

Open access • Posted Content • DOI:10.1101/2020.11.24.376087

First results on diversity patterns and selective sweeps in a Southeast European panel of maize inbred lines as combined with two West European panels

— Source link 🛽

Vlatko Galić, Violeta Anđelković, Natalija Kravic, Nikola Grčić ...+7 more authors

Institutions: University of Zagreb

Published on: 24 Nov 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Selective sweep

Related papers:

- Diversity patterns and selective sweeps in a Southeast European panel of maize inbred lines as combined with two West European panels
- Genetic Structure and Diversity Among Maize Inbred Lines as Inferred From DNA Microsatellites
- Molecular diversity and selective sweeps in maize inbred lines adapted to African highlands.
- Heterotic grouping based on genetic variation and population structure of maize inbred lines from current breeding program in Sichuan province, Southwest China using genotyping by sequencing (GBS)
- · Grouping of accessions of Mexican races of maize revisited with SSR markers

1 First results on diversity patterns and selective sweeps in a Southeast European

2 panel of maize inbred lines as combined with two West European panels

- 3
- 4 Vlatko Galić¹, Violeta Anđelković², Natalija Kravić², Nikola Grčić², Tatjana Ledenčan¹,
- 5 Antun Jambrović ^{1,3}, Zvonimir Zdunić ^{1,3}, Štéphane Nicolas ⁴, Alain Charcosset ⁴, Zlatko
- 6 Šatović ^{3,5}, Domagoj Šimić ^{1,3,*}
- 7
- Agricultural Institute Osijek, Južno predgrađe 17, HR31000 Osijek, Croatia;
 vlatko.galic@poljinos.hr
- 10 ² Maize Research Institute Zemun Polje, Slobodana Bajića 1, 11185 Belgrade, Serbia
- ³ Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv),
 Svetošimunska cesta 25, HR10000 Zagreb, Croatia
- ⁴ GQE Le Moulon, INRAE, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris Saclay, 91190 Gif-sur-Yvette, France
- ⁵ Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, HR10000
 Zagreb, Croatia
- 17

18 Abstract: More than one third of European grain maize is produced in South Eastearn 19 Europe (SEE) and utilization of historical maize material developed in SEE for its favorable 20 alleles and diversity has long been speculated. However, molecular information on diversity 21 of the SEE maize genetic material is scarce. The objectives of this study were i) to analyze 22 diversity patterns in a large panel of densely genotyped historical accessions from SEE, ii) 23 to compare the data with those obtained from other two European panels, and iii) to identify 24 genomic regions that have undergone selection (selective sweeps) in response to 25 adaptation to SEE conditions. 572 accessions of the historical inbred lines from Maize 26 Research Institute Zemun Polje gene bank representing the SEE material were genotyped 27 using the 600k maize genotyping Axiom array. The genotyping results were merged with 28 two European panels DROPS and TUM. Genetic structure and diversity were analyzed 29 using neighbor-joining cladogram, PcoA, Admixture, Structure and sNMF. To detect the 30 selective sweep signals, Tajima's D statistic and RAiSD were employed. The best number 31 of ancestral populations was K=7, whereby one of them is a subpopulation containing 32 inbreds belong exclusively to the SEE panel. The prevalence of inbreds linked to historical 33 US inbred lines Wf9, Oh43, Pa91 and A374 was detected in SEE. Possible soft selective 34 sweep was detected in chromosome 2 in region harboring a gene linked to promotion of 35 flowering FPF1. Additional scan for selective sweeps using the RAiSD methodology yielded 36 four signals in chromosomes 5 and 6, all in gene-rich regions. Several candidates of 37 selection were identified, influencing the plant morphology and adaptation. Our study 38 provides the first step towards the re-utilization of the SEE genetic materials for use in 39 modern maize breeding. Phenotypic analysis is needed for assessment of SEE accessions 40 for favorable alleles, and identification of breeding targets.

41 Keywords: South Eastern Europe; maize genetic resources; genetic structure; selective
 42 sweep;

- 43
- 44
- 45
- 46
- 47

1 **1. Introduction**

2 Maize (Zea mays L.) breeding is based on the selection of the favorable progenies from 3 the designed crosses between inbreds bearing favorable alleles/favorable genetic 4 background (Hallauer et al., 2010). This type of advanced-cycle pedigree breeding scheme 5 might lead to the available maize germplasm becoming more elite, although more genetically 6 narrow (Lu and Bernardo, 2001; Reif et al., 2005). Due to the distinct heterotic patterns in 7 maize breeding (Lee and Tracy, 2009), population-level diversity is maintained, but to 8 sustain the long-term breeding progress, exploiting of the new germplasm resources is 9 inevitable, especially for adaptation traits (Bouchet et al., 2013; Romero Navarro et al., 2017; 10 Wegary et al., 2019).

11 Modern maize hybrids grown around the world today, are mostly single crosses 12 developed through tangled crossing and testing schemes in target populations of 13 environments by multi-national companies. Only marginal market shares are held by the 14 small companies and public institutions. The global seed market can be separated into two 15 tiers. The first tier represents 10 largest companies owning 69% of the world market and 16 only three of which reported sales of >3000 \$m for 2018, and the other represents all other 17 stakeholders. This trend can be easily extrapolated to maize only, especially due to the fact 18 that maize seed business accounts for 42% of the global seed market of all crops with global 19 sales of nearly 18 billion US\$ in 2018 (FAO/IHS Markit Agribusiness Consulting, 2019).

20 However, the evolution of the seed business was driven by the evolution of maize 21 breeding itself, initially mainly through the public breeding programs. During the 19th century, 22 the US corn market was prevailed with seeds of many open pollinated varieties (OPVs) 23 adapted to temperate environments from several early breeding programs, such as Reid 24 Yellow Dent, Lancaster Sure Crops, Learning corn, etc. By the year 1933, first significant 25 acreages of the double cross hybrid corn were reported (Troyer, 2009) with substantially 26 higher yields compared to OPVs. Further developments in hybrid breeding were observed, 27 especially with development of Stiff Stalk Synthetic during the 1930s. From the 1950s there 28 was a rapid shift from breeding maize by farmers for farmers, to breeding by seed companies 29 which led to further increase in grain yields. Interestingly, 87% of the maize genetic material 30 utilized in U.S. during the mid-2000s could be traced back to only five historical OPVs, with 31 highest leverage of the variety adaptness to surpass thousands of other, today-probably 32 extinct OPVs (Arca et al., 2020; Coffman et al., 2020; Troyer, 2004).

33 European perspective on the maize breeding was somewhat different than the US one. 34 Some of the first introductions of maize into the parts of Europe after the discovery of 35 Americas probably failed on the wider scale, due to the low levels of adaptation to European 36 climatological conditions. It is well established that during the early 16th century, several 37 populations of Caribbean origin were widespread in southern Spain and Italy, but it was 38 probably not until the separate introductions of the Northern Flints later in the same century, 39 that the maize has been broadly adapted to European mid-latitudes (Mir et al., 2013; 40 Rebourg et al., 2003; Tenaillon and Charcosset, 2011).

