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ABSTRACT

Sparse non-negative matrix factorization (sNMF) allows for the de-
composition of a given data set into a mixing matrix and a feature
data set, which are both non-negative and fulfill certain sparsity con-
ditions. In this paper it is shown that the employed projection step
proposed by Hoyer has a unique solution, and that it indeed finds
this solution. Then indeterminacies of the sNMF model are iden-
tified and first uniqueness results are presented, both theoretically
and experimentally.

1. INTRODUCTION

Non-negative matrix factorization (NMF) describes a promising
new technique for decomposing non-negative data sets into a prod-
uct of two smaller matrices thus capturing the underlying structure
[3]. In applications it turns out that additional constraints like for
example sparsity enhance the recoveries; one promising variant of
such a sparse NMF algorithm has recently been proposed by Hoyer
[2]. It consists of the common NMF update steps, but at each step
a sparsity constraint is posed. If factorization algorithms are to pro-
duce reliable results, their indeterminacies have to be known and
uniqueness (except for the indeterminacies) has to be shown — so
far only restricted and quite disappointing results for NMF [1] and
none for sNMF are known.

In this paper we first present a novel uniqueness result showing
that the projection step of sparse NMF always possesses a unique
solution (except for a set of measure zero), theorems 2.2 and 2.6.
We then prove that Hoyer’s algorithm indeed detects these solu-
tions, theorem 2.8. In section 3 after shortly repeating Hoyer’s
sNMF algorithm, we analyze its indeterminacies and show unique-
ness in some restricted cases, theorem 3.3. The result is both new
and astonishing, because the set of indeterminacies is much smaller
than the one of NMF, namely of measure zero.

2. SPARSE PROJECTION

The sparse NMF algorithm enforces sparseness by using a projec-
tion step as follows: Given x ∈R

n and fixed λ1,λ2 > 0, find s such
that

s = argmin‖s‖1=λ1,‖s‖2=λ2,s≥0 ‖x−s‖2 (1)

Here ‖s‖p :=
(

∑n
i=1 |si|p

)1/p
denotes the p-norm; in the following

we often omit the index in the case p = 2. Furthermore s ≥ 0 is
defined as si ≥ 0 for all i = 1, . . . ,n, so s is to be non-negative. Our
goal is to show that such a projection always exists and is unique
for almost all x. This problem can be generalized by replacing the
1-norm by an arbitrary p-norm, however the (Euclidean) 2-norm
has to be used as can be seen in the proof later. Other possible
generalizations include projections in infinite-dimensional Hilbert
spaces.

First note that the two norms are equivalent i.e. induce the same
topology; indeed ‖s‖2 ≤ ‖s‖1 ≤

√
n‖s‖2 for all s ∈ R

n as can be
easily shown. So a necessary condition for any s to satisfy equation
(1) is λ2 ≤ λ1 ≤

√
nλ2.

We want to solve problem (1) by projecting x onto

M := {s|‖s‖1 = λ1}∩{s|‖s‖2 = λ2}∩{s ≥ 0} (2)

In order to solve equation (1), x has to be projected onto a point
adjacent to it in M:

Definition 2.1. A point p ∈ M ⊂ R
n is called adjacent to x ∈ R

n

in M, in symbols p⊳M x or shorter p⊳x, if ‖x−p‖2 ≤ ‖x−q‖2

for all q ∈M.

In the following we will study in which cases this is possibly,
and which conditions are needed to guarantee that this projection is
even unique.

2.1 Existence

Assume that x lies in the closure of M, but not in M. Obviously
there exists no p⊳x as x ‘touches’ M without being an element of
it. In order to avoid these exceptions, it is enough to assume that M
is closed:

Theorem 2.2 (Existence). If M is closed and nonempty, then for
every x ∈R

n there exists a p ∈M with p⊳x.

Proof. Let x ∈ R
n be fixed. Without loss of generality (by taking

intersections with a large enough ball) we can assume that M is
compact. Then f : M → R,p 7→ ‖x−p‖ is continuous and has
therefore a minimum p0, so p0 ⊳x.

