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First-principles study of spin-disorder resistivity of heavy rare-earth metals: Gd–Tm series
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Electrical resistivity of heavy rare-earth metals has a dominant contribution from thermal spin-disorder

scattering. Here this spin-disorder resistivity is calculated for the Gd-Tm series of metals in the paramagnetic state.

Calculations are performed within the tight-binding linear muffin-tin orbital method using two complementary

methods: (1) averaging of the Landauer-Büttiker conductance of a supercell over random noncollinear

spin-disorder configurations, and (2) linear response calculations with the spin-disordered state described in

the coherent potential approximation. The agreement between these two methods is found to be excellent. The

spin-disorder resistivity in the series follows an almost universal dependence on the exchange splitting. While

the crystallographic anisotropy of the spin-disorder resistivity agrees well with experiment, its magnitude is

significantly underestimated. These results suggest that the classical picture of slowly rotating self-consistent local

moments is inadequate for rare-earth metals. A simple quantum correction improves agreement with experiment

but does not fully account for the discrepancy, suggesting that more complicated scattering mechanisms may be

important.
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I. INTRODUCTION

Scattering on spin fluctuations in magnetic metals adds

an “anomalous” contribution to the electrical resistivity.1–3

Contrary to other scattering mechanisms, such as impurity

and phonon ones, this spin-disorder scattering is not well

understood because the theory of spin fluctuations at elevated

temperatures is far from being complete.4 The minimal model

of spin-disorder resistivity (SDR) is based on the s-d (or d-f )

Hamiltonian, containing on-site interaction of the conduction

electrons with spins localized on lattice sites, which are subject

to thermal fluctuations.5–7 This interaction is also responsible

for the indirect exchange coupling described by the Ruderman-

Kittel-Kasuya-Yosida (RKKY) theory.8,9 Extensions of this

model to include Fermi-surface anisotropy and the appearance

of “superzones” (in the helically ordered state) in the heavy

rare-earth materials have also been proposed.8–13

First-principles calculations of SDR provide an opportunity

to test the models of spin disorder quantitatively by comparing

the predicted SDR with experiment. In particular, such a study

of spin-disorder resistivity of Fe and Ni (Ref. 14) suggests

that the spin fluctuations in these materials are described

reasonably well by slowly rotating, classical local magnetic

moments, supporting the widely used “adiabatic” model of

spin fluctuations.15

The series of heavy rare-earth metals (Gd-Tm) provides an

interesting case study because the 4f electrons supplying most

of the local moment are much more localized compared to the

transition metals, while the orbitals moments are not quenched.

It may therefore be inadequate to treat the spin fluctuations

in rare-earth metals as classical spin rotations. Systematic

experimental studies of the electrical properties of heavy

rare-earth metals were carried out by Legvold et al. These

included polycrystalline16,17 and single-crystal samples,18–23

allowing a compilation of the SDR in the in-plane and c-axis

directions of the hexagonal crystal structure. Single-crystal

resistivity measurements have also been performed by other

groups.24–28

In the f -d model picture, the assumption that the 4f

local moment can be treated as a quantum multiplet with

a fixed angular momentum J leads to the SDR being

proportional to J (J + 1) in the paramagnetic state (in the Born

approximation). The effective scattering potential is, however,

provided largely by spin alone. Therefore, in this picture, the

SDR in the Gd-Tm series should behave as S2(J + 1)/J . This

picture appears to agree reasonably well with experimental

data,10,29 but only after an empirical electronic correction is

included.10

The choice of the angular momentum J for the quantum

multiplet10,29 is based on the assumption that spin-orbit

coupling is sufficiently strong to enforce the collinearity of

S and L at all times. If spin-orbit coupling is small compared

to other relevant energy scales, then the role of J should be

played by S, and SDR should behave as S(S + 1) in the Gd-Tm

series. However, band structure calculations30 show that the

4f bandwidth is comparable to or greater than the spin-orbit

splittings of the localized 4f multiplets with different J
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values, which are on the order of 0.1 eV. The local exchange

potential acting on the conduction electrons by the fluctuating

4f moments is on the order of 1 eV in Gd and decreases

linearly with the 4f spin moment later in the series. This

fluctuating exchange potential should induce an uncertainty of

the conduction electron energy on the order of a few tenths of

an electron volt. Therefore, the assumption that the J value of

the fluctuating 4f shell should be conserved in the scattering

process is not well justified. Since all of the relevant energy

scales (spin-orbit splittings, exchange splitting, bandwidth) are

of the same order of magnitude, the effect of spin and orbital

momentum quantization on SDR may be quite complicated.

