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We study the structural, electronic, magnetic, optical, and magneto-optical properties of

NpN in detail using the fully relativistic full-potential calculations based on the density

functional theory within the local spin density approximation. We successfully reproduce

the positive sign of the electric field gradient (EFG) at Np nuclei. The positive EFG is in

striking contrast to the negative EFG in a Np3+ free ion, indicating the importance of the

interplay between spin-orbit coupling and covalent bonding in NpN. Also, the calculated

band structure shows large splittings induced by spin polarization and spin-orbit coupling,

suggesting that both effects are indispensable for understanding the electronic properties

of this material. This results in a large Kerr rotation angle of about 2 degrees, which is

comparable to those of uranium calcogenides.
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1. Introduction

Physics of actinide compounds has been one of the important research fields of condensed

matter physics for over a half century, particularly in connection with the strong spin-orbit

coupling associated with actinide atoms.1) Among the compounds, those with the rock-salt

structure AnX, where An is an actinide element and X is an anion element, are regarded

as a representative and their properties have been studied both experimentally and theo-

retically.2–27) Despite the simpleness of the structure, AnX shows a wide variety of magnetic

phenomena, such as simple ferromagnetic to complex antiferromagnetic structure,2,3, 11,27) the

dominance of orbital magnetic moment over spin magnetic moment,5,6, 9, 14,16,19,20,23,27) and

a large magneto-optical effect.11,13,14,17)

Thus far, several theoretical studies of AnX have been carried out to elucidate trends

upon replacing the constituent atoms and have successfully explained the overall proper-

ties.4,6–10,12,22,25) For example, a series of studies performed by Brooks made very important

contributions to the understanding of the trends in the structural and electronic properties

of AnX.4,6–8,10) In these studies, performing the calculations based on the density functional

theory within the local density approximation (LSDA), the lattice constants and the bulk
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moduli were studied using an approximate equation of state and also the band structures

were calculated assuming paramagnetic ground states. Despite the several approximations

employed in these studies, the overall properties have been explained successfully.

On the other hand, there are not so many detailed theoretical studies of individual AnX.

The compounds relatively studied in detail are uranium pnictides and calcogenides, UX,

where X=N, P, As, Sb, S, Se, and Te.5,13–17,19,20,23,26) One of the possible reasons why UX

has been studied in detail is that most UX compounds are ferromagnetic and have one formula

unit in each unit cell, and accordingly, theoretical studies of such compounds are relatively

easy. Firstly, an important study was carried out by Brooks and Kelly.5) In this study, it has

been shown that a large orbital magnetic moment dominates the spin magnetic moment and

plays an essential role in magnetic properties of UX. Also, for the structural properties, a

detailed study employing the full-potential linear muffin-tin-orbital method within the LSDA

was carried out.15) In this study, the previous results obtained using an approximate equation

of state were reproduced by performing more elaborate calculations. Furthermore, for the

electronic, magnetic, optical, and magneto-optical properties, several detailed studies have

been carried out within the LSDA and the muffin-tin potential approximation.13,14,17) In

these studies, Kerr spectra were calculated, and as a result, a large Kerr rotation angle of

about 3 degrees was found to be in agreement with the experimental result, although the

detailed structures of the calculated spectra were not found to agree with each other and the

experimentally observed one. In addition, there is a recent study involving the X-ray magnetic-

circular-dichroism (XMCD) spectra of uranium calcogenides.23) This seems important because

the analysis of the XMCD spectra enables us to investigate the orbital magnetic moment of

the actinide atoms using the XMCD sum rule.28,29) The properties of UX have thus been

studied theoretically in detail to a satisfactory extent.

On the contrary, there are very few detailed theoretical studies of NpX, where X= N, P,

As, and Sb. Among recently published papers, we can find only one theoretical study.27) In this

study, Atta-Fynn and Ray have investigated the structural and electronic properties of NpN, as

well as those of other actinide nitrides, using the full-potential linearized augmented plane wave

plus local orbital method. They have shown that the total energy significantly decreases with

the inclusion of spin-orbit coupling, implying that the effect of spin-orbit coupling is large and

cannot be ignored. However, in their study, spin-orbit coupling was treated perturbatively, and

if possible, it is desirable to treat spin-orbit coupling more accurately, i.e., by solving the Dirac

equation directly. Moreover, NpX is worth being studied in detail because of the following

reason. Since 237Np nuclei possess a non-zero electric quadrupole moment,30) the electric

field gradient (EFG) at the Np nuclei can be measured experimentally by, e.g., Mössbauer

spectroscopy.2) In particular, for NpX, the study of the EFG at the Np nuclei is interesting

owing to the following reason. Since the rock-salt structure is cubic, the EFG at the Np nuclei
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in NpX might, at first sight, be expected to be zero. It is not, however, the case; the charge

distribution around a Np nucleus does not show the cubic symmetry purely because of the

existence of a non-zero orbital magnetic moment due to the strong spin-orbit coupling. To

calculate the EFG in NpX, it is indispensable to employ not only fully relativistic but also

full-potential calculations. However, this type of calculation has not been carried out yet for

studying the EFG in NpX. It is then natural to begin with the simplest compound of NpX,

i.e., NpN, which is ferromagnetic and has one unit formula in the unit cell.