2.2 Uniqueness

Definition 2.3. Let X (M) := {x ∈ R
n|there exists more than one

point adjacent to x in M}= {x ∈R
n|#{p ∈M|p⊳x}> 1} denote

the exception set of M.

In other words, the exception set contains the set of points from
which we can’t uniquely project. Our goal is to show that this set
vanishes or is at least very small. Figure 1 shows the exception set
of two different sets.

Note that if x ∈ M then x⊳ x, and x is the only point with
that property. So M∩X (M) = ∅. Obviously the exception set of
an affine linear hyperspace is empty. Indeed, we can prove more
generally:

Lemma 2.4. Let M ⊂ R
n be convex. Then X (M) = ∅.

For the proof we need the following simple lemma, which only
works for the 2-norm as it uses the scalar product.

Lemma 2.5. Let a,b ∈ R
n such that ‖a + b‖2 = ‖a‖2 + ‖b‖2.

Then a and b are collinear.

Proof. By taking squares we get ‖a+ b‖2 = ‖a‖2 + 2‖a‖‖b‖+
‖b‖2, so

‖a‖2 +2〈a,b〉+‖b‖2 = ‖a‖2 +2‖a‖‖b‖+‖b‖2
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Figure 1: Two examples of exception sets.

if 〈., .〉 denotes the (symmetric) scalar product. Hence 〈a,b〉 =
‖a‖‖b‖ and a and b are collinear according to the Schwarz in-
equality.

Proof of lemma 2.4. Assume X (M) 6= ∅. Then let x∈X (M) and

p1 6= p2 ∈M such that pi ⊳x. By assumption q := 1
2 (p1 +p2) ∈

M. But

‖x−p1‖ ≤ ‖x−q‖ ≤ 1

2
‖x−p1‖+

1

2
‖x−p2‖= ‖x−p1‖

because both pi are adjacent to x. Therefore ‖x−q‖ = ‖ 1
2 (x−

p1)‖+ ‖ 1
2 (x−p2)‖ and application of lemma 2.5 shows that x−

p1 = α(x−p2). Taking norms (and using the fact that q 6= x)
shows that α = 1 and hence p1 = p2, which is a contradiction.

In a similar manner, it is easy to show for example that the
exception set of the sphere consists only of its center, or to calculate
the exception sets of the sets M from figure 1. Another property
of the exception set is that it behaves nicely under non-degenerate
affine linear transformation.

Hence in general, we cannot expect X (M) to vanish altogether.
However we can show that in practical applications we can easily
neglect it:

Theorem 2.6 (Uniqueness). vol(X (M)) = 0.

This means that the Lebesgue measure of the exception set is
zero i.e. that it does not contain any open ball. In other words, if
x is drawn from a continuous probability distribution on R

n, then
x∈X (M) with probability 0. We simplify the proof by introducing
the following lemma:

Lemma 2.7. Let x∈X (M) with p⊳x,p′⊳x and p 6=p′. Assume
y lies on the line between x and p. Then y 6∈X (M).

Proof. So y = αx+(1−α)p with α ∈ (0,1). Note that then also
p⊳y — otherwise we would have another q⊳y with ‖q−y‖ <
‖p−y‖. But then ‖q−x‖ ≤ ‖q−y‖+‖y−x‖< ‖p−y‖+‖y−
x‖= ‖p−x‖, which contradicts the assumption.

Now assume that y ∈X (M). Then there exists p′′⊳ y with
p′′ 6= p. But ‖p′′ −x‖ ≤ ‖p′′ −y‖+ ‖y−x‖ = ‖p−y‖+ ‖y−
x‖= ‖p−x‖. Then p⊳x induces ‖p′′ −x‖= ‖p−x‖. So

‖p′′ −x‖= ‖p′′ −y‖+‖y−x‖.

Application of lemma 2.5 then yields p′′−y = α(y−x), and hence
p′′ −y = β (p−y). Taking norms (and using p⊳ x) shows that
β = 1 and hence p = p′′, which is a contradiction.

Proof of theorem 2.6. Assume there exists an open set U ⊂X (M),
and let x ∈U . Then choose p 6= p′ ∈M with p⊳x,p′⊳x. But

{αx+(1−αp)|α ∈ (0,1)}∩U 6= ∅,

which contradicts lemma 2.7.

