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Chapter 1

Introduction

Cosmology, the study of the overall composition and history of the uni-
verse, is currently in the enviable position of having a well-tested standard
model that agrees with all observations, while relying only a low num-
ber of adjustable parameters1. According to this model, which is known
as ΛCDM or the “concordance model”, the universe started out in an ex-
tremely hot and dense state called the Big Bang some 13.8 billion years ago.
This was almost immediately followed by a phase of extremely rapid ex-
pansion, called inflation.

Figure 1.1: A timeline of the universe, courtesy of the WMAP science team.
Quantum fluctuations are created during inflations, resulting in the CMB
fluctuations (afterglow light pattern) and the later formation of stars, galax-
ies and other structures.

1For a thorough introduction to this topic, see for example [1].
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10 CHAPTER 1. INTRODUCTION

During inflation, the size of the universe increased exponentially by at
least a factor of 1026, leaving the universe in an almost perfectly flat and
uniform state, with small fluctuations with approximately the same ampli-
tude on all length-scales2.

After this, the universe continued expanding much more slowly, even-
tually cooling down enough for protons and neutrons, then light atomic
nuclei, and finally atoms to form. The latter happened about 370 000 years
after the Big Bang, when the temperature of the universe had fallen to about
3000 K. The formation of atoms turned the plasma that had filled the uni-
verse until then into a neutral gas, making the universe transparent for the
first time. Due to the finite speed of light, this event, called “recombina-
tion”3, is still visible today as an apparent surface, called the surface of last
scattering, some 13.8 billion light-years away4.

Up to this point, the fluctuations from inflation had been gradually
growing under the influence of gravity, and at the time of recombination,
the universe was inhomogeneous at the level of 1:100 000. In the following
billions of years until today, the fluctuations continued to grow, eventually
becoming dense enough to form first stars and then galaxies, followed by
even larger structures such as clusters of galaxies.

Quantitatively, the model is described by the ten parameters in table 1.1,
which can be summarized as the age, expansion speed and density of the
universe; the amplitude and scale dependence of the fluctuations; and the
time of recombination and another significant event later in the history of
the universe called reionization.

This concordance model is supported by a diverse set of observations,
including

• the relationship between the redshift and magnitude of supernova
explosions, which can be used to map out the expansion history of
the universe.

• the distribution of galaxies on large scales, from which information
about the fluctuations can be extracted.

• the chemical composition of the universe, which provides informa-
tion about the baryon density and expansion speed during the early
universe.

2It also had the effect of diluting the particles present in the universe before inflation into
irrelevance. At the end of inflation, the universe is re-populated with particles created from
the decay of the field(s) responsible for driving inflation.

3Though “combination” would have been a more appropriate name, as this is the first
time nuclei and electrons combined to form atoms.

4In light travel distance, one of several possible ways of measuring distances in the uni-
verse.
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Parameter Value Name

t0 13.78 ± 0.11 Gyr Age of the universe
H0 69.9 ± 1.3km/s/Mpc Hubble parameter
Ωb 0.0485 ± 0.0026 Baryon density
Ωc 0.244 ± 0.016 Dark matter density
ΩΛ 0.708 ± 0.0016 Dark energy density

σ8 0.811 ± 0.023 Fluctuation amplitude
ns 0.967 ± 0.014 Spectral index
r < 0.2 Tensor-to-scalar ratio

z∗ 1020.3 ± 1.3 Redshift at last decoupling
τ 0.086 ± 0.014 Optical depth of reionization

Table 1.1: The 10 parameters of the ΛCDM model, and current bounds
on their values, based on a combination of WMAP 7-year data, supernova
observations and galaxy surveys.

However, the most sensitive test of the model currently available is radi-
ation reaching us from the surface of last scattering, called the cosmic mi-
crowave background (CMB). We observe the CMB as perfect black-body
radiation corresponding to a temperature of 2.725 K, a temperature which
is nearly uniform in all directions on the sky5. But since the CMB is an
image of the surface of last scattering, it cannot be completely uniform; it
must contain the faint fluctuations that were present in the universe at that
time.

1.1 The CMB anisotropies

These anisotropies in the CMB were first detected by the COBE satellite
in 1992 [2], and were later mapped out in more detail by several other ex-
periments, including the WMAP satellite [3, 4, 5, 6] (see fig. 1.2). The pri-
mordial fluctuations produced during inflation are ultimately sourced by
random quantum fluctuations, which are expected to follow a statistically
isotropic and homogeneous6 Gaussian distribution, and these properties
are inherited by the temperature fluctuations at the surface of last scatter-
ing. The precise position and value of each positive and negative fluctua-
tion is therefore not of cosmological interest, but the statistical properties

5The observed temperature is a factor of ∼ 1000 lower than the temperature at recombi-
nation. This fall in temperature between the time the radiation was emitted and observed is
expected from general relativity, which predicts that the wavelength of photons will grow
proportionally with the expansion of the universe.

6That is, while each realization of the random field is anisotropic and inhomogeneous,
they will not systematically prefer any position or direction.
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Figure 1.2: The WMAP 7-year ILC map of the CMB temperature
anisotropies. At this resolution, the fluctuations have a typical amplitude
of ∼ 100µK. The faint horizontal artifacts in the middle of the map are due
to contamination from our own galaxy.

of the fluctuation field as a whole are, as they contain information not only
about the conditions that sourced them during inflation, but also about the
physical conditions during the 370 000 year period between inflation and
recombination.

A statistically isotropic Gaussian random field on the sphere has the
convenient property that its statistical properties can be completely de-
scribed in terms of the angular power spectrum, Cl , which is given by

Cl =〈|alm|2〉 alm =
∫

Y∗
lm(θ̂)∆T(θ̂)dΩ, (1.1)

where alm are the coefficients of the decomposition of the fluctuation field
∆T(θ̂) in terms of the spherical harmonics7 Ylm(θ̂). The CMB temperature
fluctuation power spectrum as measured by the WMAP satellite is com-
pared to the ΛCDM best fit in figure 1.3. The fit is excellent, despite the
much greater number of data points than model parameters. This lends
confidence to the idea that ΛCDM is correct, or at least a very good ap-
proximation to reality.

For the most part, the ΛCDM model builds on the two well-tested theo-
ries general relativity and the standard model of particle physics, which to-
gether form the status quo of our understanding of the particles and forces

7The spherical harmonics are eigenvectors of the angular part of the ∇2 operator. They
are analogues to the normal harmonic functions, and form an orthogonal basis set on the
sphere.
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Figure 1.3: The power spectrum of the CMB temperature fluctuations as
measured by the WMAP satellite, compared to the best-fit ΛCDM model.

that exist. However, ΛCDM also requires a few ingredients which go be-
yond these two, and its impressive fit to observations gives good reason to
believe that these are actually real. The new ingredients are:

Dark energy An unknown form of energy with negative pressure and re-
pulsive gravity, currently making up 71% of the energy density in the
universe. It is needed to explain the current accelerated expansion of
the universe.

