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Abstract— Obstacle avoidance is desirable for lightweight
micro aerial vehicles and is a challenging problem since
the payload constraints only permit monocular cameras and
obstacles cannot be directly observed. Depth can however be
inferred based on various cues in the image. Prior work has
examined optical flow, and perspective cues, however these
methods cannot handle frontal obstacles well. In this paper
we examine the problem of detecting obstacles right in front
of the vehicle. We developed a method to detect relative size
changes of image patches that is able to detect size changes
in the absence of optical flow. The method uses SURF feature
matches in combination with template matching to compare
relative obstacle sizes with different image spacing. We present
results from our algorithm in autonomous flight tests on a
small quadrotor. We are able to detect obstacles with a frame-
to-frame enlargement of 120% with a high confidence and
confirmed our algorithm in 20 successful flight experiments. In
future work, we will improve the control algorithms to avoid
more complicated obstacle configurations.

I. INTRODUCTION

The ability to detect and avoid obstacles of birds flying
in a forest is fascinating and has been subject of a lot of
research. However, there are also many applications of small
safe aerial vehicles for search and rescue, mapping, and
information gathering.

Advances in battery technology, computing, and mechan-
ical components have enabled small flying flapping wing
vehicles[1]. These vehicles have the advantage of being able
to fly close to obstacles and being nimble. Their low weight
makes them more robust and less dangerous. However,
the limited payload only permits lightweight sensors such
as a single camera to be used for control and obstacle
detection. Since camera based methods rely on external light
sources such as the sun to illuminate the scene and rely on
texture features to perceive the environment and there will
be situations where obstacles cannot be detected. However,
the small size of the vehicle permits a less reliable obstacle
detection method since collisions can be considered in the
vehicle design space.

Prior approaches have focused on bio-mimetic approaches
for obstacle avoidance. However these approaches have
mainly exploited optical flow or stereo disparity as depth

Tomoyuki Mori is with Mitsubishi Heavy Industries, Ltd., Japan.
Sebastian Scherer is with the Robotics Institute, Carnegie Mellon
University, Pittsburgh. email: tomoyuki_mori@mhi.co.jp,
basti@cmu.edu

Fig. 1: An example frontal obstacle. The optical flow
response of this obstacle is close to zero. However, our
approach is able to detect and avoid this type of obstacle.

cues to detect oncoming obstacles. Biological flying crea-
tures on the other hand also use many other monocular cues
to detect oncoming collisions as shown in Table I. A suc-
cessful system will have to exploit all available cues to detect
obstacles. Different cues, however, are useful at different
times. For example perspective cues such as vanishing lines
can be very useful in man-made environments while they do
not work well in natural environments because of a lack of
straight lines. Optical flow on the other hand fails in man-
made environments, because large regions of homogeneous
texture (e.g. painted wall) do not have sufficient information
to enable flow calculations.

In particular, detecting and avoiding frontal collision in
monocular imagery is challenging since there is no motion
parallax and optical flow is close to zero for low resolution
cameras. We develop and test a relative size detector that
is particularly useful to detect and avoid frontal collisions (
Fig. 1). This feature descriptor detects relative size changes
of features and is executed in real-time to avoid collisions. In
addition we also show a guidance algorithm that will permit
flight through forests with small aerial vehicles. We convey
results from 20 obstacle avoidance experiments.

First we put our work in context with prior research in
Sec. 2, then describe our approach in Sec. 3, and analyze
our results in Sec. 4.