2.3 Algorithm

From here on, let M be defined by equation (2). In [2], Hoyer pro-
poses algorithm 1 to project a given vector x onto p ∈M such that
p⊳ x (we added a slight simplification by not setting all negative
values of s to zero but only a single one in each step). The algorithm
iteratively detects p by first satisfying the 1-norm condition (line 1)
and then the 2-norm condition (line 3). The algorithm terminates if
the constructed vector is already positive; otherwise a negative co-
ordinate is selected, set to zero (line 4) and the search is continued
in R

n−1.

Algorithm 1: Sparse projection

Input: vector x ∈R
n, norm conditions λ1 and λ2

Output: closest non-negative s with ‖s‖i = λi

Set r← x+(‖x‖1−λ1/n)e with e = (1, . . . ,1)⊤ ∈ R
n.1

Set m← (λ1/n)e.2

Set s←m+α(r−m) with α > 0 such that ‖s‖2 = λ2.3

if exists j with s j < 0 then
Fix s j ← 0.4

Remove j-th coordinate of x.5

Decrease dimension n← n−1.6

goto 1.7

end

The projection algorithm terminates after maximally n−1 iter-
ations. However it is not obvious that it indeed detects p. In the
following we will prove this given that x 6∈X (M) — of course we
have to exclude non-uniqueness points. The idea of the proof is to
show that in each step the new estimate has p as closest point in M.

Theorem 2.8 (Sparse projection). Given x ≥ 0 such that x 6∈
X (M). Let p ∈ M with p⊳ x. Furthermore assume that r and
s are constructed by lines 1 and 3 of algorithm 1. Then:

(i) ∑ ri = λ1, p⊳ r and r 6∈X (M).

(ii) ∑si = λ1, ‖s‖2 = λ2 and p⊳ s and s 6∈X (M).

(iii) If s j < 0 then p j = 0.

(iv) Define u := s but set u j = 0. Then p⊳u and u 6∈X (M).

This theorem shows that if s≥ 0 then already s ∈M and p⊳ s
(ii) so s = p. If s j < 0 then it is enough to set s j := 0 (because
p j = 0 (iii)) and continue the search in one dimension lower (iv).

Proof. Let H := {x ∈ R
n|∑xi = λ1} denote the affine hyperplane

given by the 1-norm. Note that M ⊂H.

(i) By construction r ∈ H. Furthermore e⊥H, so r is the or-
thogonal projection of x onto H. Let q ∈M be arbitrary. We then

get ‖q−x‖2 = ‖q−r‖2 +‖r−x‖2. By definition ‖p−x‖ ≤ ‖q−
x‖, so ‖p−r‖2 = ‖p−x‖2−‖r−x‖2 ≤ ‖q−x‖2−‖r−x‖2 =
‖q− r‖2 and therefore p⊳ r. Furthermore r 6∈X (M) because if
q ∈R

n with q⊳r, then ‖q−r‖= ‖p−r‖. Then by the above also
‖q−x‖ = ‖p−x‖, hence q = p (because x 6∈X (M)).

(ii) First note that s is a linear combination of m and r, and both
lie in H so also s ∈ H i.e. ∑ si = λ1. Furthermore by construction
‖s‖ = λ2. Now let q ∈M. For p⊳ s to hold, we have to show that
‖p−s‖ ≤ ‖q−s‖. This follows (see (i)) if we can show

‖q−r‖2 = ‖s−r‖2 +
1

α0
‖q−s‖2. (3)

We can prove this equation as follows: By definition λ 2
2 = ‖q−

m‖2 = ‖q− s‖2 +‖s−m‖2 +2〈q− s,s−m〉, hence ‖q− s‖2 =
−2〈q−s,s−m〉=−2 α0

α0−1 〈q−s,s−r〉, where we have used s−
m = α0(r−m) i.e. m = s−α0r

1−α0
so s−m = α0

α0−1 (s−r).



Using the above, we can now calculate

‖q−r‖2 = ‖q−s‖2 +‖s−r‖2 +2〈q−s,s−r〉

= ‖q−s‖2 +‖s−r‖2 +
1−α0

α0
‖q−s‖2

= ‖s−r‖2 +
1

α0
‖q−s‖2.