41 South Eastern Europe (SEE), consisting primarily of the Balkan Peninsula, can be 42 considered as a European counterpart to the US Corn Belt with well adapted late temperate 43 germplasm and more than 20% of the crop areas under maize (Leff et al., 2004). Moreover, 44 more than 35% of the European grain maize was produced in Serbia, Romania and Hungary 45 and continental Croatia in the period from 2010 - 2014 (USDA, 2020). In more recent 46 reports, Croatia, Serbia, Romania and Hungary in 2018 and 2019 together contributed 52% 47 and 51%, respectively of the European Union + Serbia total maize grain production 48 (Eurostat, 2019; Republic of Serbia, 2020).

In the former Yugoslavia, a large number of the local landraces (>2000) classified into 18 races, showed large within-race and among-race variability and expected heterozygosity (Geric et al., 1989; Ignjatović-Micić et al., 2013) probably reflecting the multiple origins and introductions of maize to these areas also seen in words in different languages designating maize as Turkish maize, or "kolombač" a word straining from the word Columbus in Montenegro (Leng et al., 1962). Based on the morphological assessment, landraces of the
former Yugoslavia resemble many different historical populations such as Amarillo de Ocho
(Small-ear Montenegrin flints), US Northern Flints (Eight-rowed flints), Old Southern Dents
(Many-rowed Soft Dents), etc. along with several more recent OPVs from late 19th century
such as Hichory King (Large kernel dents), and early 20th century introductions of Golden
Mine and Queen of Prairie (Rumski zlatni zuban) (Andjelkovic and Ignjatovic-Micic, 2012;
Babic et al., 2012; Kozumplik and Martinić-Jerčić, 2000).

8 After the World War II, some of the European traditional varieties were used to develop 9 hybrids adapted to European conditions (Tenaillon and Charcosset, 2011), and were 10 crossed to materials developed from the US imported double-cross hybrids such as WF9 x 11 Hy, Hy x Oh07, W32 x W187, etc. during the 1950s (Brkić et al., 2003; Hadi et al., 2013). 12 Growing the locally bred maize hybrids was so popular in the SEE during the 1960s, that it 13 was even speculated to surpass the production of the US hybrids in the following decades 14 (Leng et al., 1962). The source of that-time modern introduced US germplasm was the 15 organized production of US double cross hybrids in Yugoslavian public research institutes 16 as part of the American Aid plan through the Foreign Organization Administration from the 17 original inbreds (Tavčar, 1955). The imported inbreds were: Wf9, 38-11, Hy, L317, N6, K148, 18 K150, M14, W32, W187, A374, A375, and Oh07.

19 Data about molecular diversity of maize genetic material in SEE is scarce (e.g. Suteu 20 et al. 2013 (Suteu et al., 2013)). Nonetheless, utilization of the SEE maize for its favorable 21 alleles and diversity has been long speculated (Leng et al., 1962), with most of the materials 22 still deposited in gene banks. One such bank is Maize Research Institute Zemun Polje 23 (MRIZP) gene bank conserving >6000 accessions, of which >2000 are the maintained local 24 landraces collected throughout the former Yugoslavia and > 4000 accessions are the inbred 25 lines and landraces originating from 40 different countries (Vančetović et al., 2010) 26 representing one of the largest maize collections in the world (Gouesnard et al., 2017). The 27 view on the relevance of the plant genetic resources has at least two converging aspects. 28 First is the conservation of the biodiversity that has been narrowed by the way the historical 29 diversity has been utilized (Planchenault and Mounolou, 2011). The other aspect is to use 30 all available modern breeding tools such as dense genotyping, high throughput phenotyping, 31 etc. to mine and utilize the favorable variability by overcoming the issues such as linkage 32 drag (Hölker et al., 2019; Ortiz et al., 2010; Sood et al., 2014; Unterseer et al., 2016).

The objectives of this study were i) to analyze diversity patterns in a large panel of densely genotyped historical accessions from SEE, ii) to compare this genetic diversity with two European diversity inbred line panels, and iii) to identify genomic regions that have undergone selection (selective sweeps) in response to adaptation to SEE conditions.

37 **2.** Material and Methods

38 Plant material

39 The 572 accessions of the Maize Gene Bank of the Maize Research Institute Zemun 40 Polje (MRIZP) were used to carry out this study. Accessions i.e. inbred lines were chosen 41 in a way to represent the diversity of introduced or de-novo developed material from the SEE 42 breeding programs along with several inbreds with collection attributes from other countries. 43 In the SEE panel, there were 220 accessions collected from Bulgaria, 132 from ex-44 Yugoslavia, 54 from Romania, 42 from Hungary,18 from ex-Czechoslovakia, 13 from 45 Poland, 7 from Greece, along with inbreds that did not originate from SEE: 47 from ex-USSR, 12 from USA, 8 from Mexico, 7 from Iran, 3 from France, 2 from Canada, 2 from ex-46 47 East Germany, 1 from ex-People's Republic of Korea, 1 from Pakistan, 1 from Switzerland, 48 1 from Argentina and 1 of unknown origin. All additional information about the used inbred 49 lines is available as Supplementary table S1.

50 Genotyping and data management

The MRIZP accessions of the SEE panel were genotyped with Axiom[™] 600k Maize 1 2 SNP Genotyping Array with 616,201 variants of which 6,759 represent insertions/deletions 3 (Unterseer et al., 2016, 2014). All steps of the DNA analysis were conducted by 4 TraitGenetics GmbH, Germany including standard protocols of DNA extraction and marker 5 quality control. Two other publically available genotypic matrices anchored with the same 6 genotyping array were used to conduct this study. First was data from Unterseer et al., 7 (2016) on 155 elite Dent or European flint / Northern Flint inbred lines, mainly from German 8 and French public breeding programs (TUM panel) and the second was the data from Millet 9 et al., (2016) on 247 dent inbred lines (DROPS panel). Most of the inbred lines from both 10 data sets were European developments along with the most important US ex-PVP and 11 public inbreds. Additional information about the inbred lines is available in Supplementary 12 table S1.

The data from all three datasets were merged using a custom R script and insertions/deletions were removed, leaving 500,167 overlapping positions. Positions were further filtered for heterozygotes (2.5%) and missing data (5%) in Tassel software (Bradbury et al., 2007) version 5.2.64 leaving a final set of 460,243 filtered positions. The positions were imputed using the LinkImpute method (Money et al., 2015) with 50 sites in high linkage disequilibrium and 30 nearest neighbors. For population structure analysis, all positions were thinned to 1000 base pair distance, leaving 166,755 sites.