Dark matter An unknown form of matter which interacts very weakly with
normal matter and radiation, and which currently makes up 24% of
the energy density of the universe.

Inflation The period of extremely rapid expansion that sets up the fluctu-
ations in the early universe. Possibly related to dark energy.

Of these, the most speculative and poorly measured is inflation, despite its
central place in the theory. It is believed to have happened at an energy
scale of up to ∼ 1016GeV [7], which puts it far beyond the reach of fore-
seeable particle experiments on Earth. However, such a high energy scale
would also result in the production of a significant amount of tensor fluc-
tuations (gravitational waves) during inflation, which would be detectable
in the CMB power spectrum if present in sufficient amounts. Thus, the
CMB power spectrum is a unique opportunity for probing physics at these
ultra-high energy scales.

The amplitude of the primordial waves is parameterized by the tensor-
to-scalar ratio r, which is defined as the ratio of the primordial tensor and
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scalar power at the scale with wavenumber k = 0.05/Mpc. So far, no tensor
perturbations have been detected, so r is consistent with zero, but with a
quite large confidence interval: r < 0.2 [8]. This bound is based on the
effect of tensor perturbations on the CMB temperature power spectrum,
and derives most of its significance from the multipoles l < 10, which are
fundamentally limited in sensitivity by cosmic variance8. It is therefore not
possible to significantly improve on this bound using the CMB temperature
fluctuations.

However, the CMB, being electromagnetic radiation, has more degrees
of freedom than just its temperature – it can also be polarized, and the CMB
polarization has no such fundamental limit on the ability to detect tensor
modes.

1.2 Polarization

General electromagnetic radiation can be expressed as a linear combination
of plane wave solutions of Maxwell’s equation, which take the form

�E(�r, t) =|�E|
⎛

⎝

cosθeiαx

sinθeiαy

0

⎞

⎠ ei(kz−ωt) (1.2)

�B(�r, t) =c−1�k × �E(�r, t), (1.3)

for a wave travelling in the �z direction, where �E and �B are the electric and
magnetic field strengths,�r and t are the position and time, θ is the linear po-
larization angle and αx, αy are the polarization phase angles [9]. Solutions
with αy = αx are called linear polarization; αy = αx ± π

2 gives rise to cir-
cular polarization, and other choices are called elliptical polarization, and
can be described as linear combinations of linear and circular polarization.

No choice of these parameters correspond to unpolarized light. Instead,
unpolarized light can be built up as a linear combination of plane waves
with different phases and polarization angles. This results in light with
polarization changing rapidly over short time scales, adding up to a zero
net polarization. In general, it is also possible that the polarization does not
completely cancel out, resulting in in partially polarized light.

1.2.1 Stokes parameters

A useful way of characterizing these possibilities is in terms of the Stokes

parameters �S = (I, Q, U, V)T, where I ≡ |Ex|2 + |Ey|2, Q ≡ |Ex|2 − |Ey|2,

8Cosmic variance refers to the uncertainty inherent in only having a single location in a
single universe from which to observe. For example, there are only 5 linearly independent
quadrupoles on the sky, which sets a lower limit on the uncertainty of C2, independently of
instrumental noise, etc.



1.2. POLARIZATION 15

Figure 1.4: Illustration of the linear polarization Stokes parameters Q and
U, and the circular polarization parameter V. Stokes parameters are useful
due to their linearity when combining light from multiple sources and the
ease of measuring them, but they are arbitrary in the sense that they depend
on the orientation of the coordinate system. The E and B decomposition
provide a more natural alternative to Q and U. Based on illustration by
Dan Moulton.

U = 2Re(ExE∗
y) and V ≡ 2Im(ExE∗

y). These represent respectively the total

intensity of the radiation9, the linear polarization along the x (positive) and
y (negative) axes, linear polarization along the x+y (positive) and x-y (neg-
ative) direction, and the right-handed (positive) and left-handed (negative)
circular polarization, as illustrated in figure 1.4.

Under a rotation of the coordinate system, I and V are unchanged,
while (Q, U) rotates as a spin 2 quantity. That is, under a rotation ψ around
the z axis of the local coordinate system,

(

Q
U

)

→
(

Q′

U′

)

=

(

cos(2ψ)Q − sin(2ψ)U
cos(2ψ)U + sin(2ψ)Q

)

. (1.4)

Compared to a description in terms of polarization fraction and polar-
ization angles, the Stokes parameters are useful because they add linearly
when combining radiation from multiple sources. They are also easy to
measure compared to other parameterizations. However, they are not the

9The CMB has a black-body spectrum, and its intensity is therefore fully described by its
temperature. It is therefore usual to express the Stokes parameters in temperature units in
the context of CMB analysis, and when doing this, it is common to denote the total intensity
parameter by T instead of I.
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Figure 1.5: Left: Q/U pattern surrounding a point with positive/nega-
tive E/B. E-modes are curl-free, while B-modes are divergence-free. Right:
Q/U maps corresponding to an E-only (top) and B-only (bottom) CMB re-
alization. The scale difference between the E and B modes shown here is
due to the expected behavior of primordial B-modes, and are not intrinsic
to the definition of E and B.

most natural description of a statistically isotropic radiation field, as the
definition of the linear polarization parameters Q and U depends on the ar-
bitrary choice of an “up” direction, which results in Q rotating into U and
vice versa during a rotation of the coordinate system.

The scalar E field and the pseudo-scalar field B are rotationally invariant
alternatives to Q and U. E and B are respectively curl-free and gradient-
free, and are named in analogy to the similar properties of the electric and
magnetic field. The value of E and B in a given point can be defined as
radially-weighted averages of Qr and Ur, the Stokes Q and U parameters
as defined in a polar coordinate system centered on that point10. E and
B modes and their connection to Q and U are are shown in figure 1.5. A
pedagogical explanation can be found in [10], while [11] has an exact full-
sky treatment of the topic.

The CMB is partially polarized due to Thomson scattering, in which
photons are scattered into random directions by interaction with electrons.
As the electromagnetic field of a photon always is orthogonal to its heading,
only the component of the photon’s original polarization orthogonal to its
new direction survives the scattering. The total radiation leaving any given
point in the plasma in any given direction is then the sum of contributions
from photons incident from all directions. As illustrated in figure 1.6, this

10This makes E and B non-local: Their value in one point depends on the Q and U over
the whole sky, but with the greatest weight from nearby points. This non-locality is the
greatest disadvantage of the E-B parameterization.
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will introduce a net polarization in the outgoing radiation if the incoming
radiation has a quadrupole moment [12].

