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First-principles study of structural, electronic and elastic properties of Nb4AlC3
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Using First-principles calculations, we have studied the structural, electronic and elastic properties of
Nb4AlC3, a new compound belonging to the MAX phases. Geometrical optimization of the unit cell is in
good agreement with the experimental data. The effect of high pressures, up to 20 GPa, on the lattice constants
shows that the contractions are higher along the c-axis than along the a-axis. We have observed a quadratic
dependence of the lattice parameters versus the applied pressure. The band structure shows that this compound
is electrical conductor. The analysis of the site and momentum projected densities shows that bonding is due
to Nb d-C p and Nb d-Al p hybridizations. The Nb d-C p bond is lower in energy and stiffer than Nb d-Al
p bond. The elastic constants are calculated using the static finite strain technique. We derived the bulk and
shear moduli, Young’s modulus and Poisson’s ratio for ideal polycrystalline Nb4AlC3 aggregate. We estimated
the Debye temperature of Nb4AlC3 from the average sound velocity. This is the first quantitative theoretical
prediction of the elastic properties of Nb4AlC3 compound, and it still awaits experimental confirmation.
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1. INTRODUCTION

The Mn+1AXn, also called the MAX phases, where M
is an early transition metal, A is an A group element, X is
either C or N and n=1-3, attract more and more attention
due to the combination of properties usually associated with
metals and ceramics (for details see Ref. 1 and the refer-
ences cited therein). Like metals, they are electrically and
thermally conductive, not susceptible to thermal shock, plas-
tic at high temperature and exceptionally damage tolerant,
and most readily machinable. Like ceramics, they are elasti-
cally rigid, lightweight, creep and fatigue resistant and main-
tain their strengths to high temperatures [2-12]. This makes
them attractive for many applications such as structural ma-
terials at elevated temperature. More than 50 compounds
were reported for n=1 (the so-called 211 phases). For com-
pounds with n=2, four members (the so-called 312 phases),
were identified. When n is increased to 3, (the so-called 413
phases), four compounds were synthesized [13-16].

Recently Hu et al [16] reported that Nb4AlC3, a new com-
pound belonging to the MAX phases, was discovered by
annealing bulk Nb2AlC at 1700◦C. The crystal structure of
Nb4AlC3 was determined by combined X-ray diffraction and
high-resolution transmission electron microscopy. It was re-
ported that Nb4AlC3 follows the Ti4AlN3-type crystal struc-
ture [17]. Its unit cell contains two formula units, with space
group P63/mmc (#194). The atomic positions are Nb1 at 4f
(1/3, 2/3, ZNb1), Nb2 at 4e (0, 0, ZNb2), Al at 2c (1/3, 2/3,
1/4), C1 at 2a (0, 0, 0) and C2 at 4f (1/3, 2/3, ZC), where
ZNb1, ZNb2 and ZC are the internal free coordinates. The
structure is thus defined by two lattice parameters, a and c,
and the three internal structural parameters, ZNb1, ZNb2 and
ZC. Fig. 1 shows the unit cell of Nb4AlC3.

In order to fully take advantage of the properties of
Nb4AlC3 for eventual technological applications, a theoreti-
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FIG. 1: The unit cell of Nb4AlC3.

cal investigation of the structural, elastic and electronic prop-
erties is necessary. First-principles calculations offer one of
the most powerful tools for carrying out theoretical studies
of these properties. In the present work, we report first prin-
ciples study of structural, elastic and electronic properties
for Nb4AlC3 compound, using the state of the art pseudo-
potential plane wave method (PP-PW), in the framework of
the density functional theory (DFT) within the local density
approximation (LDA).

The paper is organized as follows: In section 2, we briefly
describe the computational techniques used in this work. Re-
sults and discussions of the structural, electronic and elastic
properties are presented in section 3. Finally, conclusions
and remarks are given in section 4.
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FIG. 2: Pressure dependence of the relative lattice parameters (a/a0
and c/c0) for Nb4AlC3 compound. The solid lines are least-square
fits of the data points to a quadratic polynomial.

