm′|



DFT+U is a “quick-and-dirty” but effective
solution for a deep problem of DFT: the lack
of discontinuity in approximated functionals, due
to incomplete self-interactions cancellation, favors
fractionary occupancy. DFT+U also improves
the gap and level alignement in heterostructures,
at the price of introducing an adjustable parameter U

figure: Cococcioni&de Gironcoli, PRB 71, 035105 (2005)

• Meta-GGA. Has a further dependence upon the non-interacting kinetic energy
density τs(r):

Exc =

∫
ǫmGGA (n(r), |∇n(r)|, τs(r)) dr

where

τs(r) =
1

2

∑

i

|∇2ψi(r)|2

Meta-GGA may yield very good results and is not in principle much more expensive
than GGA but it is numerically very nasty (at least in my experience)



• Hybrid functionals, such as B3LYP or PBE0, containing some amount of exact
exchange, as in Hartree-Fock theory (spin-restricted):

E = Ts +

∫
n(r)V (r)dr+ EH −e

2

2

∑

i,j

∫
ψ∗
i (r)ψj(r)ψ

∗
j (r

′)ψi(r
′)

|r− r′| drdr′

︸ ︷︷ ︸
EHF

x

In Hybrid DFT:

E = Ts +

∫
n(r)V (r)dr+ EH +

Ehyb
xc︷ ︸︸ ︷

αxE
HF
x + (1− αx)E

DFT
x + EDFT

c ,

with αx = 20 ÷ 30%. This is the method of choice in Quantum Chemistry,
yielding very accurate results and correcting most GGA errors.

In FPMD, however, hybrid functionals are computationally very heavy (due to
usage of plane waves). Moreover, an adjustable parameter is introduced.

• Nonlocal vdW functionals, accounting for van der Waals (dispersive) forces,
with a reasonable computational overhead.



Towards electronic ground state (fixed nuclei)

Possible methods to find the DFT ground state:

1. By the self-consistent solution of the Kohn-Sham equations

HKSψi ≡ (T + V + VH[n] + Vxc[n])ψi = ǫiψi

where

– n(r) =
∑

i

fi|ψi(r)|2 is the charge density, fi are occupation numbers

– V is the nuclear (pseudo-)potential acting on electrons (may be nonlocal)

– VH[n] is the Hartree potential, VH(r) = e2
∫

n(r′)

|r− r′|dr
′

– Vxc[n] is the exchange-correlation potential. For the simplest case, LDA, Vxc[n]
is a function of the charge density at point r: Vxc(r) ≡ µxc(n(r))

Orthonormality constraints 〈ψi|ψj〉 = δij automatically hold.



2. By constrained global minimization of the energy functional

E[ψ] =
∑

i

fi〈ψi|T + V |ψi〉+ EH[n] + Exc[n]

under orthonormality constraints 〈ψi|ψj〉 = δij, i.e. minimize:

Ẽ[ψ,Λ] = E[ψ]−
∑

ij

Λij (〈ψi|ψj〉 − δij)

where

– V , n(r) are defined as before, ψ ≡ all occupied Kohn-Sham orbitals
– Λij are Lagrange multipliers, Λ ≡ all of them

– EH[n] is the Hartree energy, EH =
e2

2

∫
n(r)n(r′)

|r− r′| drdr
′

– Exc[n] is the exchange-correlation energy. For the simplest case, LDA,

Exc =

∫
n(r)ǫxc(n(r))dr where ǫxc is a function of n(r).



Towards electronic ground state II

In the global-minimization approach, we need to compute the gradients of the energy
functional, that is, HKSψ products:

δẼ[ψ,Λ]

δψ∗
i

= HKSψi −
∑

j

Λijψj

In the self-consistent approach with iterative diagonalization, the basic ingredient is
the same: HKSψ products.

We further need to compute

1. the charge density from the ψi’s, and

2. the potential from the charge density.

Typically, constrained global minimization is the preferred technique for FPMD.