20 **Population structure**

21 Population structure was determined by combining several methods:

Neighbor-joining cladogram was constructed in Tassel and edited using a FigTree software
 (Rambaut, 2018) version 1.4.4.

Principal coordinate analysis (multi-dimensional scaling, PcoA) was performed with thinned marker set with identity-by state distance matrix as input in Tassel software version 5.2.64.

- 26 To correctly infer the underlying genetic structure of the assessed germplasm, Admixture 27 analysis was run (Alexander and Lange, 2011) in Ubuntu 20.04 terminal with 166,755 28 imputed and thinned sites. The cross-validation error did not reach minimum until the 29 maximum number of 15 infered populations. Another method for inference of ancestry was 30 sparse nonnegative matrix factorization algorithm (sNMF) (Frichot et al., 2014) in which 31 cross-entropy criterion was employed to find the best value of K, but similarly to Admixture 32 cross-validation results, minimum was not reached until the last assumed ancestral 33 population.
- 34 To infer the optimal number of ancestral populations (K), 10,000 positions were randomly 35 sampled from the imputed and thinned set of 166,755 sites and analyzed with STRUCTURE 36 software (Pritchard et al., 2000), version 2.3.4. The K was set from 1 to 15 and 5 runs were 37 carried out per each K with 5,000 burn-in cycles and 15,000 replicates. Based on the findings 38 of Puechmaille (Puechmaille, 2016) that uneven sampling of subpopulations leads to 39 underestimates of true number of K, parameters MedMed K, MedMeanK, MaxMed K and 40 MaxMean K were calculated using the StructureSelector software (Li and Liu, 2018). 41 Additionally, parameter deltaK (Evanno et al., 2005) was calculated. 42 Spatial projections of the calculated ancestry coefficients were performed using a

43 BioconductoR package LEA (Frichot and François, 2015) following methodology described 44 in Jay et al. (2012). Pie charts of the average ancestries of samples with assigned putative 45 origin were mapped to 15 European locations, and Kriging on dominant spatial patterns was performed. Single coordinates were added to each country of origin, while the historical 46 inbreds from ex-East Germany were assigned to Germany pool, ex- Czechoslovakian 47 48 inbreds were mapped between today Czech Republic and Slovakia and ex-Yugoslavian 49 inbreds were mapped on Serbian-Croatian border harboring the largest ex-Yugoslavian 50 breeding programs.

51 *Parameters of genetic diversity and selective sweeps*

Nucleotide diversity π was assessed as are the respective frequencies of the *i*-th and *j*-th sequences, π is the number of nucleotide differences per nucleotide site between the the *i*-th and *j*-th sequences, and *n* is the total number of sequences in the sample. Watterson estimator θ was calculated as $\theta = 4N_e\mu$, where N_e is effective population size, and μ is an estimate of per-generation

6 mutation rate. Tajima's *D* was calculated from the aforementioned parameters as $D = \frac{d}{\sqrt{\hat{v}(d)}}$

7 , where *d* represents difference between two values of θ , and \hat{V} is a variance of this 8 difference. Scan for selective sweeps was carried out using a sliding window analysis with 9 a step size of 100 bp, and a window size of 500 bp in Tassel software version 5.2.64. 10 Another, more stringent protocol for sweep detection was also carried out, namely Raised 11 Accuracy in Sweep Detection (RAiSD) (Alachiotis and Pavlidis, 2018). In RAiSD protocol, 12 three signatures of selective sweeps are calculated: first signature is the local reduction of

13 the polymorphism level quantified by parameter μ^{VAR} . The second signature shows the shift 14 in the site frequency spectrum (SFS) toward low- and high-frequency derived variants and

is termed μ^{SFS} . The third signature (μ^{LD}) shows a localized pattern of linkage disequilibrium (LD) levels, characterized by high LD on each side of a putative mutation and low LD between loci that are located on different sides of the beneficial allele. The final parameter

^µ is calculated from the three above mentioned parameters. Window size in the analysis was set to 50 base pairs. RAiSD software version 2.8. (Alachiotis and Pavlidis, 2018) was run in the Ubuntu terminal using the full imputed SNP matrix.

3. Results

22 Genotyping data summary

In the filtered and imputed dataset, there was a total of 460263 SNPs, 460241 of which were segregating. Average minor allele frequency (MAF) was 0.255, and high values of Tajima's *D* (4.105) were observed. When SEE panel genotyping data was combined with two other European panels with publicly available data for Affymetrix Axiom 600k chip (Millet et al., 2016; Unterseer et al., 2016), all 460263 loci were found to be segregating, with similar MAF and slightly higher Tajima's *D* of 4.661 (Table 1)

- 29
- 30

Table 1. Summary of genotypic data for the SEE maize panel as well as publicly
 available genotypic data for the two West European panels of DROPS (Millet et al.,
 2016) and TUM (Unterseer et al., 2016).

Panel	Number of inbreds	Number of sites (all panels)	Segregating sites	Average MAF	π per bp	θ per bp	Tajima's <i>D</i>
SEE	572	460263	460241	0.255	0.340	0.144	4.105
DROPS	247		460242	0.245	0.333	0.164	3.264
TUM	155		460239	0.264	0.359	0.178	3.351
Total	974		460243	0.255	0.346	0.134	4.661

1 Number of ancestral populations (K) and admixture analysis

2 The used methods Admixture and sNMF failed to reach minimum values of cross-3 validation error and cross-entropy, respectively up to the maximal inferred number of 15 4 assumed ancestral populations, although the presence of a "knee" was observed in cross-5 entropy analysis (not shown). STRUCTURE algorithm was run with a random subset of 6 10,000 markers and gave two conflicting groups of results depending on the employed 7 methodology (Supplementary figure 1). The ΔK method (Evanno et al., 2005) gave an 8 estimate of five ancestral populations, while LnP(K) method (Pritchard et al., 2000) gave an 9 estimate of seven ancestral populations. The third method employed to support the decision 10 on best number of K proposed by (Puechmaille, 2016) converged in all four estimated 11 parameters (MedMed K, MedMean K, MaxMed K and MaxMean K) on value of K=7 (Figure 1) which was used for further analyses. F_{ST} values between the assumed ancestral 12 populations can be seen in Table 2. The first population (K1) represents European flints, 13 14 present in all three assessed panels, but dominant in the TUM panel. Second population 15 (K2) represents parts of the Stiff Stalk Synthetic-derived germplasm, namely B73, and 16 inbreds developed in Italy present in the DROPS panel. The third population (K3) is 17 represented by the Mo17-related inbreds, i.e. Lancasters. In fourth population (K4) are the 18 lines derived from Stiff Stalk Synthetic, namely B14 and A632. The fifth population (K5) 19 bears lines derived from Wf9, Oh43 and Pa91. Markedly, in sixth population (K6) in samples 20 with population memberships >0.9 are almost exclusively inbreds from SEE panel, except 21 from a single line from USA, namely A374 (historical Minnesota line) which represents 22 historical US germplasm strained from Reid Yellow Dent. The seventh population (K7) was 23 represented with lodent pool, focused around lodent progenitor line PH207. Most interesting 24 was the complete lack of lodent inbreds from the SEE panel with only two inbreds with 25 ancestral coefficients of 0.706 in K7 from Hungary and ex-Yugoslavia (Supplementary table 26 1).