II. RELATED WORK

There has been a significant amount of work in making
unmanned aerial vehicles aware of their environment and
behave in an intelligent manner. A survey of current ap-
proaches can be found in [16]. There are many potential



Method Availability
Related
Work

Motion
Parallax

Optical
Flow/SfM

Computation is large.
Cannot detect obstacle

straight ahead

[1], [2],
[3], [4],
[5], [6],
[7], [8],

[9]

Monocular
Cues

Perspective
Only useful in structured

environments
[10],
[11]

Relative Size
Available for straight-on

collisions

[12],
[13],
[14],
[15]

Known Object
Size

Features are useful for
particular objects.Texture Gradient

Occlusion/Haze/
Shadow

Depth from
Focus

Not typically available for
small aperture cameras

Stereo
vision

Stereoscopic
parallax

Need a sufficient baseline
and resolution

Convergence Only in humans

TABLE I: Depth cues in a biological vision system. There
are many potential depth cues used by biological systems.
We focus on the highlighted relative size cue.

sensor modalities and in particular lidar based approaches
have been shown to be able to sense obstacles reliably in
[17], [18]. However, for size, weight, and power (SWAP)
constraint vehicles cameras are the lightest sensor and given
computing advances and the type of computation can be
potentially very light. In the following section, we will talk
about depth detection using vision systems.

There are three principal ways that depth can be sensed
in a biological vision system: Motion parallax, monocular
cues, and stereo vision.

Motion parallax is utilized in optical flow methods. For
example, Beyeler et al. [2] developed autonomous extremely
lightweight indoor fliers that avoid obstacles and stay away
from obstacles using a small 1-D camera. Oh et al. [3] and
Green et al.[4] developed autonomous optical flow based
obstacle avoidance similar in idea to the design by Zufferey
et al. A larger fixed-wing aerial vehicle was used by Merrel
et al. [5] to reactively avoid obstacles and follow a canyon
with radar and optical flow. A fundamental limitation of
optical flow methods is that from frame to frame the flow
is proportional to the angle to the frontal direction. This
makes these methods useful for wall following or corridor
centering applications but difficult to use for frontal obstacle
avoidance. Therefore, Hrabar et al. [19] also performed
extensive experiments using optical flow and stereo cues.
Since geometrically there will be no flow ahead of the
robot stereo disparity is used in their work to detect frontal
obstacles.

Monocular cues have been used to avoid collisions. For
example, hallway centering was tested with perspective clues
in [10], [11]. Other monocular approaches have tried to di-
rectly map appearance to an obstacle distance such as in [20],
[21]. These methods were designed to work well in corridor

environments, however the perspective cues exploited are
many times not available in natural environments.

Even though many monocular approaches cannot measure
distance to obstacles directly it is still possible to avoid
obstacles since the optical flow has a relationship to the time
to collision [22].

Our approach focuses on one of the monocular cues, a
relative size cue to detect frontal collisions. When the size of
the object in front of the UAV is expanding, it means that the
object is approaching the UAV. The response is proportional
to the time to collision by measuring the expansion of an
obstacle. Also this approach can compensate for a lack of
parallax in optical flow that makes it difficult to use for
frontal obstacle avoidance.

In addition, Roberts et al. [23] developed an algorithm
that detects trees with line segmentation and optical flow.
However their approach is only for forests and they have
not flown autonomously in the forest. We pursue the general
approach to detect frontal objects, and fly autonomously.

III. APPROACH

In this paper we focus on a size expansion cue since apply-
ing other methods of depth detection such as perspective are
not applicable in natural environments. Other methods would
require a known object shape or size, and texture gradients
are good at detecting the ground surface or an object which
has a large surface. These methods are difficult to apply to
detect natural objects like trees.

A size expansion cue is useful to detect obstacles in
front of the vehicle to avoid a collision. From the bio-
mimetic standpoint, a size expansion cue is known to alert
of approaching objects. Gibson [24] was able to show that
looming could simulate the sense of approach directly. When
the objects visual size expands, a human will detect the
approaching object, not the size expansion.

Recently, there have been some attempts to apply size
expansion or similar cues for obstacle avoidance in UAVs.
Croon et al. [12] used the appearance variation cue to detect
approaching frontal obstacles and they successfully avoided
a wall. However this approach depends on the texture in
the environment and doesn’t use the size expansion directly.
Byrne et al. [13] executed the expansion segmentation with
inertial aid. However their demonstration is limited to sim-
ulation.