2. COMPUTATIONAL METHODS

The first-principles calculations were performed by em-
ploying pseudo-potential plane- waves (PP-PW) approach
based on the density functional theory (DFT) [18,19] and
implemented in the CASTEP code [20]. The major advan-
tages of this approach are: the ease of computing forces and
stresses; good convergence control with respect to all em-
ployed computational parameters; favourable scaling with
number of atoms in the system and the ability to make
cheaper calculations by neglecting core electrons. The
exchange-correlation potential is treated within the LDA, de-
veloped by Ceperly and Alder and parameterized by Perdew
and Zunger [21,22]. The presence of tightly-bound core
electrons was represented by non local ultra-soft pseudo-
potentials of the Vanderbilt-type [23]. The states C 2s22p2,
Al 3s23p1 and Nb 4s24p64d45s1 were treated as valence
states. The two parameters that affect the accuracy of cal-
culations are the kinetic energy cut-off which determines the
number of plane waves in the expansion and the number of
special k-points used for the Brillouin zone (BZ) integration.
We performed convergence with respect to BZ sampling and
the size of the basis set. Converged results were achieved
with 9 × 9× 2 special k-points mesh [24]. The size of the
basis set is given by cut-off energy equal to 360 eV. Careful
convergence tests show that with these parameters relative
energy converged to better than 5x10-6 eV/atom.

3. RESULTS AND DISCUSSION

3.1. Structural properties

The structural parameters of Nb4AlC3 were determined
using the Broyden-Fletcher-Goldfarb-Shenno (BFGS) min-
imization technique, with the flowing thresholds for con-
verged structures: energy change per atom less than 5 × 10-
6eV, residual force less than 0.01eV/Å, and the displacement
of atoms during the geometry optimization less than 0.0005
Å.

FIG. 3: Pressure dependence of the internal structural parameters
(ZNb1, ZNb2 and ZC) for Nb4AlC3 compound. The solid lines are
least-square fits of the data points to a quadratic polynomial.

 

FIG. 4: The calculated pressure-volume relations for Nb4AlC3
compound. The solid lines are given by the Birch-Murnaghan equa-
tion of state with the parameters listed in Table 1.

The calculated lattice parameters, a0 and c0, and the inter-
nal structural parameters ZNb1, ZNb2 and ZC, for Nb4AlC3,
as determined from geometry at P=0 GPa, are given in Ta-
ble 1 together with the available experimental and theoretical
data. There is a good agreement between our results and the
experimental ones [16]. The computed lattice constants a
and c for Nb4AlC3 deviate from the measured ones within
0.46 and 0.57%, respectively. The deviation from the exper-
imental value of c/a for Nb4AlC3 is found to be 0.29%. This
ensures the reliability of the present first-principles compu-
tations.

In order to show how the structural parameters in this com-
pound behave under pressure, the equilibrium geometries of
Nb4AlC3 unit cells were computed at fixed values of applied
hydrostatic pressure in the 0 to 20 GPa range with the step of
5 GPa, where, at each pressure, a complete optimization for
the structural parameters was performed. In Figs. 2 and 3,
we plot the variation of the relative changes of the lattice pa-
rameters (a

/
a0 andc

/
c0) and the internal parameters (ZNb1,

ZNb2 and ZC) versus applied hydrostatic pressure (p). We ob-
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TABLE 1: Structural parameters of Nb4AlC3 at zero-pressure: lattice constants, a0 and c0, internal parameters, ZNb1, ZNb2 and ZC, bulk
modulus, B0, and its pressure derivative, B’; along with the available measured results. The values of B0 and B’ are evaluated from the

fitting of the pressure–volume data to a third-order Birch-Murnaghan equation of state; equation (1) in the text.

 
                     a0 (Å)     c0 (Å)      00 ac      B0 (GPa)    B’       ZNb1               ZNb21                  ZC 

 
This work    3.1053    23.9827    7.7231    237          4.07      0.05514      0.157187     0.108531 
 
Exp. [16]     3.1296    24.1208    7.7073     -               -           0.0553       0.1574         0.1086   

TABLE 2: The calculated first- (α in 10−4 GPa−1) and
second-order (β in 10−5 GPa−2) pressure coefficients of the
relative lattice parameters (a

/
a0,c

/
c0) and internal structural

parameters (ZNb1, ZNb2 and ZC) for Nb4AlC3. 

   
                 0aa            0cc            ZNb1           ZNb2                  ZC      
                                        

   

     α         -12.30         -16.90         0.3603       1.4812        0.7841  

    β          0.8964         0.9922        -0.0051      -0.0843      -0.0226  

 
 
TABLE 3: The calculated elastic constants, Ci j (in GPa) for

Nb4AlC3. 

 
  C11        C33       C44     C12      C13       C66              
 
 

 445  349  176  143 152  151 

 

 TABLE 4: The calculated bulk moduli (in GPa), BV (Voigt’s bulk
modulus), BR (Reuss’s bulk modulus) and B = (BR +BV )/2, shear
moduli (in GPa), GR (Reuss’s shear modulus), GV (Voigt’s shear
modulus) andG = (GR +GV )/2, Young’s modulus (in GPa), E,

and Poisson’s ratio, ν, for Nb4AlC3. 
 