Thompson
scattering

e

Figure 1.6: Local quadrupole anisotropies introduce linear polarization at
the surface of last scattering. In this example, unpolarized light (i.e. light
with equal amounts of all types of polarization) arrives at an electron from
above and the left. The outgoing radiation inherits the horizontal polariza-
tion component from the vertically incident radiation and vice versa for the
horizontal radiation. If the horizontally and vertically incident radiation
have different intensities, the outgoing radiation will be linearly polarized.
Based on figure in [12].

There are three qualitatively different types of fluctuations present at
the surface of last scattering that can set up quadrupole moments:

Scalar perturbations , or simply density perturbations, set up temperature
anisotropies by compressing or expanding the gas.

Vector perturbations represent vortices in the velocity field, which create a
spatially varying Doppler shift in the radiation. Vector perturbations
are not expected to be present at detectable levels.

Tensor perturbations are quadrupolar distortions in the metric which di-
rectly induce a quadrupole moment in the photon field.

These perturbations introduce quadrupole moments with different symme-
tries as illustrated in figure 1.7. The symmetry of the scalar perturbations
ensure that they cannot produce B-mode polarization. Hence, since vector
perturbations are unlikely to be present, a detection of B-mode polarization
would be evidence for tensor perturbations11.

11There are some caveats to this. Firstly, E-modes may be turned into B-modes by lensing
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Figure 1.7: Illustration of the local quadrupole anisotropy induced by scalar
and tensor perturbations. Scalar perturbations correspond to m = 0 modes,
while tensor perturbations have m = ±2. The symmetry of scalar modes
prevent them from inducing B-mode polarization. Figure borrowed from
[12].

The polarization of the CMB was first detected by the DASI experiment
[15] in 2002, and has since been measured by several other experiments,
including WMAP [4], QUAD [16] and BICEP [17]. So far, only E-modes
have been detected. The lack of detection of B-modes implies a bound of
r < 0.72 [17] based on the sensitivity of current experiments. This is still
not competitive with the bounds from the temperature power spectrum,
but as detector technology improves this is very likely to change.

1.3 Detector technology

Most of the experiments currently aiming to measure B-modes are based
on polarization-sensitive bolometers. These detect radiation by the heat
it imparts on the detectors, effectively counting photons while discarding
their phase. With sufficient cooling (50 mK - 300 mK) a bolometer can be
very sensitive, approaching the limit set by the discrete nature of photons at
a few tens of µK

√
s [18]. However, the time it takes for the detector to reach

equilibrium with the incoming radiation means that bolometers measure a
slightly delayed and smeared-out signal, which must be taken into account
in post-processing.

The alternative to bolometers is coherent amplifiers, which are basically
radio antennas that measure both the amplitude and phase of the incoming

of the CMB by the matter distribution of the universe [13], and secondly, the presence of
large magnetic fields in the early universe may excite vector modes, which also produce
a B-mode signal [14]. Luckily, these effects can be decoupled from B-modes from tensor
perturbations through their different scale behavior.
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radiation. The presence of phase information makes it possible to measure
Q and U simultaneously, as well as allowing for interferometry and vari-
ous techniques for reducing systematics in hardware. However, coherent
amplifiers have a minimal noise level set by quantum noise, corresponding
to an effective temperature of Tq = hν

k log 2 ≈ νGHz
20 K [18]. This limits the sen-

sitivity of coherent amplifiers at high frequencies, with the quantum noise
becoming prohibitively high at ν � 300GHz.

For comparison, the CMB has greatest intensity at 57 GHz and is dom-
inated by synchrotron at frequencies below about 30 GHz and dust above
200 GHz or so. The quantum limit is thus not a show-stopper for CMB
observations with coherent amplifiers. In practice, neither bolometers nor
coherent amplifiers reach their theoretical sensitivities. Not only are the de-
tectors themselves imperfect; the signal itself contributes to the overall sys-
tem temperature, and for ground-based experiments this includes a large
contribution from the atmosphere. This puts a rather restrictive limit on
the sensitivity achievable with a single detector.

The most effective way of increasing overall sensitivity is therefore to
add more detectors. If the noise in each detector is uncorrelated, the sensi-
tivity will fall12 as the square root of the number of detectors. The challenge
is then to fit as many detectors as possible into a focal plane. This is an
area where bolometers used to have a big advantage due to being smaller,
cheaper and easier to mass produce, which helped make bolometers the
norm.

Recent developments in coherent amplifiers have changed this, how-
ever. With the development of a new miniaturized polarimeter-on-a-chip
design, it is finally feasible to build large arrays of coherent amplifiers with
sensitivity competitive with modern bolometer arrays.

1.4 The Q/U Imaging ExperimenT

These new detectors are being fielded for the first time in the Q/U Imaging
ExperimenT (QUIET), making it the only current B-mode experiment built
with coherent amplifier detectors. These detectors make QUIET ideally
suited for observations at frequencies below ∼ 100GHz, which includes
the frequency range where the CMB polarization spectrum attains its great-
est intensity relative to the foregrounds. Due to bolometer characteristics,
other current B-mode experiments operate above ∼ 100GHz, and this fre-
quency difference implies that QUIET will be exposed to different fore-
grounds than its competitors. This, together with different and typically
lower instrument systematics, makes QUIET’s measurements or limits on

12The sensitivity of a detector is measured in terms of its noise level, which leads to a
rather misleading terminology where lower sensitivity is better.
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B-modes an important cross-check with regards to those of bolometer ex-
periments, and also an important result in their own right.

At a few µK, the CMB E-modes are extremely faint, and the B-modes are
at least several times fainter. Even the most sensitive detectors are therefore
strongly noise dominated, and hence a large amount of data reduction is
needed to extract a physically relevant signal from the raw telescope data.
A radiometer like QUIET is basically a nothing but a fancy radio antenna,
and the direct output from the telescope is a time-series of voltages. The
process of reducing this to an estimate of r can be separated into the fol-
lowing steps.

1. Calibration

2. Map making

3. Component separation

4. Power spectrum estimation

5. Parameter estimation

These steps conceptually follow each other, and can be thought of as a pro-
cessing pipeline, where raw time-ordered data are fed into one side, and
parameter estimates issue from the other. Following this analogy, the soft-
ware and methods responsible for these steps is collectively called an “anal-
ysis pipeline”.

This linear model should not be taken too literally: There is usually
significant feedback in a realistic pipeline, with for example the calibration
step depending on map making, or the latter 3 steps being jointly solved at
the same time.

