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15Department of Physics, University of California, San Diego, California 92093, USA
16INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, 67100 L’Aquila, Italy

17INFN-Torino and Osservatorio Astrofisico di Torino, 10125 Torino, Italy
18Department of Physics and Kavli Institute for Cosmological Physics, University of Chicago,

Chicago, Illinois 60637, USA
19Department of Physics “Ettore Pancini,” University of Napoli and INFN-Napoli, 80126 Napoli, Italy

20Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
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We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions
from 1 t yr of exposure with the XENON1Texperiment. This interaction is generated when theWIMP couples
to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators,
these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may
dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for
natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the
nucleus. Using the signal model of this new WIMP-pion channel, no significant excess is found, leading to an
upper limit cross section of 6.4 × 10−46 cm2 (90% confidence level) at 30 GeV=c2 WIMP mass.

DOI: 10.1103/PhysRevLett.122.071301

Introduction.—Profound evidence for the existence of
dark matter has been collected throughout the past
100 years. However, its exact nature remains elusive
[1,2]. A large effort is being put into the search for direct
detection of weakly interacting massive particles (WIMPs),
which arise as dark matter particle candidates in various
theories. The search is led by dual-phase liquid xenon time
projection chambers (TPCs) for masses above 5 GeV=c2

[3,4]. The most sensitive experiment, XENON1T, probes
spin-independent (SI) WIMP-nucleon interactions down to
4.1 × 10−47 cm2 for 30 GeV=c2 WIMPmass [5]. This limit
refers to the SI isoscalar channel, which, for vanishing
momentum transfer q, scales quadratically with the number
of nucleons A. The SI interaction thus yields the dominant
nuclear response, making it the standard search channel in
the field [6–14].
In scenarios where this leading contribution vanishes or

is strongly suppressed, other search channels become
important. Experimentally, this aspect is addressed by
dedicated analyses, e.g., for spin-dependent (SD) WIMP-
nucleon interactions [15–19], nonrelativistic effective field
theory (NREFT) operators [20–23], or generically q-sup-
pressed responses [24]. Contributions beyond the widely
considered SD channel include subleading NREFT oper-
ators [25–27]. In addition, a systematic expansion in the
effective theory of QCD, chiral effective field theory (EFT)
[28–31], valid at the relevant nuclear structure energies and
momentum transfers of the order of the pion mass, reveals a
new class of contributions referred to as two-body currents.
These interactions proceed by the coupling of the WIMP to
a virtual pion exchanged between nucleons within the
nucleus. Such two-body currents that occur in the SD
channel [32–34] have already had a significant impact on

SD searches, improving substantially the sensitivity of
xenon-based experiments to the SD WIMP-proton cross
section [15–19].
In the SD channel, the inclusion of the leading two-body

currents is a correction to the standard SD response,
because it involves the same WIMP-nucleon coupling.
However, in the SI channel the leading two-body current
[35–42] cannot be absorbed into a redefinition of the
WIMP-nucleon coupling. Instead, this SI two-body current
involves a genuinely new combination of hadronic matrix
elements and Wilson coefficients that describe the inter-
action of the WIMP with quarks and gluons [43]. Drawing
on the analogy to both SI and SD WIMP-nucleon inter-
actions, we demonstrate in this Letter that these new
couplings can be interpreted as cross sections for a
WIMP scattering off a pion, a channel that has previously
not been considered in dark matter searches. For natural
values of the couplings, this new WIMP-pion channel
dominates over the standard SD channel due to its coherent
nature. Here, we present the first results on the scalar
WIMP-pion coupling based on the XENON1T experiment.
The key idea is illustrated in Fig. 1. Single-nucleon

interactions, both of SI and SD nature, correspond to
Fig. 1(a), where the WIMP χ interacts only with a single
nucleon N within the nucleus by the exchange of a heavy

(a) (b)