      BR          BV         B         GR          GV          G          E            ν       

 
   234.5      237.0     235     149.0   153.4 151       374      0.2358 

 
 

serve a quadratic dependence in the considered range of pres-
sure. The same behaviour has been previously observed for
Ta4AlC3 [14]. The solid curve is the quadratic least-squares
fit. The values of the linear and quadratic pressure coeffi-
cients of a

/
a0, c

/
c0, ZNb1, ZNb2 and ZC for Nb4AlC3 are

given in Table 2. Fig. 2 shows that the compressibility of

TABLE 5: The calculated density (ρ in g/cm3), the longitudinal,
transverse and average sound velocity (νl , νt , νm in m/s) calculated
from polycrystalline elastic modulus, and the Debye temperatures
(θD in K) derived from the average sound velocity for Nb4AlC3. 
 
        ρ             lν            tν            mν             Dθ  
 

 

       7.21       7791        4581       5077         517 

 
 

Nb4AlC3 is greater along the c axis than along the a axis.
The calculated unit cell volumes at fixed values of applied

hydrostatic pressure in the 0 to 20 GPa range with the step
of 5 GPa were used to construct the equation of state (EOS),
which was fitted to a third-order Birch-Murnaghan equation
[25] (Fig. 4):
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Here V0 is fixed at the value determined from the zero-
pressure data. We obtained, by least-squares fit, the bulk
modulus B0 at zero pressure, which represents the resistance
to volume change and is related to the overall atomic binding
properties in material, and its pressure derivative B’. These
are listed in Table 1.

3.2. Electronic properties

The calculated energy band structure for Nb4AlC3, at
equilibrium lattice parameters, along the high symmetry di-
rections in the Brillouin zone is shown in Fig. 5. The va-
lence and conduction bands overlap considerably and there
is no band gap at the Fermi level. As a result Nb4AlC3 will
exhibit metallic properties.

To further elucidate the nature of chemical bonding in this
compound, we study the partial density of states (PDOS) of
Nb4AlC3 as shown in Fig. 6. An important feature is the
existence of a pseudo gap in the DOS in the vicinity of the
Fermi level, which is an indication for stability [26]. Car-
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FIG. 5: Band structures along the principal high-symmetry direc-
tions in the Brillouin zone of Nb4AlC3 compound.

FIG. 6: Partial density of states (PDOS) for Nb4AlC3 compound as
a function of energy. Fermi level is aligned with 0 eV.

bon does not contribute to the DOS at the Fermi level and
therefore is not involved in the conduction properties. Nb
d electrons are mainly contributing to the DOS at the Fermi
level, and should be involved in the conduction properties.
Al electrons do not contribute significantly at the Fermi level
due to a scooping effect resulting from the presence of the
Nb d states. These results are consistent with previous re-
ports on MAX phases [27]. It is apparent that a covalent
interaction occurs between the constituting elements due to
the fact that states are degenerate with respect to both angu-
lar momentum and lattice site. C p and Nb d as well as Al p
and Nb d states are hybridized. Also, due to the difference in
the electronegativity between the comprising elements, some
ionic character can be expected. The bonding character may
be described as a mixture of covalent-ionic and, due to the
d resonance in the vicinity of the Fermi level, metallic. The
pseudo gap is likely to split the bonding and anti bonding
orbitals. The PDOS shows an other interesting feature: the
hybridization peak of Nb d and C p lies lower in energy than
that of Nb d and Al p. This suggests that the Nb d-C p bond
is stiffer than the Nb d-Al p bond.

3.3. Elastic properties

It is well established that first principles studies based on
DFT can be used to obtain reliable elastic properties of in-
organic compounds [28]. Several methods are available for
computation of stiffness coefficients, but currently the finite
strain method, used in the present work, seems to be the most
commonly used one. In this approach, the ground state struc-
ture is strained according to symmetry-dependent strain pat-
terns with varying amplitudes and a subsequent computing of
the stress tensor after a re-optimization of the internal struc-
ture parameters, i.e. after a geometry optimization with fixed
cell parameters. The elastic stiffness coefficients are then the
proportionality coefficients relating the applied strain to the
computed stress. Both stress and strain have three tensile and
three shear components, giving six components in total. The
linear elastic stiffnesses, Cij, form thus a 6x6 symmetric ma-
trix with a maximum of 21 different components, such that
σi = Ci jε j for small stresses s, and strains, e [29,30]. Any
symmetry present in the structure may make some of these
components equal and may let other components vanish. A
hexagonal crystal has six different symmetry elements (C11,
C12, C13, C33, C44, and C66), and only five of them are inde-
pendent since C66 = (C11 −C12)/2. For the hexagonal sys-
tem, two different strain patterns, one with non-zero first and
fourth components, and another with a non-zero third com-
ponent, give stresses that are related to all five independent
elastic coefficients [31-33]. Three positive and three nega-
tive amplitudes were used for each strain component with
the maximum value of 0.5%. The elastic stiffness coeffi-
cients were then determined from a linear fit of the calculated
stress as a function of strain.