We have developed a direct “relative size” detector without
inertial aid and an obstacle avoidance algorithm that returns
the apparent size of obstacles as a function of time to
collision. For example, when the distance from an obstacle
reduces to 2m from 3m, the apparent size in the image
becomes 1.5 times larger (See Figure 2). Since the frame
rate of the images is known, one can calculate the time to
collision.

A. Frontal Obstacle Detection



Fig. 2: Distance vs. scale. The obstacle size is 0.4m in this
graph. As the distance to the obstacle decrease the viewing
angle that is occupied in the field of view increases.

A frontal obstacle detector needs to detect the relative
size change of obstacles in front, in consecutive images. One
approach would be to segment the image and look at the size
expansion in the segments. However, since we would like a
method that is feasible in real-time we consider a different
approach.

Recently, scale invariant features like SIFT/SURF features
[25] have shown their usefulness in computer vision because
they are relatively fast to compute and are invariant to large
scale changes. The features can be matched across multiple
images and also work for larger sections of skipped features.
Chavez and Gustafson[14] show how to detect looming in
consecutive images with SIFT features matching. However,
the results where not real-time and not tested on an actual
robot that is avoiding obstacles. Also, Alenya et al [9] present
a comparison of three methods that measure time to contact
that include a looming detection method with scale invariant
features. We develop a similar approach that tries to be more
accurate in the scale detection and test it on a small UAV that
actually avoids obstacles. For real-time and reliable obstacle
avoidance, we choose SURF features and template matching.

Our approach uses SURF features to detect the initial
locations of potential locations that are good to detect relative
size changes. SURF key points match even if their size has
changed. Our algorithm matches key points in consecutive
images and compares the size of the region around the key
point, to recognize if the camera is approaching an obstacle.
An advantage of this approach is that potentially any SURF
matched feature could be used to avoid obstacles and SURF
is quicker to calculate than SIFT.

After creating the SURF matches we discard any matches
that did not get bigger. The next step is to match the template
from one frame to the next. Template matching uses a region
around the image defined by the SURF feature scale to
calculate how well the features match. If an obstacle has
gotten too close it is considered an obstacle and will be
used for avoidance. Algorithm 1 shows our algorithm flow.

We used the OpenCV SURF algorithm to generate the
key points and matches at line 1 and line 2 in Algorithm

(a) Previous image (b) Current image

Fig. 3: SURF key points in consecutive images. (o) are
detected features in the images. The images are separate by
a skip time of nskip.

Fig. 4: The unfiltered SURF matches between the input
images.

1(Also, Fig. 3, Fig. 4). Each match gives us the center of
a point that has potentially grown in size. There is a large
set of matched key points with many wrong matches. We
calculate the match accuracy from the descriptors and discard
inaccurate key points in line 3 (Fig. 5). Furthermore, we only
need key points that become larger in the current image and
therefore discard key points whose size is small or the same
in line 4 (Fig. 6).

An accurate relative size is calculated using template
matching on each key point in line 5 (Also, see Algorithm
2). We calculate a key point’s scale ratio in the current image
by changing the previous key points scale and applying
a template matching algorithm to confirm the scale ratio.
Figure 7 shows a sample template matching result. In this
graph, the template matching result is best when the scale
is 1.4. This means that the SURF feature became 1.4 times
larger. We have found that the reported scale of the SURF
features is not accurate enough to give a good time to
collision estimate. If the correlation distance of the template
matching does not change between the same scale (1.0) and

Fig. 5: The filtered matched features whose feature distance
is small(good).



