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ABSTRACT

A FIRST-PRINCIPLES STUDY OF DEFECTS AND

ADATOMS ON SILICON CARBIDE HONEYCOMB

STRUCTURES

Erman Bekaroğlu

M.S. in Materials Science and Nanotechnology

Supervisor: Prof. Dr. Salim Çıracı

August, 2009

In this thesis a study of electronic and magnetic properties of two dimensional

(2D), single layer of silicon carbide (SiC) in hexagonal structure and its quasi 1D

armchair nanoribbons are presented by using first-principles plane wave method.

In order to reveal dimensionality effects, a brief study of 3D bulk and 1D atomic

chain of SiC are also included. The stability analysis based on the calculation

of phonon mode frequencies are carried out for different dimensionalities. It is

found that 2D single layer SiC in honeycomb structure and its bare and hydrogen

passivated nanoribbons are ionic, non magnetic, wide band gap semiconductors.

The band gap further increases upon self-energy corrections. Upon passivation of

Si and C atoms at the edges of nanoribbon with hydrogen atoms, the edge states

are discarded and the band gap increases. The effect of various vacancy defects,

adatoms and substitutional impurities on electronic and magnetic properties in

2D single layer SiC and in its armchair nanoribbons are also investigated. Some of

these vacancy defects and impurities, which are found to influence physical prop-

erties and attain magnetic moments, can be used to functionalize SiC honeycomb

structures for novel applications.

Keywords: ab initio, first principles, silicon carbide, density functional theory,

adsorption, substitution,binding, vacancy.
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ÖZET

BALPETEĞİ YAPISINDA SIC ÜZERİNDEKİ

HATALARIN VE İLAVE ATOMLARIN ETKİSİNİN İLK

PRENSİPLERDEN İNCELENMESİ

Erman Bekaroğlu

Malzeme bilimi ve Nanoteknoloji , Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Salim Çıracı

Ağustos, 2009

Çalışmamda kısmi bir (nanoşerit) ve iki boyutlu bal peteği SiC malzemesini ilk

prensiplerden başlayarak inceledim. Boyutsallık etkilerini takip için üç boyutlu

SiC allotroplarından bazılarını ve gerçek bir boyutlu SiC zincirlerini çalışmama

dahil ettim. Değişik boyutlardaki SiC malzemesinin kararlılığı, fonon hesaplarıyla

tahlil edilmiştir. İki boyutlu bal peteği şeklindeki SiC ve nanoşeritleri iy-

onik, manyetik olmayan, geniş bant aralıklı yarı-iletkenlerdir. Öz enerji (GW0)

hesaplarıyla bu bant aralığı artmıştır. Hidrojen atomları ile doyurulduğunda,

“armchair” SiC nanoşeritlerin yanlarındaki atomlardan oluşan bantlar kaybol-

makta ve bant aralığı artmaktadır. Atom boşluğu, soğurulan yabancı atomlar

ve Si ya da C atomlarının yerini alan yabancı atomların iki boyutlu ve nanoşerit

SiC üzerindeki etkileri araştırılmıştır. Bu araştırılan etkilerden bazılarının tek

katmanlı SiC malzemesini işlevlendirebileceği saptanmıştır.

Anahtar sözcükler : ab initio, temel prensipler, SiC, durum fonksiyonu teorisi,

soğurulma, bağlanma, kristal hataları.
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Chapter 1

Introduction

Owing to its exceptional thermal and physical properties [1], silicon carbide (SiC)

is a material, which is convenient for high temperature and high power device

applications. Because of its wide band gap, SiC bulk structure has been a subject

of active studies in optical and optoelectronic research. Unlike the polymorphs

of carbon, SiC is a polar material. In spite of the fact that both constituents are

Group IV elements, charge is transferred from Si to C, due to higher electroneg-

ativity of C atom relative to Si atom.

Bulk SiC has six commonly used stacking configurations denoted as 3C

(zincblende), 2H (wurtzite), 4H, 6H, 15R and 21R. Lubinsky et.al. [2] reported

optical data, indirect transitions, dielectric function and reflectivity of 3C SiC

using first-principles Hartree-Fock-Slater method. A more comprehensive study

[3] of SiC comprises lattice constants, Si-C bond distances, band structures along

high symmetry points, dielectric function and hence optical properties for all six

stacking configurations of bulk SiC. It uses first-principles OLCAO (orthogono-

lized linear combination of atomic orbitals). In addition, computational mod-

elling for optical characteristics of SiC and their utilities in actual devices was

also carried out. Breakdown luminesence spectra, distribution functions with and

without interband transition, hole initiated impact ionization coefficients [7] of

4H SiC were obtained using a Monte Carlo simulation model. Experimentally,

a second order optical process (i.e two photon absorption) has been observed

1



CHAPTER 1. INTRODUCTION 2

in SiC. Furthermore, a SiC phototdiode fabricated this way was able to detect

small (up to 90 fs) laser pulses.[8] Again with 4H SiC, a Schottky UV photodiode

[9], which uses the pinch-off surface effect was constructed. It has an internal

efficiency of 78% and 1.8 times the responsivity of the traditional planar metal-

semiconductor-metal junction.

As SiC in lower dimensionality, SiO2 coated SiC nanowires [4] were synthesized

and showed favorable photocatalytic behavior. A theoretical work on hydrogen

passivated SiC nanowires[5] provided the energy bands both using local density

approximation within Density Functional Theory (LDA-DFT) and sp3s∗ LCAO

tight binding (TB) methods. SiC-ZnS core-shell structures were also fabricated

[6]. 3C SiC (zincblende) nanoparticles were synthesized by carbothermal reduc-

tion method [11]. Band gap of zincblende nanoparticles were estimated to be

around 3 eV from photoluminesence measurement (Blueshift is present on the or-

der of 0.6 eV due to quantum confinement). With a similar carbothermal method,

microribbons [44] with widths in the range of 500 nm - 5 µm and thickness of

50-500 nm were synthesized. SiC is frequently used as a substrate to grow other

materials [14, 15]. Characteristics of those materials (exciton localization, pho-

toluminesence spectra etc.) are then analyzed. Few layers of graphene was also

grown on SiC [16]. Not only regular SiC crystals but also SiC clusters (SinCn,

n=1-10) were investigated [13] using DFT and generalized gradient approxima-

tion (GGA). With the aim of developing a material for future nanoelectronic

applications, binding energy, HOMO-LUMO gap, Mulliken charge, vibrational

spectrum and ionization potential of SinCn clusters are revealed.

Carbon/carbon (C/C) composites are widely used at high temperature, but

they are vulnerable to oxidation. SiC, as a coating material has been proven to

prevent oxidation [17].

For transistors used in microcomputers that we use today, silicon is the perfect

choice. However, when it comes to high voltages and high currents, SiC is better

due to its fundamental characteristics [18].

The appeal of SiC is that it appears in more than 200 structural configurations.

Mostly used types, 4H and 6H, have large indirect band gap, large breakdown
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electric field as well as high electron mobility and thermal conductivity. Hence,

SiC power switch is a more useful alternative to Si [18].

Using metal induced characterization technique, SiC thin films for p-n junc-

tion devices were fabricated. Current-voltage (I-V) measurements confirm recti-

ficaiton ability of the junctionfrom -2V to 2V [19].

Readily, 4H SiC DiMOSFET has been fabricated and its electrical properties

are given. When compared to Si power MOSFET, SiC DiMOSFET has a five

times higher voltage rating without an increase in the specific on-resistance [20].

SiC is a promising candidate for minimally invasive monitoring applications.

Superiority of SiC to Si in terms of mechanical response and electrical properties

has been confirmed. This fact enbles the way to SiC based probes in biomedical

applications [21].

To be used in harsh environmens and high temperatures, all-SiC capacitive

pressure sensor has been developed. The prototype has been tested at pressures

up to 700 psi and at temperatures up to 574 degrees. The stability and perfor-

mance reproducibility of the sensor after tests are promising [22].