In this study, we investigate the structural, electronic, magnetic, optical, and magneto-

optical properties of NpN using the fully relativistic full-potential calculations based on the

density functional theory within the LSDA. To examine the reliability of the results of our

calculations with respect to the quality of basis sets, we employ two methods: the fully rela-

tivistic full-potential linear-combination-of-atomic-orbitals (FFLCAO) method and the fully

relativistic full-potential mixed-basis (FFMB) method.31) In §2, we describe the method of

calculations briefly. Next, §3 is devoted to the results and discussion. In this section, we present

the structural, electronic, magnetic, optical, and magneto-optical properties of NpN in detail.

We show the results of the optimization of the lattice constant and then the results of the

calculations of the cohesive energy and bulk modulus. The orbital and spin magnetic moments

are studied next and the results of the calculations of the EFG are examined. Also, the band

structure and the densities of states are given. Furthermore, the results of calculating the

optical conductivity tensor, reflectivity, Kerr and XMCD spectra are studied. In particular,

we compare the orbital magnetic moment calculated using a conventional method with that

calculated using the XMCD sum rule. Finally, the conclusions of this study are given in §4.

2. Method of Calculations

NpN crystallizes in the rock-salt structure.2) The lattice constant in the equilibrium struc-

ture at ambient pressure is 4.90 Å. In the ferromagnetic phase, the magnetization is parallel

to the (111) axis. In this study, we consider the (111) axis as the z-axis. It should be noted

that the crystal still remains in the rock salt structure because all the atomic coordinates and

primitive vectors are rotated simultaneously. Also, to compare the results of calculations with

the available experimental data, all the calculations presented in this study were carried out

using the experimental lattice constant except for the optimization of the lattice constant itself

and the calculations of the cohesive energy and bulk modulus because these quantities them-

selves are the structural properties with respect to the most stable structure. We employed

the FFLCAO and FFMB methods.31) Using the two methods, we can examine the reliability

of the results of calculations with respect to the quality of basis sets because two basis sets

are distinctly different from each other. In both methods, we deal exactly with all relativistic

effects including spin-orbit coupling by solving Dirac-Kohn-Sham equations directly. It should

be noted that, in the FFLCAO and FFMB methods, all the matrix elements of the Hamilto-
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nian of the Dirac-Kohn-Sham equations are calculated using four-component basis functions,

and as a result, spin-orbit coupling, as well as other relativistic effects, is considered without

any approximation except that the number of basis functions is finite. Also, by spherical har-

monic expansion, we calculated the electrostatic potential without any shape approximation,

thereby calculating the EFG at the Np nuclei accurately. We expanded the electrostatic po-

tential up to l=8, where l denotes the degree of spherical harmonic expansion. Furthermore,

using the fully relativistic expression for the optical conductivity tensor, where the matrix

elements of the Dirac matrices are used as the transition matrix elements instead of those

of the momentum operator,32) the Kerr and XMCD spectra were highly precisely calculated.

In all calculations, we employed the LSDA exchange-correlation potential represented by the

Perdew-Zunger parameterization of Ceperly-Alder results.35,36)

The four-component atomic orbitals used in the FFLCAO method are as follows: 1s, 2s,

2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f , 5s, 5p, 5d, 5f , 6s, 6p, 6d, and 7s orbitals of neutral Np atoms,

5f , 7s, and 7p orbitals of Np2+ atoms, 1s, 2s, and 2p atomic orbitals of neutral N atoms,

and 2s and 2p orbitals of N2+ atoms, and 3d orbitals of N5+ atoms. It is necessary to use

not only the atomic orbitals of neutral atoms but also those of positively charged atoms to

describe the contraction of atomic orbitals accompanied by cohesion. On the other hand, the

basis function adopted in the FFMB method consists of the four-component atomic orbitals

of neutral Np and N atoms used in the FFLCAO method, and four-component plane waves,

which are positive-energy solutions of the Dirac equation for a free electron. In this study, we

chose the cut-off energy of the four-component plane waves to be 50 eV. This cut-off energy

corresponds to 26 four-component plane waves for each k point.