Algorithm 1 The scale expansion detector algorithm. This algorithm matches, filters and calculates the expansion of relevant
SURF features in consecutive images.
Procedure

1. Generate SURF Key Points (Figure3)
Output: (KP j

i (j = 0 → nkeypoint))

2. Match SURF Key Points in consecutive images (Figure 4)
Output: (Mj(KP

index(j)
i ,KP

index(j)
i−nskip

) (j = 0 → nmatch) )

3. Discard miss matching features (Figure 5)
Equation: (Mj .distance > 0.25 (j = 0 → nmatch) )

4. Discard Key Points which become small or the same (Figure 6)
Equation: (Mj .KP

index(j)
i .size > Mj .KP

index(j)
i−nskip

.size (j = 0 → nmatch,except discarded at line 3))

5. Confirm scale with template matching (Figure 7)
See Algorithm 2

6. ✏ = average( KP
index(j)
i ) (Figure 8)

(j = 0 → nmatch,only recognized obstacle at line 5)

Parameters:
KP j

i : Key points, i=frame no., j=number of key points
nkeypoint : Total number of key points
Mj(KP,KP ) : Pair of matched key points
index(j) : Number of key points at jth matched
nskip : Frame number of skip when key points are matched
nmatch : Number of matched key points
M.distance : Distance of matched key points calculated by SURF descriptors
KP.size : Size of key points
✏ : Position of the obstacle

(a) Previous image (b) Current image

Fig. 6: All detected expanding features(o). These features
show all the areas in the image where a significant expansion
is detected.

the best matched scale (Scalemin), we discard this key point
because the key point is likely to have homogeneous texture.

With this template matching algorithm, we can detect the
ratio of SURF key point expansion. As shown in Fig. 2, the
distance from the UAV to the expanding SURF key point is
close and the time to collision is small. Finally, we can get
the group of expanding SURF key points. Figure 8 shows a
sample result. Red circles refer to expanding SURF points.

Fig. 7: A sample template matching result for the image
shown on the right. The x-axis is the scale (as in algorithm
2). The result is at a minimum at scale 1.4 . This SURF
feature became 1.4 times from previous image to current
image.

B. Reactive Obstacle Avoidance for Forest Flight

To evaluate our scale expansion detector, we applied it to
the forest flight challenge. With our scale expansion detector,
the UAV can avoid frontal tree obstacles and fly goal directed
in forests. Some prior work has considered flight in forests.
In Karaman and Frazzoli [26] a position distribution is



Algorithm 2 The template matching algorithm. This algorithm looks for a time to collision that is relevant for our vehicle
to detect.
For(j = 0 → nmatch,except discarded )

5.1 Create template image from imagei−nskip
(previous image)

Template1 :image around Mj .KP
idx(j)
i , Template1.size = Mj .KP

idx(j)
i−nskip

.size ∗ 1.2/9 ∗ 20
For(Scale = 1 → 1.5)

5.2 Expand Template1j as scale
5.3 Create template image from imagei(current image)

Template2 :image around Mj .KP
idx(j)
i , Template2.size = Mj .KP

idx(j)
i−nskip

.size ∗ 1.2/9 ∗ 20 ∗ Scale

5.4 TMscale =Matching(Template1, T emplate2)/Scale2

5.5 If(TMscale < TMmin)
TMmin = TMscale, Scalemin = Scale

5.6 Next Scale
5.7 If(Scalemin > 1.2)

V
(TMmin < 0.8TM1.0))

KP
idx(j)
i → Obstacle

5.8 Next j

Parameters
imagei : Image at i frame
Template1 : Template for template matching 1
Template.size : Size of template(length of square side)
Scale : Expansion scale of Template1
TMscale : Result of template matching at scale
Matching(image1, image2) : Function

Calculate a difference between image1 and image2 for each pixel.
Output is a image whose size is same as image1 and image2

TMmin : Minimum result of template matching
Scalemin : Scale at template matching result is minimum.

(a) Previous image (b) Current image.

Fig. 8: Sample image of the expanding selected key points
and command. The red circles represent expanding key
points. The purple line is the command given to the vehicle.
One can see that many other key points in the field of view
were rejected.

used to model the tree locations in a forest and we use a
similar approach to model the distribution of trees in our
simulation. According to the authors for this kind of forest
only the closest obstacle is really relevant. This motivated
our approach for a simple reactive obstacle avoidance law.