Figure 1: Selection of best number of ancestral populations (red line) using a

- 2 method developed by Puechmaille (2016).
- 3

Table 2. Mean dissimilarity (F_{ST}) between ancestral populations

	K1	K2	К3	K4	K5	K6
K2	0.476					
K3	0.367	0.582				
K4	0.389	0.495	0.506			
K5	0.273	0.478	0.365	0.395		
K6	0.209	0.404	0.301	0.311	0.186	
K7	0.438	0.625	0.521	0.536	0.421	0.347

4 Based on STRUCTURE results, a highlighted neighbor joining cladogram was

5 constructed (Figure 2). In the cladogram, highlighted are the clades in which inbreds with 6 membership coefficients >0.9 are found. In the cladogram, populations K1, K2, K3, K4 and

7 K7 are distinguished, while individuals of populations K5 and K6 appear scattered on

8 different branches.

- 1 2
- Figure 2. Neighbor joining cladogram of combined three European maize panels
 SEE, DROPS and TUM (n=974). Highlighted are the clades with inbreds with
 membership coefficients in admixture analysis >0.9.

5 Principal coordinate analysis (PcoA)was employed to further analyze the obtained diversity patterns (Figure 3). Compared to the neighbor joining clustering results, only K1 6 7 and K7 showed distinct appearance across three examined planes. Lack of distinctness 8 visible between groups with membership coefficients >0.9 K2 and K4, as well as K5 and K6 9 was partially in agreement with results of neighbor joining clustering. Only the first two coordinates showed eigenvalues >2 (Table 3), with slight decrease in eigenvalues up to the 10 11 last assumed coordinate (Table 3). Appearance and the spread on the scatterplots (Figure 12 3) was in accordance with mean pairwise differences in Table 2. Smallest spread was 13 accompanied with lowest observed F_{ST} values within populations (Table 2), especially in K2 14 (0.178) and K7 (0.228)

Figure 3. Principal coordinate analysis (PcoA) results of the 974 assessed inbred lines from the three European maize panels. Figure A shows principal coordinates 1 and 2, while principal coordinates 1 and 3 are shown in B. The inbred lines with Admixture membership coefficients >0.9 are shown in color.

- -

1	
_	

2 Table 3. Eigenvalues of the assessed components from the PcoA analysis.

PcoA	eigenvalue		
1	4.28		
2	2.42		
3	1.85		
4	1.46		
5	1.31		
6	1.23		
7	1.06		

3

4 Kriging of the mean population membership coefficients to 15 known and putative sites 5 of origin of the assessed maize inbred lines showed three different dominant geospatial patterns. First pattern was mostly represented by Germany, France and Switzerland, with 6 7 prevailing European flint genetic group. The germplasm related to B73 and Mo17 (K2 and K3) was dominantly represented in Italy, while Spain, Portugal, Greece, Bulgaria, Romania, 8 ex-Yugoslavia, Hungary, ex-Czechoslovakia, Poland and ex-USSR showed dominant 9 germplasm from K6 with varying shares of other materials. Higher mean ancestral 10 coefficients linked to historical Minnesota inbreds were also observed in these countries. 11

Figure 4. Pie charts of the mean population membership coefficients for the 15 European countries with known or putative origin of inbred lines assessed in the

three maize genotyping panels. Different layers of color represent the results of
 geospatial kriging of the dominant patterns of population membership coefficients.

3

4 Scans for selective sweeps

In the scan for selective sweeps based on Tajima's *D* statistics, a single large genomic region with negative values of *D* was detected in the SEE panel on chromosome 2 between 90 and 95 MBp. The negative value of *D* was caused by lower values of parameter π (Figure 5). In this region, on the position 91.2 MBp, a gene coding for Flowering promoting factorlike 1 protein is found. BLAST of the cDNA coding sequence gave 84-100% sequence covers in maize, sorghum, and weeping love grass possibly indicating a conserved gene in C4 grasses.

12

13

14 Figure 5. Tajima's D and π values (blue line, secondary axis) for a region on 15 chromosome 2 associated with flowering promoting factor-like 1.

16

17 The further scan for selective sweeps was run using the tool RAiSD. The first parameter of the RAiSD analysis µVAR quantifying the variations per 50 bp window showed most 18 19 variation around the centromere region of chromosome 5 (Figure 6A). The second parameter µ^{SFS} assessing the shifts from the expected site frequency spectra showed three 20 21 positions with non-zero estimates (Figure 6B), at start positions 122994833, 144327275 and 164884576, respectively. The μ^{LD} parameter showed expected lower LD values for putative 22 23 positively selected positions (Figure 6C) resulting in final estimates of sweep statistics (µ) of 24 0.54, 0.58 and 0.34, respectively (Figure 6D).

2 Figure 6. Four RAiSD μ parameters (Figure 6A - μ^{VAR} ; Figure 6B - μ^{SFS} ; Figure 6C 3 - μ^{LD} , and Figure 6D - μ for potential selective sweeps on chromosome 5 in the SEE 4 maize panel.

5 Another selective sweep signal was detected with RAiSD on chromosome 6 (Figure 7). The values of μ^{VAR} , μ^{SFS} and μ^{LD} resulted in final estimates of sweep statistics (μ) of 0.31 on 6 start position 118933183 bp. The search for candidate genes within the regions with non-7 8 zero µ statistics was carried out within MaizeGDB interface. Within the region with start 9 position 122994833 bp in chromosome 5, a gene coding for gras17 -GRAS transcription factor is found (Table 4). In position 144327275 bp several protein coding genes are found, 10 11 namely bHLH transcription factor, putative protein phosphatase 2C 76 and Rhodanese-like domain-containing protein 4 chloroplastic. Within the last detected putative selective sweep 12 13 in chromosome 5, position 164884576 bp, protein coding genes for Polyadenylate-binding protein-interacting protein 3, RS21-C6, Os02g0478550-like, rps27b and Spotted leaf protein 14 15 11 are found. In the Chromosome 6 within the region in which selective sweep signal was 16 detected, is the protein coding gene bzip59 - bZIP-transcription factor 59, and 17 uncharacterized genes TIDP3136 and AC209629.2 FG003.