1.1 Summary of Projects including Silicon Car-

bide

• Controlled Drug Delivery

• Micro-electronics / semiconductors

• Schottky Barries

• p-n junctions

• Magnetized surfaces

• Surface Defects



CHAPTER 1. INTRODUCTION 4

• Pressure sensors

• Biomedical devices

• High temperature devices

• Field Effect transistors

• Nano electronics

• Doping

• Data storage

• Nanotubes

• Molecular Quantum Wires

• Nano-Interconnects

• Solar cells

• p-i-n diodes

• Solar Storage

• Anti-oxidation Coating

• Spintronics

1.2 Motivation

Because of interesting electronic, mechanical and thermal properties it possesses,

bulk SiC drew attention of both scientists and device engineers for past 20 years.

During this period of time a new interdisciplinary field - nanotechnology emerged.

Nanotechnology not only aims to reduce well known technology to nanoscale but

also tries to explore the new application areas, taking advantages of the quantum

world. While the two-dimensional heterostructures of semiconductors have a

subject of active study leading to the fabrication of exotic devices and quantum
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structures, analogous results are expected to occur in 2D honeycomb SiC. In this

thesis, we question the existence of strictly two dimensional honeycomb SiC . The

main aim of the thesis is to reveal the fundamental properties of SiC nanoribbons

and explore ways to functionalize the planar honeycomb SiC.

1.3 Organization of the Thesis

The thesis is organized as follows: Chapter 2 summarizes the basic properties

of two dimensional (2D) honeycomb structures including SiC 2D honeycomb,

Chapter 3 focuses on the theoretical background and approximation methods.

In Chapter 4, our studies and results are presented. Finally , a brief conclusion

summarizes the result of our studies.



Chapter 2

Graphene and 2D Honeycomb

SiC

Graphene, 2D honeycomb structure of carbon has been the source for the inspira-

tion of all other monolayer honeycomb materials. Advances in materials growth

and control techniques have made the synthesis of the isolated graphene [23] and

its ribbons [24] in different orientations possible. Recent studies on the quasi one

dimensional graphene ribbons revealed interesting size and geometry dependent

electronic and magnetic properties [25].

What makes carbon atoms stay planar in honeycomb form is the strong cou-

pling of pz orbitals. Silicon having a larger radius than carbon makes honeycomb

structure by getting slightly buckled (puckered) [27]. This slight buckling enables

bonding with the next nearest neighbor of each silicon atom and grants stability.

2D SiC honeycomb consists of one Si and one C in its unit cell, both of which

make the honeycomb structures by themselves.

Firstly, a brief introduction to graphene and its nanoribbons are given. In the

second part, we will present a brief comparison of 2D SiC honeycomb lattice to

graphene and give some experimental results from literature. Detailed quantita-

tive results of 2D SiC honeycomb material will be given in Results section.

6
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Figure 2.1: (Reproduced from Ref.[26]) Graphene, graphite, single-walled carbon
nanotube (SWNT) and C60 structures make sp2 type bonding, whereas diamond
makes sp3 type bonding. Graphite can be viewed as a stack of graphene lay-
ers. Carbon nanotubes are rolled up cylinders of graphene and fullerenes are
the molecules consisting of wrapped graphene by the introduction of pentagons
on the hexagonal structure. The diamond is a transparent crystal of tetrahe-
drally bonded carbon atoms and crystallizes into the face centered cubic lattice
structure.

2.1 Graphene

Graphene, graphite, carbon nanotubes and fullerenes are categorized in carbon-

based π electron systems in honeycomb network, which are distinguished from

sp3-based nanocarbon systems having a tetrahedral network such as diamond.

With the sp2 hybridization of one s-orbital and two p-orbitals results in a trian-

gular planar structure with a formation of a σ-bond between carbon atoms which

are seperated by 1.42 Å.

The perfect 2D graphene is an infinite network of hexagonal lattice, in contrast

to ideal graphene which is a nanosized flat hexagon network with the presence of

open actual edges around its periphery. The open edges become important for

nanoribbons.
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2.1.1 Structure of Graphene

The structure of graphene layers have been explored by using the high resolution

microscopy techniques such as Raman [29] and Rayleigh [30]. The graphene struc-

tures based on the hexagonal lattice of carbon atoms have been confirmed [31].

Once identied, graphene layers can be processed into nanoribbons by lithography

techniques [32].

One carbon atom in honeycomb structure bound to three neighbour through

strong, covalent bonds. This configuration gives exceptional structural rigidity

within its layers.

The structure is not a Bravais lattice but it can be seen as a triangular lattice

with a basis of two atoms per unit cell. The lattice vectors can be written as :

a1 =
a

2
(3,

√
3, 0), a2 =

a

2
(3,−

√
3, 0) (2.1)

where a ≈ 1.42 Å is the C-C distance. The reciprocal lattice vectors are given

by :

b1 =
2π

3a
(1,

√
3, 0), b2 =

2π

3a
(3,−

√
3, 0) (2.2)

The two points at the corners of graphene’s Brillouin zone (BZ) is of special

importance. They are named Dirac points. Their positions are given by:

K =

(
2π

3a
,

2π

3
√

3a
, 0

)
, K’ =

(
2π

3a
,− 2π

3
√

3a
, 0

)
(2.3)
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Figure 2.2: (Reproduced from Ref.[26]) Left: Lattice structure of graphene made
of two interpenetrating hexagonal lattices ( a1 and a2 are lattice unit vectors,
and δi , i=1,2,3 are the nearest neighbor vectors); Right: corresponding Brillouin
zone. The Dirac corners sit at the K and K’ points.

2.1.2 Synthesis

Graphene sheets (a single sheet or a few layer sheet) can mainly be prepared by

micromechanical cleaving of graphite crystals according to recent experiments [23,

33, 34] or by epitaxial growth on silicon carbide (SiC) [35, 36]. The first method

can be used to obtain high quality of graphene sheets which are comparable to

that in graphite, but it is restricted by small sample dimensions and low visibility.

On the other hand, the second one is more suitable for large area fabrication and

is more compatible with current Si processing techniques for future applications.

Nevertheless, the epitaxial graphene was shown to interact with SiC by first

principles calculations [37, 38] and experiments [39, 40].

2.1.3 Electronic Properties of Graphene

The investigations of electronic properties of graphene trace back to 1946 when

P. R. Wallace wrote the first scientific paper on the band structure of graphene as

an approximation trying to understand the electronic properties of more complex,

three dimensional (3D) graphite. He did not use the word graphene and referred
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Figure 2.3: (Reproduced from Ref.[26]) Band structure of the bare graphene
calculated for the 2×2 unitcell.

to ”a single hexagonal layer ” [28]. The electrical properties of graphene can be

described by a conventional tight-binding model; in this model the energy of the

electrons with wavenumber k is

E = ±
√

γ2
0

(
1 + 4 cos2 πkya + 4 cos πkya · cos πkx

√
3a

)
(2.4)

[28].

with the nearest-neighbour-hopping energy γ0 ≈ 2.8 eV. + and − corresponds

to the π∗ and π energy bands, respectively. Figure 2.3 shows the band structure of

2D graphene. The energy dispersion around K is linear in momentum, E = h̄kvf ,

as if the relation for relativistic particles (like photons). In this case the role of

the speed of light is given by the Fermi velocity vf ≈ c/300. Because of the

linear spectrum, one can expect that particles in graphene behave differently

from those in usual metals and semiconductors, where the energy spectrum can

be approximated by a parabolic dispersion relation.
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2.1.4 Graphene Nanoribbons

Graphene nanoribbons can be thought of as single wall CNTs cut along a line

parallel to their axis and then unfolded into a planar geometry. There are two

main shapes for graphene nanoribbon edges, namely armchair and zigzag edges.

We can cut a graphene sheet in two different line with a difference of 30 ◦ in

the axial direction between the two edge orientations to produce armchair and

zigzag graphene nanoribbons (see Fig. 2.4 ). If a ribbon is restricted by one of

these edges, it is defined either as an armchair GNR (AGNR) or as a zigzag GNR

(ZGNR) (see Fig. 2.4 (a &b ).

The ribbon width can be defined by the number of carbon atoms in the prim-

itive unit cell. Dashed rectangle in Fig. 2.4-a shows an armchair graphene

nanoribbon containing 20 carbon atoms in its unitcell. This ribbon can be la-

belled as AGNR (20). On the other hand the ribbon in part (b) can be labelled as

ZGNR (10) since it has zigzad shaped edges. Similar to the carbon nanotubes the

width plays a crucial role on the electronic and magnetic properties of graphene

nanoribbons.