Frew et al.[27] proposed a trajectory generator for small
UAV to fly in forests with limited field of view and distance
detection. The authors demonstrated their trajectory gener-
ator in forests. Since, we assume a small vehicle that has

to react quickly, we don’t use a deliberate path planning
algorithm, and instead use a reactive guidance law to avoid
obstacles and fly to the goal. This approach is a “sensor
based navigation.”

The strategy is that the UAV will avoid the frontal
obstacle when it detects the approaching obstacle with the
scale expansion detector as proposed in Sec 3.1. Gibson
[24] determined that animals detect “visual collision” with
looming and do not detect the distance. Likewise, we do not
detect the distance from obstacles. The vehicle simply avoids
the frontal obstacle when it detects that the time to collision
of the approaching obstacles is too small.

The information the aerial vehicle has to know about the
environment is only the bearing of the closest tree. Also if
the aerial vehicle has to go to a goal, it must know it’s own
position and goal position.

For simulation, we apply the control method of the actual
quadrotor we used in our experiment (Sec. 4.2). Bristeau
et al. [28] explain the control technology of this commercial
UAV. They estimate the vehicle velocity with a down-looking
camera for control since the MEMS inertial measurement
unit cannot be integrated for velocity estimates. Our control
commands to the UAV are velocity commands in simulation
and in the experiments. The approach is as follows:

• The vehicle will fly sideways when the obstacle is found
in the field of view



Algorithm 3 The obstacle avoidance control algorithm.
This algorithm will fly towards the goal if possible and
command a bang-bang avoidance maneuver if necessary to
avoid collision with an obstacle.
Yaw control:
 com = −goalbearing ·Kψ

X control:
vx,com = 1.2m

s
(constant)

ax,com = (vx,com − vx)Kv

Y control:
vy,com = 2m

s
·sign(obstaclebearing) (if there is an obstacle,

command for 0.4 sec)
ay,com = (vy,com − vy)Kv

Parameters
vx, vy :UAV Velocity (Body coordinate)
ax, ay :UAV Acceleration (Body coordinate)
Kψ,Kv :feedback gain

• Otherwise it always controls its yaw angle to achieve
the goal bearing

With this simple method, our vehicle can fly through the
forest. There is a large number of parameters that determine
if that flight is feasible: response time, acceleration limits,
flying speed, obstacle sensing distance, field of view, trunk
size, minimum distance between trees. In the simulation
we present in Fig. 9, the UAV response time, flying speed
are almost same as of the AR.Drone that we used in our
experiments.

IV. EXPERIMENTS

A. Setup

We evaluated our algorithms on a small commercial
quadrotor vehicle (Parrot AR.Drone) that is robust enough
to tolerate sensor failure. The vehicle is equipped with two
cameras. The field of view of the forward camera is 92 deg,
320X240 resolution at a frequency of 10Hz. We use gray
scale images for our algorithm however the images produced
are 8-bit RGB. All our algorithms process the images on
the ground on a laptop which is a quad core Intel i5-
2410M@2.3GHz running Linux. In addition a sonar height
sensor, inertial measurement unit (gyros, and acceleration
sensors), and downward looking camera are available and
used to control the velocity and height of the AR.Drone. We
did not add any additional sensors on the AR.Drone.

B. Obstacle Avoidance Experiments

We let the quadrotor fly toward an obstacle to verify if
our algorithm can detect and avoid the obstacles. Using
the velocity and attitude estimates from the AR.Drone we

Fig. 10: Our test vehicle (Parrot AR.Drone) in flight while
autonomously avoiding obstacles.