Figure 7. Four RAiSD μ parameters (Figure 6A - μ^{VAR} ; Figure 6B - μ^{SFS} ; Figure 6C - μ^{LD} , and Figure 6D - μ for potential selective sweeps on chromosome 6 in the SEE maize panel.

Table 4. Candidate genes within potential selective sweeps on chromosomes 5 and

Chromosome	Start position	Final position	μ (max)	Candidates
5	122994833	123266341	0.54	gras17 -GRAS transcription factor
5	144327275	144538840	0.58	bHLH transcription factor 139, putative protein phosphatase 2C 76, Rhodanese-like domain-containing protein 4 chloroplastic
5	164884576	165073595	0.34	Polyadenylate-binding protein- interacting protein 3 (CID3), RS21-C6, Os02g0478550-like, rps27b, Spotted leaf protein 11 (SLP11)
6	118933183	119093347	0.31	bzip59 - bZIP-transcription factor 59, TIDP3136, AC209629.2_FG003

1 **4. Discussion**

2 This study represents a historical perspective on the germplasm of the SEE and 3 provides the first information needed to successfully utilize the favorable genetic information 4 by overcoming the issues of the classical breeding approach.

5 For K = 7, the joint STRUCTURE analysis of the three European panels showed one flint group and six dent groups represented notably by B73, Mo17, B14, Wf9, A374 related 6 7 SEE inbreds and lodent lines, respectively. While subpopulations K1-K4 contained inbreds 8 belonging to all three genotyping panels, there is a clear prevalence of the lines from SEE 9 in K5 and K6 subpopulations with admixture coefficients >0.9. The first represents the Wf9, 10 Pa91 and Oh43 based germplasm, and the latter representing the germplasm based on "A" 11 lines, namely A374 from Minnesota breeding programs (Schaefer and Bernardo, 2013). 12 These two groups have already been identified earlier as separate subpopulations of the 13 temperate maize germplasm (Hansey et al., 2011; Schaefer and Bernardo, 2013). The 14 prevalence of these lines in SEE probably reflects the early reports on the import of the 15 historical US germplasm after the WWII (Tavčar, 1955) and their use for breeding with locally 16 adapted landraces (Hadi et al., 2013; Leng et al., 1962). This was also confirmed by some 17 of the more recent studies on the genetic structure of SEE germplasm (Suteu et al., 2013). 18 Most of these accessions are obsolete, and are not directly present in the contemporary 19 temperate breeding germplasm (Mikel, 2011; Romay et al., 2013) except small amounts of 20 Wf9 and Oh43 (Coffman et al., 2020). On the other hand, the lodent germplasm (K7) is 21 almost completely lacking in the SEE panel. This is caused primarily by the historical nature 22 of the SEE panel, along with the fact that the lodent progenitor line PH207 was not publicly 23 available until 2002 (Mikel and Dudley, 2006). It might be worthwhile to re-evaluate this 24 resource with modern tools, especially since the local SEE landraces have been used in 25 breeding with these accessions possibly offering certain resource of alleles for adaptation 26 traits. This is reflected through the high allelic diversity present in this panel (Table 1) 27 accompanied by the very high estimates of the Tajima's D. High D values represent the 28 effects of balancing selection (Tajima, 1989). This might have been influenced by the 29 population contraction or possibly by the selection within the known heterotic patterns. The 30 familiar examples of the balancing selection are heterozygote advantage (overdominance 31 in case of heterosis) and frequency-dependent selection with rare-allele advantage. The 32 frequency dependent selection possibly strains from the fact that the present results 33 represent the genotyping results of a genetic resource collection in which many inbreds 34 represent the maintained admixed accessions with local landraces where selection for 35 certain favorable phenotypic type has occurred.

36 Plotting the results on the map of Europe with spatial projections of dominant patterns 37 on coordinates revealed the three different underlying patterns of the distribution of ancestry 38 coefficients. Namely, the main pattern in the Western Europe represented by the accessions 39 from France, Germany and Switzerland is mostly of European Flint materials which is in 40 accordance with the results of (Bouchet et al., 2013). Another pattern was represented solely 41 by the accessions from Italy, closely related to the Stiff Stalk Synthetic germplasm. The third 42 pattern represented by the inbreds Wf9, Pa91 and Oh43 can be observed in Spain. Portugal 43 and most of Eastern and Southeastern Europe. The larger proportions of the lines 44 associated with materials from Minnesota in SEE can also be observed (Figure 4, blue), 45 although the sampling of Portugal, Spain and Italy was generally biased towards the dent 46 materials with underrepresentation of European flint in these countries.

The scan for selective sweeps using Tajima's *D* statistic yielded very high estimates of *D* throughout the genome. The high estimates of *D* are expected in cases of balancing selection, and heterotic patterns in maize that maximize the heterotic effects make the balancing selection inevitable, especially in commercial germplasm. However, the possible signal of a soft selective sweep was detected on chromosome 2, where a gene coding for *Flowering promoting factor-like 1* (FPF1) protein is found. FPF1 is involved in floral development and transition from vegetative to reproductive phase of plant. BLAST of the

cDNA sequence gave 84-100% covers in maize, sorghum and weeping love grass 1 2 (Eragostis curvula), possibly indicating a gene conserved in C4 grasses. Soft sweeps appear 3 to be the signature of a main mechanism of adaptation, i.e. they do not result in a large shift 4 in the site frequency spectrum leaving the genetic variation within position slightly changed 5 (Luikart et al., 2018). Moreover, variation in flowering regulation provides maize the means 6 of adaptation to different latitudes and longitudes (Bouchet et al., 2013; Romero Navarro et 7 al., 2017) influenced by different day lengths, temperatures, and stressors (Brandenburg et 8 al., 2017). However, another reason for this signal might be the selfing of the first pollinating 9 progenies for many generations in breeding programs causing this putative soft sweep 10 signal as overexpression of this gene leads to shortening of time to flowering (Wang et al., 11 2014). The original inbreds in complete linkage disequilibrium were probably left unaffected, 12 thus preventing the hard sweep signal.

