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Abstract— One of the most common problems in the image
forensics field is the reconstruction of the history of an image
or a video. The data related to the characteristics of the camera
that carried out the shooting, together with the reconstruction
of the (possible) further processing, allow us to have some useful
hints about the originality of the visual document under analysis.
For example, if an image has been subjected to more than one
JPEG compression, we can state that the considered image is
not the exact bitstream generated by the camera at the time
of shooting. It is then useful to estimate the quantization steps
of the first compression, which, in case of JPEG images edited
and then saved again in the same format, are no more available
in the embedded metadata. In this paper, we present a novel
algorithm to achieve this goal in case of double JPEG compressed
images. The proposed approach copes with the case when the
second quantization step is lower than the first one, exploiting the
effects of successive quantizations followed by dequantizations.
To improve the results of the estimation, a proper filtering strat-
egy together with a function devoted to find the first quantization
step, have been designed. Experimental results and comparisons
with the state-of-the-art methods, confirm the effectiveness of the
proposed approach.

Index Terms— Double JPEG compression, forgery identifica-
tion, digital tampering, image forensics, DCT coefficient analysis.

I. INTRODUCTION

I
N A digital investigation that includes JPEG images (the

most widely used format on the network [1] and employed

by most of cameras [2]) as evidences, the classes of problems

that we have to deal with, are essentially two. The former

concerns the authenticity of the visual document under analy-

sis: if we are able to prove that it is not original and it has

been changed with the insertion (or removal) of some details,

we must then identify where the non-original parts are located.

The latter is related to the retrieval of the device that generated

the image under analysis. About the possibility to discover

image manipulations in JPEG images, many approaches can

be found in literature, as summarized in [3] and [4]. A first

group of works (JPEG blocking artifacts analysis [5], [6],

hash functions [7], JPEG headers analysis [2], thumbnails
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analysis [8], Exif analysis [9], etc.) proposes methods that

seek the traces of the forgeries in the structure of the image

or in its metadata. In [10] some methods based on PRNU

(Photo Response Non-Uniformity) are exposed and tested.

This kind of pattern characterizes, and allows to distinguish,

every single camera sensor. Other approaches, as described

in [11] and [12], take care of analyzing the statistical distrib-

ution of the values assumed by the DCT coefficients. In this

regard, as reported in [13] and [14], by checking the related

histogram, it is possible to determine whether the image

was doubly JPEG compressed. In [15] a Bayesian approach

calculates the probability for each block of the image of

being subjected to double quantization, and uses the results

of such control, together with a SVM classifier, to identify the

tampered areas. SVM is also exploited in [16], where a Markov

random process is employed to model the differences between

the images, and in [17], where the tampering detection method

is based on a periodic function detection strategy. In [18]

the authors suggest a method that assess whether an image

has been compressed twice with the same quantization table.

In [19] the recompression with the same quantization table is

detected in case of a copy-paste operation, observing that in

this scenario there is a high probability that the grid of the

pasted part is not aligned with the existing one.

The ability to roughly reconstruct the quantization table

used by the device during acquisition, is crucial in almost

all problems stated above. Specifically, this information dis-

criminates which spatial regions are associated with the same

(original) quantization table, evidencing as corrupted the ones

that show different data. Retrieving some (even not all) com-

ponents of the first quantization matrix, allow to look for

the model of devices employing the same quantization tables

identified before. For this purpose a collection of quantization

tables together with their corresponding camera, like the one

exposed in [2], has to be collected. The information about

the first quantization matrix is also important for steganalysis,

as reported in [20].

To retrieve the first quantization matrix, in [14] the authors

expose some ideas based on the behavior of normalized

histograms. They also focused on a method that uses a Neural

Network as a classifier. Their approach, however, does not

work for medium and high frequencies, and it has been

proved only for a specific subset of the AC terms. The works

in [21] and [22] also estimate the first quantization step,

but only to locate forgeries and without providing exhaustive

results related to its estimation. The method in [22] explores

two types of traces left by tampering in doubly-compressed
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JPEG images: aligned and non-aligned. These two scenarios

arise depending if the DCT grid of the portion of image

pasted in a splicing or cloning operation is (or not) aligned

with the one of the original image. In [22] authors build a

likelihood map to find the regions that have undergone to a

double JPEG compression. Among the parameters required to

correctly identify this likelihood map and modeling the doubly

compressed regions, the quantization step of the primary

compression is crucial. The authors estimate this parameter

by using the expectation-maximization (EM) algorithm over

a set of candidates. This procedure is replicated for each

entry of the first-compression matrix. In [23] a method for

the estimation of JPEG compression history is proposed but

it works only for JPEG images converted into a lossless

format. Frequency domain has been exploited in [24] where

the authors introduce a technique based on the study of the

frequency response to identify the first quantization step in

precompressed raw images, and also in doubly compressed

JPEG images, obtaining less reliable results. In [25] the author,

to estimate q1,1 proposes to carry out a third quantization and

then computes the error between the DCT coefficients before

and after this step; by varying the quantization step of the

third compression applied to the image, is possible to detect

two minima in correspondence of q1 and q2. Although the

paper was not strictly dedicated to recovery the quantization

steps of the first quantization matrix, but to the identification

of the tampered regions (the so called “ghosts”), the presented

approach (a third quantization of the image) partially inspired

our error function (4), which indeed is based upon two

quantizations of the image under analysis. Later, in [26], an

automated method that uses the approach in [25] is proposed.