FIG. 1. Diagrams of WIMP-nucleon interactions. Solid lines
refer to the WIMP (χ) and nucleon (N) fields, wavy lines to the
mediating current, and the dashed line indicates the exchange of a
virtual pion between two nucleons. (a) Leading WIMP coupling
to one nucleon. (b) Two-nucleon contribution from the WIMP
coupling to a pion-exchange current.
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mediator. Integrating out the mediator produces effective
operators involving the WIMP, quark, and gluon fields,
which together with the hadronic matrix elements define
the single-nucleon cross section that appears as a coef-
ficient of the WIMP-nucleus rate. Corrections to this
picture emerge from the fact that a nucleus is a strongly
interacting many-body system, e.g., mediated by the
exchange of virtual pions between two nucleons. The
corresponding coupling of the WIMP through Fig. 1(b)
then allows one to interpret limits from the WIMP-nucleus
rate as limits on a WIMP-pion cross section. In the
following, we will consider this mechanism originating
from a scalar WIMP-quark coupling of the form χ̄χq̄q. For
additional details, see Ref. [42].
Theory.—Analyses of direct-detection experiments

mostly focus on SI and SD scattering. The WIMP-nucleus
cross section dσχN =dq2, where N indicates the entire
nucleus, depends on the relative velocity of the WIMP in
the lab-frame v and the nuclear spin J. With nuclear
structure factors that encode the response of the nucleus
to the interaction with WIMPs denoted by FM

� [26] and Sij
[44] for SI and SD scattering, respectively, this leads to the
usual decomposition [44,45]

dσχN
dq2

¼ 1

4πv2
jcMþFMþ ðq2Þ þ cM−FM

− ðq2Þj2

þ 1

v2ð2J þ 1Þ
�
jaþj2S00ðq2Þ þ Reðaþa�−ÞS01ðq2Þ

þ ja−j2S11ðq2Þ
�
: ð1Þ

Even though the dependence on q itself contains valuable
hints for the nature of the underlying interaction [46], the
information about physics beyond the standard model
(BSM) is fully encoded in the coefficients cM� and a�.
They include both the coupling of the WIMP to quarks and
gluons (Wilson coefficients) and the hadronic matrix
elements that reflect that quarks and gluons are embedded
into nucleons. The þ (−) subscript indicates a same-
(opposite-) sign or isoscalar (isovector) coupling for
neutrons and protons. In SD scattering, it is useful to take
aþ ¼ a−, which describes the WIMP coupling to a proton,
or aþ ¼ −a− for the coupling to a neutron.
Most analyses consider the following scenarios. First,

they assume purely isoscalar SI interactions (cM− ¼a�¼0),
with the WIMP-nucleus cross section expressed in terms of
the SI cross section off a single nucleon σSIχN ,

dσχN
dq2

¼ σSIχN
4μ2Nv

2
jFMþ ðq2Þj2; σSIχN ¼ μ2N

π
jcMþ j2; ð2Þ

where μN is the WIMP-nucleon reduced mass. The nuclear
structure factor FMþ is often approximated by a Helm form
factor [47], but more sophisticated nuclear calculations are
available [48]. Second, one takes a purely SD coupling

(cM� ¼ 0) with aþ ¼ a− or aþ ¼ −a− written in terms of
the SD cross section off a single proton or neutron σSDχN ,

dσχN
dq2

¼ σSDχN
3μ2Nv

2

π

2Jþ1
SNðq2Þ; σSDχN ¼3μ2N

π
jaþj2; ð3Þ

where single nucleons are denoted by N ¼ fp; ng and
Sp=nðq2Þ ¼ S00ðq2Þ � S01ðq2Þ þ S11ðq2Þ. Out of these sce-
narios, the SI response is dominant because all A nucleons
contribute coherently: FMþ ð0Þ2 ¼ A2, with A ∼ 130 for
xenon. In contrast, in the SD channel the
response does not scale with A: ½4π=ð2J þ 1Þ�SNð0Þ∼
½4ðJ þ 1Þ=J�hSNi2 ¼ Oð1Þ (for nuclei with unpaired nucle-
ons), with hSp=ni proton or neutron spin-expectation values
of the nuclear target. (This estimate does not include
contributions from two-body currents to SD scattering,
which are quantitatively significant especially for the
paired species [32,33], but they do not enter coherently.)
Therefore, SD limits become most relevant if the SI
interactions are either absent or strongly suppressed [49].
In practice, the consideration of limits on σSIχN , σ