We carried out real-space integration using 4644 points for the Np atom and 2064 points

for the N atom. Also, we carried out Brillouin-zone integration using two methods: the special-

point method for optimizing the lattice constant and the good-lattice-point method for cal-

culating the electronic, magnetic, optical, and magneto-optical properties.37,38) In optimizing

the lattice constant, we used 64 k points; we confirmed the convergence of the total energy

with respect to the number of k points and found it to be less than 0.001 eV/atom. The

cohesive energy was calculated for several lattice constants and then the bulk modulus was

evaluated using Murnaghan’s equation of state.39) In calculating the electronic, magnetic, op-

tical, and magneto-optical properties, we used up to 1958 k points by increasing the number

of k points to confirm the convergence.

We also studied the spin and orbital magnetic moments. It should, however, be noted that

the calculation of orbital magnetic moments can be carried out only using a method that

employs local orbitals as basis functions.40) At present, there are no formulas available for

calculating orbital magnetic moments when plane waves are used as basis functions as in the

FFMB method. For this reason, we calculated the orbital magnetic moment only using the
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FFLCAO method. Moreover, a non-zero orbital magnetic moment results in a non-zero EFG

at the Np nuclei, which was observed experimentally by Mössbauer measurement.2) The EFG

is given by

Vξη =
∂2V

∂ξ∂η
, (1)

where V represents the electrostatic potential and ξ and η denote Cartesian coordinates;41)

the second derivative on the right-hand side is evaluated at the Np nuclei. By diagonalizing

Vξη, we obtain three eigenvalues, Vxx, Vyy, and Vzz. Customarily, they are arranged in the

order such that |Vxx| ≤ |Vyy| ≤ |Vzz|. The coupling constant e2qQ/h is then defined by

e2qQ/h = eVzzQ/h , (2)

where Q represents the electric quadrupole moment of a nucleus; we used Q = +3.886 barn for

the 237Np nuclei.30) Also, the asymmetry parameter is defined by (Vxx−Vyy)/Vzz. This quantity

in NpN, however, is zero because the axial symmetry still survives even when there exists a

non-zero orbital magnetic moment. Furthermore, in calculating the optical conductivity tensor

σξη as a function of photon energy ~ω, we used the fully relativistic expression, where the

matrix elements of the Dirac matrices α, instead of those of the momentum operator, are

used as the transition matrix elements between the occupied state |lk〉 and the unoccupied

state |nk〉:32)

σξη =
2ie2c2

~Ω

∑

k

∑

l

∑

n

flk(1 − fnk)

ω2
τ − ω2

nlk

×
{

ωτ

ωnlk
Re [〈lk|αξ|nk〉〈nk|αη|lk〉] + iIm [〈lk|αξ|nk〉〈nk|αη|lk〉]

}

,

(3)

where ωnlk denotes the energy difference between the occupied and unoccupied states, (εnk−
εlk)/~, and ωτ denotes ω + ~/τ with τ being the lifetime of excited electrons. Also, Ω denotes

the volume of the unit cell and flk and fnk denote occupation numbers. Here, we consider only

the interband contribution to the optical conductivity tensor to avoid an ambiguity due to

the phenomenological description of the intraband contribution by the Drude formula. Then

the reflectivity and Kerr spectra were calculated using the optical conductivity tensor. The

reflectivity R±, where the plus and minus signs refer to the left and right circular polarizations,

respectively, was calculated using

R± =
(n± − 1)2 + κ2

±

(n± + 1)2 + κ2
±

. (4)

In this equation, n± and κ± are the real and imaginary parts of the complex refractive index,

respectively.

n± + iκ± =
√

εxx ± iεxy (5)

Here, εξη is the dielectric tensor defined by εξη = δξη + 4πiσξη/ω. Also, the Kerr rotation θK
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and Kerr ellipticity ηK were calculated using

θK + iηK = − σxy

σxx

√

1 + i(4π/ω)σxx

. (6)

Finally, we explain the method for calculating the XMCD. The fully relativistic calculations

of the XMCD have been presented in previous pioneering works.33,34) Although the essence

of the method is the same, we calculated the XMCD using the imaginary part of the complex

refractive index κ±; the total absorption coefficient µtot and the XMCD ∆µ of the M4,5 edges

of Np are given by

µtot =
2ω

c
(κ+ + κ−) (7)

and

∆µ =
2ω

c
(κ+ − κ−) , (8)

respectively. In addition, the absorption coefficient for light linearly polarized along the z axis,

µz =
2ω

c
κz , (9)

where κz = Im
√

εzz, was used for calculating the orbital moment using the XMCD sum

rule.28,29) In the analysis of the results presented in the next section, we used the lifetime

parameter ~/τ = 0.5 eV for the infrared to ultraviolet region, while we used ~/τ = 2.5 eV for

the X-ray region.