2.2 Two Dimensional (2D) SiC

2D honeycomb SiC unit cell can be thought of a graphene unit cell with one

carbon atom replaced by a silicon atom. As Si has a larger radius than C, the

lattice gets extended. Lattice vectors for honeycomb SiC :

a1 = d(
√

3, 0, 0) a2 =
d

2
(
√

3, 3, 0) (2.5)

where d ≈ 1.786 Å is the Si-C distance. Apparently, it is larger than C-C

distance. The reciprocal lattice vectors are given by :
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Figure 2.4: (Reproduced from Ref.[26]) Graphene nanoribbons terminated by (a)
armchair edges and (b) zigzag edges, indicated by filled circles. The unitcells are
emphasized by dashed lines. The width “N” of ribbons are defined as the number
of carbon atoms in a unit cell.
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Figure 2.5: Unit cell and lattice vectors of planar honeycomb SiC

b1 =
2π

d
(

1√
3
,−1

3
, 0) b2 =

2π

3d
(0, 2, 0) (2.6)

There is no ambiguity in using different lattice vectors from generally used

ones for graphene. They are rotationally translated forms of each other and yield

the same lattice. General 2D honeycomb SiC plane and its lattice vectors are

delineated in Fig. 2.5.

Bare armchair SiC nanoribbons have the similar pattern with those of

graphene but have reconstruction at the edges. Upon hydrogen passivation recon-

struction vanishes. Zigzag SiC nanoribbons are studied theoretically in a recent

paper [41]. Therefore, we did not include them in our study.

Experimental studies of exfoliation and synthesis of single layer SiC do not

have the same hasty pace as graphene. In fact, to the best of our knowledge the

monolayer SiC has not been obtained up to now. Experimental research has been

on honeycomb SiC patches of certain thicknesses.
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Figure 2.6: (Reproduced from Ref.[44]) Scanning electron microscopy micro-
graphs of a short SiC ribbon growing from the tip of a SiC whisker (a) and a
SiC whisker growing from the edge of a SiC ribbon (b).

Carbon-rich SiC nanoribbons were fabricated using a nanosecond pulsed laser

direct-write and doping (LDWD) technique [42]. The LDWD technique permits

synthesis of heterostructured nanoribbons in a single step without additional ma-

terial or catalyst, and effectively eliminates the need for nanostructure handling

and transferring processes. The resulting nanoribbons comprise three layers each

being approximately 50-60 nm thick, containing 15-17 individual sheets.

SiC ribbons were also synthesized by a carbothermal process [44]. the width

of the ribbons produced are between 500 nm and 5 µm. The ribbon thicknesses

ranged from 50 to 500 nm. Fig. 2.6 and Fig. 2.7 are about the process and the

resulting structure .
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Figure 2.7: (Reproduced from Ref. [44]) Optical micrograph of a SiC ribbon
attached to a flat substrate.



Chapter 3

Theoretical Background

3.1 Density Functional Theory

The initial work on DFT was reported in two publications: first by Hohenberg-

Kohn in 1964 [47], and the next by Kohn-Sham in 1965 [48]. This was almost 40

years after Schrodinger (1926) had published his pioneering paper marking the

beginning of wave mechanics. Shortly after Schrodinger‘s equation for electronic

wave function, Dirac declared that chemistry had come to an end since all its

content was entirely contained in that powerful equation. Unfortunately in al-

most all cases except for the simple systems like He or H, this equation was too

complex to allow a solution. DFT is an alternative approach to the theory of

electronic structure, in which the electron density distribution ρ(r) rather than

many-electron wave function plays a central role. In the spirit of Thomas-Fermi

theory [45, 46], it is suggested that a knowledge of the ground state density of

ρ(r) for any electronic system uniquely determines the system.

3.1.1 Hohenberg-Kohn Formulation

The Hohenberg-Kohn [47] formulation of DFT can be explained by two theorems:

16
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Theorem 1: The total energy of the system is univocally determined by the

electronic density, except for a trivial additive constant.

Since ρ(r) determines V (r), then it also determines the ground state wave

function and gives us the full Hamiltonian for the electronic system. Hence ρ(r)

determines implicitly all properties derivable from the hamiltonian H through

the solution of the time-dependent Schrodinger equation.

Theorem 2: (Variational Principle) The minimal principle can be formulated

in terms trial charge densities, instead of trial wavefunctions.

The ground state energy E could be obtained by solving the Schrödinger

equation directly or from the Rayleigh-Ritz minimal principle:

E = min{〈Ψ̃|H|Ψ̃〉
〈Ψ̃|Ψ̃〉

}. (3.1)

Using ρ̃(r) instead of Ψ̃(r) was first presented in Hohenberg and Kohn. For a

non-degenerate ground state, the minimum is attained when ρ̃(r) is the ground

state density. And energy is given by the equation:

EV [ρ̃] = F [ρ̃] +
∫

ρ̃(r)V (r)dr, (3.2)

with

F [ρ̃] = 〈Ψ[ρ̃]|T̂ + Û |Ψ[ρ̃]〉, (3.3)

and F [ρ̃] requires no explicit knowledge of V(r).

These two theorems form the basis of the DFT. The main remaining error is

due to inadequate representation of kinetic energy and it will be cured by the

Kohn-Sham equations.

3.1.2 Kohn-Sham Equations

There is a problem with the expression of the kinetic energy in terms of the

electronic density. The only expression used until now is the one proposed by
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Thomas-Fermi, which is local in the density so it does not reflect the short-

ranged, non-local character of kinetic energy operator. In 1965, W. Kohn and

L. Sham [48] proposed the idea of replacing the kinetic energy of the interacting

electrons with that of an equivalent non-interacting system. With this assumption

density can be written in atomic units as

ρ(r) =
2∑

s=1

Ns∑

i=1

|ϕi,s(r)|2, (3.4)

T [ρ] =
2∑

s=1

Ns∑

i=1

〈ϕi,s| −
∇2

2
|ϕi,s〉, (3.5)

where ϕi,s‘s are the single particle orbitals which are also the lowest order eigen-

functions of Hamiltonian non-interacting system

{−∇2

2
+ v(r)}ϕi,s(r) = εi,sϕi,s(r). (3.6)

Using new form T [ρ] density functional takes the form

F [ρ] = T [ρ] +
1

2

∫ ∫ ρ(r)ρ(r′)

|r − r′| drdr′ + EXC [ρ], (3.7)

where this equation defines the exchange and correlation energy as a functional

of the density. Using this functional in Eq. 3.2, we finally obtain the total energy

functional which is known as Kohn-Sham functional [48]

EKS[ρ] = T [ρ] +
∫

ρ(r)v(r)dr +
1

2

∫ ∫ ρ(r)ρ(r′)

|r − r′| drdr′ + EXC [ρ]. (3.8)

In this way we have expressed the density functional in terms KS orbitals

which minimize the kinetic energy under the fixed density constraint. In princi-

ple these orbitals are a mathematical object constructed in order to render the

problem more tractable, and do not have a sense by themselves. The solution of

KS equations has to be obtained by an iterative procedure, in the same way of

Hartree and Hartree-Fock equations.
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3.2 Exchange and Correlation

3.2.1 Local Density Approximation (LDA)

The local density approximation [49] has been the most widely used approxima-

tion to handle exchange-correlation energy. Its philosophy was already present in

Thomas-Fermi theory. The main idea of LDA is to consider the general inhomo-

geneous electronic systems as locally homogeneous and then use the exchange-

correlation corresponding to that of the homogeneous electron gas.

LDA favors more homogeneous systems. It over-binds molecules and solids

but the chemical trends are usually correct.

3.2.2 Generalized Gradient Approximation (GGA)

Once the extent of the approximations involved in the LDA has been understood,

one can start constructing better approximations. The most popular approach is

to introduce semi-locally the inhomogeneties of the density, by expanding EXC [ρ]

as a series in terms of the density and its gradients. This approximation is known

as GGA [50] and its basic idea is to express the exchange-correlation energy in

the following form:

EXC [ρ] =
∫

ρ(r)εXC [ρ(r)]dr +
∫

FXC [ρ(r,∇ρ(r))]dr (3.9)

where the functional FXC is asked to satisfy the formal conditions.