Due to the heavy amount of processing involved in an analysis pipeline,
there is a significant risk for error which could bias or otherwise degrade
the result. Null-tests and end-to-end simulations are powerful techniques
for guarding against this, but in addition to this, it is common to have two
or more independent implementations of the pipeline. QUIET employs
two such pipelines: A pseudo-Cl based pipeline [19, 20], and a maximum
likelihood-based pipeline (see fig. 1.8). The latter was primarily developed
by a University of Oslo based team consisting of H. K. K. Eriksen, I. K. We-
hus and myself (S. K. Næss), with collaborators from Columbia University.
Most of my work in this thesis has been dedicated to the development and
application of this pipeline, which will be described in detail in the follow-
ing chapters.
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Figure 1.8: Stylized overview of QUIET’s two analysis pipelines. The ma-
jor internal steps are marked in blue and green, where green indicates a
result that is useful in its own right. “flt.” is short for “biased due to filter-
ing”, while “t. func” is short for “transfer function”. Both pipelines share
the major steps data preparation (calibration, cuts and filtering), map mak-
ing, validation and parameter estimation (power spectrum and cosmological
parameters).
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Chapter 2

Telescope and calibration

Figure 2.1: Left: QUIET is located at 67.761667◦ west, 23.028222◦ north at
5020 m elevation on the Chajnantor plateau in Chile, sharing access and
infrastructure with ALMA, ACT, APEX, etc. Right: The QUIET telescope
itself, after the installation of the upper ground screen. Map courtesy of
Google, telescope image by Joe Zuntz.

QUIET fielded its first array of coherent amplifiers from August 2008
to June 2009, consisting of 19 so-called “modules”, each made up of four
individual detectors. This array is sensitive in the Q-band (centered on
43 GHz), and consists of two parts: A polarization sensitive sub-array of
17 modules (of which 15.75 were usable) with a combined sensitivity of
69µK

√
s, and a temperature sensitive sub-array consisting of 2 modules

configured to act together as a differential detector.

A second array of 91 W-band (95 GHz) detectors was deployed from
July 2009 to December 2010, consisting of 85 polarization modules (of which
77.25 were usable) with a combined sensitivity of 85µK

√
s, and 6 tempera-

ture modules (of which 5.5 were usable) arranged in 3 differencing pairs.

Both arrays were arranged in a hexagonal pattern in the telescope’s fo-

23
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Figure 2.2: The location of QUIET’s 4 CMB patches and two galactic fore-
ground patches in galactic coordinates. The bright part of the sky indicates
the observable region based on the telescope’s location and elevation limits.
Several of QUIET’s patches overlap with those of other current or planned
experiments, including ABS [23], EBEX [24], BICEP [17] and SPIDER [25],
which are also shown. The overlaid grid is in equatorial coordinates. Fig-
ure courtesy of I. Wehus.

cal plane, with each module fed by its own feed horn, which is thus shared
by the four detectors within the module. The projected radius of both ar-
rays on the sky was 3.75 degrees, with an average beam size of 27′ for the
Q-band array and 12′ for the W-band array.

These arrays were mounted in a 1.4 m Dragonian [21, 22] telescope lo-
cated at 5080 m altitude at the Chajnantor plateau in the Atacama desert in
Chile. The telescope had three free axes: azimuth, elevation and rotation of
the focal-plane about the boresight, called the “deck” axis. In order to reach
the necessary sensitivity, observations were focused on 4 CMB-dominated
35◦ × 35◦ patches on the sky plus 2 foreground-dominated patches of sim-
ilar size (fig. 2.2). These were chosen such that at least one target was avail-
able throughout the day, allowing observations to continue 24 hours of the
day.

During normal operation of the telescope, the boresight is aimed roughly
one focal plane radius ahead of the edge of the target patch. The telescope
is then slewed backwards and forwards in azimuth at about 0.1 Hz with an
amplitude of 15 degrees at constant elevation (see figure 2.3) while the sky
drifts past, until the patch exits the telescope’s field of view. The boresight
is then repositioned, and the cycle continues. This scanning pattern ensures
that each detector spends as much time as possible looking through the at-
mosphere at constant optical depth. The temperature intensity of the atmo-
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Figure 2.3: The first 400 seconds of data from a Constant Elevation Scan
(CES). The top three panels show azimuth, elevation and the deck orienta-
tion respectively. The azimuth amplitude is about 15◦, while both elevation
and deck are almost constant, fluctuating by about 0.5” and 1′ respectively.
The fourth panel shows the demodulated readout from one of the detectors
of the 95 GHz array after decimation to 25 Hz, and the fifth panel contains
the corresponding power spectrum and the best fit 1

f -noise profile.

sphere is much greater than the CMB fluctuations QUIET aims to measure,
and is proportional the optical depth, which depends strongly on elevation
but only varies very weakly with azimuth and time. Scanning at constant
elevation means the atmosphere only shows up as a constant or very slow
drifts in the data, making it easy to filter out with a high-pass filter.

Thus, the useful data taking of the telescope comes in the form of Con-
stant Elevation Scans (CES), typically lasting about one hour, interspersed
with periods of about 5 minutes without data taking.

2.0.1 CES detection

For an ideal telescope, the list of the individual scans, their start and end
times, their target object, and type of scan would be available as one of
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the outputs from the telescope. In the case of the QUIET telescope, part of
this information is available, but after problems with miscategorized scans,
missing scans and undetected scans, this information was determined to
be incomplete and unreliable. We have therefore adopted a heuristic CES
detection based on the actual time-ordered data. The two pipelines of
the project, the maximum likelihood pipeline described here and the PCL
pipeline described in [19] each developed their own CES detection algo-
rithm, which were then refined until they reached an agreement of ∼ 95%
when ignoring small differences in the detected start- and end- times of the
CESes. I will here describe the ML pipeline’s CES detection algorithm, i.e.
the practical definition of “CES” used in this analysis.

Ideally, a CES is simply a continuous time-period where the telescope is
scanning in azimuth while keeping the elevation and deck angle constant.
However, as figure 2.3 illustrates, the hardware cannot stay totally still, and
elevation and deck fluctuate by about half a second of arc and one minute
of arc respectively during a typical CES. Furthermore, the telescope does
not spend all its time in data-taking mode. One of the output streams of
the telescope is the data taking mode, which has the value 3 during normal
data taking. Sadly, this data stream has frequent glitches where the value
departs from 3 for several seconds while data taking continues as normal.
The CES conditions above must therefore be qualified with tolerances. Fi-
nally, the Fourier methods used in the map making and filtering depends
on a constant sampling rate, so the CES detection must also ensure that the
time between samples is very close to constant during the scan.