Calculation of the total energy

Once the electronic ground state is reached, the total energy of the system can be
calculated:

E =
∑

i

fi〈ψi|T + V |ψi〉+ EH[n] + Exc[n] + Enn

where Enn is the repulsive contribution from nuclei to the energy:

Enn =
e2

2

∑

µ 6=ν

ZµZν

| Rµ −Rν |

Equivalent expression for the energy, using Kohn-Sham eigenvalues:

E =
∑

i

fiǫi − EH[n] + Exc[n(r)]−
∫
n(r)Vxc[n(r)]dr+ Enn

The total energy depends upon all atomic positions Rµ (the PES is nothing but the
total energy for all Rµ).



Hellmann-Feynman Forces

Forces on atoms are the derivatives of the total energy wrt atomic positions. The
Hellmann-Feynman theorem tells us that forces are the expectation value of the
derivative of the external potential only:

Fµ = − ∂E

∂Rµ
= −

∑

i

fi〈ψi|
∂V

∂Rµ
|ψi〉 = −

∫
n(r)

∂V

∂Rµ
dr

the rightmost expression being valid only for local potentials, V ≡ V (r) (the one at
the left is more general, being valid also for nonlocal potentials V ≡ V (r, r′)).

Demonstration (simplified). In addition to the explicit derivative of the external potential (first term),

there is an implicit dependency via the derivative of the charge density:

∂E

∂Rµ

=

∫
n(r)

∂V

∂Rµ

dr +

∫
δE

δn(r)

∂n(r)

∂Rµ

dr

The green term cancels due to the variational character of DFT: δE/δn(r) = µ, constant.

The calculation of the Hellmann-Feynman forces is straightforward (in principle, not
necessarily in practice!) once the ground-state electronic structure is available.



3.1 Born-Oppenheimer Molecular Dynamics

Let us assume classical behavior for the nuclei and electrons in the ground state.
We introduce a classical Lagrangian:

L =
1

2

∑

µ

MµṘ
2
µ − E(R)

describing the motion of nuclei. The equations of motion:

d

dt

∂L

∂Ṙµ

− ∂L

∂Rµ
= 0, Pµ =

∂L

∂Ṙµ

are nothing but usual Newton’s equations:

Pµ ≡MµVµ, MµV̇µ = Fµ,

that can be discretized and solved by integration.
This procedure defines Molecular Dynamics “on
the Born-Oppenheimer surface”, with electrons
always at their instantaneous ground state.



Discretization of the equation of motion

Like in classical MD, the equation of motions can be discretized using the Verlet
algorithm:

Rµ(t+ δt) = 2Rµ(t)−Rµ(t− δt) +
δt2

Mµ
Fµ(t) +O(δt4)

Vµ(t) =
1

2δt
[Rµ(t+ δt)−Rµ(t− δt)] +O(δt3).

or the Velocity Verlet:

Vµ(t+ δt) = Vµ(t) +
δt

2Mµ
[Fµ(t) + Fµ(t+ δt)]

Rµ(t+ δt) = Rµ(t) + δtVµ(t) +
δt2

2Mµ
Fµ(t).

Both sample the microcanonical ensemble, or NVE: the energy (mechanical energy:
kinetic + potential) is conserved.



Thermodynamical averages

Averages (ρ = probability of a microscopic state):

〈A〉 =
∫
ρ(R,P)A(R,P)dRdP

are usually well approximated by averages over time:

lim
T→∞

AT → 〈A〉

and the latter by discrete average over a trajectory:

AT =
1

T

∫ T

0

A(R(t),P(t))dt ≃ 1

M

M∑

n=1

A(tn), tn = nδt, tM =Mδt = T.



Costant-Temperature and constant-pressure dynamics

• Molecular Dynamics with Nosé Thermostats samples the canonical ensemble
(NVT): the average temperature

〈
N∑

µ=1

P
2
µ

2Mµ
〉NV T =

3

2
NkBT

is fixed (the instantaneous value has wide oscillations around the desired value)

• Molecular Dynamics with variable cell samples the NPT ensemble: the average
pressure is fixed

In both cases, additional (fictitious) degrees of freedom are added to the system



Technicalities

• time step as big as possible, but small enough to follow nuclear motion with little
loss of accuracy. Rule of thumb: δt ∼ 0.01−0.1δtmax, where δtmax = 1/ωmax =
period of the fastest phonon (vibrational) mode.