GGA approximation improves binding energies, atomic energies, bond lengths

and bond angles when compared the ones obtained by LDA.

3.3 Periodic Supercells

By using the represented formalisms observables of many-body systems can be

transformed into single particle equivalents. However, there still remains two
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difficulties: A wave function must be calculated for each of the electrons in the

system and the basis set required to expand each wave function is infinite since

they extend over the entire solid. For periodic systems both problems can be

handled by Bloch‘s theorem [51].

3.3.1 Bloch‘s Theorem

Bloch theorem states that in a solid having translational periodicity each elec-

tronic wave function can be written as:

Ψi(r) = ui(r)e
ikr, (3.10)

where uk has the period of crystal lattice with uk(r) = uk(r+T). This part can

be expanded using a basis set consisting of reciprocal lattice vectors of the crystal.

ui(r) =
∑

G

ak,Gei(G)r. (3.11)

Therefore each electronic wave function can be written as a sum of plane waves

Ψi(r) =
∑

G

ai,k+Gei(k+G)r. (3.12)

3.3.2 k-point Sampling

Electronic states are only allowed at a set of k-points determined by boundary

conditions. The density of allowed k-points are proportional to the volume of the

cell. The occupied states at each k-point contribute to the electronic potential in

the bulk solid, so that in principle, an infinite number of calculations are needed

to compute this potential. However, the electronic wave functions at k-points

that are very close to each other, will be almost identical. Hence, a single k-

point will be sufficient to represent the wave functions over a particular region

of k-space. There are several methods which calculate the electronic states at

special k points in the Brillouin zone [52]. Using these methods one can obtain

an accurate approximation for the electronic potential and total energy at a small

number of k-points. The magnitude of any error can be reduced by using a denser

set of k-points.
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3.3.3 Plane-wave Basis Sets

According to Bloch‘s theorem, the electronic wave functions at each k-point can

be extended in terms of a discrete plane-wave basis set. Infinite number of plane-

waves are needed to perform such expansion. However, the coefficients for the

plane waves with small kinetic energy (h̄2/2m)|k + G|2 are more important than

those with large kinetic energy. Thus some particular cutoff energy can be de-

termined to include finite number of k-points. The truncation of the plane-wave

basis set at a finite cutoff energy will lead to an error in computed energy. How-

ever, by increasing the cutoff energy the magnitude of the error can be reduced.

3.3.4 Plane-wave Representation of Kohn-Sham Equa-

tions

When plane waves are used as a basis set, the Kohn-Sham (KS) [48] equations

assume a particularly simple form. In this form, the kinetic energy is diagonal and

potentials are described in terms of their Fourier transforms. Solution proceeds by

diagonalization of the Hamiltonian matrix. The size of the matrix is determined

by the choice of cutoff energy, and will be very large for systems that contain

both valence and core electrons. This is a severe problem, but it can be overcome

by considering pseudopotential approximation.

3.3.5 Nonperiodic Systems

The Bloch Theorem cannot be applied to a non-periodic systems, such as a system

with a single defect. A continuous plane-wave basis set would be required to solve

such systems. Calculations using plane-wave basis sets can only be performed on

these systems if a periodic supercell is used. Periodic boundary conditions are

applied to supercell so that the supercell is reproduced through out the space.

As seen schematically in Fig. 3.1 even molecules can be studied by constructing

a large enough supercell which prevents interactions between molecules.
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Figure 3.1: (Reproduced from Ref.[43])Supercell geometry for a molecule. Super-
cell is chosen large enough to prevent interactions the molecules.

3.4 Pseudopotential Approximation

The act of using a pseudopotential constitutes for replacing the Coulomb potential

of the necleus and the inner core electrons by an effective potential on valence

electrons. Once the pseudopotential is generated by an atomic calculation, it can

be used to compute material characteristics of an atom in a molecule.

In plane wave calculations, valence wave functions are expanded in Fourier

series. The more Fourier components are used the more the computational cost

increases. The term “smoothness” means minimizing the range in Fourier space,

which is needed to describe the valence properties to a given accuracy. Fig. 3.2

gives a comparison between all-electron and pseudopotential approaches.
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Figure 3.2: (Reproduced from Ref.[43])Illustration of all-electron (solid lines) and
pseudoelectron (dashed lines) potentials and their corresponding wave functions.

3.4.1 Projector Augmented Waves (PAWs)

The projector augmented wave (PAW) method is a reformulation of the OPW

(Orthogonolized Plane Wave) method with an adaptation to modern techniques

for calculation of total energy, forces etc. It comprises projectors and auxiliary

localized functions. The difference with the ultrasoft pseudopotential is that

PAW keeps the full all-electron wave function. Due to rapid oscillation of the full

wave function around the nucleus, all integrals are evaluated as a combination of

integrals of smooth functions.

Main ideas of PAW can be sketched as follows:

Let |ψ̃υ
i 〉 be smooth part of valence and |ψυ

i 〉 be all electron valence wave-

function. (omit superscript υ from now on) The unitary transformation between

them is |ψi〉 = τ |ψ̃i〉 .

each of smooth function (|ψ̃i〉’s) in partial waves m can be written
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|ψ̃i〉 =
∑

m

cm|ψ̃m〉 (3.13)

The transformation to all electron function :

|ψi〉 = τ |ψ̃i〉 =
∑

m

cm|ψm〉 (3.14)

Full wavefunction in all space :

|ψ〉 = |ψ̃〉 +
∑

m

cm{|ψm〉 − |ψ̃m〉} (3.15)

τ is linear. The coefficients are :

cm = 〈p̃m|ψ̃〉 (3.16)

with p̃m being a projection operator.

Transformation operator becomes:

τ = 1 +
∑

m

{|ψm〉 − |ψ̃m〉} (3.17)

Any operator A can be transformed to Ã for smooth part of wavefunctions as

:

Ã = τ †Aτ = A +
∑

mm′

|p̃m〉{〈ψm|A|ψm′〉 − 〈ψ̃m|A|ψ̃m′〉}〈pm′| (3.18)

Expressions for physical quantities can be derived using Eqs. (3.17) and (3.18)

.

PAW method can provide the core wavefunctions. From these core wavefunc-

tions, full wavefunctions can be developed [53].
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3.5 Phonon Calculations

3.5.1 Phonon frequencies

The central quantity in the calculation of the phonon frequencies is the force-

constant matrix Φisα,jtβ, since the frequencies at wavevector k are the eigenvalues

of the dynamical matrix Dsα,tβ, defined as:

Dsα,tβ(k) =
1√

MsMt

∑

i

Φisα,jtβ exp(ik(R0
j + τt − R0

i − τs), (3.19)

where R0
i is a vector of the lattice connecting different primitive cells and

τs is the position of the atom s in the primitive cell. If we have the complete

force-constant matrix, then Dsα,tβ and hence the frequencies ωks can be obtained

at any k. In principle, the elements of Φisα,jtβ are non-zero for arbitrarily large

separations | R0
j +τt−R0

i −τs |, but in practice they decay rapidly with separation,

so that a key issue in achieving our target precision is the cut-off distance beyond

which the elements can be neglected.

3.5.2 Calculation of the force constant matrix

We calculate Φisα,jtβ by the small-displacement method. In harmonic approxi-

mation the α Cartesian component of the force exerted on the atom at position

R0
i + τs is

Fisα = −
∑

jtβ

Φisα,jtβujtβ (3.20)

where ujsβ is the displacement of the atom in R0
j + τt along the direction β.

The force constant matrix can be calculated by
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Φisα,jtβ = −Fisα,jtβ

ujtβ

(3.21)

by displacing once at a time all the atoms of the lattice along the three Carte-

sian components by ujtβ, and calculating the forces Fisα,jtβ induced on the atoms

in R0
i + τs. Since the crystal is invariant under translations of any lattice vector,

it is only necessary to displace the atoms in one primitive cell and calculate the

forces induced on all the other atoms of the crystal. In what follows we will

assume this as understood and put simply j = 0.

It is important to appreciate that the Φlsα,l′tβ in the formula for Dsα,tβ(k) is the

force-constant matrix in the infinite lattice, with no restriction on the wavevector

k, whereas the calculations of Φlsα,l′tβ can only be done in supercell geometry.