SD
χp , and σSDχn

corresponds to a set of slices through the BSM parameter
space, which is not a complete or unique choice. For
instance, one could also consider proton- or neutron-only
SI cross sections (cMþ ¼ �cM− , a� ¼ 0), which are related to
isospin-violating dark matter [36,50–53].
In this Letter, we consider the leading contribution

beyond SI and SD scattering given in Eqs. (2) and (3).
For that purpose we use chiral EFT [37], which allows one
to derive a more complete set of possible WIMP inter-
actions with nuclei. When the relevant momentum transfers
are of the order of the pion mass q ≲Mπ , such as in direct-
detection experiments, chiral EFT predicts that pions, in
addition to nucleons, emerge as relevant degrees of free-
dom. In fact, in chiral EFT, nuclear forces are mediated by
pion exchanges, and also the interactions of nuclei with
external probes can occur via the coupling to a pion
exchanged between two nucleons. Such pion-exchange
currents are very well established in electromagnetic and
weak interactions in nuclei (see, e.g., Refs. [31,54]).
A chiral EFT study of WIMP interactions with nucleons

indicates that pion-exchange currents [see Fig. 1(b)] enter
at the same order in the chiral EFT power counting as
momentum-suppressed single-nucleon currents [37]. The
importance of pion-exchange currents has been stressed for
SD scattering [32,33], where they lift the strict separation
between proton- or neutron-only couplings. By probing the
neutrons even for aþ ¼ a− they dramatically increase the
sensitivity to σSDχp for an experimental target, such as xenon,
with an even number of (mainly paired) protons [15–19].
Similarly, pion-exchange currents constitute the most
important coherent correction [38,42]. Therefore, a mini-
mal extension of Eq. (1) adds a term corresponding to the
WIMP-pion coupling, with a new combination of Wilson
coefficients and hadronic matrix elements cπ , together with
a novel nuclear structure factor F πðq2Þ,
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dσχN
dq2

¼ 1

4πv2
jcMþFMþ ðq2Þ þ cM−FM

− ðq2Þ þ cπF πðq2Þj2;

ð4Þ

without changing the SD interactions. The decomposition
in Eq. (4) suggests to consider, in addition to standard SI and
SD analyses, the scenario where cM� ¼ a� ¼ 0, leading to

dσχN
dq2

¼ σscalarχπ

μ2πv2
jF πðq2Þj2; σscalarχπ ¼ μ2π

4π
jcπj2; ð5Þ

with scalar WIMP-pion cross section σscalarχπ and WIMP-pion
reducedmass μπ . In analogy to SI and SD limits, the structure
factor F π then allows one to derive limits for σscalarχπ as a
function of theWIMPmassmχ . The corresponding exclusion
plot represents another slice in the BSM parameter space. It
becomes relevant for regions where cancellations occur in the
leading SI coupling to nucleons, e.g., in heavy-WIMP EFT
[55] or so-called blind spots in the minimal supersymmetric
standard model [56–58]. More general cases, e.g., retaining a
nonvanishing cMþ as well, are straightforward to consider, but
the corresponding limits cannot be represented in terms of a
single-particle cross section anymore.
In terms of sensitivity to single-particle cross sections,

the coupling to the pion is subleading in chiral EFT with
respect to SI, but dominant over SD scattering. For typical
nuclear targets with A ∼ 100 nucleons, one finds

A2 ≫ 4

�
Mπ

Λχ

�
6
�
mN

Mπ

�
2

A2 ≫
4

3

J þ 1

J
hSn=pi2; ð6Þ

where the middle estimate is for the WIMP-pion coupling,
Λχ ∼ 500–600 MeV is the chiral EFT breakdown scale, and
mN is the nucleon mass. The factor ðMπ=ΛχÞ6 is due to the
subleading Q3 nature of two-body currents entering quad-
ratically in the cross section—Q is the chiral EFT expansion
parameter. For the two xenon isotopes with nonvanishing
spin, the above scaling is well reflected by the actual
hierarchy of the structure factors: 1.7 × 104 ≫ 1.1 × 103 ≫
0.34; 0.13 for 129;131Xe, respectively [33,38,42]. In this
hierarchy, additional contributions from NREFT operators
are further suppressed, because they either vanish at q ¼ 0 or
scalewith thevery smallWIMPvelocitiesv2 ∼ 10−6 [38,42].
We stress that the scaling (6) refers to the nuclear responses
only, so that this hierarchy can always be overcome by a
corresponding tuning of the BSM couplings. In particular,
SD [15–19] searches probe another complementary slice
of the BSM parameter space corresponding to models
where SI andWIMP-pion interactions vanish or are strongly
suppressed.
In order to perform the transition from Eq. (2) to Eq. (5),