• calculations of forces must be very well converged (good self-consistency needed)
at each time step or else a systematic drift of the conserved energy will appear

Note that:

– the error on DFT energy is a quadratic function of the self-consistency error of
the charge density (because energy has a minimum in correspondence to the
self-consistent charge)

– the error for DFT forces is a linear function of the self-consistency error of the
charge density

As a consequence, Born-Oppenheimer MD is usually computationally heavy



3.2 Car-Parrinello Molecular Dynamics

The idea: introduce a fictitious electron dynamics that keeps the electrons close to
the ground state. The electron dynamics is faster than the nuclear dynamics and
averages out the error, but not too fast so that a reasonable time step can be used

Car-Parrinello Lagrangian:

L =
m∗

2

∑

i

∫
|ψ̇i(r)|

2
dr+

1

2

∑

µ

MµṘ
2
µ−E[R, ψ]+

∑

i,j

Λij

(∫
ψ∗
i (r)ψj(r)dr− δij

)

generates equations of motion:

m∗ψ̈i = Hψi−
∑

j

Λijψj, MµR̈µ = Fµ ≡ − ∂E

∂Rµ

m∗ = fictitious electronic mass
Λij = Lagrange multipliers, enforcing
orthonormality constraints.
Very effective, but requires a judicious choice of
simulation parameters.



Car-Parrinello Molecular Dynamics (2)

• electronic degrees of freedom ψi are the expansion coefficients of KS orbitals into
a suitable basis set (typically Plane Waves for technical reasons)

• ”forces” on electrons are determined by the KS Hamiltonian calculated from
current values of ψi and of Rµ

• ”forces” acting on nuclei have the Hellmann-Feynman form:

∂E

∂Rµ
=
∑

i

〈ψi|
∂V

∂Rµ
|ψi〉

but they slightly differ from ”true” forces (ψi are not exact ground-state orbitals)

• The simulation is performed using classical MD technology (e.g. Verlet) on both
nuclear positions and electronic degrees of freedom (Kohn-Sham orbitals)

• Orthonormality constraints are imposed exactly at each time step, using an
iterative procedure



Car-Parrinello technicalities

• Starting point: bring the electrons to the ground state at fixed nuclear positions
– this can be achieved using damped dynamics.

• Next step is often to bring the system to an equilibrium state – this can also be
achieved using damped dynamics for both electrons and nuclei.

• The fictitious electronic mass m∗ must be big enough to enable the use of a
reasonable time step, but small enough to guarantee

– adiabaticity, i.e. no energy transfer from nuclei to electrons, which always
remain close to the ground state (no systematic increase of the fictitious
“kinetic energy” of the electronic degrees of freedom)

– correctness of the nuclear trajectory

Typical values: m∗ ∼ 100÷ 400 electron masses

• The time step δt should be the largest value that yields a stable dynamics (no
drifts, no loss of orthonormality). Typical values: δt ∼ 0.1÷ 0.3 fs



Why (and when) Car-Parrinello works

The CP dynamics is classical, both for nuclei and electrons: the energy should
equipartition!

Typical frequencies associated to electron dynamics: ωel ∼
√
(ǫi − ǫj)/m∗.

if there is a gap in the electronic spectrum, ωel
min ∼

√
ǫgap/m∗

Typical frequencies associated to nuclear dynamics: phonon (vibrational) frequencies
ωph

If ωph
max << ωel

min there is negligible energy transfer from nuclei to electrons

A fast electron dynamics keeps the electrons close to the ground state and averages
out the error on the forces. The slow nuclear dynamics is very close to the correct
one, i.e. with electrons in the ground state.

(G. Pastore, E. Smargiassi, F. Buda, Phys. Rev. A 44, 6334 (1991)).