With these problems in mind, the practical definition of a CES is: A
consecutive series of two-second chunks of data, which must each fulfil the
following criteria:

1. The deglitched data taking mode is 3

2. The elevation is within the allowed limits of [−π
2 , π

2 ]

3. No more than 30 consecutive samples1 have an absolute azimuth
change of less than 10−5 radians per sample.

The deglitched data taking mode here refers to the stream of data taking
modes after removing deviations from 3 of less than 3 seconds in duration.
Additionally, the series of chunks as a whole must satisfy

1. No samples must have a time-stamp that deviates by more than 3 ms
from the value expected from a constant 100 Hz sampling rate.

2. No samples can have an absolute difference between its elevation and
the average elevations of its chunk and the chunks before it of more
than 3 · 10−4 radians.

1The raw data at this stage are at 100 Hz. It is reduced to 25 Hz before the main part of
the data anlysis.
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3. Similarly, the deck angle must not deviate by more than 3 · 10−3 radi-
ans.

Whenever one of these conditions is violated, the current CES candidate is
ended and a new one started. The beginning time of each CES candidate is
then adjusted so that it is at least 1 minute later than the last phase switch
event2 that happens before the end of that candidate. Finally, the candidate
is accepted as a usable constant elevation scan if its duration is longer than
5 minutes.

Patch detection

Each of these CESes is then classified according to the objects hit during
its course. The boresight pointing for each sample of the CES is translated
to galactic coordinates3 and the angular distance d to a predefined set of
candidate objects is calculated. A hit is defined as d < R + rb + rv + r f ,
where R is an approximate radius of the object, rb is the beam 5 sigma
radius, rv is half the distance traveled during a sample and r f is the focal
plane radius. The objects hit during the CES are then sorted according
to their brightness, and the brightest one is assigned to the CES. The list
of objects considered can be seen in figure 2.1. This classification scheme
ensures that a scan of a CMB patch where the Moon happens to pass in
front of the patch registers as a usable Moon scan instead of a contaminated
CMB scan.

Implementation

The CES detection algorithm was implemented in the Fortran 90 program
ces_detect through a greedy algorithm – that is, an algorithm which tries
to maximize the length of the current CES, without considering how this
might affect the length of the next CES. This approach allows the program
to iterate through the data set in small chunks, which keeps the memory
requirements very low while still requiring only a single, sequential pass
through the data. This comes at the cost of not necessarily finding the opti-
mal CES partitioning, but any loss from this is minuscule.

Due to the size of the data set (∼ 15TB for the W-band analysis), ces_detect

benefited greatly from MPI parallelization. This was implemented by split-
ting the full data set into Nproc slices of equal size (in number of data files,
which corresponds closely to duration and data volume), each of which
are processed independently by each MPI process. CESes that span slice

2A phase switch event is a hardware event that is followed by a period of up to a minute
of unstable gain and noise levels due to temperature changes in the electronics.

3This conversion assumes an ideal mount model because arcminute precision is not nec-
essary here, and to avoid too many backwards dependencies in the pipeline.
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Name Lon. (◦) Lat. (◦) Rad. (◦) NQ
CES NW

CES

Sun 0.25 0 0

Moon 0.25 82 107

Venus 0 36 30
Jupiter 0 78 466
Mars 0 0 1
Saturn 0 3 0
Tau A 184.557 -5.784 0 18 0
RCW 38 267.927 -1.050 5 53 124

CMB-1 292.200 22.800 15 873 1584
CMB-2 243.200 -35.300 15 736 1344
CMB-3 304.600 -69.100 15 802 1059
CMB-4 7.000 -62.000 15 322 647
G-1 0.0833 -0.0667 10 189 352
G-2 329.100 0.000 15 295 568

Table 2.1: The objects considered in the automatic CES classification. These
are sorted into priority classes by brightness, separated by horizontal lines.
The location in galactic coordinates, and an approximate radius is dis-
played for the stationary objects. Shown in the last two columns are the
number of CESes identified for each object for the Q-band and W-band ob-
serving seasons.
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boundaries are handled by allowing each MPI process to finish processing
the last CES in its slice even if it extends outside that slice; the resulting
overlapping CESes from this and the next MPI task can then be automati-
cally combined in postprocessing.

2.0.2 Alternative scanning patterns

All the CMB data are collected using constant elevation scans, but some
calibration measurements employ an alternative scanning pattern called
raster scans, which are series of very small amplitude (∼ 1◦), very short
duration (∼ 1min) almost constant elevation (∆El � 0.5◦) scans. The pri-
mary target of these is the strongly polarized supernova remnant Tau A, of
which there are ∼ 104 such raster scan segments.

2.1 Detector data and noise properties

The telescope provides a 100 Hz time-stream modulated at 50 Hz for each
detector4. After correcting for a well-measured non-linearity in the detector
response and demodulating5, the result is one 50 Hz time-stream for each
detector, for a total of 72 data streams for the Q-band array and 364 for the
W-band array.

Though the detectors are quite sensitive, the CMB polarization is weaker
still, resulting in a S/N ratio per sample of about 10−3, meaning that the
data are thoroughly noise-dominated. It is therefore critical to understand
the statistical properties of the noise.

As illustrated in figure 2.4, the noise is Gaussian, but suffers from time
correlations in the form of 1/f-noise, which results in a noise power spec-
trum of the form

φ( f ) ≡σ2
0 (1 + [ f / fknee]α). (2.1)

This profile only holds within a CES; over longer periods the noise is not
stationary, and one must therefore estimate σ0, fknee and α individually for
each CES. The time dependence is illustrated for one of these parameters,
σ0, in figure 2.5.

Furthermore, the noise in each detector is not independent. The de-
tectors within a module are on average about 40% correlated, while inter-
module correlations are negligible (see figure 2.7). This means that de-
tectors within a module must be analyzed jointly rather than one-by-one,

4Two secondary data channels per detector are also provided: A “TP” stream sensitive
to the stokes I parameter, but with high noise correlations, and a noise channel. These are
not used for the main analysis, but are useful for pointing calibration.

5di = 1
2 ∑

1
j=0 m2i+ j p2i+ j, where d is the demodulated signal, m is the modulated signal

and p alternates between 1 and -1.
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Figure 2.4: The noise is well-fit by a Gaussian profile.
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Figure 2.5: The white noise floor σ0 shows a complicated time dependence
with a different pattern for each module, and to a lesser degree for the
detector within the module. The four panels show the measured σ0 values
per CES for four different detectors. Large changes in σ0 happen at discrete
events which are common for the detectors. The response to these events
differs, but is correlated between the detectors, as illustrated in figure 2.6.
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Figure 2.7: Detector white noise correlations for the 43 GHz (left) and 95
GHz (right) arrays. Within modules correlations are strong: on average
40% at 43 GHz and 37% at 95 GHz. Detectors in different modules are on
average less than 1% correlated. Only data for detectors that are actually
used in the analysis is displayed here. Unused detectors therefore show up
as gaps.

which comes as a cost in time and memory use. To complicate matters fur-
ther, figure 2.8 shows that the degree of correlation is frequency dependent,
changing gradually with frequency below 1 Hz.