Without a further assumption, it is strictly impossible to extract the infinite-

lattice Φlsα,l′tβ from supercell calculations, since the latter deliver information

only at wavevectors that are reciprocal lattice vectors of the superlattice . The

further assumption needed is that the infinite-lattice Φlsα,l′tβ vanishes when the

separation Rl′t−Rls is such that the positions Rls and Rl′t lie in different Wigner-

Seitz (WS) cells of the chosen superlattice. More precisely, if we take the WS

cell centred on Rl′t, then the infinite-lattice value of Φlsα,l′tβ vanishes if Rls is in

a different WS cell; it is equal to the supercell value if Rls is wholly within the

same WS cell; and it is equal to the supercell value divided by an integer P if

Rls lies on the boundary of the same WS cell, where P is the number of WS cells

having Rls on their boundary. With this assumption, the Φlsα,l′tβ elements will

converge to the correct infinite-lattice values as the dimensions of the supercell

are systematically increased.

It is not always necessary to displace all the atoms in the primitive cell, since

the use of symmetries can reduce the amount of work needed. This is done as

follows. We displace one atom in the primitive cell, let’s call it ’one’, and we

calculate the forces induced by the displacement on all the other atoms of the

supercell. Then we pick up one other atom of the primitive cell, atom ’two’.

If there is a symmetry operation S (not necessarily a point group symmetry

operation) such that, when S is applied to the crystal atom two is sent into
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atom one and the whole crystal is invariant under such transformation, then it

is not necessary to displace atom two, and the part of the force constant matrix

associated with its displacement can be calculated using :

Φis,02 = B(S)Φλis(S),01B(S−1) (3.22)

where B(S) is the 3 × 3 matrix representing the point group part of S in

Cartesian coordinates, and λis(S) indicates the atom of the crystal where the

atom in R0
i + τs is brought because of the action of the symmetry operation S.

If there is no symmetry operation connecting atom two to atom one then atom

two is displaced and all the induced force field is calculated. The procedure is

repeated for all the atoms of the primitive cell.

In principle each atom has to be displaced along the three Cartesian directions.

It is sometimes convenient to displace the atoms along some special directions so

as to maximize the number of symmetry operations still present in the ’excited’

supercell, in this way the calculations of the forces are less expensive. This can al-

ways be done, as long as one displaces the atoms along three linearly independent

directions. The forces induced by the displacements along the three Cartesian

directions is easily reconstructed by the linear combination :

Fis,0tα =
∑

l

AlαF̃is,0tk (3.23)

where F̃is,0tk is the force induced on the atom in R0
i +τs due to a displacement

of the atom in τt along the direction uk, and A = ( u1

|u1|
, u2

|u2|
, u3

|u3|
)−1is the inverse

of the 3×3 matrix whose columns are the normalized displacements in Cartesian

coordinates.

Using symmetries it is possible to reduce the number of displacements even

further: if applying a point group symmetry operation U to the displacement

vector u1 one obtains a vector u2 which is linearly independent from u1, then the

force field that would be induced by the displacement u2 can be calculated by :
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Fis,0t2 = B(U)Fλis(U−1),0t1. (3.24)

a linearly independent direction cannot be found one has to displace the atom

along a chosen independent direction and perform an other calculation. This is

done until a set of three independent directions is found.

The force constant matrix is invariant under the point group symmetry oper-

ations of the crystal. This is not automatically guaranteed by the procedure just

described, because in general the crystal is not harmonic. So, the force constant

matrix must be symmetrized with respect to the point group operations of the

crystal:

Φis,0t =
1

NG

∑

U

B(U)Φλis(U),0tB(U−1). (3.25)

The symmetrization of the force constant matrix removes all even-order an-

harmonicities. The harmonic approximation becomes better and better as the

displacement are made smaller and smaller. However, if the displacements are

small, also the force induced are small, but there is a limit in the accuracy achiev-

able in the calculations, so one cannot make too small displacements [55].
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Results

4.1 Introduction

Synthesis of a single atomic plane of graphite, i.e. graphene with covalently

bonded honeycomb lattice has been a breakthrough for several reasons [23, 56, 57].

Firstly, electrons behaving as if massless Dirac fermions have made the observa-

tion of several relativistic effects possible. Secondly, stable graphene has disproved

previous theories, which were concluded that two-dimensional structures cannot

be stable. Graphene displaying exceptional properties, such as high mobility even

at room temperature, ambipolar effect, Klein tunnelling, anomalous quantum hall

effect etc. seems to offer novel applications in various fields [58]. Not only 2D

graphene, but also its quasi 1D forms, such as armchair and zigzag nanoribbons

have shown novel electronic and magnetic properties [59, 60, 61], which can lead

to important applications in nanotechnology. As a result, 2D honeycomb struc-

tures derived from Group IV elements and Group III-V and II-VI compounds are

currently generating significant interest owing to their unique properties.

Boron nitride (BN) in ionic honeycomb lattice which is the Group III-V ana-

logue of graphene has also been produced having desired insulator characteris-

tics [62]. Nanosheets [63, 64], nanocones [65], nanotubes [66], nanohorns [67],

nanorods [68] and nanowires [69] of BN have already been synthesized and these

29
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systems might hold promise for novel technological applications. Among all these

different structures, BN nanoribbons, where the charge carriers are confined in

two dimension and free to move in third direction, are particularly important due

to their well defined geometry and possible ease of manipulation.

BN nanoribbons posses different electronic and magnetic properties depending

on their size and edge termination. Recently, the variation of band gaps of BN

nanoribbons with their widths and Stark effect due to applied electric field have

been studied [70, 71]. The magnetic properties of zigzag BN nanoribbons have

been investigated [72]. Half-metallic properties have been revealed from these

studies which might be important for spintronic applications. Production of

graphene nanoribbons as small as 10 nm in width has been achieved [73, 74] and

similar techniques are expected to be developed for BN nanoribbons.

Another example of graphene-like structures is monolayer honeycomb zinc ox-

ide (ZnO). The monolayer of ZnO is a III-V ionic compound and has the honey-

comb structure similar to graphene and BN. Very thin nanosheets [75], nanobelts

[76], nanotubes [77] and nanowires [78] of ZnO have already been synthesized.

Two monolayer thick ZnO(0001) films grown on Ag(111) were reported [79].

Quasi one dimensional (1D) ZnO nanoribbons show diverse electronic and

magnetic properties depending on their size and edge termination. Recently, it

has been predicted that the ferromagnetic behavior of ZnO nanoribbons due to

unpaired spins at the edges is dominated by oxygen atoms [80, 81]. Apparently,

2D and 1D honeycomb structure of ZnO can provide us with exceptional elec-

tronic and magnetic properties and hence hold the promise of novel technological

applications.

In a recent paper, a comprehensive analysis of the atomic, electronic and

magnetic properties of monolayer, bilayer and nanoribbons of ZnO are carried out

using first-principles calculations. Having presented the analysis on the stability

of 2D and 1D ZnO in honeycomb structures, electronic and magnetic properties

of single and bilayer ZnO in honeycomb structures were investigated. They are

nonmagnetic semiconductors, but attain magnetic properties upon creation of

Zn-vacancy defect. ZnO nanoribbons exhibit interesting electronic and magnetic
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properties depending on their orientation. While armchair ZnO nanoribbons

are nonmagnetic semiconductors with band gaps varying with their widths, bare

zigzag nanoribbons are ferromagnetic metals. These electronic and magnetic

properties show dramatic changes under elastic and plastic deformation. Hence,

ZnO nanoribbons can be functionalized by plastic deformation [82].

Earlier, planar honeycomb structure of carbon was exfoliated and its physical

properties were analyzed [23, 56, 57]. The honeycomb structure is common to 2D

single layer of SiC and graphene. However, despite graphene being strictly pla-

nar, honeycomb structure of Si is unstable, but it is stabilized by puckering. The

puckered honeycomb structure of Si is referred to as silicene [27]. The first theo-

retical study of single layer honeycomb SiC and its selected zigzag and armchair

nanoribbons are presented recently [41].