3. Results and discussion

We begin with the results of the optimization of the lattice constant. In Table I, we show

the optimized lattice constant, as well as the cohesive energy, and the bulk modulus calculated

using the optimized lattice constant. We also show those obtained by experiments in the table.

The lattice constant optimized using the FFLCAO (FFMB) method is 4.77 (4.78) Å; the error

is found to be −2.7 (−2.4) % with respect to the experimental lattice constant of 4.90 Å. This

error is larger than those known for well-studied materials, such as diamond and Si. However,

this error is acceptable when the LSDA is used. As will be shown when discussing the results

of the calculations of the band structure, the bonding between the Np and N atoms is covalent

to some degree. The underestimation in optimizing the lattice constant of NpN may be due

to the overestimation of the covalent bonding between the Np-5f and N-2p orbitals. This is

mainly because the incorporation of the electron correlation between the Np-5f electrons by

the LSDA is not perfect. Nevertheless, it thus seems that we can deal with the 5f electrons

in NpN as itinerant electrons using the LSDA with acceptable errors accompanied by this

approximation.

The optimization of the lattice constant of NpN was successfully carried out in a pioneering

study by Brooks assuming a paramagnetic ground state.8) In his study, the following equation
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of state describing the electronic pressure P was employed.

P = − δ

δV

(

∑

i

niεi

)

−
∑

t

(

1

4πS2
t

)
∫

St

n(St) {εxc(St) − µxc(St)}dSt + UM (10)

Here, εxc(St) and µxc(St) represent the exchange-correlation energy and potential, respec-

tively, εi is the eigenvalue, n(r) the charge density, St the Wigner-Seitz radius of atom t in

the primitive cell, n(St) the charge density at St, and UM the Madelung term. Using this

approximate equation of state, Brooks determined the optimized lattice constant to be 4.95

Å, which is in very good agreement with the experimental lattice constant of 4.90 Å, with

an overestimation of about +1 %. Although this overestimation, which is in contrast to the

underestimation found in our study, may be caused by the approximations employed when

deriving the equation of state or the assumption of a paramagnetic ground state or both, the

excellent agreement indicates that the previous calculations have successfully captured the

essential features of the elastic properties of NpN. Atta-Fynn and Ray have carried out the

optimization of the lattice constant of NpN in a recent study.27) The optimized lattice con-

stant was found to be 4.86 A with an underestimation of about −1 %. Although they treated

spin-orbit coupling perturbatively, the result is in very good agreement with the experimental

lattice constant.

The cohesive energy calculated using the FFLCAO (FFMB) method is 7.99 (8.04)

eV/atom when the optimized lattice constant is used. Although not shown in the table, when

the experimental lattice constant is used, the cohesive energy calculated using the FFLCAO

(FFMB) method is 7.91 (7.98) eV/atom. In both cases, the calculated cohesive energy is over-

estimated by about 2 eV/atom in comparison with the experimental one, 6.04 eV/atom.18)

The overestimation often occurs when using the LSDA. For example, the LSDA overestimates

the cohesive energy of graphite by about 1.6 eV.42) We may thus conclude that the overes-

timation of the cohesive energy of about 2 eV is acceptable when the LSDA is used. The

bulk modulus calculated using the FFLCAO (FFMB) method is 230 (250) GPa. The previous

result, 200 GPa, which is obtained using the approximate equation of state,8) is smaller than

our results by about 20 %. Although the experimental bulk modulus has not been measured

yet, we believe that our results are also in agreement with the experimental bulk modulus

with an error of about 20 %, which is a typical error associated with the use of the LSDA

in calculating the bulk modulus. Atta-Fynn and Ray calculated the cohesive energy and the

bulk modulus of NpN.27) They obtained 6.5 eV/atom for the cohesive energy and 183 GPa

for the bulk modulus. Both results are considerably smaller than our results. There are sev-

eral possible origins for these discrepancies. One possible origin is that Atta-Fynn and Ray

treated spin-orbit coupling perturbatively, not by solving the Dirac equation directly, and

thus, the total energy might not be calculated accurately. Another possible origin is that they

adopted the generalized gradient approximation, which typically gives larger lattice constants
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and smaller cohesive energies, as well as smaller bulk moduli, than those in the case of using

the LSDA. However, to elucidate the origin of the discrepancies, further theoretical studies

are necessary.