4.1 Choice of a basis set

The actual solution of the electronic problem requires to expand Kohn-Sham states
into a sum over a suitable (finite!) set of basis functions bn(r):

ψi(r) =
∑

n

cnbn(r)

Typical basis sets:

• Localized functions:
atom-centred functions such as

– Linear Combinations of Atomic Orbitals (LCAO)
– Gaussian-type Orbitals (GTO)
– Linearized Muffin-Tin Orbitals (LMTO)

• Delocalized functions:

– Plane Waves (PW)

One could also consider mixed basis sets. The Linearized Augmented Plane Waves
(LAPW) could be classified in this category.



Advantages and disadvantages of various basis sets

• Localized basis sets:

+ fast convergence with respect to basis set size: few functions per atom needed
+ can be used in finite as well as in periodic systems (as Bloch sums: φk =∑

R
e−ik·Rφ(r−R))

– difficult to evaluate convergence quality (no systematic way to improve
convergence)

– difficult to use (two- and three-centre integrals)
– difficult to calculate forces (Pulay forces if basis set is not complete)

• Plane Waves:

– slow convergence with respect to basis set size (many more PWs than localized
functions needed)

– require periodicity: in finite systems, supercells must be introduced
+ easy to evaluate convergence quality: there is a single convergence parameter,

the cutoff)
+ easy to use (Fourier transform)
+ easy to calculate forces (no Pulay forces even if the basis set is incomplete)



Periodicity (or lack of it) and Supercells

Let us borrow some concepts from solid-state physics. A perfect crystal, having
discrete translation symmetry, is described in terms of

• a periodically repeated unit cell and a lattice of
translation vectorsR = n1R1+n2R2+n3R3, defined
via three primitive vectors R1,R2,R3 and integer
coefficients n1, n2, n3.

• a basis of atomic positions di into the unit cell

• a reciprocal lattice of vectors G such that
G ·R = 2πl, with l integer:
G = m1G1 +m2G2 +m3G3 with Gi ·Rj =
2πδij and m1,m2,m3 integer.

For non-periodic systems, as typically found in FPMD, the periodicity is artificial
and it is defined by the simulation cell, or supercell.



Band Structure, Bloch states

The one-electron states ψ(r) for a periodic system are classified by a band index i
and a wave vector k:

ψi,k(r) = eik·rui,k(r)

where ui,k(r) is translationally invariant:

ui,k(r+R) = ui,k(r).

For “true” periodic system, one has to deal with sums over k-points.

In FPMD, it is usual to assume Periodic Boundary Conditions (PBC) on the
simulation cell (defined by R1,R2,R3) :

ψ(r+R1) = ψ(r+R2) = ψ(r+R3) = ψ(r).

This means that only states with k = 0 (“Gamma point”) are considered.

The simulation cell uniquely defines the PW basis set.



Plane-wave basis set

A PW basis set for states at k = 0 is defined as

〈r|G〉 = 1√
NΩ

eiG·r,
h̄2

2m
G2 ≤ Ecut

Ω = unit cell volume, NΩ = crystal volume, Ecut = cutoff on the kinetic energy of
PWs (in order to have a finite number of PWs!). The PW basis set is complete for
Ecut → ∞ and orthonormal: 〈G|G′〉 = δGG′

The components on a PW basis set are the Fourier transform:

|ψi〉 =
∑

G

ci,G|G〉

ci,G = 〈G|ψi〉 =
1√
NΩ

∫
ψi(r)e

−i(G)·rdr = ψ̃i(G).

Note that the larger the supercell, the larger the number of PW’s for a given cutoff.



4.2 The need for Pseudopotentials

Are PWs a practical basis set for electronic structure calculations? Not really!
Simple Fourier analysis shows that Fourier components up to q ∼ 2π/δ are needed
to reproduce a function that varies on a scale of length δ.

Since atoms have strongly localized core orbitals
(e.g. 1s wavefunction for C has δ ≃ 0.1 a.u.),
millions of PW’s would be needed even for simple
crystals with small cells! We need to:

• get rid of core states

• get rid of orthogonality wiggles close to the
nucleus
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Solution: Pseudopotentials (PP). A smooth effective potential that reproduces the
effect of the nucleus plus core electrons on valence electrons.