In this thesis, a comprehensive analysis of the atomic, electronic and magnetic

properties of 2D monolayer of SiC honeycomb structure and its bare and hydrogen

passivated armchair nanoribbons (A-SiCNR) are carried out using first-principles

calculations. We started with the discussion of 3D zincblende and wurtzite crys-

tals, as well as SiC atomic chain as an ultimate 1D system; we presented an

analysis of optimized atomic structures with corresponding phonon dispersion

curves and electronic energy band structures and effective charges. Then we pro-

vided an extensive analysis of single layer 2D and quasi-1D (nanoribbon) SiC in

terms of optimized atomic structures and their stability, electronic and magnetic

structures. We revealed elastic constants, such as in-plane stiffness and Poisson’s

ratio using our method developed for honeycomb structures. Having made the

results for 1D, 2D and 3D structures, we presented a comprehensive discussion of

dimensionality effects. Then we investigated the effect of vacancy defects (such

as Si and C vacancy, SiC vacancy and C+Si antisite defect) on the electronic and

magnetic properties of monolayer SiC and its armchair nanoribbons. Further-

more, we showed that SiC can be functionalized through adsorption of a foreign

atom to the surface of 2D SiC or through substitution of either C or Si with a

foreign atom. We found that 2D SiC and its ribbons provide new physical prop-

erties, which extend those of 3D SiC crystals for technological applications. For

example, while various allotropic forms of SiC including its honeycomb structures
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are normally nonmagnetic semiconductors, a Si vacancy gives rise to spin polar-

ization. Significant variation of the band gap of narrow A-SiCNRs may be crucial

in optoelectronic nanodevices.

4.2 Method of calculations

We have performed first-principles plane wave calculations within Density Func-

tional Theory (DFT) using PAW potentials [83]. The exchange correlation poten-

tial has been approximated by Generalized Gradient Approximation (GGA) using

PW91 [84] functional both for spin-polarized and spin-unpolarized cases. For the

sake of comparison calculations are also carried out using different potentials and

exchange-correlation approximations. All structures have been treated within su-

percell geometry using the periodic boundary conditions. A plane-wave basis set

with kinetic energy cutoff of 500 eV has been used. The interaction between SiC

monolayers in adjacent supercells is hindered by a minimum 12 Å vacuum spac-

ing. In the self-consistent potential and total energy calculations, when finding

the optimum lattice constants the Brillouin zone (BZ) is sampled by, respectively

(5×5×5), (11×11×1) and (11×1×1) special k-points for 3D bulk, 2D honey-

comb and 1D nanoribbons of SiC. Further relaxation is made with (11×11×11),

(31×31×1) and (25×1×1) special k-points in order to find the ultimate structure

and charge density. All atomic positions and lattice constants are optimized by

using the conjugate gradient method, where the total energy and atomic forces

are minimized. Pressure on the cell was minimized automatically during this pro-

cess. The convergence for energy is chosen as 10−5 eV between two steps and the

maximum Hellmann-Feynman forces acting on each atom is less than 0.04 eV/Å

upon ionic relaxation. The pseudopotentials corresponding to 4 valence electrons

of Si (Si:3s2 3p2) and C (C:2s2 2p2) are used. Numerical plane wave calculations

are performed by using VASP [85, 86]. Part of the calculations have also been

repeated by using SIESTA [88] software. The cohesive energy of any structure

SiC is found as EC = ET [SiC] − ET [Si] − ET [C] in terms of the optimized total

energy of any SiC structure,and the total energies of free Si and C atoms, all

calculated in the same supercell using the same parameters. Phonon calculations
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Table 4.1: Si-C bond length (d), lattice constant (a), kink angle (α ), bandgap
(EG), cohesive energy (Ec) values for two different types of SiC chains

Type d (Å) a (Å) α (degree) δq (e) EG (eV) Ec (eV)

Linear 1.649 3.298 180 2.28 1.996 8.923
Wide Zigzag 1.673 3.268 155.2 2.15 1.778 8.963

were carried out using PHON program [87] implementing force constant method.

4.3 1D atomic chain and 3D bulk crystal of SiC

In this section, we present a brief discussion of 1D SiC atomic chain and 3D bulk

crystal based on our structure optimized total energy, phonon and electronic

energy calculations. Studies [3, 2] on SiC bulk lattice and atomic chains [89]

already exist in the literature. However, our purpose is, however to carry out

calculations with same parameters as used in 2D single layer SiC honeycomb

structure and provide a consistent comparison of dimensionality effects.

4.3.1 1D SiC Chains

Earlier, the first theoretical study of Group IV and III-V binary compounds were

reported by Durgun et. al [89]. They examined SiC atomic chain as a function

of lattice parameter and found that the wide zigzag atomic chain of SiC with

bond angle of ∼147◦ is energetically more favorable than the linear and narrow

angle zigzag chains. Present calculations find that the atomic chains of SiC are

nonmagnetic. Calculated structural parameters, cohesive energies, band gap and

phonon modes of linear and zigzag atomic chains, which are relevant for the

present study are given in Fig. 4.1. The lattice constant of the linear SiC chain,

a = 3.298 Å, Si-C bond distance, d = 1.649 Å. The charge transfer from Si

to C is δq= 2.28 electrons, calculated by using Bader analysis [90]. Important

characteristics of SiC chains are summarised in Table 4.1.
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Phonon modes calculated with force constant method have imaginary frequen-

cies : two acoustical and two optical branches of linear SiC chain have imaginary

frequencies. Wide angle zigzag SiC chain has one optical and one acoustical

branches with imaginary frequencies. These results indicate that free standing

SiC chains are unstable.

4.3.2 3D SiC Crystals

Our work on bulk SiC includes wurtzite (wz) and zincblende (zb) structures.

Atoms in wz- and zb-SiC are four fold coordinated through tetrahedrally di-

rected sp3-orbitals. Calculated structural parameters, cohesive energies(eV), en-

ergy band structures and phonon modes are given in Fig. 4.2. Zincblende SiC

structure in Td symmetry has cubic lattice constants are a1 = a2 = a3 = 3.096 Å.

Si-C bond distance(d) is 1.896 Å. There are four tetrahedrally coordinated bonds

from each atom, all of which are equal. Charge transfer from Si to C is δq= 2.59

electrons calculated via Bader analysis [90]. While the GGA band gap is 1.406

eV, it increases to 2.4 eV after GW0 [91] correction is taken into account. As

for wz-SiC crystal, the hexagonal lattice constants of the optimized structure in

equilibrium are a1 = a2 = 3.093 Å, c/a = 1.63307. The deviation of c/a from the

ideal value of 1.633 imposes a slight anisotropy on the lengths of tetrahedrally

directed Si-C bonds. While the length of three short bonds is 1.892 Å, the fourth

bond is slightly longer and has the length of 1.9 Å. Charge transfer from Si to

C is δq= 2.63 electrons. The GGA band gap is 2.316 eV, but it increases to

3.32 eV after GW0 correction. Corrected badgaps are exactly the same as those

from the experiment [92].The calculated structural parameters and energy band

gaps are in reasonable agrement with the earlier calculations and experimental

measurements.

Five out of six phonon modes of SiC zincblende are in complete agreement

with literature [93]. The highest optical mode goes down and couples with nearest

optical mode. The same problem is present in the wurtzite SiC. Again other five

phonon modes of wurtzite structure agrees with literature [94].
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Figure 4.1: Atomic structures, electronic energy bands and dispersion of phonon
modes of linear and zigzag SiC atomic chains. Ec and EG are cohesive and band
gap energies, respectively. Si and C atoms are shown by blue-large and black
small balls, respectively.