In this paper, we study the SDR for the Gd-Tm series

using first-principles calculations based on density functional

theory. We use two complementary approaches, one using

supercell averaging of the Landauer-Büttiker conductance, and

the other based on linear response calculations applied to the

paramagnetic state described within the coherent potential

approximation. In most calculations, the 4f electrons are

treated as fully localized, but the effect of including them in the

valence basis is also considered. The results of our calculations

represent the predictions of the classical spin model. Contrary

to the case of transition metals,14 our results for Gd-Tm are

systematically and significantly lower compared to experi-

mental data, suggesting that the quantum character of the 4f

shell is indeed important. However, we found that neither a

(J + 1)/J nor an (S + 1)/S correction brings the results in

close agreement with experiment, supporting the qualitative

argument that the fluctuations of the 4f shell are not well

described either by the fixed-J model or by the assumption

that S and L are weakly coupled.

II. COMPUTATIONAL METHODS

The 4f electrons in rare-earth materials are strongly local-

ized and obey Hund’s rules, producing large local magnetic

moments. These electrons are not well described by the

local-density approximation (LDA),30 which places the 4f

energy bands close to the Fermi level in disagreement with

photoemission experiments.31 This problem can be addressed

in two ways. First, one can use the LDA + U method for the

4f electrons, which introduces a correlation gap and removes

the 4f states from the Fermi level. The second way is to treat

the 4f orbitals as fully localized by excluding them from the

valence basis and filling them in accordance with Hund’s rules

(the “open-core” approximation). In both cases, the partially

filled 4f states supply local moments and contribute to the

scattering (exchange) potential. In the open-core approach,

they are explicitly prevented from carrying current; in the

LDA + U approach, their contribution to the current is ex-

pected to be small, but they can still affect the scattering rates

by modifying the final states. Both solutions produce similar

band structures near the Fermi level,30 and therefore they can

be expected to produce similar results for transport.

Our calculations of SDR are based on the tight-binding

linear muffin-tin orbital (TB-LMTO) method.32 In most of our

calculations, we used the open-core approximation33 for the

4f states, but we have also considered the effect of including

the 4f states in the valence basis. As expected, this inclusion

increases the resistivity by a small amount.

We used two approaches for SDR calculations, namely,

the Landauer-Büttiker (LB) method and the linear response

technique applied within the disordered local-moment (DLM)

model. In all calculations, we consider the paramagnetic

state to be a completely random, uncorrelated distribution

of local-moment directions on different atomic sites. The

results are compared with experimental data, from which the

phonon and impurity contributions have been removed by an

appropriate fitting.

While the LB approach can be used for more complicated

spin statistics,14 the DLM method is, by design, appropriate

only to uncorrelated spin disorder due to its reliance on the

single-site approximation. The DLM method uses the bulk

geometry and computes the resistivity by a reciprocal-space

integration of the Kubo-Greenwood formula, while the LB

approach requires the construction of supercells.

A. Landauer-Büttiker approach

The method used for SDR calculations was described in

Ref. 14. All heavy rare-earth elements examined in this study

(Gd, Tb, Dy, Ho, Er, and Tm) have a hexagonal close-packed

crystal structure. The resistivity tensor has two independent

components for current flowing parallel and perpendicular to

the hexagonal c axis. For transport along the c axis, we used

supercells with a 4 × 4 cross section (16 atoms per monolayer,

interlayer spacing c/2) of area 8a2
√

3. The in-plane SDR

was calculated for the current flowing parallel to one of the

in-plane lattice vectors. For this direction, we used supercells

with a 3 × 2 (12 atoms per monolayer, interlayer spacing

a) rectangular cross section of width 3a
√

3 and height 2c.