13 The further scan for selective sweeps was performed using the Raised Accuracy in 14 Sweep Detection (RAiSD) methodology (Alachiotis and Pavlidis, 2018). RAiSD was chosen 15 because it combines the three known signals of selective sweeps in calculation of µ statistic: 16 local reduction of polymorphism levels, shift in the site frequency spectra, and the localized 17 patterns of linkage disequilibrium within the 50 bp windows thus providing the increased 18 accuracy of true positive detection of approximately 97%. The detection of a selective 19 sweeps is under the strong influence of the migration and bottlenecks which is especially 20 applicable to the breeding germplasm, regularly exchanged between breeders, companies 21 and plant genetic resource offices. This can generate the large number of false positives, so 22 defining the cutoff of at least 95% is advisable. In our work, the shown sweep signal statistics 23 μ on chromosomes 5 and 6 (Figures 6d and 7d) both fall below the 99th percentile for the 24 individual chromosomes in which the signals were detected. It appears that all four detected 25 sweep candidate loci were driven by the highly altered site frequency spectra (SFS, Figure 26 6b and Figure 7b). The changes in SFS are usually caused by the background selection for 27 beneficial variants, which increase in frequency accompanied by the decrease in frequency 28 of positions not linked to beneficial variants (Pavlidis and Alachiotis, 2017). All sweep signals 29 were detected within the gene-rich regions. In the region with start position 122994833 bp 30 in chromosome 5, GRAS transcription factor (gras17) is located. The gras17 is involved in 31 processes of meristem initiation and regulation of transcription with highest expression 32 levels in shoot and leave tips (Stelpflug et al., 2016). The GRAS family of transcription 33 factors is very large with only a few characterized genes with known physiological roles (Guo 34 et al., 2017), so it is not possible to establish the cause of background selection of one 35 variant over other. In the second position on chromosome 5 (144327275 bp), the basic Helix-36 Loop-Helix (bHLH) transcription factor was detected. The most famous of bHLH transcription 37 factor gene is a BARREN STALK1 which regulates formation of axillary tissues including 38 tillers (Woods et al., 2011), possibly indicating selection against tillering. The bHLH139 39 detected in this study is still uncharacterized, but its duplications through the genome 40 indicate an important biological role (Zhang et al., 2018). Selective sweep might thus also 41 indicate the selection of a single morphological type in some morphological characteristic, 42 or adaptation to certain environmental factors. Of the candidates located in the last detected 43 region in chromosome 5 (164884576 bp), two have overlapping roles and might have been 44 inadvertent targets of selection. The first is CID3, coding for Polyadenylate-binding protein-45 interacting protein 3, involved in responses to auxin stimulus (Wada et al., 2012). The 46 second is SPL3 (Spotted leaf protein 11), involved in flowering, with elevated expression levels in reproductive organs (Shikata et al., 2009). Although there are known roles for these 47 48 two genes, some other uncharacterized gene might also have been under selection causing 49 the detected signal. On chromosome 6, position 118933183 bp, a basic leucine zipper 50 transcription factor 59 (bZIP59) is located with molecular function involved in DNA-binding 51 transcription factor activity. The bZIP represents a large family of transcription factor, with 52 some known genes included in the protein storage in grain, such as Opague2 (Yang et al., 53 2016), and many factors included in the seed development which might have influenced the 54 selection (Wang et al., 2019).

1 **5.** Conclusions

2 The distinct genetic structure patterns were detected in the SEE when genotyping 3 results were analyzed in pan-European context provided by the two other publically available 4 complementary European panels. Some of the prevailing ancestral patterns in historical 5 accessions from SEE can be explained by several historical references on the import and 6 use for breeding of certain historical inbreds, such as Wf9, Pa91, Oh43 and A374 (Tavčar, 1955). High nucleotide diversity in the SEE panel might also be partially caused by the use 7 8 of local landraces in pedigrees of some inbreds (Leng et al., 1962). Soft sweep signal 9 detected in the region of chromosome 2, harboring the gene FPF1, with known role in 10 induction of flowering might have been caused by the extensive pollination of the first 11 flowering progenies in crosses from which the inbreds were developed. Additional scan for selective sweeps using the RAiSD methodology yielded three more sweep signals in 12 13 chromosome 5, and a single sweep signal in chromosome 6. All sweeps were detected in 14 regions harboring genes affecting morphology and flowering, possibly indicating the 15 inadvertent selection for the best-adapted or the favorable-appearance types. Our study 16 provides the first step towards the utilization of this rich resource of the genetic materials for 17 use in breeding. Accompanying phenotypic analysis is needed for assessment of the SEE 18 accessions for favorable alleles, and identification of breeding targets.

Funding: This research was funded by the EU project "Biodiversity and Molecular Plant
 Breeding", grant number KK.01.1.1.01.0005, of the Centre of Excellence for Biodiversity and
 Molecular Plant Breeding (CroP-BioDiv), Zagreb, Croatia.

22 References

- Alachiotis, N., Pavlidis, P., 2018. RAiSD detects positive selection based on multiple
 signatures of a selective sweep and SNP vectors. Commun. Biol.
- Alexander, D.H., Lange, K., 2011. Enhancements to the ADMIXTURE algorithm for
 individual ancestry estimation. BMC Bioinformatics.
- Andjelkovic, V., Ignjatovic-Micic, D., 2012. Maize Genetic Resources-Science and Benefits-, 1st ed. Serbian Genetic Society, Belgrade.
- Arca, M., Mary-Huard, T., Gouesnard, B., Bérard, A., Bauland, C., Combes, V., Madur, D.,
 Charcosset, A., Nicolas, S., 2020. Deciphering the genetic diversity of landraces with
 high-throughput SNP genotyping of DNA bulks: methodology and application to the
 maize 50k array. bioRxiv 1–38.
- Babic, V., Ivanovic, M., Babic, M., 2012. The origin and evolution of maize and its
 introduction into South-Eastern Europe. Ratar. i Povrt. 49, 92–104.
- Bouchet, S., Servin, B., Bertin, P., Madur, D., Combes, V., Dumas, F., Brunel, D., Laborde,
 J., Charcosset, A., Nicolas, S., 2013. Adaptation of Maize to Temperate Climates: Mid Density Genome-Wide Association Genetics and Diversity Patterns Reveal Key
 Genomic Regions, with a Major Contribution of the Vgt2 (ZCN8) Locus. PLoS One 8.
- Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y., Buckler, E.S., 2007.
 TASSEL: Software for association mapping of complex traits in diverse samples.
 Bioinformatics 23, 2633–2635.