In this paper we focus on the determination of the first

quantization step in doubly compressed JPEG images, assum-

ing that its value is higher (in JPEG compression standard,

the bigger the quantization step is, the lower the quality of the

image is) than the second one. It is worth noting that also [25]

deals with a similar condition. Moreover, although other

methods ([22], [27], [28]) have been designed to work also

in the remaining case (q1 ≤ q2), they actually obtain reliable

results (i.e., a far lower error) only when q1 > q2. Therefore,

starting from the assumption that the image has been doubly

JPEG compressed (it can be previously verified with a method

like the one exposed in [13]), the proposed approach analyzes

histograms of its requantized DCT coefficients, exploiting their

peculiarities. Specifically, when the second compression is

lighter than the first one, retrieving the first quantization step

is often possible. This can be done taking advantage of some

interesting properties of integer numbers, that occurs whenever

they are quantized (that means rounded) more than once.

The main novelties of the proposed approach are related to

the filtering strategy, adopted to reduce the amount of noise

in the input data (DCT histograms), and on the design of a

novel function with a satisfactory q1-localization property.

Indeed, although the proof of concept of the proposed

approach has been partially presented in [29], in the present

1From here on q1 and q2 will indicate respectively the quantization steps
of first and second quantization for a generic frequency in the DCT domain.

work we have improved that algorithm, including a modified

version of the histogram filtering strategy proposed in [30].

Specifically, a novel filtering has been introduced to deal with

what we called “split noise”. Moreover, a whole section has

been introduced to deeply study the impact of the involved

parameters improving the selection of the candidates. Tests

have been performed on different datasets with a certain

variability in terms of image content. Finally, additional com-

parisons with state-of-the-art approaches are now provided.

The paper is structured as follows: in Section II JPEG

compression algorithm, together with some properties of dou-

ble compressed images are reviewed. Section III presents the

proposed approach, providing the involved details related to

the histogram filtering, the proposed function, the selection of

the candidates and the final q1 selection based on the histogram

values. In Section IV the effectiveness of the proposed solution

is reported, considering real data (double JPEG compressed

images). Finally, in Section V we report conclusions and our

prospects for future work in this field.

II. SCIENTIFIC BACKGROUND

The first step in the JPEG compression engine [32] consists

in a partition of the input image into 8 × 8 pixels

non-overlapping blocks (for both luminance and chrominance

channels). A DCT transform is then applied to each block;

next a dead-zone quantization is employed just using for each

DCT coefficient a corresponding integer value belonging to a

8 × 8 quantization matrix [33]. The error introduced in this

stage is called quantization error, and it is the main cause of

information loss for JPEG compressed images. The quantized

coefficients obtained just rounding the results of the ratio

between the original DCT coefficients and the corresponding

quantization steps are then transformed into a data stream by

mean of a classic entropy coding (i.e., run length/variable

length). Coding parameters and other metadata are usually

inserted into the JPEG file header to allow a proper decod-

ing. If an image has been JPEG compressed twice (e.g.,

after having visualized the image, introduced some malicious

manipulation and saved it again) the last quantization steps

are available, whereas the original (initial) ones are lost. It is

worth noting that in forensics application, this information

could be fundamental to assess the integrity of the input

image or to reconstruct some information about the embedded

manipulation [2]. The insertion of some kind of tampering

requires the decompression of the image file, followed by

a second JPEG compression after the forgery. During JPEG

decompression, the pipeline of the image compression is

retraced conversely. The compressed image is then entropy

decoded (the quantized coefficients are recovered exactly), and

the resulting coefficients are then multiplied by the same 8×8

quantization matrix to obtain the de-quantized coefficients.