The integration of the conductance over the two-dimensional

Brillouin zone is performed using a 24 × 24 k-point mesh

for both transport directions, and the result is averaged over

15 random noncollinear spin distributions. For a convergence

test, see Appendix A.

Figure 1 shows the configurationally averaged area-

resistance product RA as a function of the thickness L of

the active disordered region in our supercell calculations for

Gd, Tb, and Tm for both transport directions. The plots for

the other three elements (Dy, Ho, and Er) are similar. The

ohmic regime is quickly reached for all elements. The SDR is

obtained from the slope of the fit to the linear region.

To check the validity of the open-core approximation for

transport calculations, we include the 4f orbitals in the valence

basis set and calculate the self-consistent potentials using the

fully localized limit of LDA + U (Ref. 34) applied to the 4f

electrons. The population of the 4f states is specified manually

by a diagonal density matrix in the spherical harmonic

representation (which is not subject to self-consistency); the

orbitals are filled according to Hund’s rules. For Gd, we used

U = 6.7 eV and J = 0.7 eV. The band structure agrees with

Ref. 30 with the unoccupied 4f states located 2 eV above

the Fermi energy. For Ho, we fixed J = 0.7 eV and adjusted

the U parameter to U = 8.0 eV to place the minority-spin

4f bands at 2 eV above the Fermi level, according to the

photoemission data.31 For the transport calculation, we then

use the (less expensive) Ising approximation by randomly

assigning “up” and “down” directions for the local moments.

(This approximation is justified by good agreement with DLM
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(a)

(b)

FIG. 1. Area-resistance product RA vs the thickness L of the

disordered region for both transport directions for Gd, Tb, and Tm (LB

method). Each point corresponds to an average of 15 or more random

spin-disorder configurations. (a) In-plane direction, open shapes; (b)

c-axis direction, closed shapes. Triangles: Gd; circles: Tb; squares:

Tm.

results in all other cases.) The orbital occupations are also

adjusted so that the orbital moments are parallel to spin

moments on all sites.

B. Disordered local-moment (DLM) model

The DLM approach15 describes the paramagnetic state

above the Curie point, approximating it as an ensemble of

randomly oriented local magnetic moments. The electronic

structure of this state is evaluated self-consistently using the

coherent potential approximation (CPA). The solution for the

spherically symmetric vector model is conveniently equivalent

to that for the fictitious equiconcentrational binary alloy,

whose two components represent atoms with antiparallel local

moments. The spin-disorder part of the total resistivity can then

be associated with the “residual” resistivity of the DLM state

viewed as a binary alloy, which is calculated within the Kubo-

Greenwood approach (strict justification of the validity of this

calculation will be presented elsewhere). An implementation

of the DLM method for resistivity studies was done in Ref. 35.

Our implementation of the linear response technique within the

TB-LMTO-CPA method, including disorder-induced vertex

corrections, is described in Refs. 36 and 37.

As a test case, we calculated the SDR for bcc iron using the

DLM method and the spd basis. The resistivity is 85 μ� cm,

which agrees well both with supercell LB calculations14 and

with experiment, while the value obtained in Ref. 35 is almost

two times larger. The origin of this disagreement is unclear.

The method of Ref. 35 utilizes a hybrid method where the

electronic structure is described by the DLM method, but the

resistivity is found from the slope in the multilayer geometry

as a limit from large imaginary parts of the energy (1 and

2 mRy). This method also neglects vertex corrections, thus

violating current conservation.

III. REVIEW OF EXPERIMENTAL DATA

The experimental data in Table I are those of Legvold and

coworkers17–23 and those of other groups.24,26–28 The former

set of SDR values for Gd, Tb, Dy, Ho, and Er are taken from

the compilation plot in Ref. 10 and agree well with our own fits

to the single-crystal resistivity data. The in-plane and c-axis

SDRs for Tm are explicitly reported in Ref. 23, as are the

single-crystal data for Gd by Maezawa et al.26 and for Er

(Ref. 28) and Tm (Ref. 27) by Ellerby et al. The additional

TABLE I. SDR of heavy rare-earth metals calculated using the Landauer-Büttiker (LB) and disordered local-moment (DLM) methods. First

(second) row for each element: Atomic potentials taken from the ferromagnetic state (from self-consistent DLM local moments). Experimental

data are from Refs. 17–23 or as cited.