Understanding Pseudopotentials

Smoothness and transferability are the relevant keywords:

• We want our pseudopotential and pseudo-orbitals to be as smooth as possible so
that expansion into plane waves is convenient (i.e. the required kinetic energy
cutoff Ecut is small)

• We want our pseudopotential to
produce pseudo-orbitals that are as
close as possible to true (“all-
electron”) orbitals outside the core
region, for all systems containing a
given atom (in the figure: all-electron
and pseudo-orbitals for Si)

Of course, the two goals are usually
conflicting!

Pseudopotentials have a long story: let’s start from the end.



Understanding PP: Projector-Augmented Waves

Let us look for a linear operator T̂ connecting all-electron orbitals |ψi〉 to pseudo-

orbitals |ψ̃i〉 as in: |ψi〉 = T̂ |ψ̃i〉. Pseudo-orbitals will be our variational parameters.

We write the charge density, energy, etc. using pseudo-orbitals and T̂ instead of
all-electron orbitals.

The operator T̂ can be defined in terms of its action on atomic waves (i.e. orbitals
at a given energy, not necessarily bound states):

• |φl〉: set of atomic all-electron waves (bound or unbound states)

• |φ̃l〉: corresponding set of atomic pseudo-waves. Beyond some suitable “core

radius” Rl, φ̃l(r) = φl(r); for r < Rl, φ̃l(r) are smooth functions.

(P. E. Blöchl, Phys. Rev. B 50, 17953 (1994))



Understanding PP: the PAW transformation

If the above sets are complete in the core region, the operator T̂ can be written as

|ψi〉 = T̂ |ψ̃i〉 = |ψ̃i〉+
∑

l

(
|φl〉 − |φ̃l〉

)
〈βl|ψ̃i〉

where the βl “projectors” are atomic functions, having the properties 〈βl|φ̃m〉 = δlm
and βl(r) = 0 for r > Rl. The logic is described in the picture below:

The pseudopotential itself is written as a nonlocal operator, V̂ , in terms of the βl
projectors:

V̂ ≡ Vloc(r) +
∑

lm

|βl〉Dlm〈βm|

(Vloc contains the long-range Coulomb part −Ze2/r)



Understanding PP: Charge in PAW

The (valence) charge density is no longer the simple sum of |ψi|2:

n(r) =
∑

i

fi|ψi(r)|2 +
∑

i

fi
∑

lm

〈ψi|βl〉Qlm(r)〈βm|ψi〉,

and
Qlm(r) = φ∗l (r)φm(r)− φ̃∗l (r)φ̃m(r).

The augmentation charges Qlm(r) are zero for r > Rl. A generalized orthonormality
relation holds for pseudo-orbitals:

〈ψi|S|ψj〉 =
∫
ψ∗
i (r)ψj(r)dr+

∑

lm

〈ψi|βl〉qlm〈βm|ψj〉 = δij

where qlm =

∫
Qlm(r)dr. The Dlm quantites and βl, Qlm functions are atomic

quantities that define the PP (or PAW set).



PP taxonomy: PAW, Ultrasoft, norm-conserving

• In the full PAW scheme, the augmentation functions are calculated and stored on a
radial grid, centred at each atom. The charge density is composed by a “smooth”
term expanded into plane waves, and an “augmentation” term calculated on the
radial grid (Kresse and Joubert, Phys. Rev. B 59, 1759 (1999))

• In the Ultrasoft PP scheme (D. Vanderbilt, B 41, R7892 (1990)), the
augmentation functions Qlm(r) are pseudized, i.e. made smoother: both
“smooth” and “augmentation” terms can be calculated using FFT (see later), in
either reciprocal or real space. The augmentation term usually requires a larger
FFT grid in G-space than for the smooth term (“double grid”)

• If we set Qlm(r) = 0, we obtain good old norm-conserving PPs (Hamann,
Schlüter, Chiang 1982) in the separable, nonlocal form.



Which pseudopotentials are good for me?