After that, the Inverse DCT (IDCT) is performed, bringing the

coefficients from the frequency domain back into the spatial

domain, to get the visible image. For this aim, the resulting real

values will be rounded and truncated to the nearest integers

in the range of [0; 255], generating other two errors, namely

respectively rounding and truncation error. In addition, and for



GALVAN et al.: FIRST QUANTIZATION MATRIX ESTIMATION FROM DOUBLE COMPRESSED JPEG IMAGES 1301

Fig. 1. In the upper row three examples of the error function values (2) for an image of the same dataset used in [31], with respect to q3 for the DC term:
(a) q1 = 11, q2 = 7 and q3 ∈ {1, 2, . . . , 14}; (b) q1 = 11, q2 = 7 and q3 ∈ {1, 2, . . . , 30}; (c) q1 = 10, q2 = 6 and q3 ∈ {1, 2, . . . , 16}. In the lower row three
examples of the error function values (2) for the same image, with respect to q3 for some AC term: (d) (1,0) term, q1 = 11, q2 = 7 and q3 ∈ {1, 2, . . . , 20};
(e) (2,0) term, q1 = 8, q2 = 5 and q3 ∈ {1, 2, . . . , 14}; (f) (3,0) term, q1 = 9, q2 = 5 and q3 ∈ {1, 2, . . . , 14}.

completeness of exposition, we must also considerate the error

occurring during the conversion between RGB and YCbCr

color spaces, and viceversa.

In the following analysis, only 8-bit grayscale images

are considered. For sake of simplicity, considering a single

DCT coefficient c and the related quantization steps q1 (first

quantization) and q2 (second quantization), the value of each

coefficient after a double compression can be modeled as:

cDQ =

[([
c

q1

]
q1 + e

)
1

q2

]
(1)

where [.] denotes the rounding function and e is the error

introduced by several operations, such as color conversions

(YCbCr to RGB and vice versa), rounding and truncation of

the values to eight bit integers, etc. It is important to note that

the errors above can be due to some processing in different

domains (e.g., spatial domain). In any case e is the effect of

such errors in the DCT coefficients. Note that the factor e,

often omitted in previous published works ([13], [25], [27]),

if not properly managed, can limit the effectiveness of any

related methodology.

To infer the value of q1, Farid [25] suggests to perform a

further compression with a novel quantization step q3 (in a

proper range) and to evaluate an error function defined as

follows:

fe(c, q1, q2, q3)=

∣∣∣∣
[[[

c

q1

]
q1

q2

]
q2

q3

]
q3−

[[
c

q1

]
q1

q2

]
q2

∣∣∣∣ (2)

It is worth noting that the error e of Eq. (1) has not

been considered in Eq. (2). The typical outcome of Eq. (2)

considering, e.g., the DC term when q1 = 11 and q2 = 7

is reported in Fig. 1(a). This specific case (both quantization

steps are prime numbers) allows obtaining interesting results:

both q1 and q2 can be easily found, since they correspond

to the two evident local minima. Hence, the first quantization

step q1 can be retrieved (q2, as mentioned before, is already

available). Unfortunately, in real cases, the original quantiza-

tion step cannot be easily inferred as proved by considering

the following cases:

• Range extension: taking into account the quantization

steps used before (q1 = 11, q2 = 7) and the same input

image, but varying q3 ∈ {1, 2, . . . , 30}, the outcome is

more complex to analyze than before. A strong indication

of a “wrong” local minimum can be found in 26 (see

Fig. 1(b)).

• Different quantization steps: with the same input image

and q3 ∈ {1, 2, . . . , 16}, but considering q1 = 10 and

q2 = 6, the outcome reported in Fig. 1(c) is obtained.

Without additional information about the input image,

a wrong estimation (q1 = 15) could be performed.

• Different AC frequencies: with the same input image but

in different position and for many combinations of quan-

tization steps, we could obtain again wrong estimations

(q1 = 19 instead of 11 in Fig. 1(d), q1 = 13 instead of 8

in Fig. 1(e) and q1 = 11 instead of 9 in Fig. 1(f)).

When q3 = q2, the error function (2) is equal to 0. This

motivates the absolute minima found in the previous examples.

Of course, Eq. (2) allows estimating q2, but this information

is not useful since q2 is already known from the bitstream.
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Fig. 2. Proposed approach scheme. Starting from an image I , exploiting the effects of successive quantizations, it estimates the quantization steps of the
first quantization q1. First, the histogram of the absolute value of DCT coefficients is filtered, then a proper function able to detect the first quantization
step is evaluated and a set of candidates is selected. Later, considering the DCT coefficients related to a cropped version of the original image, the double
quantization is simulated with the candidates previously computed. Finally, comparing the histogram of the original image with the simulated ones the first
quantization step q1 is estimated.

Obtaining a reliable q1 estimation from Eq. (2) is a difficult

task because too many cases have to be properly managed.

In the following an alternative strategy devoted to increase

the reliability of the estimation is proposed.