In-plane SDR c-axis SDR Polycrystal SDR

Lattice parameters Moment (μ� cm) (μ� cm) (μ� cm)

Element (a.u.) (μB ) LB DLM Expt. LB DLM Expt. LB DLM Expt.

Gd a = 6.858 7.72 58.9 59.1 108, 105a 44.9 41.5 96, 95a 54.2 53.2 106.4

c = 10.952 7.44 42.0 40.2 31.3 26.9 38.4 35.7

Tb a = 6.805 6.64 45.6 46.0 82 33.5 30.2 66 41.6 40.7 85.7

c = 10.759 6.35 29.1 27.7 22.2 17.6 26.8 24.3

Dy a = 6.784 5.58 35.4 35.3 62, 57b 25.1 22.6 44, 45b 32.0 31.1 57.6

c = 10.651 5.27 19.4 18.6 14.1 11.7 17.6 16.3

Ho a = 6.760 4.46 23.8 22.8 41 16.8 14.3 24 21.5 20.0 32.3

c = 10.612 4.20 12.0 10.8 7.93 6.8 10.6 9.43

Er a = 6.725 3.33 13.4 12.2 21, 32.4c 8.56 7.5 13, 18.0c 11.8 10.6 23.6

c = 10.559 3.14 6.68 5.94 4.11 3.44 5.82 4.81

Tm a = 6.685 2.21 5.96 5.23 22.3, 21.2d 3.43 3.2 7.4, 9.0d 5.12 4.56 14.9

c = 10.497 2.088 3.00 2.32 1.67 1.44 2.56 2.02

aReference 26.
bReference 24.
cReference 28.
dReference 27.

214405-3



J. K. GLASBRENNER et al. PHYSICAL REVIEW B 85, 214405 (2012)

values for Dy are obtained from the plots of Ref. 24 by an

appropriate fitting.

For Gd and Dy, the resistivity curves and SDR values

reported by different references agree quite well. For Er and

Tm, the resistivity curves from different measurements are

similar in shape and indicate the same transition temperatures,

but the absolute values of the residual-subtracted resistivities

differ. For Er, the residual-subtracted resistivities reported by

Ellerby et al. are systematically larger compared to the results

of Legvold et al. For example, the resistivity at the Néel

temperature, TN = 85K, is about 6 μ� cm larger in the c-axis

direction and about 19 μ� cm larger in the in-plane direction.

The SDRs do not agree either, with SDRs from Ellerby et al.
being a factor of 1.4 to 1.5 larger. For Tm, the disagreement

is in the opposite direction; Ellerby et al. note that their c-axis

(in-plane) resistivity curves are a factor of 2 (factor of 1.3)

smaller compared to Legvold et al. The SDRs in the two

studies, however, are in agreement.

The source of these disagreements is currently unknown.

Ellerby et al. mentioned27 that the discrepancy might be

due to errors in determining the cross-sectional areas of the

samples. Another problem may be the purity of the samples.

The residual resistivities reported by Legvold et al. for Er are

rather large and of the same order as the SDRs. In the rest of

the heavy rare-earth experiments by Legvold et al., the residual

resistivities are between 3 and 6 μ� cm. These discrepancies

introduce some ambiguity, at least in the case of Er, when

comparing the calculated SDR with experiment.

IV. RESULTS

For each element and transport direction, we performed

two sets of calculations corresponding to different atomic

potentials. The first set of calculations used self-consistent

potentials from the collinear ferromagnetic ground state of

each metal. These results are listed in the first row for each

element in Table I. The second set used potentials with

reduced local moments taken from the self-consistent DLM

calculations for the paramagnetic state. These results are

listed in the second row for each element. To compare the

effect of local-moment reduction in both methods, the atomic

potentials are calculated self-consistently in the presence of

an appropriately adjusted external field, constraining the local

moments to their DLM values. These atomic potentials are

then used in the LB calculations. We refer to these as the

fixed-spin moment (FSM) calculations.