• Norm-conserving:

+ are simple to generate and to use. Theory and methodological improvements
are invariably implemented first (and often only) for norm-conserving PPs

– are relatively hard: core radii Rl cannot exceed by much the outermost
maximum of the valence atomic orbitals, or else the loss of transferability is
large. For some atoms: 2p elements C, N, O, F, 3d transition metals, 4f rare
earths, this restriction may lead to very high plane-wave cutoffs (70 Ry and up)

– do not give any sensible information about the orbitals close to the nucleus
(all-electron orbitals can be “reconstructed” using the PAW transformation)

Unless too hard for practical usage, this is usually the first choice



Which pseudopotentials are good for me? (II)

• Ultrasoft:

+ can be made smooth with little loss of transferability: core radii Rl can be
pushed to larger values, even for “difficult cases”. Cutoffs of 25 to 35 Ry are
usually good for most cases. Note that you may need a second FFT grid for
augmentation charges, with typical cutoff 8÷12× orbital cutoff (instead of 4)

- are not simple to generate: the pseudization of augmentation charges is often
a source of trouble (e.g. negative charge)

- some calculations not available for Ultrasoft PPs
– give even less information about the orbitals close to the nucleus (all-electron
orbitals can be “reconstructed”)

Ultrasoft PPs are typically used in all cases where
norm-conserving PPs are too hard: C, N, O, F, 3d
elements, elements with “semicore” states



Which pseudopotentials are good for me? (III)

• PAW:

+ most transferrable, even for atoms that are “difficult” for Ultrasoft PPs (e.g.
magnetic materials): accuracy is comparable to all-electron techniques (e.g.
FLAPW)

+ give information about the orbital close to the nucleus
- less well-known and used, less experience available
- not all calculations are available for PAW



Which pseudopotentials are good for me? (IV)

There are a few more aspect to be considered in the choice of a pseudopotential:

• PPs are bound to a specific XC functional, at least in principle. xception: Hybrid
and nonlocal (vdW-DF) functionals, for which very few (or no) PPs are available.

• The distinction between “core” and “valence” electrons is not always clear-cut.
In some cases you may need to extend “valence” to include the so-called semicore
states in order to achieve better (or less lousy) transferability. E.g.: 3d states in
Zn and Ga; 3s and 3p states in 3d transition metals Fe, Co, Ni, ...

Inclusion of semicore states adds considerable complexity to both the generation and
the practical usage of a PP: to be done only if needed.



Where do I find pseudopotentials?

There are many ready-to-use PPs tables around, and by now several papers containing
extensive PP tables, e.g.:

• PSLib (US/PAW): A. Dal Corso, Comp. Material Science 95, 337 (2014)

• PSLib tests: E. Kucukbenli et al., http://arxiv.org/abs/1404.3015

• GRBV (US/PAW): K. F. Garrity et al., Comput. Mater. Sci. 81, 446 (2014)

• PAW: F. Jollet et al., Comp. Phys. Commun. 185, 1246 (2014)

• NC: A. Willand et al., J. Chem. Phys. 138, 104109, 2013

but there is not a single standard PP file format: each code has its own format.



Pseudopotential testing

PPs must be always tested to check for
— needed cutoff Ecut (plus augmentation charge cutoff for US PP)
— transferability to the expected chemical environment
— absence of ghost states: spurious unphysical states in the valence region of
energies, or close to it. All nonlocal PPs can be affected

Testing can be performed

• in the single atom, using an atomic code or the
PP generation code itself, by comparing energy
differences between electronic configurations, and
verifying that logarithmic derivatives are well
reproduced;

• in simple molecular or solid-state systems, ideally by comparing with accurate
all-electron results; less ideally, with other PP results, or with experimental data



5. Software: Quantum ESPRESSO

Car-Parrinello simulations can be performed using the CP package of quantum

ESPRESSO: Quantum opEn-Source Package for Research in Electronic Structure,
Simulation, and Optimization.

quantum ESPRESSO is a distribution of software for atomistic calculations
based on electronic structure, using density-functional theory, a plane-wave basis
set, pseudopotentials. Freely available under the terms of the GNU General Public
License.