CHAPTER 4. RESULTS 36

Figure 4.2: Optimized atomic structure with relevant structural parameters, cor-
responding energy band structure and frequencies of phonon modes of 3D bulk
SiC in zincblende and wurtzite structures. Zero of energy of the band structure
is set at the Fermi level, and band gap is shaded.
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Table 4.2: Si-C bond length(d), lattice constant (a), bandgap (EG), cohesive
energy (Ec) values for the monolayer SiC calculated with different potentials

Potential d (Å) a (Å) EG (eV) Ec (eV)

PAW + GGA 1.786 3.094 2.53 11.94
PAW + LDA 1.77 3.07 2.51 13.54
US + GGA 1.776 3.079 2.542 11.97
US + LDA 1.759 3.048 2.532 13.47

4.4 2D Honeycomb SiC

Two-dimensional hexagonal structure of SiC is optimized using periodically re-

peating supercell having 15 Å spacing between SiC planes. The minimum of

total energy occurred when Si and C atoms are placed in the same plane forming

a honeycomb structure. The magnitude of the Bravais vectors of the hexagonal

lattice is found to be a1 = a2= 3.094 Å (see Fig. 4.3), and the Si-C bond to

be d =1.786 Å. The planar structure of 2D SiC is tested by displacing Si and

C atoms arbitrarily from their equilibrium positions and then reoptimizing the

structure. Upon optimization, the displaced atoms returned to their original po-

sitions in the same plane. 2D honeycomb SiC is found to be a semiconductor

with a GGA band gap of 2.53 eV using LDA as well as GGA. Furthermore, in

Table 4.2, we give lattice constant, bond length, cohesive energy, energy gap val-

ues of SiC honeycomb structure calculated with different parameters. Since DFT

usually underestimates the band gap of semiconductors, we corrected the GGA

band gap using GW0 correction and found it to be 3.90 eV. The charge transfer

from Si to C in 2D honeycomb SiC is calculated to be δq= 2.53 eV electrons.

Earlier DFT calculations [41] on 2D honeycomb SiC and its ribbons used PAW

[83] potentials and GGA approximation via VASP [85, 86]. Their results are in

reasonable agreement with ours.

Our phonon modes were calculated with force constant method [87] . Since

all the modes are positive, a single layer SiC sheet is stable. Forces were found by

displacing a single atom in a 7×7×1 supercell by 0.4 Å. We use a small displace-

ment in order to stay in the harmonic region. We increased default grids used
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Figure 4.3: Optimized atomic structure, energy band structure and phonon modes
of 2D SiC in honeycomb structure. The primitive unit cell is delineated. The
zero of energy in the band structure is set to the Fermi level.

by VASP until calculations converge to a sensible result . Since problem arises

due to the lowest acoustic mode which presents an out of plane displacement. A

fictitious dip near Γ point occurs in crude calculations, but it can be overcome

by refining the mesh in the z- axis (perpendicular to plane) as much as possible.

By this way, force in that direction is calculated more rigorously.

4.4.1 Dimensionality effects

In Table 4.3, we compare the variation of the effective charge on Si and C atoms,

namely Z∗
Si and Z∗

C respectively; charge transfer from Si to C, δq = Z∗
Si − 4;
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Table 4.3: Si-C bonding type, bond length(d), lattice constant (a), charge transfer
(δq), bandgap (EG), cohesive energy (Ec) comparison for SiC polymorphs

Material Bonding d (Å) a (Å) δq (e) EG (eV) Ec (eV)

Linear Chain sp 1.649 3.298 2.28 1.996 8.923
Wide Zigzag Chain sp 1.673 3.268 2.15 1.778 8.963

2D Honeycomb sp2 1.786 3.094 2.53 2.53 11.94
Zincblende sp3 1.896 3.096 2.59 1.406 12.939
Wurtzite sp3 1.892 (3), 1.9 (1) 3.093 2.63 2.3161 12.932

Si-C bond length d; lattice constant a, cohesive energy per Si-C, Ec; band gap

EG calculated for SiC in different dimensionalities. It should be noted the length

of Si-C bonds of 2D SiC honeycomb structure is smaller than that in the 3D

bulk (wz, zb) crystals, but larger than that in zigzag atomic chains. Here we see

that the dimensionality effect is reflected to the strength of the bonding through

spn hybridization, where n coincides with the dimensionality. While sp2 hybrid

orbitals of 2D planar honeycomb structure form stronger bonds than tetrahedrally

coordinated sp3 orbitals of 3D bulk, they are relatively weaker than sp hybrid

orbitals of 1D chain.

4.5 Bare and Hydrogen Passivated SiC Nanorib-

bons

In this section, we consider bare and hydrogen passivated (H-pass) armchair

SiC nanoribbons (A-SiCNR). These nanoribbons are specified according to their

width given in terms of N number of Si-C atom pairs in their unit cells. Hence, A-

SiCNR(N) indicates armchair SiC nanoribbons having N Si-C pairs in their unit

cell. We have analyzed odd numbered A-SiCNR (both bare and H-passivated)

from 5 to 21, which have reflection symmetry with respect to their axis. We in-

vestigated their atomic structure; electronic, magnetic properties. Bare armchair
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SiC ribbons are ferromagnetic in ideal honeycomb form. However, upon struc-

tural relaxation, reconstruction occurs at the edges resulting in a considerable

gain of energy and the structure becomes nonmagnetic.

The band gap of the bare A-SiCNR increases by ∼0.7 eV upon saturation

with hydrogen atoms, since the edge states are removed from the gap. The band

gap variation of both bare and hydrogen saturated armchair SiC ribbons cannot

be reconciled with the quantum size effects, since EG increases with increasing

N . This is due to other effects which overcome the quantum confinement effect.

For N > 9 the variation of EG of bare SiC armchair ribbons is not significant.

Band gaps of both bare and H-passivated SiC armchair ribbons are depicted in

Fig. 4.4.

The bare A-SiCNR(9) is an indirect band gap semiconductor. Two bands at

the conduction band edge are due to edge states, which are split due to edge-edge

interaction. These bands are removed upon H-saturation of dangling bonds of

atoms at the edges leading to the widening of the band gap. As for the other

edge state band, it is located in the valance band. This band is also removed

upon H-saturation, but the valence band edge is not affected. The band gap of

H-saturated A-SiCNR(9) is direct. Energy bands and band decomposed charge

densities are in Fig. 4.5.

Lengths of Si-H and C-H bonds of H-passivated A-SiCNR’s are 1.49 Å and

1.09 Å, which is present in the previous work [41]. Our bandgap variations with

respect to ribbon width of H-passivated SiC armchair ribbons are similar and

they call it three-family behavior [41]. The main difference with graphene is that

the band gaps of H-passivated A-SiCNR’s are increasing. Hypothetically the

bandgap will reach the value of 2D planar SiC (2.53 eV) for an infinitely large

nanoribbon.

In H-saturated A-SiCNR’s, Si-C bonds get shortened at most by 0.05 Å at

the edges; while in bare A-SiCNR’s this shortening is up to 0.9 Å. Hence, edge

reconstruction exist in each case but is more pronounced in bare nanoribbons.
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Figure 4.4: Optimized atomic structures and band gap variations of bare and
H-passivated SiC nanoribbons with 5 < N < 21.
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Figure 4.5: Energy band structure of bare and hydrogen saturated armchair SiC
nanoribbons, A-SiCNR (N) with N = 9 and isosurfaces of charged densities of
selected states. Zero of energy is set at the Fermi level.

4.6 Vacancy Defects and Antisite

It has been shown that the vacancy defects have remarkable effects on 2D

graphene honeycomb structure and its nanoribbons [97, 98, 99, 100, 101, 102].

Non magnetic graphene sheets or nanoribbons can attain spin polarized states

due to vacancy defects. We expect that similar effects of vacancy defects can

occur in the electronic and magnetic properties of SiC honeycomb structure.

4.6.1 2D Honeycomb SiC

We investigated the effects of Si and C vacancies, Si+C-divacancy and C-Si-

antisite in periodically repeating (7×7) supercells. The size of supercell is opti-

mized to allow negligible defect-defect interaction between adjacent cells. Here

the width of the flat bands derived from the states of periodically repeating va-

cancies is taken as the measure of the strength of vacancy-vacancy coupling. A

(7×7) supercell led to rather flat defect bands which are suitable for our purpose,

but allowed us to carry out numerical calculations. Our results are presented in

Fig. 4.6 for single C, Si, Si+C and C+Si antisite vacancy defects.