All in all, these effects result in a final noise model of

Ndd′ f f ′ =
√

φd( f )φd′( f )Cdd′ f δ f f ′ , (2.2)

where Ndd′ f f ′ ≡ 〈ndf n†
d′ f ′〉 = F f tNdd′tt′F−1

t′ f ′ is the frequency-domain noise

covariance matrix between detectors d and d′ and frequencies f and f ′, and
Cdd′ f is the detector correlations, and where all parameters vary from CES
to CES.

2.1.1 Noise estimation

We estimate the noise parameters in a two step process: First, we fit a 1/f
profile independently for each detector, and then we measure the corre-
lations. This is not as optimal as the full maximum likelihood solution,
which would maximize the joint likelihood, but it is much faster, and still
unbiased.
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1/f profile

Assuming that the time-ordered data are completely noise dominated, and
that the noise is Gaussian and diagonal in Fourier space with mean zero
and unknown variance 〈ñ f ñ∗

f 〉 = 〈Pf 〉, where ñ f ≡ F f tnt, and Pf is the

observed TOD power spectrum with length N, the likelihood for φ( f ) is

− logL =
1

2 ∑
f

[

Pf

φ( f )
+ log(2πφ( f ))

]

. (2.3)

The maximum likelihood estimator for the parameters σ0, fknee,α is given
by minimizing equation (2.3) with respect to the model

φ( f ) = σ2
0

(

1 +

[

f

fknee

]α)

. (2.4)

With respect to some parameter X, this is done by solving

(− logL),X =
1

2 ∑
f

φ( f ),X

φ( f )

(

1 − Pf

φ( f )

)

= 0, (2.5)

which for X = σ2
0 results in

σ0 = N−1
freq ∑

f

Pf

1 +
[

f
fknee

]α . (2.6)

The remaining parameters can be determined with a nonlinear search.
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For the QUIET detectors, it turns out that the assumption of complete
noise dominance is not realistic, even when observing a weak source like
the CMB. Figure 2.9 shows the season average of the observed power spec-
trum for one W-band detector, based on only constant elevation scans with
good observing conditions and observation of CMB patches only. It shows
the expected 1/f-profile for most frequencies, but at high frequencies there
is a forest of spikes, with the most prominent one being a 10 Hz alias of
the 60 Hz mains power at the site. For the Q-band array, the most largest
deviation is a broader bump of excess power between 5.4 Hz and 6.35 Hz.

Since these problems are located in a distinct frequency range, they can
be dealt with by down-weighting these frequencies in the likelihood,

− logL =
1

2 ∑
f

w f

[

Pf

φ( f )
+ log(2πφ( f ))

]

, (2.7)

with the weights w f being zero in problematic regions and one otherwise.
These weights also allow us to exclude the multiples of the scanning fre-
quency from the noise estimate. Any signal which mostly varies with az-
imuth, which includes ground pickup through sidelobes as well as the ac-
tual sky signal, will have the greatest contribution at these frequencies, so
we avoid these as a precaution.

The performance of the resulting masked 1/f estimator at recovering
the input parameters for noise only simulations is illustrated in figure 2.10,
which shows that the estimator is unbiased. However, this unbiasedness
only carries over to real data if no significant signal is left unmasked, and
if the real noise actually follows a 1/f profile. This is investigated in fig-
ure 2.11. It shows the season co-added6 detection of a deviation between
the data and model for one detector, expressed as the number of standard
deviations per 1.25 mHz bin in frequency. This can be calculated by notic-

ing that
Pf

ψ( f ) follows a scaled chi-squared distribution with 2 degrees of

freedom and mean 1. Summing these in bins over the whole season, we
arrive at

χ2
b = 2 ∑

CES
∑
f∈b

Pf

ψ( f )
, (2.8)

which is an unscaled chi-squared with Nb = ∑CES ∑ f∈b 1 degrees of free-

dom. Nb will typically be of the order of 105, so we can use a Gaussian
approximation to express this as the number of standard deviations away

from the expectation value:
χ2

b−Nb√
2Nb

.

The figure shows that deviations from a pure 1/f profile are detectable
at the 2-5 sigma level per bin for most bins, with larger deviations at the

6Using only CESes from CMB patches that pass the data quality cuts.
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lowest frequencies. It is clear that a 1/f profile is only an approximation to
the true noise shape, which is more complicated. Still, it is a good enough
approximation that deviations are not significant at the single-CES level,
and when integrating over all unmasked frequencies, the deviation neces-
sarily averages to zero. Hence, the overall effect of approximating the noise
with ψ( f ) is slightly suboptimal noise weighting in the map-making step,
which does not lead to any bias in the final map, but may move a small
amount of power between small and large scales in the noise covariance
matrix.

The discussion above only considered observations with low signal-
to-noise per sample, such as CMB observations. When observing strong
sources such as the Moon (both polarization and temperature) or Jupiter
(temperature), it is unfeasible to mask out their contribution in frequency
domain, as every frequency will be contaminated. However, the signal
is localized in time-domain, making it possible to perform the masking
there instead. The problem can be formulated as one of sampling the noise
parameters θ = {σ0, fknee,α} given knowledge of only parts of the data
stream. That is, we wish to find P(θ|d) = P(Pf (θ)|d) ∝ P(d|Pf (θ)), where
d is the incomplete time ordered data, with the masked samples missing.

Assuming that the unmasked samples in d have low signal-to-noise, d
is a sample from N(0, C), where C = MF−1PFMT and M is a projection
operator from the full unmasked TOD to the masked TOD. While in prin-
ciple straightforward, this approach does not scale well with TOD length,
requiring memory of the order O(N2

samp) and processing time of the order

O(N3
samp), with Nsamp usually exceeding 105.

A much more efficient approach is to use the fact that one can sample
from a joint distribution by iteratively sampling from its conditional distri-
butions. This allows one to simplify the problem by adding more parame-
ters to the joint distribution. In this case, what makes it difficult to estimate
θ is the presence of holes in the TOD, which makes the Fourier basis non-
orthogonal. We can rectify this by adding the data inside the holes to the
set of parameters to be estimated. We then sample (θ, d′) jointly through
the iteration

d′ ←P(d′|θ, d) (gap filling) (2.9)

θ ←P(θ|d′, d). (2.10)

Here, d′ is a gap-filled version of d. That is, the masked areas of d have been
filled with a noise realization based on d and the noise parameters θ.