III. PROPOSED APPROACH

As described before, the function proposed in [25] is not

able to work in real conditions. A first limit of Eq. (2) is

related to its weak q1 localization property. In real cases, many

local minima are present in the function and localizing the

correct one is a complex task. Another drawback of Eq. (2) is

the neglecting of noise error e of Eq. (1). Considering then a

real scenario, a method able to cope with the aforementioned

problems has been built. Specifically, as shown in Fig. 2 the

proposed approach consists of the following main steps:

• DCT Histogram Filtering: A deep analysis on the con-

sequences of both quantization and rounding error has

been performed. While indeed the former is well known,

the rounding error e in Eq. (1) manifests itself as peaks

spread around the multiples of the quantization step q , as

exposed in [33] and has been modeled as an approximate

Gaussian noise. As we will explain in more detail later,

those joint phenomenons will affect the behavior of the

second quantization step, thus the magnitude of the DCT

coefficients, and consequently its statistics. For those

reasons, the filtering strategy must face two kind of noise:

the “split noise” and the “residual noise”, with the aim

to bring the histogram as if the rounding error did not

have impact. This module actually provides a set of

filtered histograms H f iltq1i
(one for each quantization step

q1i ∈ {q1min, q1min + 1, . . . , q1max}).

• Proposed Function for Quantization Step Estimation:

once the histogram has been filtered removing (or

reducing) the error e, a function exploiting the properties

of successive quantizations is needed. Specifically,

a function with a q1 localization property sensibly better

than Eq. (2) has been designed. This function is actually

evaluated over all the histograms H f iltq1i
generating a

set of output foutq1i .

• Selection of the Quantization Step Candidates: starting

from the set of output foutq1i
, a limited number of

first quantization candidates (q1s ∈ Cs ) are selected

exploiting the q1 localization property of the proposed

error function.

• DCT Histogram Based Selection: the previous modules

actually provide a series of q1 candidates to be considered

for further evaluations. The double quantization process

is then simulated to consider the candidates provided

by the other blocks and the best one exploiting directly

histogram values is finally selected.

The above mentioned steps are detailed in the following

subsections.

A. DCT Histogram Filtering

Many approaches exploiting the effects of successive quan-

tizations followed by dequantizations ([13], [25], [27]) usually

do not consider the error factor e in Eq. (1). This simplifica-

tion allows to easily manipulate the involved equations, but
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Fig. 3. DCT coefficient histograms during different stages of a double compression pipeline, referred to a specific position into the 8 × 8 image
block: (a) histogram related to the original uncompressed image just after the DCT, (b) histogram related to the single compressed image, (c) histogram
related to the DCT coefficients just before the second quantization (color conversions, rounding and truncation of the values to eight bit integers have been
already performed). A detail was also overimposed for better visualization of the error e of Eq. (1).

Fig. 4. Depending on the values of the first and the second quantization
steps, different situations can arise. Specifically, the effect of the error e in
the final histogram can be limited (c) or difficult to deal with (d).

neglecting this source of error considerably degrades the per-

formances of these approaches when real cases are considered.

To cope with this problem, a deep analysis of the properties of

this source of error has been performed. As already explained

before, it is introduced by several operations, such as color

conversions (YCbCr to RGB and vice versa), rounding and

truncation of the values to eight bit integers, etc. It is difficult

to analyze each source of error separately, since it depends

on the actual implementation, but the overall effect can be

modeled with a Gaussian distribution ([22], [35]). An example

of real DCT coefficient histograms is reported in Fig. 3.

The histogram depicted in Fig. 3(c) actually shows the

DCT coefficient distribution just before the application of the

second quantization. Once the image is compressed again,

several scenarios can arise depending on the values of the first

and second quantization steps. A typical scenario is the one

reported in Fig. 4(a) and Fig. 4(c) where only a small pertur-

bation (i.e., elements in a wrong bin) is propagated in the final

histogram. On the contrary, in some specific conditions related

to the q1 and q2 values a worst scenario can arise. As shown in

Fig. 4(b) and Fig. 4(d) the original information can be quite

equally split into two neighboring bins where one of them

is a wrong one. This undesirable situation appears when a

bin of the first quantization (i.e., in position mq1) is situated

exactly halfway between two consecutive bins coming from

the second quantization (i.e., in position nq2 and (n + 1)q2).

Specifically, this effect arises when two consecutive multiples

of q2 are related to a generic multiple of q1 as follows:

mq1 =
nq2 + (n + 1)q2

2
, n, m ∈ N

+ (3)

This behavior should be then taken into account in the

design of algorithms aiming to exploit the effects of double

quantizations. To properly cope with the noise e in Eq. (1)

a filtering strategy has been developed. We have designed

an approach based on two steps (see Fig. 5): the first one

is devoted to filter the “split noise” (i.e., the one shown in

Fig. 4(d)), whereas the second one deals with the residual

noise (Fig. 4(c)).

Considering a specific pair of quantization steps q1 and q2

we design a filtering strategy that first detects the wrong bins

on the second quantization histogram by using the Eq. (3) and

then moves bin elements from the wrong to the correct ones.

It is worth noting that the correct q1 value is actually unknown

and its estimation is the aim of the proposed approach. Several

filtering are then performed considering a set of first quanti-

zation steps in the range q1i ∈ {q1min, q1min + 1, . . . , q1max}.