Main goals of quantum ESPRESSO are innovation in methods and algorithms;
efficiency on modern computer architectures.

quantum ESPRESSO implements multiple parallelization levels

See: http://www.quantum-espresso.org for more info, in particular
http://www.quantum-espresso.org/pseudopotentials/ for available PP’s.



www.quantum-espresso.org



CP package

Car-Parrinello variable-cell molecular dynamics for norm-conserving or ultrasoft PPs,
Γ point (k = 0) only. Originaly developed by A. Pasquarello (EPF Lausanne), K.
Laasonen (Oulu), A. Trave (LLNL), R. Car (Princeton), P. Giannozzi (Udine), N.
Marzari (EPF Lausanne); C. Cavazzoni (CINECA), S. Scandolo (ICTP), and many
others.

• Electronic and ionic minimization schemes: damped dynamics, conjugate gradient

• Verlet dynamics with mass preconditioning

• Constrained dynamics

• Nosé thermostat for both electrons and nuclei, velocity rescaling

• Fast treatment (“grid box”) of augmentation terms in Ultrasoft PPs

• Parallelization levels: on plane-wave and real-space grids; on Kohn-Sham states;
on FFT’s in Hψi products (“task groups”); OpenMP



CP package, advanced features

• Nonlocal van-der-Waals functionals, or semiempirical corrections

• DFT+U and metaGGA functionals

• Fast implementation of hybrid functionals with Wannier functions

• Modified kinetic functional for constant-pressure calculations

• Metallic systems: variable-occupancy (ensemble) dynamics

• Self-Interaction Correction for systems with one unpaired electron

• Dynamics with Wannier functions under an external electric field

• Finite electric fields with Berry’s phase

• With plumed plugin: metadynamics (Laio-Parrinello)



Some words on computer requirements

Quantum simulations are both CPU and RAM-intensive.
Actual CPU time and RAM requirements depend upon:

• size of the system under examination: As a rule of thumb, CPU ∝ N2÷3, RAM
∝ N2, where N = number of atoms

• kind of system: type and arrangement of atoms, influencing the number of plane
waves, of electronic states, of k-points needed...

• desired results: computational effort increases from simple self-consistent (single-
point) calculation to structural optimization to reaction pathways, molecular-
dynamics simulations, ...

CPU time mostly spent in FFT and linear algebra.
RAM mostly needed to store Kohn-Sham orbitals.



Typical computational requirements

For typical biological systems (O(1000) atoms): days to weeks of CPU, or more,
tens to hundreds Gb RAM. Massively parallel machines are needed, together with
effective, memory-distributing algorithms.

Fragment of an Aβ-peptide in water containing 838 atoms and 2312 electrons
in a 22.1×22.9×19.9 A3 cell, Γ-point. CP code on BlueGene/P, 4 processes per
computing node.



Very Technical Appendix:

Fast Fourier Transforms, Dual-space technique

Let us consider first the simple case of a periodical function f(x), with period L. Its
Fourier components:

f̃(q) =
1

L

∫
f(x)e−iqxdx

are nonzero over an infinite set of discrete values of q:

qn = n
2π

L
, −∞ < n <∞

The Fourier components decay to 0 for large q. The inverse Fourier transform has
the form

f(x) =
∑

n

f̃(qn)e
iqnx =

∑

n

f̃ne
in(2πx/L)

Our functions are however defined over a discrete but finite grid of q. How are they
represented in x space?



Discrete Fourier Transform

We assume both x and q grids to be discrete, finite, and periodically repeated, and
we write, for N large enough to accommodate all q components:

f(x) → fm = f(xm), xm = m
L

N
, m = 0, .., N − 1

f̃(q) → f̃n = f̃(qn), qn = n
2π

L
, n = 0, .., N − 1

(q components of negative value refold into those at the end of the box). The
Discrete Fourier Transform can be written as

fm =

N−1∑

n=0

f̃ne
i(2πnm/N) (x− space)

f̃n =
1

N

N−1∑

m=0

fme
−i(2πnm/N) (q − space)



Discrete Fourier Transform in 3D

Generalization of the Discrete Fourier Transform to 3 dimensions:

G = n′
1G1 + n′

2G2 + n′
3G3

with n1 = 0, .., N1 − 1, n2 = 0, .., N2 − 1, n3 = 0, .., N3 − 1, and n′
1, n

′
2, n

′
3 are

n1, n2, n3 refolded so that they are centered around the origin (remember: the
G−space grid is also periodic!). G1,G2,G3 are the primitive translations of the
unit cell of the reciprocal lattice.

r = m1
R1

N1
+m2

R2

N2
+m3

R3

N3

with m1 = 0, .., N1 − 1, m2 = 0, .., N2 − 1, m3 = 0, .., N3 − 1. R1,R2,R3 are the
primitive translations of the unit cell. This grid spans the unit cell.