The details of this more general estimator can be found in paper III of
this thesis, but it is not needed for QUIET’s CMB patches due to the low
signal-to-noise per sample there.
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Figure 2.11: Lower panel: The full-season significance of the deviation of
the noise power spectrum from the best-fit 1/f profile per 1.25 mHz bin.
For a perfect match, the values should be normal distributed with mean
0 and variance 1. Upper panel: logarithmic plot of the square of the sig-
nificance of the deviation. Two effects are visible in these plots: A trend
towards higher than expected noise in the lowest bins, and spikes of vary-
ing significance at various frequencies. While these are significant when
co-added over the season, they are not detectable for a single CES-detector
(except for the 10 Hz spike), and they do not systematically add up during
map making.
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Correlations

The covariance between noise streams {nd} is defined as

Cov(nd, nd′) ≡ 〈(nd − 〈nd〉)(nd′ − 〈nd′〉)〉. (2.11)

Given a series of samples ndf for each stream in frequency space, and as-
suming a mean of zero, the covariance can be estimated as

Covdd′ =
1

Nfreq
Re(∑

f

ndf n∗
d′ f ). (2.12)

This assumes that the covariance is the same for all the samples, but we
have already seen that both the variance and correlations are frequency
dependent for the QUIET detectors. We therefore subdivide the frequencies
into bins, within which the covariance is approximately constant. By also
allowing frequency weighting, we arrive at

Covdd′b =
(

∑
f∈b

w f

)−1
Re

(

∑
f∈b

ndf n∗
d′ f w f

)

(2.13)

Cdd′b =
Covdd′b√

CovddbCovd′d′b
. (2.14)

The frequency binning results in sharp jumps in correlation when moving
from one bin to another, which results in unacceptably long time-correlations
in the noise model. This can be avoided by using spline interpolation be-
tween the bins.7

2.1.2 Filters

The four main contaminants in the QUIET time-ordered data are atmo-
spheric disturbances (i.e. bad weather), ground (fig. 2.14) and sun (fig. 2.13)
pickup through sidelobes in the telescope beam, and high frequency spikes
from the electronics. The typical shape and magnitude of these in fre-
quency space is illustrated in figure 2.12 in comparison with the typical
polarized CMB signal. For a single CES from a single detectors, the con-
taminants strongly dominate the CMB, and though they will tend to aver-
age down when more CES-detectors are co-added, they are strong enough
that this will not bring them down to acceptable levels unless they are dealt
with by cuts and filtering.

7This approach, with the spline being done logarithmically in frequency, is what QUIET
actually uses. However, a possible improvement would be to not force C to be a correlation
matrix, but instead use it to absorb deviations from a 1/f profile. One would then use

Cdd′b =
(

∑
f∈b

w f

)−1
Re

(

∑
f∈b

ndf n∗
d′ f w f

√

φd( f )φd′ ( f )

)

. (2.15)
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Figure 2.12: Illustration of the different contributions to QUIET’s time-
ordered data. The strongest contribution is the noise, which follows a 1/f
pattern with a white noise floor about 6 orders of magnitude (in power)
above the polarized CMB itself, which appears as a set of bumps around
harmonics of the azimuth scanning frequency. This picture is complicated
by several systematic effects. At low frequencies, atmospheric effects (bad
weather) may start to dominate, while the high frequencies are polluted by
occasional narrow spikes. Neither the very low or very high frequencies
have much CMB contributions, so the weather and spikes can be removed
by applying a bandpass filter. However, ground pickup from telescope
sidelobes enters as a systematic in the same frequency range as the CMB,
and must be handled by an azimuth filter instead.
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Figure 2.13: Map of the stokes Q component of the sky in Sun-relative co-
ordinates for the detector and deck orientation that shows the strongest
contamination from the Sun. The center of the map is the position of the
sun. The central ∼ 30◦ are unexposed due to sun avoidance. The first and
second panel cover the part of the W-band observing season before and
after the upper ground screen was installed. Before, the triple reflection
sidelobe and the spillover sidelobe are both visible, with amplitudes of up
to 10mK; after, they are both gone. The strength of both sidelobes and the
position of the spillover sidelobe varies with deck angle and position in the
focal plane. See [? ] for a more comprehensive review of the sidelobes.



2.1. DETECTOR DATA AND NOISE PROPERTIES 41

-500

-400

-300

-200

-100

0

100

200

300

400

500

-15 -10

u
K

-5 0 5 10 15

az offset

Binned TOD
2 parameter cosine model

Figure 2.14: Left panel: A stokes Q map in horizontal coordinates based on
the CMB scans of the Q-band observations at a deck orientation of 165◦.
In these coordinates, any signal from the sky will average down, while
any function of az and el, such as the ground signal, will add up. Due to
their different locations in the focal plane, each detector will see a different
ground pattern – this image shows the average of these contributions. Sig-
nificant ground pickup is visible: The color range in this map goes from -0.1
mK (blue) to 0.1 mK (red). Right panel: Azimuth-binned TOD for a single
CES-detector from the Q-band season, compared to a best-fit 2-parameter
cosine model.

From the figure it is clear that normal weather and spikes can be effec-
tively dealt with by using an apodized bandpass filter (see section 4.5.1)
between roughly 0.1 Hz to 4.5 Hz (Q-band) and 9.5 Hz (W-band), which
is indicated with the blue region in the figure. However, bad weather can
be much worse than indicated here, and may in the worst cases dominate
all the way up to several Hz. These latter cases must simply be cut (see
section 2.1.3 for details), but in less severe cases it is still possible to filter
it out by using a harsher high-pass filter. But increasing the threshold of
the high-pass filter must be done sparingly: The primary goal of QUIET is
to put upper bounds on the primordial B-modes, and these are most eas-
ily detected in the multipole range l � 70, and a significant fraction of the
power in this range comes from frequencies below 1 Hz. We therefore use
an adaptive scheme which adjusts the filter cutoffs individually for each
CES-detector as follows:

Highpass cutoff The lowest frequency fhp = (i + 1
2 ) fscan for i ∈ Z

+ for

which the chisquare of the data at all the higher frequencies χ2 =

∑
fmax

f = fhp

Pf

φ( f ) is within 4 sigma of the expectation value, and for which

all scan frequency harmonics above this frequency also have chisquares
within 4 sigma of the expectation value, based on the 49 modes cen-
tered on each such harmonic. The resulting value is then capped from
below to fhp ≥ 3

2 fscan based on the null-tests.
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Lowpass cutoff The frequency flp = min( fspike, fbump), where fspike is the
highest frequency such that the range [2Hz, fspike] contains no single

modes f with χ2
f =

Pf

φ( f ) > 15, and fbump is the highest frequency

such that no consecutive set of 100 Fourier modes within the range
[2Hz, fbump + 50∆ f ] has a chisquare more than 5 sigma away from
the expectation value. Here ∆ f is the frequency interval per Fourier
mode.