The actual selection of the correct value will be performed

later (see Section III-D) employing further analyses and tests.

Once the “split filter” has been performed, the residual noise

is taken into account to remove further impurities (Fig. 3).

Specifically, a filtering strategy based on the preservation

of the monotonicity of the DCT coefficient distribution is

employed (see Algorithm 1). As already reported in [36],

AC coefficients are usually characterized by Laplace distri-

bution. Initially, the histogram of absolute value of DCT

coefficients is considered. Both bin index (imax ) and value

(vmax ) related to the maximum element of the histogram are

then considered. All the values of the bins with index lower

than imax are compared with vmax and the ones below a

certain relative threshold (T h f ilt ) are discarded. Once this

filtering is performed, a novel interval of the histogram is
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Fig. 5. Example of histogram filtering. First wrong bins on the second quantization histogram are detected by using the Eq. (3) and then they are moved to
the correct locations. Later, the residual error is removed exploiting the monotonicity of the DCT coefficient distribution (see Algorithm 1).

Algorithm 1: AC Coefficients Histogram Filtering

Input:

Hin: input histogram of absolute values of DCT

coefficients

Nbins : number of bins of Hin

T h f ilt : threshold used to measure the similarity between

bins

Output:

H f ilt : filtered histogram

begin
Htmp = Hin

imaxold = 1

while imaxold ! = Nbins do
[vmax , imax] = max(Htmp)

for i = imaxold + 1 to imax − 1 do
vcurr = Hin[i ]

if vcurr > vmax · T h f ilt then
H f ilt [i ] = vcurr

else
H f ilt [i ] = 0

Htmp[i ] = −1

Htmp[imax] = −1

H f ilt [imax] = Hin[imax]

imaxold = imax

end

considered again and the same algorithm is applied (search

of the maximum, filtering, etc.). This filtering works properly

only for AC coefficients due to the monotonicity of their

distribution. A different kind of filtering is then applied to

DC coefficients. Specifically, all the values below an adaptive

threshold (e.g., the mean value) are simply discarded.

Due to the “split filter”, this filtering process provides to the

following modules a series of filtered histograms H f iltq1i
, one

for each involved first quantization step q1i ∈ {q1min, q1min +

1, . . . , q1max}. Further details about the setting of the range of

Fig. 6. The effect of quantization and dequantization for a generic term
c ∈ [nq −

q
2 , nq +

q
2 − 1] in case of q even.

variation of q1i will be provided in Section III-E.

B. Proposed Function for Quantization Step Estimation

As explained above, error function (2) has the following

drawbacks: neglecting error e in Eq. (1) and a poor q1

localization property. The former issue has been coped with the

histogram filtering (see Section III-A) whereas the latter has

been overcome by the design of the following error function:

fout (c, q1, q2, q3)

=

∣∣∣∣
[[[[

c

q1

]
q1

q2

]
q2

q3

]
q3

q2

]
q2 −

[[
c

q1

]
q1

q2

]
q2

∣∣∣∣ (4)

To properly understand the rationale of Eq. (4), especially

when q3 = q1, it is sufficient to analyze the effect of a

single quantization and dequantization step. If we examine

the behavior of the following function:

ĉ =

[
c

q

]
q (5)

we can note that if q is odd, all integer numbers in

[nq −⌊
q
2
⌋, nq +⌊

q
2
⌋] will be mapped2 in nq (with n a generic

integer number). If q is even it maps in nq all the integer

2⌊.⌋ indicates the floor function.
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Fig. 7. The effect of quantization and dequantization for quantization step q1.

Fig. 8. Scheme describing the effect of three quantization and dequantization
with quantization steps q1, q2 and q3 = q1 again.

numbers in [nq −
q
2
, nq +

q
2

− 1]. From now on we call

this range “range related to nq”. Such aspect is synthetically

sketched in Fig. 6 (when q is even). As a consequence, we can

say that Eq. (5) “groups” all integer numbers of its domain

in multiples of q . Let observe that the maximum distance

between a generic DCT coefficient c and the corresponding ĉ,

obtained by the quantization and dequantization process,

is
q
2

if q is even, ⌊
q
2
⌋ if q is odd. Based on the above

observation, we analyze three rounds applied in sequence,

when q2 < q1 and q3 = q1:

[[[
c

q1

]
q1

q2

]
q2

q1

]
q1 (6)

• c1 =

[
c

q1

]
q1 for the above observations leads to the

situation shown in Fig. 7;

• c2 =

[
c1
q2

]
q2 maps multiples of q1 in multiples of q2.

It is worth noting that, being q2 < q1, a generic nq1 will

be mapped in a multiple of q2 (for example mq2) whose

distance from nq1 will be less than or equal to
q2

2
(or ⌊

q2

2
⌋

if q2 is odd), then in the range related to nq1;

• at this point,
[

c2
q1

]
q1 maps c2 in nq1 again, since, as

pointed out in the preceding paragraph, c2 is in the range

related to nq1.