We next examine the results of the calculations of the spin and orbital magnetic moments

per formula unit. The non-zero orbital magnetic moment is the direct consequence of spin-

orbit coupling. The results of calculations are shown in Table II together with those obtained

by experiments. The calculations were carried out using the experimental lattice constant to

compare the results of calculations with those of experiments. Here, we mention again that

we cannot calculate the orbital magnetic moment using the FFMB method because there are

no formulas available for calculating orbital magnetic moments when plane waves are used

as basis functions. It is found that the spin and orbital magnetic moments are antiparallel

to each other. Furthermore, the magnitude of the orbital magnetic moment calculated using

the FFLCAO method, 2.55 µB, is larger than that of the spin magnetic moment calculated

using the FFLCAO (FFMB) method, −2.09 (−2.20) µB, as is also known for US for which

the magnitude of the calculated orbital magnetic moment, 2.43 µB, is larger than that of

the calculated spin magnetic moment, −1.66 µB.14) The calculated total magnetic moment,

0.46 µB, is, however, considerably smaller than the experimental total magnetic moment,

1.38 µB.2) The underestimation of the total magnetic moment was also found in US; the

calculated total magnetic moment of US is 0.8 µB, while the experimental total magnetic

moment is 1.6-1.7 µB.14) The underestimation may be caused by the deficiency of the LSDA,

as pointed out in the previous studies.5,6, 9, 14,23) Atta-Fynn and Ray calculated the total

spin magnetic moment to be −2.45 µB.27) Their result is larger than our result. Atta-Fynn

and Ray also calculated the site-projected spin, orbital, and total magnetic moments to be

−2.26, 2.21, −0.05 µB, respectively. These results also support the cancellation of the spin

and orbital magnetic moments. However, the spin magnetic moment slightly dominates the

orbital magnetic moment in contrast to our result. The origin of the discrepancy might be

due to the hypothetical magnetization axis assumed by Atta-Fynn and Ray; they chose the

quantization axis for magnetization to be in the (001) direction, not in the experimentally

observed direction, i.e., the (111) direction, which we consider as the magnetization axis in our

calculations. To elucidate whether the spin magnetic moment dominates the orbital magnetic

moment, further theoretical and experimental studies are indispensable.

Furthermore, a quantity closely related to the orbital magnetic moment or spin-orbit cou-

pling in NpN is the EFG at the Np nuclei. Since the crystal structure of NpN is cubic, the

charge density, at first sight, might be expected to have a cubic symmetry, and accordingly, the

EFG to be zero. In NpN, however, this is not the case; the charge density does not show the

cubic symmetry with respect to the Np nucleus purely because of the existence of a non-zero

orbital magnetic moment or spin-orbit coupling. Consequently, the non-zero EFG arises at
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Table I. Lattice constant (Å), cohesive energy (eV/atom), and bulk modulus (GPa). The optimized

lattice constant is used for the calculations of the cohesive energy and bulk modulus.

Lattice Cohesive Bulk

constant energy modulus

FFLCAOa) 4.77 7.99 230

FFMBb) 4.78 8.04 250

Expt. 4.90c) 6.04d) –

a) Fully relativistic full-potential LCAO calculations

b) Fully relativistic full-potential mixed-basis calculations

c) Ref. 2

d) Ref. 18

the Np nuclei. It should be noted that the EFG vanishes if one calculates this quantity using

the electrostatic potential spherically symmetric with respect to the nuclear position, as in

the case of the muffin-tin potential approximation. Accordingly, the full-potential calculations

are indispensable in the study of the EFG. The EFG calculated using the FFLCAO (FFMB)

method is +96 (+107) MHz/barn with the principal axis along the z-axis. The experimental

e2qQ/h is +218 MHz, and accordingly, the experimental EFG can be estimated to be +56

MHz/barn if we use +3.886 barn for the nuclear quadrupole moment of 237Np.2,30) It should

be noted that at least the positive sign and the order of magnitude of the EFG are success-

fully reproduced, although the errors are large. The reproduction of the positive sign seems

important because the sign of the EFG in a Np3+ free ion is negative.2) We calculated the

EFG in a Np3+ free ion and found it to be −350 MHz/barn. This means that the positive

sign of the EFG originates in the interplay between spin-orbit coupling and the solid state

effect. It is most likely that the strong covalent bonding between Np and N atoms overcomes

spin-orbit coupling and results in a positive EFG.