the signal model has to be adjusted accordingly. For a given
WIMP mass, it is derived from the differential recoil
spectrum dR=dEr. Accounting for the different kinematic

factors in Eq. (5), the spectrum for the WIMP-pion
coupling can be written as

dR
dEr

¼ 2ρ0σ
scalar
χπ

mχμ
2
π

× jF πðq2Þj2 ×
Z

∞

vminðErÞ

fðv; tÞ
v

d3v; ð7Þ

where ρ0 is the local dark matter density, fðv; tÞ is its time-
dependent velocity distribution truncated at escape velocity,
and vmin is the minimal WIMP velocity possible for a given
recoil energy and detector threshold. The main effect of the
transition from the SI to the scalar WIMP-pion coupling
concerns the form factor, where FMþ ðq2Þ is replaced by
F πðq2Þ [38,42]. Notably, the minimal velocity remains
unchanged as the WIMP is still scattering off the entire
xenon nucleus. A comparison to the standard expression
(see Ref. [59]) shows that, as only the form factor
influences the shape of the resulting spectrum, both provide
a falling featureless exponential. A comparison of the
differential recoil spectra of the WIMP-nucleon and the
WIMP-pion scattering is shown in Fig. 2. Because of
the similarity in shape, the same energy search window can
be used for evaluating the WIMP-pion signal model as in
the standard analysis [5]. For an attempt to discriminate
between SI and WIMP-pion interactions, see Ref. [46].
Experiment.—To constrain the scalar WIMP-pion cou-

pling,we use data from theXENON1Texperiment [60]. This
data reanalysis is part of the continued use and exploration of
the XENON1T 1 t yr dataset. Parallel nuclear recoil (NR)

FIG. 2. Comparison of the differential recoil spectrum for
WIMP-nucleon (black) FMþ versus WIMP-pion interactions
(red) F π . Exemplarily shown are WIMP masses of
30 GeV=c2 (full line) and 200 GeV=c2 (dashed line) for the
most abundant isotope 132Xe. The cross section in both cases is
set to 10−46 cm2 for illustration. The gray band shows the energy
range for the XENON1T SI search. The inset compares the
spectral shapes in this region.
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searches are also under way (see Refs. [15,21] for
XENON100 analyses beyond the SI channel). We use the
same dataset and modeling as the SI analysis, except for the
signal model, which is replaced by the recoil spectrum in
Eq. (7). The following section gives a brief overview of the
XENON1T detector and analysis procedure.
XENON1T is the world’s largest dual-phase xenon TPC,

shielded by rock overburden at a water equivalent depth of
3600 m at the Laboratori Nazionali del Gran Sasso. An
active muon veto water tank [60] and an inactive layer of
liquid xenon surround the cylindrical TPC. The 2.0 t target
mass of liquid xenon with a gaseous xenon gap at the top is
read out by two photomultiplier tube (PMT) arrays, located
at the top and bottom of the detector. Energy deposition
within the liquid xenon may produce scintillation photons
and ionization electrons. Photons are directly registered as
the first signal (S1) by the PMTs, while the electrons drift
upward in an externally applied field Oð100V=cmÞ to the
liquid-gas interface. A strong electric field Oð10 kV=cmÞ
extracts the electrons into the gas and accelerates them,
leading to proportional scintillation in the gaseous phase
and thus a secondary light signal (S2). The ratio between
the two signals (S2=S1) allows one to distinguish sta-
tistically between NRs from neutrons and WIMPs, and
electronic recoils (ERs) from γ and β particles. The
measured S1 and S2 signals are compensated for the
spatially inhomogeneous detector response, yielding
the corrected analysis variables, cS1 and cS2b, with the
latter measured with the bottom PMT array. The time
between the prompt S1 signal and the S2 signal measures

the depth (z coordinate) of the interaction, while the
transversal ðx; yÞ position is reconstructed from the S2
pattern observed by the top PMTarray, corrected for a small
transverse drift field component. With a three-dimensional
position reconstruction of events, the analysis can exclude
large background populations at the detector edges by
selecting an analysis volume. Motivated by the similarity of
WIMP-pion and SI recoil spectra, the event selection
criteria are the same as in Ref. [5]. The dark matter data
are divided into SR0 [61], with 32.1 days live time, and
SR1, with 246.7 days. Both the XENON1T SI analysis [5]
and this search use the combined SR0þ SR1 dataset.
The signal distribution in cS1 and cS2b is derived by