CHAPTER 4. RESULTS 43

Figure 4.6: Energy band gap and magnetic moment of vacancy defects calculated
in a (7×7) supercell of 2D SiC honeycomb structure. (a) C vacancy; (b) Si
vacancy; (c) Si+C divacancy; (d) C-Si antisite. In (b) the difference of spin up
and spin down charges are shown. Large/blue and small/gray balls represent Si
and C atoms respectively.
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A vacancy is generated first by removing a single atom C or Si atom from each

supercell of the monolayer of SiC in honeycomb structure as shown in Fig. 4.6

(a) and (b). Subsequently, the atomic structure is optimized. Single C vacancy

in 2D monolayer of SiC is nonmagnetic; Si atoms around vacancy with coordina-

tion number 2 are displaced in the transversal direction and do not induce any

magnetic moment. The band gap is altered to 1.66 eV, as three obvious defect

states occur in the original band gap.

As for Si vacancy, three C atoms around vacancy remained planar. Similar

to the vacancies in graphene and BN, Si-vacancy induces a local magnetization

in the system. Isovalue surfaces of the difference between spin up and spin down

charge densities i.e. ∆ρ↑↓ clearly shows a spin polarization and a net magnetic

moment constructed therefrom. The calculated total magnetic moment is 4 µB

per supercell. The Si-vacancy in a repeating (7×7) supercell also modifies the

electronic structure. While the band gap of spin unpolarized (defect free) SiC is

practically unaltered for the spin-up states, it is lowered from 2.53 eV to 0.081

eV for the spin down states. This can be understood as a spin up donor stable

near the conduction band. As for Si+C divacancy in Fig. 4.6 (c), it is again

nonmagnetic. However, two C atoms around the vacancy choose to make a bond

with each other. The band gap is also modified. Two totally seperate states occur

in the original band gap and band decomposed charge densities of these states

are located around the vacancy. Finally, we consider the antisite effect. The

resulting relaxed structure is given in Fig. 4.6 (d). Lattice is distorted as C-C

bond is shorter than Si-Si bond in the antisite case. It is noted that the calculated

magnetic moments for single Si- and C-vacancy do not agree with Lieb’s theorem

[103], which normally predicts 1 µB net magnetic moment both for Si and C

vacancies in Fig. 4.6. We attribute the discrepancy between the results of first

principles calculations and Lieb’s theorem to the structural relaxation after the

generation of vacancy into account.
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4.6.2 Vacancy defects in SiC Nanoribbons

We examined the effect of the vacancy defects on the electronic and magnetic

properties of hydrogen passivated A-SiCNR(9) using a (4×1) repeating supercell.

Our main motivation was to investigate what differences would occur in a ribbon.

Final structures, band gaps, total magnetic moments are given in Fig. 4.7. Overall

effects are similar to those in 2D single layer SiC honeycomb structure except the

antisite case in which 4×1 hydrogen passivated SiC armchair nanoribbons where

the exchanged Si atom moves into the plane about 0.9 Å. Two seperate states,

one in the conduction band and one in the valence band occur due to antisite and

decrease the band gap. A straightforward conclusion is that vacancy and antisite

states are localised and do not couple to the hydrogen states at the edges.

4.7 Functionalization of SiC honeycomb struc-

ture by adatoms

Like vacancy, adatom adsorption as well as substituting Si or C atoms in the

honeycomb structure by foreign atoms can modify the properties of 2D mono-

layer of SiC and its nanoribbons. This way SiC honeycomb structure can be

functionalized. Adatom adsorption and substitution are considered within the

periodically repeating (7×7) supercell geometry to minimize the intercation be-

tween them. That the coupling between adatoms are negligible are tested using

(10×10) supercell geometry.

4.7.1 Adatom adsorption

As adatom we considered Al, Co, Fe, N, P, Ti by placing each of them on four

different positions (Fig. 4.9) in the (7×7) monolayer honeycomb SiC surface and

then by fully relaxing the whole system. The initial positions of the adsorption

are on top of silicon atom (TS), on top of carbon atom (TC), at the center
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Figure 4.7: Energy band gap and magnetic moment of vacancy defects calculated
in a (4×1) supercell of quasi 1D SiC armchair nanoribbon with N=9, i.e. A-
SiCNR(9). Dangling bonds at both edges are saturated by hydrogen atoms.
(a) C vacancy; (b) Si vacancy; (c) Si+C divacancy; (d) C-Si antisite. In (b) the
difference of spin up and spin down charges are shown. Large/blue and small/gray
balls represent Si and C atoms respectively.
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Table 4.4: Final positions, binding energies (EB), total magnetic moments (µ),
final distance of the dopant values (h) for doped planar SiC

Atom Position EB (eV) µ (µB) h (Å)

Al TS 1.23 1 1.408
Co HS 2.099 1 1.392
Fe HS 1.928 2 1.465
N TC 3.052 0 0.896
P BS 1.758 1 1.743
Ti TS 2.605 2 1.355

of hollow (HS), above the middle of the Si-C bond (BS). To hinder adatom-

adatom interaction the distance between adjacent SiC layers are more than 12

Å, and all calculations are carried out spin polarized. Whether the adatoms

are bound to the surface are examined by calculating the binding energies of

these six different individual atoms in terms of the calculated total energies as

EB = ET [SiC + adatom] − ET [SiC(bare)] − ET [adatom]. We found that all of

these adatoms are bound with a binding energy larger than 1 eV. Energy bands

and band decomposed charge densities of impurity states of Al adsorbed to SiC

monolayer are given in Fig. 4.8. Flat bands indicate that states induced by the

adatom are rather localized and hence adatom-adatom interactions are negligible.

Optimized adsorption sites, total magnetic moments, distance from the SiC plane

are given in Table 4.4 .

4.7.2 Substitution of Si and C by foreign atoms

Here we examined the substitution of single Si or C atoms in 2D SiC honeycomb

structure by various foreign (dopant) atoms (B and N substituting C atom; Al,

As, Ga, P substituting Si atom). Similar to adatoms, the substitution process

is treated within periodically repeating (7×7) supercell. Because of periodic

boundary condition the localized states appear as flat bands. The localization

of all dopant atoms are attained, except for Ga and Al which required larger

supercell. We found that B, N, As and P atoms have a net magnetic moment µ=
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Figure 4.8: Calculated energy bands of single Al atom adsorbed on the top of a
Si atom in the (7×7) supercell of 2D SiC honeycomb structure with solid/blue
and dashed/red lines showing spin up and spin down bands, respectively.
Flat bands are associated with the localized states of adsorbed Al atom. Band
decomposed charge densities reveal that these states are localized around Al atom.
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Figure 4.9: Starting positions of adatoms in 7×7 honeycomb SiC

1 µB. Ga and Al do not create any magnetic moment as substituted atoms in

SiC surface. During structural relaxation, each atom finds its most energetically

favorable position in the lattice and there occurs different numbers of dangling

electrons. This is the reason why atoms of different valence electrons induce the

same magnetic moment. Energy bands and band decomposed charge densities of

impurity states of N substituted SiC monolayer are given in Fig. 4.10.
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Figure 4.10: Calculated energy bands of single N atom substituting a single C
atom in the (7×7) supercell of 2D SiC honeycomb structure with solid/blue and
dashed/red lines showing spin up and spin down bands, respectively. Flat bands
are associated with the localized states of dopant N atom. Band decomposed
charge densities reveal that these states are localized around N atom.
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Conclusions

We present an extensive study on 1D SiC chains, 2D monolayer SiC, 3D bulk SiC

and SiC armchair nanoribbons together with the stability analysis of them. The

monolayer of SiC is an ionic compound with charge transfer from silicon atoms

to carbon atoms. It has hexagonal lattice forming a honeycomb structure and

nonmagnetic semiconductor. However, it acquires net magnetic moment through

single Si-vacancy. Single C-vacancy, Si+C divacancy and Si-C antisite defects do

not give rise to any magnetic moment in the system. Our stability analysis based

on phonon frequency calculations indicate that 2D SiC is stable.

Armchair SiC nanoribbons are found to be nonmagnetic semiconductors. The

band gaps vary with their widths. They neither show quantum size effect nor

have the same family behaviour of graphene. We have both tried bare and H-

passivated cases and depicted their bandgap dispersions with respect to widths

of nanoribbons.

Adding properties to a bulk material via doping is widely utilised in optical

and electronic applications. We have tested similar cases in two dimensional SiC

and obtained reasonable results.

After graphene and 2D BN; we have listed electronic, magnetic and structural

properties of one additional 2D material. We assume our work becomes more

51
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salient as experimental studies about honeycomb SiC emerge in the following

years.
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