1 Brandenburg, J., Mary-huard, T., Rigaill, G., Hearne, S.J., Joets, J., Charcosset, A., Nicolas,

- D., 2017. Independent introductions and admixtures have contributed to adaptation of
 European maize and its American counterparts 1–30.
- Brkić, I., Parlov, D., Kozumplik, V., 2003. Maize Seed Production in Croatia. In:
 Ruckenbauer, P. (Ed.), Bericht Über Die 54. Tagung 2003 Der Vereinigung Der
 Pflanzenzüchter Und Saatgutkaufleute Österreichs. pp. 1–5.
- Coffman, S.M., Hufford, M.B., Andorf, C.M., Lübberstedt, T., 2020. Haplotype structure in
 commercial maize breeding programs in relation to key founder lines. Theor. Appl.
 Genet. 133, 547–561.
- Eurostat, 2019. Agricultural Production Crops, Agriculture, forestry and fishery statistics -2019 edition.
- Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals
 using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–20.
- FAO/IHS Markit Agribusiness Consulting, 2019. Analysis on Sales and Profitability Withinthe Seed Sector.
- Frichot, E., François, O., 2015. LEA: An R package for landscape and ecological association
 studies. Methods Ecol. Evol. 6, 925–929.
- Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., François, O., 2014. Fast and efficient
 estimation of individual ancestry coefficients. Genetics.
- Geric, I., Zlokolica, M., Geric, C., Stuber, C.W., 1989. Races and populations of maiz in
 Yugoslavia. Isozyme variation and genetic diversity, Systematic. ed. International
 Board for Plant Genetic Resources (IBPGR), Rome, Italy.
- Gouesnard, B., Negro, S., Laffray, A., Glaubitz, J., Melchinger, A., Revilla, P., MorenoGonzalez, J., Madur, D., Combes, V., Tollon-Cordet, C., Laborde, J., Kermarrec, D.,
 Bauland, C., Moreau, L., Charcosset, A., Nicolas, S., 2017. Genotyping-by-sequencing
 highlights original diversity patterns within a European collection of 1191 maize flint
 lines, as compared to the maize USDA genebank. Theor. Appl. Genet. 130, 2165–
 2189.
- Guo, Y., Wu, H., Li, X., Li, Q., Zhao, X., Duan, X., An, Y., 2017. Identification and expression
 of GRAS family genes in maize (Zea mays L.) 1, 1–17.
- Hadi, G., Pinter, J., Marton, C., 2013. The first 30 years of hybrid maize in Hungary. In: 60
 Years of Hungarian Hybrid Maize. Budapest, Hungary, pp. 112–116.
- 33 Hallauer, A.R., Carena, M.J., Filho, J.B.M., 2010. Quantitative Genetics in Maize Breeding.

Hansey, C.N., Johnson, J.M., Sekhon, R.S., Kaeppler, S.M., de Leon, N., 2011. Genetic
 diversity of a maize association population with restricted phenology. Crop Sci. 51,
 704–715.

Hölker, A.C., Mayer, M., Presterl, T., Bolduan, T., Bauer, E., Ordas, B., Brauner, P.C.,
Ouzunova, M., Melchinger, A.E., Schön, C.C., 2019. European maize landraces made
accessible for plant breeding and genome-based studies. Theor. Appl. Genet. 132,
3333–3345.

Ignjatović-Micić, D., Ristić, D., Babić, V., Andjelković, V., Marković, K., Vančetović, J., 2013.
 Genetic assessment of maize landraces from former Yugoslavia. Genetika 45, 405–
 417.

Jay, F., Manel, S., Alvarez, N., Durand, E.Y., Thuiller, W., Holderegger, R., Taberlet, P.,
 François, O., 2012. Forecasting changes in population genetic structure of alpine plants
 in response to global warming. Mol. Ecol. 21, 2354–2368.

Kozumplik, V., Martinić-Jerčić, Z., 2000. Breeding field crops and vegetables in Croatia.
 Agric. Conspec. Sci. 65, 129–141.

- Lee, E.A., Tracy, W.F., 2009. Modern maize breeding. In: Bennetzen, J., Hake, S. (Eds.),
 Handbook of Maize: Genetics and Genomics. Springer Science+Business Media, LLC,
 pp. 151–160.
- Leff, B., Ramankutty, N., Foley, J.A., 2004. Geographic distribution of major crops acrossthe world. Global Biogeochem. Cycles 18.
- Leng, E.R., Tavčar, A., Trifunovič, V., 1962. Maize of southeastern Europe and its potential
 value in breeding programs elsewhere. Euphytica 11, 263–272.
- Li, Y.L., Liu, J.X., 2018. StructureSelector: A web-based software to select and visualize the
 optimal number of clusters using multiple methods. Mol. Ecol. Resour.
- Lu, H., Bernardo, R., 2001. Molecular marker diversity among current and historical maize
 inbreds. Theor. Appl. Genet. 103, 613–617.
- Luikart, G., Kardos, M., Hand, B.K., Rajora, O.P., Aitken, S.N., Hohenlohe, P.A., 2018.
 Population Genomics : Advancing Understanding of Nature Population Genomics :
 Advancing Understanding of Nature. In: Population Genomics: Concepts, Approaches
 and Applications. Springer International Publishing, pp. 3–79.
- Mikel, M.A., 2011. Genetic composition of contemporary U.S. commercial dent corn
 germplasm. Crop Sci. 51, 592–599.
- Mikel, M.A., Dudley, J.W., 2006. Evolution of North American dent corn from public to
 proprietary germplasm. Crop Sci. 46, 1193–1205.

Millet, E., Welcker, C., Kruijer, W., Negro, S., Nicolas, S., Praud, S., Ranc, N., Presterl, T.,
 Tuberosa, R., Bedo, Z., Draye, X., Usadel, B., Charcosset, A., van Eeuwijk, F., Tardieu,
 F., Coupel-Ledru, A., Bauland, C., 2016. Genome-wide analysis of yield in Europe:
 allelic effects as functions of drought and heat scenarios. Plant Physiol.

Mir, C., Zerjal, T., Combes, V., Dumas, F., Madur, D., Bedoya, C., Dreisigacker, S., Franco,
J., Grudloyma, P., Hao, P.X., Hearne, S., Jampatong, C., Laloë, D., Muthamia, Z.,
Nguyen, T., Prasanna, B.M., Taba, S., Xie, C.X., Yunus, M., Zhang, S., Warburton,
M.L., Charcosset, A., 2013. Out of America: Tracing the genetic footprints of the global
diffusion of maize. Theor. Appl. Genet. 126, 2671–2682.

- Money, D., Gardner, K., Migicovsky, Z., Schwaninger, H., Zhong, G.Y., Myles, S., 2015.
 LinkImpute: Fast and accurate genotype imputation for nonmodel organisms. G3
 Genes, Genomes, Genet.
- Ortiz, R., Taba, S., Chávez Tovar, V.H., Mezzalama, M., Xu, Y., Yan, J., Crouch, J.H., 2010.
 Conserving and enhancing maize genetic resources as global public goods-A
 perspective from CIMMYT. Crop Sci. 50, 13–28.
- Pavlidis, P., Alachiotis, N., 2017. A survey of methods and tools to detect recent and strong
 positive selection. J. Biol. Res. 1–17.
- Planchenault, D., Mounolou, J.C., 2011. Evolutions and stakes of genetic resources
 management. Comptes Rendus Biol. 334, 255–262.
- Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of Population Structure Using
 Multiocus Genotype Data. Genetics 155, 945–959.
- Puechmaille, S.J., 2016. The program structure does not reliably recover the correct
 population structure when sampling is uneven: Subsampling and new estimators
 alleviate the problem. Mol. Ecol. Resour.
- 25 Rambaut, A., 2018. FigTree v. 1.4.4. http://tree.bio.ed.ac.uk/software/figtree/.
- Rebourg, C., Chastanet, M., Gouesnard, B., Welcker, C., Dubreuil, P., Charcosset, A., 2003.
 Maize introduction into Europe: The history reviewed in the light of molecular data.
 Theor. Appl. Genet. 106, 895–903.
- Reif, J.C., Hamrit, S., Heckenberger, M., Schipprack, W., Maurer, H.P., Bohn, M.,
 Melchinger, A.E., 2005. Trends in genetic diversity among European maize cultivars
 and their parental components during the past 50 years. Theor. Appl. Genet. 111, 838–
 845.
- 33 Republic of Serbia, 2020. Statistical Office of the Republic of Serbia, Official Gazette.
- 34 Romay, M.C., Millard, M.J., Glaubitz, J.C., Peiffer, J.A., Swarts, K.L., Casstevens, T.M.,