convolving the recoil spectrum in Eq. (7) with the detector
NR response, calibrated with a deuterium-deuterium neu-
tron generator [62] and an americium-241-beryllium neu-
tron source. Background distributions for ERs, radiogenic
and cosmogenic neutrons, coherent elastic neutrino-
nucleus scatters (CEνNS), accidental coincidence of S1
and S2 signals (AC), and events originating from the
detector surfaces are retained from the SI analysis.
Figure 3 shows the combined dataset, as well as contours
for the signal distribution due to a 200 GeV=c2 WIMP,
illustrating how a potential signal is separated in the
cS1-cS2b plane from ER and surface background events.
Discovery significances and confidence intervals for the

WIMP-pion interaction cross section are calculated using
the profile likelihood ratio method. The combined like-
lihood includes extended unbinned likelihood terms for the
SR0 and SR1 datasets, using signal and background models
in the three-dimensional analysis space (cS1, cS2b, radius),
as well as a core volume with a lower neutron rate [5]. The
full likelihood also includes additional terms for the ER
calibration model fit and ancillary measurements of back-
ground rates. The discovery significance is expressed as the

FIG. 3. XENON1T SR0þ SR1 data (black circles and dia-
monds, respectively, for each period), projected from the three-
dimensional analysis space on the primary and secondary
scintillation signal, cS1 and cS2b, in units of photoelectrons
(PEs). 1σ and 2σ containment regions for the WIMP-pion signal
model for a 200 GeV=c2 WIMP (purple contours), the electronic
recoil background (gray bands), and surface background (blue
bands) are shown.
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FIG. 4. 90% confidence level upper limit of the WIMP-pion
coupling as a function of WIMP mass for the 1 t yr exposure of
XENON1T data. Bands show the 1σ (green) and 2σ (yellow)
quantiles of the expected no-signal distribution of upper limits.
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local p value of the observed log-likelihood ratio between
the best fit and no-signal models. The null distribution of
this parameter is computed for each signal model (WIMP
mass) using repeated realizations of the background-only
model, since the low signal expectation values preclude the
application of asymptotic results. Confidence intervals,
both upper limits and two-sided intervals, are constructed
based on a variant of the Feldman-Cousins [63] method
using the profile likelihood ratio in the construction of the
Neyman band [64]. This unified construction avoids under-
coverage that can occur when an experiment switches
between separate constructions for upper limits and two-
sided intervals. The XENON1T experiment places a 3σ
discovery significance threshold for reporting a two-sided
interval.
Result and conclusions.—No significant signal-like

excess is found in our analysis. The lowest local discovery
p value is 0.14, observed for the high mass range above
∼200 GeV=c2. The 90% confidence level upper limit on
the scalar WIMP-pion cross section, shown in Fig. 4, has
a minimum of 6.4 × 10−46 cm2 for a 30 GeV=c2 WIMP.
The comparison to the SI analysis is quantified in Fig. 5, in
the upper panel for the ratio of the background expectations
and in the lower one for the signal expectation, both
computed for a 200 GeV=c2 WIMP. No background
component shows a significant deviation from the SI fit.
The upper limits are within 8% in terms of signal expect-
ation value, reflecting the comparable signal recoil energy
spectra shown in Fig. 2. The difference in upper limit cross
sections is therefore driven primarily by the different

expectation values for the two interactions at the same
cross section.
Summarizing, we have presented limits on the scalar

WIMP-pion interaction, where the WIMP scatters off
virtual pions in a nucleus via an underlying scalar
WIMP-quark operator. The corresponding nuclear response
for this interaction is coherently enhanced, similar to SI
scattering, leading to the hierarchy given in Eq. (6). In
analogy to standard SI and SD limits, the result can be
represented in terms of a single-particle cross section. We
have performed the first search for this interaction with
1 t yr of XENON1T data, using the XENON1T detector
response, background models, and likelihood. We find no
excess and set an upper limit on the scalar WIMP-pion
cross section with a minimum at 6.4 × 10−46 cm2 for a
30 GeV=c2 WIMP (at 90% confidence level). Our analysis
quantifies for the first time the effect of coherent two-body
currents in direct-detection searches for dark matter, paving
the way for future comprehensive studies of WIMP-nucleus
interactions beyond SI and SD scattering.
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