In Table 3, we list the calculated values of the elastic con-
stants Ci j. We are not aware of any experimental data on the
elastic properties. Future experimental measurements will
test our calculated predictions.

Once the elastic constants are determined, we would like
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to compare our results with experiments, or predict what an
experiment would yield for the elastic constants. A problem
arises when single crystal samples cannot be obtained. Then
it is not possible to measure the individual elastic constants
Ci j. Instead, the isotropic bulk modulus B and shear modulus
G are determined [34]. These quantities cannot, in general,
be calculated directly from theCi j, but we can use our val-
ues to place bounds on the isotropic moduli. Reuss found
lower bounds, the Reuss bulk modulus (BR) and the Reuss
shear modulus (GR), for all lattices [34,35], while Voigt dis-
covered upper bounds, the Voigt bulk modulus (BV ) and the
Voigt shear modulus (GV ) [34,36]. Hill has shown that the
Voigt and Reuss averages are limits and suggested that the
actual effective moduli could be approximated by the arith-
metic mean of the two bounds [37]. We also calculated the
Young’s modulus, E, and Poisson’s ratio, ν, which are fre-
quently measured for polycrystalline materials when inves-
tigating their hardness. These quantities are related to the
bulk modulus B and the shear modulus G by the following
equations [34]:

E = 9BG
/
(3B +G) (2)

ν = (3B−E)
/
(6B) (3)

The calculated bulk modulus B0, shear modulus G,
Young’s modulus E and Poisson’s ratio ν of Nb4AlC3 are
given in Table 4. From Tables 1 and 4, we can see that
the calculated value of BV , one limiting of the bulk modu-
lus, from the elastic constants (Table 4) has nearly the same
value as the one obtained from the EOS fitting (Table 1).
This might be an estimate of the reliability and accuracy of
our calculated elastic constants for Nb4AlC3 compound.

3.4. Calculation of Debye temperature

Having calculated the Young’s modulus E, bulk modulus
B, and shear modulus G, one can calculate the Debye temper-
ature, which is an important fundamental parameter closely
related to many physical properties such as elastic constants,
specific heat and melting temperature.

At low temperature the vibrational excitation arises solely
from acoustic modes. Hence, at low temperatures the De-
bye temperature calculated from elastic constants is the same
as that determined from specific heat measurements. One
of the standard methods to calculate the Debye temperature
(θD) is from elastic constants data, since θD may be esti-
mated from the average sound velocity, νm by the following
equation [38,39]:

θD =
h
kB

[
3

4πVa

]1/3
vm (4)

where h is the Plank’s constant, kB the Boltzmann’s constant
and Va the atomic volume. The average sound velocity in the
polycrystalline material is given by [38,39]:

νm =
[

1
3

(
2
ν3

t
+

1
ν3

l

)]−1/3
(5)

where νl and νt are the longitudinal and transverse sound
velocity obtained using the shear modulus G and the bulk
modulus B from Navier’s equation [38,40]:

νl =
(

3B+4G
3ρ

)1/2
and nut =

(
G
ρ

)1/2
(6)

where ρ is the density of the considered compound. The
calculated sound velocity and Debye temperature as well as
the density for Nb4AlC3 are given in Table 5. Unfortunately,
as far as we know, there are no data available in the literature
on these properties for this compound. Future experimental
work will test our calculated results.

4. CONCLUSIONS

Employing PP-PW approach based on density functional
theory, within the local density approximation, we studied
the structural, electronic and elastic properties of Nb4AlC3
compound. A summary of our results follows.

1. The pressure dependence of the relative lattice param-
eters (a

/
a0,c

/
c0) and internal structural parameters

are calculated. These results should be useful for fu-
ture work on this compound.

2. This material is found to be conducting.

3. Nb4AlC3 is stable compound and its bonding is driven
by Nb d-Al p and Nb d-C p hybridizations. The Nb
d-C p bond is stiffer than M d-Al bond.

4. A numerical first-principles calculation of the elastic
constants was used to predict C11, C12, C13, C33, C44
and C66.

5. We calculated the shear modulus G, Young’s modu-
lus E, and Poisson’s ratio ν, for ideal polycrystalline
Nb4AlC3 aggregate.

6. We derived the sound velocity and the Debye temper-
ature for Nb4AlC3 compound.
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