Similarly, from formula 3, we get s 6∈X (M), because if there exists
q ∈R

n with ‖q−s‖= ‖p−s‖, then also ‖q−r‖= ‖p−r‖ hence
q = p.

(iii) Assume s j < 0. First note that m does not lie on the line
βs+(1−β )p (in other words m 6= (p+ s)/2), because otherwise
due to symmetry there would be at least two points in M closest to
s, but s 6∈X (M). Now assume the claim is wrong, then p j > 0 (be-
cause p≥ 0). Define g : [0,1]→ H by g(β ) := m+αβ (βs+(1−
β )p−m), where αβ > 0 has been chosen such that ‖g(β )‖ = λ2.

The curve g describes the shortest arc in H ∩{‖q‖= λ2} connect-
ing p to s. We notice that p j > 0,r j < 0 and g is continuous. Hence
determine the (unique) β0 such that q := g(β0) has the property
q j = 0. By construction q ∈ M, but q lies closer to s than p (be-

cause ‖g(β −r)‖2 = 2〈g(β )−m,m−r〉+2λ 2
2 is decreasing with

increasing β ). But this is a contradiction to p⊳ s.
(iv) The vector u is defined by ui = si if i 6= j and u j = 0 i.e.

u is the orthogonal projection of s onto the coordinate hyperplane

given by x j = 0. So we calculate ‖p− s‖2 = ‖p−u‖2 +‖u− s‖2

and the claim follows directly as in (i).

3. MATRIX FACTORIZATION

Matrix factorization models have already been used successfully in
many applications when it comes to find suitable data representa-
tions. Basically, a given m× T data matrix X is factorized into a
m×n matrix W and a n×T matrix H

X = WH, (4)

where m≤ n.

3.1 Sparse non-negative matrix factorization

In contrast to other matrix factorization models such as principal
or independent component analysis, non-negative matrix factoriza-
tion (NMF) strictly requires both matrices W and H to have non-
negative entries, which means that the data can be described using
only additive components. Such a constraint has many physical re-
alizations and applications, for instance in object decomposition [3].

Although NMF has recently gained popularity due to its sim-
plicity and power in various applications, its solutions frequently
fail to exhibit the desired sparse object decomposition. Therefore,
Hoyer [2] proposed a modification of the NMF model to include
sparseness: he minimizes the deviation of (4) under the constraint
of fixed sparseness of both W and H. Here, using a ratio of
1- and 2-norms of x ∈ R

n \ {0}, the sparseness is measured by
σ(x) := (

√
n− ‖x‖1/‖x‖2)/(

√
n− 1). So σ(x) = 1 (maximal)

if x contains n−1 zeros, and it reaches zero if the absolute value of
all coefficients of x coincide.

Formally, sparse NMF (sNMF) [2] can be defined as the task of
finding

X = WH subject to

{

X,W,H≥ 0
σ(W∗i) = σW

σ(Hi∗) = σH

(5)

Here σW,σH ∈ [0,1] denote fixed constants describing the sparse-
ness of the columns of W respectively the rows of H. Usually, the
linear model in NMF is assumed to hold only approximately, hence
the above formulation of sNMF represents the limit case of perfect
factorization. sNMF is summarized by algorithm 2, which uses al-
gorithm 1 separately in each column respectively row for the sparse
projection.

Algorithm 2: Sparse non-negative matrix factorization

Input: observation data matrix X
Output: decomposition WH of X fulfilling given

sparseness constraints σH and σW

Initialize W and H to random non-negative matrices.1

Project the rows of H and the columns of W such that they2

meet the sparseness constraints σH and σW respectively.
repeat

Set H←H−µHW⊤(WH−X).3

Project the rows of H such that they meet the sparseness4

constraint σH.

Set W←W−µW(WH−X)H⊤.5

Project the rows of W such that they meet the6

sparseness constraint σW.
until convergence;

3.2 Indeterminacies

Obvious indeterminacies of model 5 are permutation and positive
scaling of the columns of W (and correspondingly of the rows of
H), because if P denotes a permutation matrix and L a positive

scaling matrix, then X = WH = (WP−1L−1)(LPH) and the
conditions of positivity and sparseness are invariant under scaling
by a positive number. Another maybe not as obvious indeterminacy
comes into play due to the sparseness assumption.