Here, it might be worth discussing the reason why the calculation of the EFG is suc-

cessful, although the calculations of magnetic moments are not very satisfactory. It has been

established that the LSDA describes the structural properties well even if it does not describe

the magnetic properties very satisfactorily. This means that the LSDA can give a realistic

electronic charge density, although it gives a poor description of the spin density. Accordingly,

the EFG can be calculated satisfactorily using the LSDA because the EFG originates from

the electronic charge density. Therefore, we believe that the result of our calculations that

the EFG is positive is reliable, although the calculations of magnetic moments are not very

satisfactory.

We now show the band structure obtained in this study in Fig. 1. The band structure
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Table II. Spin, orbital, and total magnetic moments (µB/formula unit), and electric field gradient

(MHz/barn). The experimental lattice constant is used for the calculations.

Mspin Morb Mtot EFG

FFLCAOa) −2.09 2.55 0.46 +96

FFMBb) −2.20 – – +107

Expt. – – 1.38c) +56d)

a) Fully relativistic full-potential LCAO calculations

b) Fully relativistic full-potential mixed-basis calculations

c) Ref. 2

d) The experimental electric field gradient is calculated, assuming +3.886 barn for the nuclear

quadrupole moment of 237Np, as reported in ref. 30.

obtained using the FFLCAO method and that obtained using the FFMB method agree very

well with each other, and hence, we show only the result of the FFLCAO calculations; the

differences between the one-electron energies obtained using the FFLCAO method and those

obtained using the FFMB method are found to be less than 0.1 eV in the energy range shown

in Fig. 1. In this figure, it should be noted that up-spin and down-spin bands can no longer be

distinguished in a strict sense because of spin-orbit coupling, and accordingly, they are shown

together. The six bands between −6 and −1 eV consist mainly of N-2p orbitals, and thus, they

can be referred to as the N-2p bands, although they hybridize considerably with the Np-5f ,

Np-6d, and Np-7s orbitals. Furthermore, the fourteen bands between −2 and 2 eV consist

mainly of Np-5f orbitals. Above 2 eV, there exist bands with large dispersions; these bands

consist of Np-6d and Np-7s orbitals. Although not shown in the figure, it is found that the

Np-6p and N-2s orbitals form hybridized bands with a considerable dispersion at about −15

eV. This suggests that the Np-6p orbitals should be dealt with as valence orbitals, as is the

case of materials with light actinide atoms.43) The band structure of NpN was calculated using

the relativistic linear muffin-tin orbital method assuming a paramagnetic ground state.8) As

a result, there is a notable difference between the band structure obtained in this study and

that obtained in the previous study. The bands calculated in this study are split owing to the

exchange interaction. In particular, this is significant for the Np bands. For example, at the

Γ point, the two bands just below the Fermi level show a split of about 0.7 eV.

In Figs. 2(a)-2(d), we show the spin-projected densities of states (SPDOS) per formula

unit calculated using the FFLCAO method. The energy range is the same as that in Fig. 1.

Shown in Fig. 2(a) is the total SPDOS, while shown in Figs. 2(b)-2(d) are the partial SPDOSs

for Np-5f , Np-6d and Np-7s, and N-2p orbitals, respectively. It should be noted that the scale

of the vertical axes shown in Figs. 2(a) and 2(b) is ten times larger than that shown in Figs.
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2(c) and 2(d). It is found that the electronic states near the Fermi level consist mainly of

Np-5f orbitals. It is also found that the N-2p orbitals contribute between −6 and −1 eV, with

a considerable hybridization with Np-5f , Np-6d, and Np-7s orbitals. This means that the

bonding between N and Np atoms is covalent to some degree. At the same time, the bonding

between the N and Np atoms is also ionic because all the N-2p bands are completely filled,

and thus, the charge transfer from Np atoms to N atoms must occur. The partial density

of states calculated by Atta-Fynn and Ray has also shown that the N-2p states hybridize

considerably with the Np-5f and Np-6d states. At the same time, they have confirmed that

the charge accumulation around N atoms and the charge depletion around Np atoms occur,

and concluded that the bonding is also ionic, although, as noted in their paper, this does not

necessarily mean the lack of covalency in the bonding between N and Np atoms.

We next show the results of the calculations of the optical conductivity tensor. In Figs.

3(a) and 3(b), the calculated real and imaginary parts of the diagonal optical conductivity

σxx are shown, respectively. Solid lines represent the results of the FFLCAO calculations, and

dotted lines, the results of the FFMB calculations; the agreement is found to be satisfactory. A

broad peak is found in the real part around 3-6 eV with a height of about 5×10−15 s−1, which

is almost the same as the typical height of peaks in the calculated real parts of Fe and US

reported previously.14,17,32,44) A corresponding structure is also found in the imaginary part

around 3-6 eV. Analyzing the origin of transitions, we found that the broad peak around 3-6

eV originates in two transitions, namely, the Np-5f → Np-6d and N-2p → Np-5f transitions.