In order to compare the band structure obtained using the

DLM method with explicit supercell calculations (to which

DLM is an approximation), we constructed 64-atom supercells

for Gd (4 hexagonal monolayers with 16 atoms per monolayer,

periodically repeated in three dimensions). We used FSM

potentials as input and generated seven different spin-disorder

configurations by randomly assigning the directions of all

local moments in the supercell. Then the partial density of

states (DOS) for each site was calculated in the local reference

frame (z axis collinear with local-moment direction) and then

averaged over all sites and all seven configurations. At the

same time, the output local moments were also calculated

and averaged. This average output moment was 7.46 μB with

a standard deviation of 0.03 μB , comparing well with the

FIG. 2. Spin-projected local DOS of paramagnetic Gd averaged

over 64-atom supercells with random noncollinear local-moment

orientations. The valence basis includes s, p, and d states, while

the fully spin-polarized 4f shell is included in the open-core

approximation. The total (input) local moment is 7.44 μB . (Note

the excellent agreement with the DLM result of Ref. 38.)

input moment of 7.44 μB . The averaged local DOS shown

in Fig. 2 is almost indistinguishable from the self-consistent

DLM result of Ref. 38. This agreement shows that the DLM

method provides an accurate description of the band structure

of rare-earth metals. This agreement extends to transport

calculations, as discussed below.

Table I lists the SDR results obtained using both the LB

and DLM methods. The SDR for a polycrystal was estimated

using the empirical formula39

ρpoly = 1
3
(2ρ⊥ + ρ‖). (1)

The overall trend in the Gd-Tm series is represented by

Fig. 3, where the LB results are plotted as a function of

the square of the exchange splitting �. The graphs include

the results obtained using both ferromagnetic and FSM input

potentials listed in Table I. We also show the c-axis SDR in

Gd calculated using several other values of the local moment

constrained by FSM. The exchange splitting � is defined

as the difference between the majority- and minority-spin

5d band centers (LMTO C parameters) obtained from the

LMTO parametrization of the (third-order) potential function

P (E).40 To improve the accuracy of this determination, these

parametrizations are performed with the LMTO linearization

energies ǫν for both spins selected so that they are close to the

C parameter for the same spin.

Calculated SDR for Gd and Ho with the 4f orbitals treated

using the LDA + U method are also shown in Fig. 3. LDA + U
calculations enhance the local moments compared to the open-

core approximation to 7.87 μB for Gd and 4.64 μB for Ho. The

calculated SDR are also enhanced to 81.7 μ� cm (in-plane)

and 68.2 μ� cm (c-axis) for Gd, and to 44.4 μ� cm (in-plane)

and 31.6 μ� cm (c-axis) for Ho.

As seen from Table I, the calculated results are systemati-

cally and significantly lower compared to experimental data,

particularly when DLM local moments are used. Figure 4

shows the effect of applying quantum corrections according
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FIG. 3. (Color online) SDR as a function of the squared exchange

splitting �2 in the open-core approximation (or as indicated). Filled

shapes: in-plane SDR; open shapes: c-axis SDR. Circles: Gd; squares:

Tb; triangles: Dy; inverted triangles: Ho; diamonds: Er; crosses: in-

plane Tm; pluses: c-axis Tm. Points labeled 50/50 Ising LDA + U:

calculations with LDA + U for 4f orbitals in the basis set and Ising

spin disorder.

to the models mentioned in Sec. I. For this purpose, we used

the LB results obtained using the atomic potential from the

ferromagnetic state, which are somewhat closer to experiment.

The experimental data are plotted for comparison.

V. DISCUSSION

Table I demonstrates excellent agreement between the LB

and DLM methods. Since the DLM method may be viewed

as a single-site approximation to LB results, this agreement

(a)

(b)

FIG. 4. (Color online) Comparison of calculated SDR with exper-

iment and the effect of quantum corrections. (a) In-plane direction,

(b) c-axis direction. Insets: enlarged scale. Crosses: experimental

data (Legvold et al.); filled circles: LB calculations with atomic

potentials taken from the ferromagnetic state. Filled diamonds: LB

results multiplied by (S + 1)/S; open circles: LB results multiplied

by (J + 1)/J .

shows that the DLM method is quite accurate for transport

calculations in all of the heavy rare-earth metals. This is not

surprising in view of the excellent agreement of the DOS

demonstrated above.