With the three steps above, we demonstrated that

(see Fig. 8):

[[[
c

q1

]
q1

q2

]
q2

q1

]
q1 =

[
c

q1

]
q1 (7)

Therefore the error function in (4) is 0 when q3 = q1

regardless the c value. This property allows then to localize

the first quantization step with higher precision with respect

to Eq. (2).

To sum up, this step, starting from the filtered histograms

H f iltq1i
, generates a set of function outputs foutq1i

.

C. Selection of the Quantization Step Candidates

As described in a previous subsection, due to the split filter-

ing, the information related to the original histogram of a spe-

cific DCT frequency is tested considering different hypotheses

related to the first quantization steps q1i ∈ {q1min, q1min +

1, . . . , q1max}. Each function foutq1i
is then related to a specific

q1i value. The main idea, allowing us selecting a limited set

of first quantization candidates, is related to the properties

of the proposed error function (4). Whenever the filtering is

performed with the correct first quantization step, foutq1i
is

close to zero when q3 = q1i . On the contrary, when the first

quantization is not the correct one, this property, usually, is

not verified. This behavior allows to design a simple strategy

of candidate selection. Specifically, considering a single DCT

frequency, each foutq1i
is evaluated in q3 = q1i (where q1i is

the first quantization step related to the foutq1i
). If this value is

close to zero (i.e., less than a threshold T ), it is added to the set

of candidates Cs otherwise it is discarded. The final estimation

is then performed among the limited set exploiting directly the

histogram values as detailed in the following section.

A crucial parameter that could impact the effectiveness of

the proposed candidate selection strategy is the threshold T

that determines the acceptance of the q1i value. Choosing a

low value, several correct elements could be lost (especially

for higher DCT coefficients). On the other hand, higher values

could include many false candidates that degrade the effective-

ness of the overall strategy. Moreover, the value of foutq1i
when

q3 = q1i depends on many factors such as the DCT frequency

under examination and the actual content of the input image.

To properly tune this parameter a series of tests has been

then performed. A dataset containing 24 uncompressed images

containing a certain variability in terms of scene content has

been considered [31]. Double compression has been then

performed by using standard JPEG encoding, and a dataset

of double compressed images have been built just considering

quality factors (QF1, QF2) in the range 50 to 100 at steps

of 10. Taking into account the condition q1 > q2, the final

dataset contains 360 images. Three different strategies have

been compared:

• fixed threshold: a fixed threshold T f ix is selected without

considering the dependency with respect to the frequency

f j and the content of the input histogram.

• first n: the values of foutq1i
are sorted in increasing order.

The nth value is then retained as threshold.

• hybrid: the threshold is computed as the sum of the

minimum value of foutq1i
and a fixed threshold (T f ixh ).

Each strategy has been tested at varying of their involved

parameters:

T f ix ∈ [100, 50000], n ∈ [1, 8], T f ixh ∈ [100, 50000]

The percentage of first quantization steps correctly included

into the candidate set has been plot with respect to the number

of elements considered in the candidate set (see Fig. 9).

These results have been obtained considering the average with

respect to the image number and the considered frequencies

(the first 15 DCT coefficients in zig-zag order in our test). As

can be easily seen from Fig. 9 the hybrid approach provides
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Fig. 9. Percentage of first quantization steps correctly included into the
candidate set with respect to the number of elements in the candidate set.
These results have been computed regarding the three considered strategies
at varying of their parameters (T f ix ; n; T f ixh

) and have been obtained as
average over all frequencies (the first 15 DCT coefficients in zig-zag order)
and treated images.

the best performances. It is able to cope better than the other

strategies with the content of the specific histogram.

D. DCT Histogram Selection

The modules presented above actually provide a series

of first quantization candidates that have to be considered

for further evaluations. The DCT Histogram Selection step,

exploiting directly the information related to the histogram

values estimates the q1 value. In order to select the correct

first quantization step, we exploit information coming from

the original double compressed image IDQ . We start with

the extraction of DCT coefficients cDQ , followed by a rough

estimation of the original DCT coefficients obtained through

a proper cropping of the double compressed image, as already

proposed in [14]. These coefficients are then used as input of

a double compression procedure, where the first quantization

is performed by using q1s ∈ Cs whereas the second one

using the already known values of the second quantization

step (q2 values are present in the header data). To estimate

the correct q1 from the candidate set, the whole histogram

information is exploited. Specifically, the histograms Hq1s

related to the simulated double quantization with q1s ∈ Cs

are compared with Hreal obtained from IDQ . The closest one

is selected according to the following criterion:

q̂1 = min
q1s∈Cs

N∑

i=1

min(maxdi f f , |Hreal(i) − Hq1s (i)|) (8)

where N is the number of bins of the histograms and maxdi f f

is a threshold used to limit the contribution of a single

difference in the overall distance computation.