TOTAL SUCCESS FAILURE RATIO

Run 23 20 3 87%
Objects 107 104 3 97%

TABLE II: Result of a total of 23 runs with 107 avoided
obstacles. Of these runs 3 failed because the quadrotor
reacted too late to the detected obstacles.

modified the AR.Drone to fly autonomously. The algorithm
for flying autonomously is the same as Algorithm 3. It flies
forward from the start point to the goal point. If it detects
an obstacle during the flight, it will avoid the obstacle,
and continue to fly toward the goal. Figure 11 shows the
experiment course.

Table II shows our experimental results. We have flown
the vehicle 23 times through this experiment course. There
are 3 failure cases where the AR.Drone was not able to
avoid the obstacles because of a slow response time. In
terms of the number of obstacles avoided, the success ratio is
97%. Figure 12 shows the result of many obstacle avoidance
flights. These passes are the result of the combination of
the scale expansion detector and the AR.Drone’s reactive
behavior. Also Figure 13 shows the vx and vy data.

Figure 14 are images from the AR.Drone when it avoided
an obstacle. The white rectangle is the gate where obstacles
are detected. Our algorithm discriminates expanding key
points on the obstacle from non-expanding key points in
a complicated background with a monocular camera. We
do not need any prior learning to detect the approaching
obstacles. It also works with a low resolution camera and a
regular laptop PC in real-time. However, the approach needs
texture on the obstacles to detect SURF key points.

V. CONCLUSIONS & FUTURE WORK

We developed the scale expansion detector to detect the
approaching object with monocular vision. We use SURF
features to extract the expanding key point and template
matching to verify the ratio of expansion. Our scale ex-
pansion detector can detect frontal objects that are difficult
to detect with optical flow. It works in real time with
a low resolution camera on a commercial laptop. In our
experiments the algorithm can discriminate close from far



Fig. 9: A simulated-flight result in forests. Ideally, the quadrotor can detect the expanding obstacle from about 1.6m. In
algorithm 2 line 5.7, the vehicle can extract the SURF key point whose expansion rate is over 1.2, the speed is ~ 1m/sec,
image frequency is 6Hz. We skip nskip = 1 image to compare scale.

Fig. 12: A set of 23 avoidance runs. To estimate the state to generate this paths we integrate the reported visual velocity
and gyro heading. We had to adjust the data to coincide with the obstacle and goal location.

Fig. 11: The experimental setup for the obstacle avoidance
experiments and a depiction of the typical behavior of the
vehicle. There are eight obstacles in the straight line path of
the vehicle.

features in a cluttered background. It is not necessary to
learn any prior information about obstacles.

With our scale expansion detector and sensor based navi-
gation, the quadrotor can avoid slim obstacles like trees. We
flew the quadrotor 23 times on a course with 8 obstacles and
the vehicle reached the goal 20 times. Overall the vehicle
avoided a total of 104 obstacles with 3 failed avoidance
maneuvers. The reason for these failures was the quadrotor’s
slow response time that could be reduced with a better
vehicle platform.

Our scale expansion detector works for frontal obstacles.
However, obstacles have to have sufficient texture to make
SURF key points. Trees have a slight texture on their trunks
so it may be possible to extract SURF key points from
tree trunks if we use a higher resolution camera. In future
work, we intend to improve performance with a good camera
system. Since a higher resolution image means more CPU
consumption, on-board processing may be more challenging.
The approach however, is trivially parallelizable and could
be implemented efficiently on a signal processor and FPGA
combination.

Furthermore, we will combine multiple algorithms such as
optical flow and perspective cues that have already shown
their effectiveness in textured natural environments and
homogeneous urban environments(corridors). These cues can



Fig. 13: An example obstacle avoidance maneuver. An ob-
stacle avoidance command (vy,com) was generated 5 times.

Fig. 14: A detected obstacle during flight. All the red circles
are detected expanding feature points in the region of interest
(white box). The purple line shows the side the obstacle is
detected on. White circles depict rejected feature points.

compensate for the shortcomings of each other and combined
will mimic a biological vision system that enables collision-
free operation of flying micro aerial vehicles.
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