The dependence of SDR on �2 shown in Fig. 3 indicates a

fairly universal linear trend for both crystallographic directions

of transport. Since the exchange splitting plays the role

of the disorder strength for SDR, this approximately linear

dependence is natural. Still, Fig. 3 also reveals systematic

deviations from this general trend. The ρ(�2) dependencies for

individual elements (obtained using FSM) tend to have a larger

slope compared to the universal ρ ∝ �2 trend for the series.

In particular, when two different elements are constrained

by FSM to have the same exchange splitting �, the heavier

element has a somewhat larger SDR for both crystallographic

directions (compare the nearby points for Dy and Tb, or those

for Ho and Dy). These deviations can at least partially be

related to the systematic reduction of the Fermi velocities

in the series. Table II lists the values of the Fermi-surface

integral, which appears in the semiclassical expression for

the conductivity in the τ approximation. Note, however, that

a direct application of the semiclassical theory to the SDR

problem would be rather questionable. Indeed, such treatment

requires that the electronic bands are well defined, and that

the typical separations between them are small compared to

the scattering potential. In the SDR problem, the bands are

spin degenerate in the absence of the scattering potential; in

the paramagnetic state, the band splitting and the scattering

potential are of the same order.

The calculated in-plane resistivity is greater compared

to the c-axis direction for all elements, and the magnitude

of this anisotropy gradually increases in the Gd-Tm series.

These features agree very well with the experimental data,

suggesting that first-principles calculations correctly capture

the anisotropy of the electronic structure near the Fermi surface

and its dependence on the local moment of the 4f shell.

Note that the anisotropy of SDR is much smaller than that

of the Fermi-surface integral for σ in the τ approximation (see

Table II); this latter anisotropy, moreover, barely depends on

the nuclear charge.

Contrary to the crystallographic anisotropy of SDR and its

trend in the series, the magnitude of the calculated SDR is

significantly smaller compared to experiment, even when the

atomic potentials from the ferromagnetic state are used (see

Table I and Fig. 4). The experimental values are larger by

factors of 1.83 (2.14) in-plane (c-axis) for Gd, 1.80 (1.97) for

Tb, 1.75 (1.75) for Dy, 1.72 (1.43) for Ho, 1.57 (1.52) for

TABLE II. Calculated integrals
∫

v2
αδ(E − EF )dk (atomic units)

in the fictitious nonmagnetic state.

Element In-plane c-axis

Gd 0.679 1.247

Tb 0.655 1.257

Dy 0.609 1.217

Ho 0.571 1.166

Er 0.548 1.135

Tm 0.532 1.108
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Er, and 3.74 (2.16) for Tm. The worst agreement is found for

Gd, Tb, and especially Tm. Similar disagreement is, of course,

found for polycrystals. This systematic underestimation sug-

gests that while the electronic structure is likely described

reasonably well, the scattering rates are in reality much higher

than predicted by our classical frozen-spin-disorder model.

We have verified the reliability of our description of the

electronic structure by comparing the electronic bands of Gd

to highly precise full-potential calculations and found that a

slightly improved treatment with added empty spheres does

not materially change the results (see Appendix B for details).

We have also checked the effect of including the 4f states

in the basis set using the LDA + U method, as described in

Sec. II A, using Gd and Ho as representative examples. As

shown in Fig. 3, the SDR values obtained in this way for

both Gd and Ho are enhanced compared to the open-core

approximation, but the majority of this enhancement is due

to the larger exchange splitting in the LDA + U calculation.

(This effect is likely due to the dependence of the f -d exchange

integral on the energy of the 4f wave function.) There is also

a small enhancement of about 5% due to the use of a collinear

Ising-like random distribution instead of a fully noncollinear

random distribution. After accounting for these contributions,

we find that the remaining effect of including the 4f states in

the basis set is an SDR enhancement in the range of 12–20%.

According to photoemission data,31 the 4f states of other

heavy rare-earth elements also lie far from the Fermi level

compared to the exchange splitting and therefore should not

strongly affect spin-disorder scattering.