E. Definition of the Range of Variability of q3

To properly set the range of variability of the third quanti-

zation step the outcome of Eq. (4) should be better analyzed.

Fig. 10. Criteria for the selection of the range {q1min , q1min +1, . . . , q1max }:
(a) error function (4) for an AC term in case of q1 = 16, q2 = 9 and
q3 ∈ {1, 2, . . . , 25}. We can note that, for every q3 ≤ q2, the result is 0.
(b) The compression matrix for QF = 50, according with the original JPEG
standard. The first 15 terms considering the order used in the entropy coding
of the JPEG algorithm are underlined. The maximum expected compression
step is 24.

Specifically, in case of q3 ≤ q2, the proposed function is

always equal to 0. Indeed in this situation, starting from bins

located in multiples of q2,
[

c2
q3

]
q3 will drive the bins in

multiples of q3 that belong to the range related to nq2. For this

reason, the fourth quantization step with q = q2 will drive

again the bins in multiples of q2. In Fig. 10(a) we can see an

example of the behavior of Eq. (4) in case of q1 = 16 and

q2 = 9. For this reason, we always consider q2 + 1 as the

term q1min .

The compression matrix defined by the IJG [32] for the

quality factor 50 (the lower one considered in this work,

i.e., the matrix with the higher quantization steps for every

position) is the one showed in Fig. 10(b). Since we extended

our study to its first 15 positions following the zig-zag order

used in the JPEG algorithm during the entropy coding, the

higher quantization step (in position (0,4)) is 24. For this

reason, and considering the need to visualize also the trend

after this value, we set q1max to 30.

IV. EXPERIMENTAL RESULTS

To assess the performance of the proposed approach, several

tests have been conducted considering double compressed

JPEG images, obtained starting from two different sources

as described below. A dataset of 110 uncompressed images

has been collected considering different cameras (Canon

D40, Canon D50 e Canon Mark3) with different resolutions.
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TABLE I

PERCENTAGE OF ERRONEOUSLY ESTIMATED q1 VALUES AT VARYING OF QUALITY FACTOR (QF1 , QF2 ) RELATIVE TO

THE FIRST 15 DCT COEFFICIENTS IN ZIG-ZAG ORDER. EVERY COEFFICIENT IS INDICATED WITH

RESPECT TO ITS POSITION IN THE 8 × 8 IMAGE BLOCK.(0,0) IS THE DC TERM

Moreover, a certain variability in terms of image content

has been taken into account in the image acquisition. The

considered dataset (Canon D40D50MK3 Dataset from here

on) contains: people, landscapes, coasts, mountains, animals,

flowers, buildings, foods, bridges, trees, etc. A cropping of

size 1024 × 1024 of the central part of each image has been

then selected in order to speed up the tests. Starting from the

cropped images, applying JPEG encoding provided by Matlab

with standard JPEG quantization tables proposed by IJG

(Independent JPEG Group) [37], a dataset of double com-

pressed images have been built just considering quality factors

(QF1, QF2) in the range 50 to 100 at steps of 10. Taking into

account the condition q1 > q2 (i.e., QF2 > QF1 in our tests),

the final dataset contains 1650 images. It is worth noting that

this experimental methodology (i.e., testing the performance

of the algorithm at varying of the quality factors) has been

applied in many works related to double quantization problem

([14], [20], [22], [25], [27], [28]). Results are then reported

with respect to quality factors instead of the specific

quantization steps. This methodology simplifies the analysis

of the results, since a single parameter (quality factor)

describes a quantization matrix with 64 quantization steps

usually having different values and related to different

frequencies. As an example, the quantization matrix for

QF = 50 is reported in Fig. 10(b).

Table I reports the average percentage of erroneously esti-

mated q1 values at varying of quality factor, relative to the first

15 DCT coefficients considered in zig-zag order. This order,

used in the standard JPEG, allows sorting the coefficients from

the lowest frequency (DC) to the highest frequencies in a

1D vector. The estimation error of the proposed approach is

close to zero for the DCT coefficients related to low frequency

in the DCT domain and does not significantly depend on

the specific quality factor employed for the first and second
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Fig. 11. Percentage of erroneously estimated q1 values at varying of DCT coefficient position (zig-zag scanning) considering several state-of-the-art approaches
on the Canon D40D50MK3 Dataset. These values are obtained averaging over all (QF1,QF2) and images.

quantization. On the contrary, for higher frequencies, the

estimation error is strictly correlated with the quality factors.

Specifically, better results are usually obtained for higher QF1

and QF2 values corresponding to lower quantization.