Definition 3.1. The n×T -matrix H is said to be degenerate if there
exist v ∈R

n, v > 0 and λt ≥ 0 such that H∗t = λtv for all t.

Note that in this case all rows h⊤i := Hi∗ of H have the same

sparseness σ(hi) = (
√

n−‖λ‖1/‖λ‖2)/(
√

n− 1) independent of

v, where λ := (λ1, . . . ,λT )⊤. Furthermore, if W is any matrix with
positive entries, then Wv > 0 and WH∗t = λt(Wv), so the sig-
nals H and its transformations WH have rows of equal sparseness.
Hence if the sources are degenerate we get an indeterminacy of

sNMF: Let W,W̃ be non-negative such that W̃−1Wv > 0 (for ex-

ample W > 0 arbitrary and W̃ := I), and let H be degenerate. Then

H̃ := W̃−1WH is of the same sparseness as H and WH = W̃H̃′,
but the mixing matrices W and W̃ do not coincide up to permuta-
tion and scaling.

3.3 Uniqueness

In this section we will discuss the uniqueness of sNMF solutions
i.e. we will formulate conditions under which the set of solutions
is satisfactorily small. We will see that in the perfect factorization
case, it is enough to put the sparseness condition either onto W or
H — we chose H in the following to match the picture of sources
with a given sparseness.

Assume that two solutions (W,H) and (W̃,H̃) of the sNMF

model (2) are given with W and W̃ of full rank; then

WH = W̃H̃, (6)

and σ(H) = σ(H̃). As before let hi = H⊤i∗ respectively h̃i = H̃⊤i∗
denote the rows of the source matrices. In order to avoid the scaling
indeterminacy, we can set the source scales to a given value, so we
may assume

‖hi‖2 = ‖h̃i‖2 = 1 (7)

for all i. Hence, the sparseness of the rows is already fully deter-
mined by their 1-norms, and

‖hi‖1 = ‖h̃i‖1. (8)

We can then show the following lemma (even without positive mix-
ing matrices).



Lemma 3.2. Let W,W̃ ∈ R
m×n and H,H̃ ∈ R

n×T , H,H̃ ≥ 0,
such that equations (6–8) hold. Then for all i ∈ {1, . . . ,m}
(i) ∑ j wi j = ∑ j w̃i j

(ii) ∑ j<k wi j wik (1−〈h j,hk〉) = ∑ j<k w̃i j w̃ik (1−〈h̃ j, h̃k〉)

Proof. (i) Let e := (1, . . . ,1)⊤ ∈ R
T , and τ := ‖h1‖1 the constant

1-norm of the rows. Then h⊤i e = τ , so application of e to equation

(6) guarantees W(τ, . . . ,τ)⊤ = W̃(τ, . . . ,τ)⊤ and hence (i).
(ii) For readability let α j := wi j,β j := w̃i j and µ jk := 〈h j,hk〉,

ν jk = 〈h̃ j, h̃k〉. By equation (7) we get

∑
j

α2
j +2 ∑

j<k

α jαkµ jk = ∑
j

β 2
j +2 ∑

j<k

β jβkν jk. (9)

Using (i), the left hand side of this equation can be rewrit-

ten as ∑ j<n α2
j + (∑ j β j − ∑ j<n α j)

2 + 2∑ j<k α jαkµ jk, which,

after some algebraic manipulations, can be seen to equal

2∑ j<n α2
j + 2∑ j<k<n α jαk − 2∑ j<n,k α jβk + 2∑ j<k α jαkµ jk +

∑ j β 2
j +2∑ j<k β jβk. Plugging this into equation (9) yields

n

∑
j=1

α j

(

α j +
n

∑
k= j+1

αk−∑
k

βk

)

+ ∑
j<k

α jαkµ jk = ∑
j<k

β jβk(ν jk−1).

Together with (8) the first sum on the left hand side can be shortened

to read ∑n
j=1 α j(−∑

j−1
k=1

αk−αk) =−∑ j<k α jαk, and plugging this

into the above equation finishes the proof.