N1, N2, N3 define the FFT grid.



Discrete Fourier Transform in 3D (2)

Original Fourier transform:

f(r) =
∑

G

f̃(G)eiG·r → f(m1,m2,m3)

f̃(G) =
1

Ω

∫
f(r)e−iG·rdr → f̃(n1, n2, n3)

Discretized Fourier Transform:

f(m1,m2,m3) =
∑

n1,n2,n3

f̃(n1, n2, n3)e
i(2πn1m1/N1)ei(2πn2m2/N2)ei(2πn3m3/N3)

f̃(n1, n2, n3) =
1

N

∑

m1,m2,m3

f̃(m1,m2,m3)e
−i(2πn1m1/N1)e−i(2πn2m2/N2)e−i(2πn3m3/N3)

where N = N1N2N3. Remember that Gi ·Rj = 2πδij.



PW-PP calculations and Discrete Fourier Transform

ψi(r) =
1

V

∑

G

ck+Ge
i(k+G)·r,

h̄2

2m
|k+G|2 ≤ Ecut

Which grid in G-space? Need to calculate the charge density. From its G-space
expression:

n(G′) =
∑

G

∑

i,k

fi,kc
∗
i,k+G

ci,k+G+G′

one can see that Fourier components G′ up to max(|G′|) = 2max(|G|) appear. Or
we need the product of the potential time a wavefunction:

(V ψ)(G) =
∑

G′

V (G−G
′)ci,k+G′

Again, max(|G−G
′|) = 2max(|G|). We need a kinetic energy cutoff for the Fourier

components of the charge and potentials that is four time larger as the cutoff for
the PW basis set:

h̄2

2m
|G|2 ≤ 4Ecut



In practice such condition may occasionally be relaxed. Important: for ultrasoft
pseudopotentials, a different (larger) cutoff for augmentation charges may be needed!

The Fourier Transform grid is thus

G = n′
1G1 + n′

2G2 + n′
3G3

with n1 = 0, .., N1 − 1, n2 = 0, .., N2 − 1, n3 = 0, .., N3 − 1. This grid must be big
enough to include all G−vectors up to a cutoff

h̄2

2m
|G|2 ≤ 4Ecut

and NOT up to the cutoff of the PW basis set! In general, the grid will also
contain “useless” Fourier components (beyond the above-mentioned cutoff, so that
n(G) = 0, V (G) = 0 etc.)

Fast Fourier Transform (FFT): allows to perform a Discrete Fourier Transform of
order n with a computational cost TCPU = O(n log n) (instead of O(n2)).

Advantages of the use of FFT in PW-PP calculations: enormous, especially in
conjunction with iterative techniques and of the “dual-space” technique



FFT grid

(Note: G2/2 is the kinetic energy in Hartree atomic units)



Dual space technique

The most important ingredient of a PW-PP calculations is

Hψ ≡ (T + V̂NL + Vloc + VH + Vxc)ψ

(Tψ) : easy in G-space, TCPU = O(N)

(Vloc + VH + Vxc)ψ : easy in r-space, TCPU = O(N)

(V̂NLψ) : easy in G-space (also in r-space) if V̂ is written in separable form
TCPU = O(mN), m =number of projectors

FFT is used to jump from real to reciprocal space.
Operations are performed in the space where it is more convenient.

The same technique is used to calculate the charge density from Kohn-Sham orbitals,
the exchange-correlation GGA potential from the charge density, etc.: in all cases,
we move to the more convenient space to perform the required operations.