The former is the intraatomic transition in Np atoms, while the latter is the charge transfer

transition between N and Np atoms.

In Figs. 4(a) and 4(b), we show the calculated real and imaginary parts of the off-diagonal

optical conductivity σxy multiplied by ω, respectively. In these figures, solid lines represent the

results of the FFLCAO calculations, and dotted lines, the results of the FFMB calculations.

The agreement is again found to be satisfactory. The non-zero off-diagonal optical conduc-

tivity is the direct consequence of spin-orbit coupling, and thus, it is large in materials with

heavy atoms. The large off-diagonal optical conductivity of NpN is due to the large spin-orbit

coupling in Np atoms. In fact, the off-diagonal optical conductivity of US is almost of the

same magnitude because of the large spin-orbit coupling in U atoms. On the other hand, it is

found that the off-diagonal optical conductivity of NpN is several times larger than that of Fe.

A broad peak is also found in the imaginary part around 3-6 eV. A corresponding structure

is found in the real part around 3-6 eV. Analyzing the origin of transitions, we found that

the two transitions producing the broad peak are the same as those responsible for the broad

peak in the real part of the diagonal optical conductivity. We found that the contributions

of the two transitions are almost of the same magnitude. This is not surprising because the

N-2p orbitals are strongly hybridized with the Np-5f orbitals, and thus, the transition can be
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enhanced by the large spin-orbit coupling to a considerable extent.

Since the optical conductivity tensor is not a quantity measured directly in experiments,

we here show the reflectivity and Kerr spectra. In Figs. 5(a) and 5(b), we show the reflectivity

spectra for the left and right circular polarizations, respectively. Also, in Figs. 6(a) and 6(b),

we show the Kerr rotation and ellipticity spectra, respectively. In these figures, solid lines

represent the results of the FFLCAO calculations, and dotted lines, the results of the FFMB

calculations. It is found that the Kerr rotation of NpN is considerably large. The maximum

rotation angle is about 2 degrees. This is comparable to that of US, about 3 degrees.13,14,17)

Also, the Kerr rotation spectra change its sign at about 5 eV, as is also common to both

materials. The large Kerr rotation angle is due to the large spin-orbit coupling in Np atoms.

This is evident when comparing with the small Kerr rotation angle of Fe, for which the

maximum rotation angle is about 0.6 degrees.32,44)

Finally, we show the results of the calculations of the total absorption and XMCD spectra

of the M4,5 edges of Np. In Figs. 6(a)-6(c), we show the total absorption, the XMCD of the

M5 edge, and the XMCD of the M4 edge, respectively. In the figures, solid lines represent the

results of the FFLCAO calculations, and dotted lines, the results of the FFMB calculations.

These results are in good agreement with each other and overlap almost perfectly. The M4

and M5 edges originate in the transitions 3d3/2 → 5f and 3d5/2 → 5f , respectively. Although

there are no experimental results available, we may compare the peak energies of the total

absorption with those measured in another Np compound.45) The calculated peak energy of

the M4 edge is 3.788 keV and the measured one is 3.845 keV; the error is −1.5 %. Also,

the calculated peak energy of the M5 edge is 3.600 keV and the measured one is 3.664 keV;

the error is −1.7 %. Accordingly, the calculated energy difference between the two peaks is

0.188 keV and the measured one is 0.181 keV; the error is 3.9 %. The shape of the calculated

XMCD spectra of the M4 edge is symmetric while that of the M5 edge is strongly asymmetric.

Furthermore, we calculate the ratio of the integrated intensity of the M5 edge to that of the

M4 edge and find it to be 0.17; we confirmed that this result is almost independent of the

choice of the lifetime parameter. The integrated intensity of the M5 edge is smaller than that

of the M4 edge by about one order of magnitude. This is also found in US, for which the ratio

is 0.13 ± 0.03.46) We also estimate the orbital magnetic moment from the total absorption

and XMCD spectra using the XMCD sum rule.28,29)
∫

M4+M5
∆µ dω

∫

M4+M5
(µtot + µz) dω

=
1

3nh
Morb (11)

In this equation, nh represents the number of holes in the Np-5f orbitals; we used nh = 9.8

obtained by the Mulliken population analysis of the results of the FFLCAO calculations.47)

