First report of *Curvularia* leaf spot caused by *Curvularia muehlenbeckiae* on *Zizania latifolia* in China

Xijun Chen¹,² · Tao Tang¹ · Chen Chen¹,² · Lihui Wei³ · Dongmei Zhou³

Received: 16 November 2020 / Accepted: 3 June 2021 / Published online: 15 June 2021
© Società Italiana di Patologia Vegetale (S.I.Pa.V.) 2021

Keywords *Zizania latifolia* · *Curvularia muehlenbeckiae* · Leaf spots · New host

Zizania latifolia, a perennial aquatic vegetable, has a long history of cultivation in China (Guo et al. 2007). A leaf spot, observed on *Z. latifolia* with 70% incidence in fields of Jiangsu Province in July 2018, caused a 20%-30% loss of production. Initial disease symptoms were small brown flecks on the adaxial side of leaf, which later developed into brown spots (0.2–0.5 × 0.8–1.5 cm) with an ashen center and a brown extension line along the leaf veins. When the spot coverage rate exceeded 90%, the infected plant died. ZLC1 strain was isolated from an infected leaf sterilized with 2% chloros by single-spore isolation. The colony, composed of septahyphae, was dark gray on PDA and its diameter reached 7.92 ± 0.08 cm in 6 days. Conidia were ellipsoidal, tri-septate, smooth, 9.75–14.01 × 18.39–25.93 μm, and dissymmetrically curved at the third cell from the base. Conidiophores were geniculate, septate, brown, and smooth. Molecular identification was performed by analysis of the ITS, *GAPDH* and *EF1α* sequences (Tan et al. 2014). The nucleotide sequences of ZLC1 (GenBank accession Nos. MW928429, MZ157282, MZ073340) had a very high identity exceeding 99.13% with the sequences of *Curvularia muehlenbeckiae* isolates from *Muehlenbeckia* from India (HG799002, LT715806) and *Saccharum officinarum* from China (MN263973). Phylogenetic analysis confirmed the identification as *C. muehlenbeckiae*. Pathogenicity tests were performed twice by spraying a spore suspension (10⁶ spores/mL) on 10 pricked leaves of *Z. latifolia* with three replicates in vitro. At room temperature and 90% RH, lesions developed on the 4th day, and all the inoculated leaves were severely infected after 7 days (Online Resources 1). All the re-isolated cultures identified by morphology were from *C. muehlenbeckiae*. Previously, *C. muehlenbeckiae* has been reported as a pathogen of *Cunninghamia lanceolate* (Cui et al. 2020). To our knowledge, this is the first report of *C. muehlenbeckiae* on *Z. latifolia*.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s42161-021-00880-8.

Funding This work was partially supported by China Agriculture Research System (Funding No. CARS-24-C-01) and Science and Technology Project of Jiangsu Province (Funding No. BE2018359).

Declarations

Conflict of interest The authors declare no conflict of interest.

References

Cui WL, Lu XQ, Bian JY, Qi XL, Li DW, Huang L (2020) *Curvularia spicifera* and *Curvularia muehlenbeckiae* causing leaf blight on *Cunninghamia lanceolate*. Plant Pathol 69(6):1139–1147

© Springer