As discussed in Sec. I, the localized character of the 4f

states suggests that their quantum character needs to be taken

into account. In two simple models assuming either very

strong or very weak S-L coupling in the fully localized 4f

shell, the quantum correction to our classical results is either

(J + 1)/J or (S + 1)/S. In Ref. 10, it was argued that all

experimental results agree with the strong-coupling (J + 1)/J

correction, but only after an empirical electronic correction

was introduced. Since in our calculations all electronic

structure effects are already included, we can see whether

a quantum correction can systematically improve agreement

with experiment without any additional adjustable parameters.

The results predicted by two kinds of quantum corrections are

included in Fig. 4.

Both correction factors are always greater than 1, and

therefore they tend to improve the agreement with experiment.

It is clear, however, that the (J + 1)/J correction is generally

insignificant. The (S + 1)/S correction provides a much more

notable improvement, particularly for Ho and Er, and to a lesser

degree for other elements. However, the disagreement for Gd

and Tb remains significant, particularly considering that the

results shown in Fig. 4 are based on the atomic potentials

taken from the ferromagnetic state. Therefore, it is likely

that the (S + 1)/S correction does not fully capture the effects

of the quantum character of the 4f shell on conduction electron

scattering.

Full-potential band structure calculations show that the

conduction-band structure is quite insensitive to the orbital

structure of the 4f shell, as long as its total spin is kept

fixed (see Appendix C). Therefore, the random multipole

potential generated by the (hypothetical) fluctuations of the

orbital structure of the 4f shell does not provide an important

scattering mechanism. Nevertheless, these fluctuations can

affect the scattering rates by modifying the allowable sets of

initial and final states for electron scattering.

Apart from more complicated quantum corrections, two

other mechanisms can further enhance SDR. First, we found

that the inclusion of spin-orbit coupling for conduction

electrons in DLM increases the resulting SDR of Gd by

approximately 20% for both transport directions, and for both

ferromagnetic and DLM values of the local moments. Second,

the assumption that phonon and spin-disorder scattering

mechanisms are entirely independent and contribute additively

to the total resistivity may be wrong. If deviations from

Matthiessen’s rule for phonon and spin-disorder mechanisms

are important, then they should be more pronounced in Gd and

Tb where the Curie temperature is large and comparable with

the Debye temperature. This issue deserves a separate study,

which is beyond the scope of the present paper.

VI. CONCLUSIONS

In this paper, we investigated the SDR of the heavy

rare-earth metals using two complementary approaches, one

based on the explicit spin-disorder averaging of the Landauer-

Büttiker conductance of a supercell, and another one using lin-

ear response calculations in the paramagnetic state described

by the coherent potential approximation (DLM method). The

two methods agree well with each other and properly capture

the crystallographic anisotropy of the spin-disorder resistivity.

A fairly universal linear ρ(�2) dependence is obtained for the

series, where � is the exchange splitting of the conduction

band in the ferromagnetic state.

The calculated spin-disorder resistivities are systematically

smaller than experiment, suggesting that the scattering rates are

underestimated by the classical frozen-spin-disorder model. A

quantum correction factor of (S + 1)/S significantly improves

the agreement with experiment, especially for heavier ele-

ments. Moderate improvement is also obtained in individual

cases by including the 4f states in the basis set and by

including spin-orbit coupling. Still, all of these corrections

are insufficient, at least for Gd and Tb. Since in these two

elements the Curie and Debye temperatures are comparable,

it is possible that deviations from Matthiessen’s rule for

spin-disorder and phonon scattering may be important.
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APPENDIX A: CONVERGENCE WITH RESPECT TO

SUPERCELL CROSS SECTION

The cross section of the supercells used in the LB calcula-

tions was chosen to be large enough to minimize finite-size
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TABLE III. The dependence of the SDR on the supercell cross

section (units of μ� cm).

in-plane c-axis

Element (3 × 2) (4 × 3) (4 × 4) (5 × 5)

Gd (7.72 μB ) 44.9 43.8

Ho (4.20 μB ) 16.7 16.5 8.4 8.6

Tm (2.21 μB ) 5.96 6.05 3.43 3.55

Tm (2.088 μB ) 3.00 3.09 1.67 1.71

effects. The sufficiency of these sizes was established by

convergence tests for Gd, Ho, and Tm. For c-axis transport,

we increased the cross section to 5 × 5 (area of 12.5a2
√

3

with 25 atoms per monolayer) and integrated using a 20 × 20

k-point mesh. For in-plane transport, we increased the cross

section to 4 × 3 (area of 12ac
√

3 with 24 atoms per monolayer)

and integrated using a 12 × 12 k-point mesh.