Elshire, R.J., Acharya, C.B., Mitchell, S.E., Flint-garcia, S.A., Mcmullen, M.D., Holland,
 J.B., Buckler, E.S., Gardner, C.A., 2013. Comprehensive genotyping of the USA
 national maize inbred seed bank.

Romero Navarro, J.A., Willcox, M., Burgueño, J., Romay, C., Swarts, K., Trachsel, S.,
Preciado, E., Terron, A., Delgado, H.V., Vidal, V., Ortega, A., Banda, A.E., Montiel,
N.O.G., Ortiz-Monasterio, I., Vicente, F.S., Espinoza, A.G., Atlin, G., Wenzl, P., Hearne,
S., Buckler, E.S., 2017. A study of allelic diversity underlying flowering-time adaptation
in maize landraces. Nat. Genet. 49, 476–480.

- 9 Schaefer, C.M., Bernardo, R., 2013. Population structure and single nucleotide
 10 polymorphism diversity of historical Minnesota maize inbreds. Crop Sci. 53, 1529–
 11 1536.
- Shikata, M., Koyama, T., Mitsuda, N., Ohme-takagi, M., 2009. Morphological Change in
 Association with Shoot 50, 2133–2145.
- Sood, S., Flint-Garcia, S., Willcox, M.C., Holland, J.B., 2014. Mining natural variation for
 maize improvement: Selection on phenotypes and genes. In: Tuberosa, R., Graner, A.,
 Frison, E. (Eds.), Genomics of Plant Genetic Resources: Volume 1. Managing,
 Sequencing and Mining Genetic Resources. Springer Netherlands, pp. 615–649.
- Stelpflug, S.C., Sekhon, R.S., Vaillancourt, B., Hirsch, C.N., Buell, C.R., Leon, N. De,
 Kaeppler, S.M., 2016. An Expanded Maize Gene Expression Atlas based on RNA
 Sequencing and its Use to Explore Root Development.
- Şuteu, D., Băcilă, I., Haş, V., Haş, I., Miclăuş, M., 2013. Romanian maize (Zea mays) inbred
 lines as a source of genetic diversity in SE Europe, and their potential in future breeding
 efforts. PLoS One 8, 1–13.
- Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA
 polymorphism. Genetics 123, 585–595.
- Tavčar, A., 1955. Methods of hybrid maize production in Yugoslavia (in Croatian). Agron.
 Glas. 5, 225–237.
- Tenaillon, M.I., Charcosset, A., 2011. A European perspective on maize history. Comptes
 Rendus Biol. 334, 221–228.
- Troyer, A.F., 2004. Background of U.S. Hybrid Corn II: Breeding, Climate, and Food 380,
 370–380.
- Troyer, A.F., 2009. Development of hybrid corn and the seed corn industry. In: Handbook of
 Maize: Genetics and Genomics.
- 34 Unterseer, S., Bauer, E., Haberer, G., Seidel, M., Knaak, C., Ouzunova, M., Meitinger, T.,

1 Strom, T.M., Fries, R., Pausch, H., Bertani, C., Davassi, A., Mayer, K.F.X., Schön, C.C.,

- 2 2014. A powerful tool for genome analysis in maize: Development and evaluation of
 3 the high density 600 k SNP genotyping array. BMC Genomics 15, 823.
- Unterseer, S., Pophaly, S.D., Peis, R., Westermeier, P., Mayer, M., Seidel, M.A., Haberer,
 G., Mayer, K.F.X., Ordas, B., Pausch, H., Tellier, A., Bauer, E., Schön, C.C., 2016. A
 comprehensive study of the genomic differentiation between temperate Dent and Flint
 maize. Genome Biol.
- 8 USDA, 2020. United States Department of Agriculture National Agricultural Statistics
 9 Service, National Agricultural Statistics Service.
- Vančetović, J., Mladenović Drinić, S., Babić, M., Ignjatović-Micić, D., Andelković, V., 2010.
 Maize genebank collections as potentially valuable breeding material. Genetika 42, 9–
 21.
- Wada, M., Takahashi, H., Nakamura, K., Hirai, M.Y., Ohta, D., Kanaya, S., 2012. Prediction
 of operon-like gene clusters in the Arabidopsis thaliana genome based on co expression analysis of neighboring genes. Gene 503, 56–64.
- Wang, X., Fan, S., Song, M., Pang, C., Wei, H., Yu, J., Ma, Q., Yu, S., 2014. Upland Cotton
 Gene GhFPF1 Confers Promotion of Flowering Time and Shade-Avoidance
 Responses in Arabidopsis thaliana 9, 1–11.
- Wang, Z., Yan, L., Wan, L., Huai, D., Kang, Y., Shi, L., Jiang, H., Lei, Y., 2019. Genome wide systematic characterization of bZIP transcription factors and their expression
 profiles during seed development and in response to salt stress in peanut 1–14.
- Wegary, D., Teklewold, A., Prasanna, B.M., Ertiro, B.T., Alachiotis, N., Negera, D., Awas,
 G., Abakemal, D., Ogugo, V., Gowda, M., Semagn, K., 2019. Molecular diversity and
 selective sweeps in maize inbred lines adapted to African highlands. Sci. Rep. 9, 1–15.
- Woods, D.P., Hope, C.L., Malcomber, S.T., 2011. Phylogenomic Analyses of the BARREN
 STALK1 / LAX PANICLE1 (BA1 / LAX1) Genes and Evidence for Their Roles During
 Axillary Meristem Development 28, 2147–2159.
- Yang, J., Ji, C., Wu, Y., 2016. Divergent Transactivation of Maize Storage Protein Zein
 Genes by the Transcription Factors Opaque2 and OHPs. Genetics 204, 581–591.
- Zhang, T., Lv, W., Zhang, H., Ma, L., Li, P., Ge, L., Li, G., 2018. Genome-wide analysis of
 the basic Helix- Loop-Helix (bHLH) transcription factor family in maize 1–14.

32