It is also confirmed that the relation µz = µtot/2 holds approximately. We find that the sum

rule gives Morb = 1.71 µB, which is substantially smaller than that given in Table II, 2.55
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µB. The large difference implies that there is a lack of internal consistency in calculating the

orbital magnetic moment using the two methods. The disagreement is disappointing, because

the XMCD sum rule for the orbital magnetic moment has been shown to work well for the

3d transition metals and the method is expected to be promising in the determination of the

orbital magnetic moment experimentally.48) Although the origin of the disagreement is not

clear, some approximations used in deriving the sum rule might not be applicable for actinide

atoms; for example, the replacement of the matrix elements of the Dirac matrices with those

of the momentum operator might result in such an error because this approximation is not

very good even for Fe when calculating physical quantities sensitive to spin-orbit coupling.32)

Furthermore, as shown in a recent experimental study of the XMCD spectrum of the N4,5 edges

of uranium calcogenides, the applicability of the XMCD sum rule might be limited.49) Thus,

a more careful examination of the XMCD sum rule should be performed both theoretically

and experimentally in the future.

4. Conclusions

We have studied the structural, electronic, magnetic, optical, and magneto-optical proper-

ties of NpN in detail using the fully relativistic full-potential calculations based on the density

functional theory within the LSDA. We employed two methods, namely, the FFLCAO and

FFMB methods, to examine the reliability of the results with respect to the quality of basis

sets, and found that the results obtained by the FFLCAO and FFMB methods are in good

agreement with each other. The optimized lattice constant and calculated cohesive energy are

in reasonable agreement with the experimental results within an acceptable error known for

the LSDA. It was also found that the magnitude of the calculated orbital magnetic moment

is larger than that of the calculated spin magnetic moment and the calculated total magnetic

moment is considerably smaller than the experimental one. Furthermore, we have successfully

reproduced the positive sign of the EFG at the Np nuclei. The positive EFG is in striking

contrast to the negative EFG in a Np3+ free ion, indicating the importance of the interplay

between spin-orbit coupling and covalent bonding. The calculated band structure shows large

splittings induced by spin polarization and spin-orbit coupling, suggesting that both the effects

are indispensable for understanding the electronic properties of this material. Moreover, using

the calculated optical conductivity tensor, we have studied the reflectivity and Kerr spectra.

As a result, we found that the calculated Kerr rotation spectrum shows a maximum value

of about 2 degrees, which is comparable to those observed in uranium calcogenides. Finally,

also using the calculated optical conductivity tensor, we have studied the XMCD spectra and

found that the orbital magnetic moment estimated using the XMCD sum rule is considerably

smaller than that calculated by the conventional method, although the origin of disagreement

is not clear.
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Fig. 1. Band structure of NpN calculated using fully relativistic full-potential LCAO method. The

dotted line represents the Fermi level.
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Fig. 2. Spin-projected density of states (SPDOS) per formula unit of NpN calculated using fully

relativistic full-potential LCAO method: (a) total SPDOS, (b) partial SPDOS for Np-5f orbitals,

(c) partial SPDOS for Np-6d and Np-7s orbitals, and (d) partial SPDOS for N-2p orbitals. Upper

panels are for up-spin electrons and lower panels are for down-spin electrons. The dotted line

represents the Fermi level.
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Fig. 3. Diagonal optical conductivity: (a) real part and (b) imaginary part. Only the interband con-

tribution is considered. Solid lines represent the results of the fully relativistic full-potential LCAO

calculations, and dotted lines, the results of the fully relativistic full-potential mixed-basis calcu-

lations. The lifetime parameter of 0.5 eV is used.
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Fig. 4. Off-diagonal optical conductivity multiplied by ω: (a) real part and (b) imaginary part. Solid

lines represent the results of the fully relativistic full-potential LCAO calculations, and dotted lines,

the results of the fully relativistic full-potential mixed-basis calculations. The lifetime parameter

of 0.5 eV is used.
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Fig. 5. Reflectivity spectra of NpN for (a) left circular and (b) right circular polarizations. Solid lines

represent the results of the fully relativistic full-potential LCAO calculations and, dotted lines,

the results of the fully relativistic full-potential mixed-basis calculations. The lifetime parameter

of 0.5 eV is used.
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Fig. 6. Kerr spectra of NpN: (a) Kerr rotation angle and (b) Kerr ellipticity. Solid lines represent

the results of the fully relativistic full-potential LCAO calculations, and dotted lines, the results

of the fully relativistic full-potential mixed-basis calculations. The lifetime parameter of 0.5 eV is

used.
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full-potential LCAO calculations, and dotted lines, the results of the fully relativistic full-potential

mixed-basis calculations. These results are in good agreement with each other and overlap almost

perfectly. The lifetime parameter of 2.5 eV is used.
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