Table III summarizes the dependence of the SDR on the

supercell cross section. The local moment used for each

element is included in the table. We used the reduced moment

taken from DLM for Ho, and both the ferromagnetic and DLM

local moments for Tm. The results for different cross sections

agree very well in all cases.

APPENDIX B: COMPARISON WITH FULL-POTENTIAL

BAND STRUCTURE

To verify the adequacy of our TB-LMTO representation

of the band structure, we chose Gd as a representative

example and performed a full-potential linearized augmented

plane wave (FLAPW) calculation using the FLEUR software

package41 for comparison. The 4f states were kept in the

partially polarized core, as in most of the TB-LMTO calcula-

tions reported here. The FLAPW and LMTO band structures

for Gd are shown in Fig. 5(a). Our FLAPW calculation is

consistent with the one reported in Ref. 30 and fits well with

angle-resolved photoelectron spectroscopy measurements.42

Near the Fermi level, the TB-LMTO band structure is quite

close to FLAPW, but there is a notable deviation along the

H-K and K-Ŵ symmetry lines.

The agreement with the FLAPW band structure is improved

by adding empty spheres in the TB-LMTO basis set. We

included the unoccupied 5f orbitals in the basis set for Gd

and reduced the local Gd moment to 7.603 μB using FSM. The

resulting band structure is shown in Fig. 5(b); the agreement

with FLAPW near the Fermi level is now almost perfect.

The SDR was calculated in the same way as described

in Sec. II A with the following modifications: the c axis is

calculated using a 2 × 2 supercell with 4 Gd atoms per mono-

layer (there are 12 empty spheres surrounding each monolayer

of 4 Gd atoms); random spin disorder is introduced only on

the Gd sites; 48 × 48 k-point mesh is used for Brillouin-zone

integration; and the conductance for each thickness is config-

urationally averaged over 30 random spin configurations.

The calculated SDR using the adjusted band structure

is 47.4 μ� cm, which is 6% larger than the result of

44.9 μ� cm reported in Table I. This increase is not statis-

tically significant. Therefore, we conclude that the original

TB-LMTO representation of the band structure is sufficiently

accurate for SDR calculations.

APPENDIX C: FLUCTUATIONS OF THE ORBITAL

STRUCTURE OF THE 4 f SHELL

The effect on the conduction bands of the multipole

potential generated by variations in the orbital structure of

(a) (b)

FIG. 5. (Color online) Band structures calculated using TB-LMTO and full-potential linear augmented plane wave (FLAPW) methods. Solid

red line: majority-spin LMTO; dashed blue line: minority-spin LMTO. Open red circles: majority-spin FLAPW; blue plus signs: minority-spin

FLAPW. (a) No empty spheres in the LMTO basis set. (b) With empty spheres in the LMTO basis set. Note the improved agreement along the

H-K and K-Ŵ symmetry lines.
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the 4f states (violating Hund’s rules) was evaluated using

a FLAPW41 calculation for Ho. For this purpose, the 4f

states were included in the valence basis and subjected to the

LDA + U potential (fully localized limit34 with U = 7.5 eV

and J = 0.7 eV). The band structures for different orbital

occupations of the 4f shell corresponding to orbital momenta

L = 0, 4, 5, and 6 were calculated self-consistently. We found

no detectable effect of the 4f shell orbital structure on the

conduction bands near the Fermi energy; the bands were

modified only close to the unoccupied 4f states, which in all

cases were more than 1 eV above the Fermi energy. Therefore,

we conclude that fluctuations of the orbital structure of the 4f

shell do not materially contribute to the scattering potential

seen by the conduction electrons.
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Condens. Matter 15, 2771 (2003).
34A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52,

R5467 (1995).
35A. Burusz, L. Szunyogh, and P. Weinberger, Philos. Mag. 88, 2615

(2008).
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