Further analyses have been conducted in order to study

the performance of the proposed approach with respect to

the specific DCT coefficient. In Fig. 11 the percentage error

in the estimation of q1, at varying of the DCT coefficients

from low to high frequencies, is reported. These errors are

average values obtained considering all the combinations of

(QF1, QF2) indicated in table I. As expected the performance

of the proposed solution degrades with DCT coefficients cor-

responding to the highest frequencies. The proposed approach

estimates with high accuracy the first 10 coefficients with

an error usually lower than 2%. The estimation of the other

DCT coefficients (higher than 10th) is actually reliable only

considering high QF2 values. It is worth noting that the results

related to some frequencies (4th, 7th , 11th) seem to differ with

respect to the trend of the curve error. This behavior depends

on the cropping procedure employed in the DCT Histogram

Selection step (see Section III-D). First quantization actually

introduces blocking artifacts, especially if lower quality factor

are employed, between blocks that cannot be removed by

simple cropping and influences the frequency content of the

image. Specifically, the frequencies of positions 4th , 7th , 11th

are related to horizontal and vertical edges and are pretty

sensitive to the aforementioned kind of artifacts.

The method has been compared with the algorithms pro-

posed in [14], [22], and [29]. Specifically, the original code

(available online) related to Bianchi et al. [22], has been

considered whereas the method based on the direct comparison

of histograms described in [14] has been reimplemented.

Finally, to further validate the effectiveness of the proposed

function (4), the approach proposed in [29] has been consid-

ered by using Eq. (2) proposed in [25] instead of Eq. (4). All

techniques have been tested considering the first quantization

step in the range [1, 30]. Moreover, the following parameter

setting has been used: histogram filtering T h f ilt = 0.35

(see Section III-A), hybrid strategy with T f ixh = 5000 for

AC coefficients and T f ixh = 100000 for DC coefficient

(see Section III-C), maxdi f f = 100 (see Section III-D). The

cropping has been performed by removing both the first and

the last 4 rows and columns. It is worth noting that all the

parameter settings related to the proposed approach have been

performed on the dataset [36].

As already underlined in Section II, the function proposed

in [25] has a poor q1 localization property that degrades its

performances. Moreover, the filtering step (see Section III-A)

allows to considerably improve the performances of the pro-

posed approach with respect to method in [29] that do not

cope with error e in Eq. (1). The direct histogram comparison

proposed in [14], without any filtering and candidate selection,

is not able to deal with the low quality data related to higher

frequencies. Although Bianchi et al. [22] consider in their

model the noise e of Eq. (1) they actually do not perform

any kind of filtering. The combination of a filtering strategy

with a function having a good q1-localization property, allows

us outperforming the other state-of-the-art approaches (see

Fig. 11) both for low and high frequencies.

To further confirm the effectiveness of the proposed

approach, additional tests have been performed on the standard

dataset “Uncompressed Colour Image Database” (UCID) [38].

Specifically, the UCID (v2) contains 1338 uncompressed TIFF

images with a certain variability in terms of scene content

(natural, man-made objects, indoor, outdoor, etc.). Moreover,

image sizes are 512 × 384 or 384 × 512. A novel compressed

dataset has then been built, with the same methodology

explained before: quality factors (QF1, QF2) in the range 50

to 100 at steps of 10 and q1 > q2. The final dataset contains

20070 double compressed images.

As can be easily seen from Fig. 12, the proposed solu-

tion outperforms, almost everywhere, the state-of-the-art

approaches. It is worth noting that the performances of the

considered methods in this test are lower than the ones
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Fig. 12. Percentage of erroneously estimated q1 values at varying of DCT coefficient position (zig-zag scanning) considering several state-of-the-art approaches
on the UCID (v2) dataset. These values are obtained averaging over all (QF1,QF2) and images.

shown in Fig. 11. Indeed, the outcomes of the considered

approaches depend on the resolution of the image under

analysis. If the image size is low, few JPEG blocks can be

collected and the reliability of the analysis could be low.

In the first test, performed on the Canon D40D50MK3 Dataset,

16384 JPEG blocks are collected per image, whereas in the

UCID (v2) Dataset the number of blocks was only 3072.

However, working with small images is not the common

scenario, and also nowadays images have bigger resolution

compared to the ones used in our tests. Moreover, in a

tampering scenario in which a patch is pasted over a portion

of the original image, the above considerations are still valid.

The unmodified regions will undergo to a double compression

and, even if the pasted part is significantly smaller compared

to the image, the number of available blocks to perform a

correct estimation can be enough.

V. CONCLUSION

In this paper we proposed a novel algorithm for the esti-

mation of the first quantization steps from double compressed

JPEG images. The proposed approach, combining a filtering

strategy and an error function with a good q1-localization

property, obtains satisfactory results outperforming the other

state-of-the-art approaches both for low and high frequencies.

Future works will be devoted to cope with the case when

q1 < q2, and to exploit the proposed approach to recover

the overall initial quantization matrix considering a double

compression process achieved by applying actual quantization

tables used by camera devices and common photo-retouching

software (e.g., Photoshop, Gimp, etc.).
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