This lemma can now be used to prove uniqueness of sNMF
in some special cases — note that in more general settings some
additional indeterminacies (specific to n > 3) will come into play;
however to our present knowledge they are thin i.e. of measure zero
and hence of no practical importance.

Theorem 3.3 (Uniqueness of sNMF). In addition to the assump-
tions from lemma 3.2, assume that H is non degenerate and that
either

(i) W̃ = I and W ≥ 0,

(ii) W̃−1W ≥ 0, or

(iii) n = 2.
Then W = W̃P with a permutation matrix P.

Proof. (i) W̃ = I, so the right hand side of lemma 3.2, (ii) is zero.
Hence ∑ j wi j = 1 and ∑ j<k wi j wik (1−〈h j,hk〉) = 0 for all i. But

W≥ 0 and due to Schwarz’s inequality, 〈h j,hk〉 ≤ ‖h j‖2‖hk‖2 =
1, so all factors in the right sum are positive. Therefore each term
of the sum vanishes. But H is non degenerate, so 〈h j,hk〉 6= 1,
because equality in the Schwarz inequality only holds if the two
vectors are parallel. Hence at most one wi j 6= 0, so = 1 for fixed
i. But W is of full rank, so it W equals the unit matrix up to
permutation.

(ii) Multiplication of (6) by W̃−1 and application of (i) show
the claim.

(iii) Without loss of generality we may assume m = 2. From (6)

we get VH = H̃ with V := W̃−1W, and we have to show that V
is a permutation. Similar to (i), application of lemma 3.2, (ii) yields
vi1 vi2 (1−〈h1,h2〉) = 0 for i = 1,2. But H is non degenerate and
the claim follows.

4. SIMULATIONS

In order to experimentally confirm the uniqueness result of theorem
3.3 and to show its validness in more general situations, we per-
form two simple simulations. Our goal is to find indeterminacies
i.e. solutions to equation (6).

A fixed number of runs of the following construction is per-
formed. In iteration i, non-negative matrices W,W′,H are gen-
erated by drawing coefficients uniformly from [0,1]. For the sec-

ond source matrix we simply set H′ := W′−1WH and accept the
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0.3
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ρ(i)

(b) n = m = 4

Figure 2: Simulation results in the case of two and four dimensions.

result if and only if H′ ≥ 0. We then calculate the joint sparse-

ness vector ζ := (σ(h1), . . . ,σ(h′n))
⊤ containing the sparseness

values of the rows of both H and H′. The maximal difference
δ (i) := max j |ζ j − ζ̄ | between the sparseness of any row and the
mean sparseness measures the deviation from the mixture model
(6). For each iteration i, we compare this deviation with a measure
ρ(i) of the non-degeneracy of H (and hence H′):

ρ(i) :=
2

n(n−1) ∑
j<k

(

1− 〈h j,hk〉
‖h j‖2‖hk‖2

)2

Figure 2 presents the simulation results in two cases, for T = 10

samples: For n = m = 2 (a), 2393 points out of 105 iterations were
found with δ < 0.02. In the case of n = m = 4 (b), 7211 solutions
out of 2 ·104 iterations were identified with δ < 0.07. In both graphs
we can see that the better the mixing model is fulfilled (lower δ )
the closer the two different solutions are to degeneracy (lower ρ).
This confirms the claimed uniqueness of sNMF (theorem 3.3) and
generalizations to higher dimensions, because when sampling for
different models fulfilling the sNMF conditions, we only found de-
generate solutions.

5. CONCLUSION

We have shown that the sparseness constraints in sparse NMF are
almost everywhere uniquely fulfilled. Furthermore, we have been
able to prove that Hoyer’s projection algorithm indeed finds the
closest points of fixed sparseness. Finally we have analyzed unique-
ness of the sNMF model, identified a non-uniqueness condition and
proved that given non-degenerate sources, uniqueness holds, at least
in the case of two dimensions or some other restrictions. We have
confirmed these findings and possible extensions by simulations. In
later work, in addition to fully proving uniqueness, we are working
on existence results and on generalizations to overcomplete situa-
tions (which we are already able to confirm experimentally).
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