Combining these cutoffs with 1/f-type apodization8, we get a total filter
profile of

Ff =

[

1 +

(

f

fhp

)αhp
]−1 [

1 +

(

f

flp

)αlp
]−1

, (2.17)

with αhp = −20 and αlp = 300, which results in typical correlation lengths
of 1-2 minutes.

Ground pickup is not localized to a well-defined set of frequencies.
They are spread out over the same frequencies as the CMB itself, and hence
can’t be handled with a bandpass filter. It is formed by sidelobes hitting
the ground, and because the ground, unlike the sky, is stationary with re-
spect to the telescope, the observed ground pickup will depend only on the
telescope azimuth, elevation, deck orientation, the detector’s position and
orientation in the focal plane, and the ground signal itself. Hence, during
a CES, where elevation and deck orientation are constant, and the ground
properties presumably do not change noticeably, the ground pickup will
be a function of azimuth only. We therefore employ a filter in azimuth to
reduce the impact of the ground. Implementation-wise, this is handled as
a generalized filter (section 4.5.2) with a basis choice9 of

bi(az) = cos

[

iπ
az − azmin

azmax − azmin

]

. (2.18)

As the number of basis functions used for the filter increases, so does its
ability to pick up sharp changes in the ground signal, but this comes at the
cost of also removing more of the CMB and a large increase in computa-
tional cost due to the need to project out these modes from the covariance
matrix. The number of basis functions used for the filter should therefore

8We also evaluated cosine apodization of the form

Ff =

⎧

⎨

⎩

0 if f ≤ fc − ∆

1
2{1 − cos( π

∆
[ f − ( fc − ∆)])} if fc − ∆ < f ≤ fc + ∆

1 if fc + ∆ < f
, (2.16)

which has the advantage of transitioning from no damping to complete damping in a finite
frequency range, but this resulted in much greater correlation lengths than a 1/f-type filter.

9Chebyshev or Legendre polynomials would be other good alternatives.
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be large enough to make the TOD as a function of azimuth consistent with
noise, but no larger. Defining ai as the best-fit amplitude of the i’th basis
function, and the deviation from the expected effective chisquare as

σn ≈ χ2
n − (Nsamp − n)
√

2(Nsamp − n)
with χ2

n = ∑
t

(

dt −
n

∑
i=1

aibi(azt)

)

,

we choose the number of modes to include, nbasis, to be the lowest value
that fulfills σnbasis

< min{σ1 . . .σ15}+ 1. Typical values are in the range 0 to
4.

The final major contaminant, the signal from the Sun as seen through
the sidelobes, only affects the small fraction of CESes that enter the sidelobe-
contaminated region in sun-relative coordinates (see figure 2.13) 10. The
sidelobes are not sufficiently mapped out to allow a reliable filter to be con-
structed, so this effect must instead be handled through cuts.

2.1.3 Cuts

The QUIET maximum-likelihood pipeline employs an array of cuts to safe-
guard against bad weather, contamination from sidelobes and instrumental
defects. These cuts are summarized in table 2.2.

Most of the cuts are tests of consistency between the data and the noise
model. Because QUIET is strongly noise-dominated during CMB scans,
any deviation of the data from the noise model during a single CES means
that either the data have been contaminated by a non-CMB signal, or the
noise model does not fit the actual noise properties. In maximum-likelihood
map-making both of these cases need to be avoided: Extra signal will bias
the map, while wrong noise will result in a suboptimal map and bias the
covariance matrix.

The noise consistency cuts can be divided into two subclasses: Direct
cuts based on data that will actually be used in the analysis (i.e. data that
survive the filter), and indirect cuts which use the filtered data as a proxy
for detecting effects that are likely to also contaminate the unfiltered data.
For direct cuts, the goal is to detect deviations from noise, and a cut thresh-
old of 4-5 sigma11 is high enough to avoid significantly truncating the noise
distribution through false positives while still being strict enough to detect
all but the weakest effects.

10These sidelobes are so weak that they are only detected when they hit the sun. A figure
of the sky in moon-relative coordinates was consistent with no signal.

11This is for fixed-location cuts. For variable location cuts like parts of the spike cut, the
threshold should be somewhat higher to compensate for the added opportunities for the
increased opportunity for false positives due to thousands of modes being tested. This is
called the “look elsewhere effect” in some fields.
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Name Cut Q (%) Cut W (%) Description

P T P T

Static 12.3 5.3 9.7 8.9 Broken detectors, missing data or precalibra-
tion data.

Gain 7.4 0.0 11.5 50.0 Cuts detectors where no gain model has been
established due to missing calibration observa-
tions.

Noise fit 7.4 0.0 9.1 8.3 CES-detectors where the 1/f-profile fit failed.
This usually happens due to bad weather.

Noise out-
lier

9.3 40.8 12.3 55.4 CES-detectors with σ0 or α more than 5 sigma
away from that detector’s median, or fknee

more than 5 sigma above the median.
ADC resid-
uals

4.0 19.3 6.5 37.6 Cuts if evidence for a non-linear ADC response
is greater than 5 sigma. In practice, this is also
sensitive to bad weather.

Weather 8.2 6.4 9.9 8.5 Cuts if the rms of the 10 s-rms values of the
TOD is more than 5 sigma away from the sea-
son median, and similar for the 30 s-rms values.
Also cuts if the current PWV > 5 mm.

Fourier χ2 16.2 39.9 18.5 31.7 Validates the χ2 of frequency ranges by com-
puting the number of standard deviations

δ(χ2) ≈
∣

∣

∣

χ2−n√
2n

∣

∣

∣, where n = 2Nfreq is the num-

ber of degrees of freedom. Cuts if δ(χ2) >
4, δ(χ2

fscan±10mHz) > 10, δ(χ2
0Hz...0.2Hz) > 10,

δ(χ2
10Hz...) > 20 or δ(χ2

filtered) > 4.
TOD χ2 6.0 24.3 6.4 25.0 Cuts if a χ2 based on every 10th sample of the

filtered TOD is more than 4 sigma away from
the expectation value, or if the sample with the
highest absolute value in the filtered TOD is
higher than 7 times its rms.

Azimuth χ2 2.7 9.1 3.5 8.5 Cuts if azimuth structure in the TOD is detected
at more than 4 sigma.

Spike 5.4 21.1 7.8 24.3 Cuts if the 1 Hz and 1.2 Hz spikes associated
with the cryostat, and their first 6 harmonics are
detected at more than 20 sigma, or if any 0.1 Hz
interval between 0.2 Hz and 4.5 Hz (Q) or 9.5
Hz (W) has a χ2 excess of more than 7.5 sigma.

Sun 8.6 9.9 2.2 0.0 Rejects CES-detectors if any of their samples ex-
pressed in Sun-relative coordinates hit an area
with a season-average detection of the sun of
more than 5 sigma. See the text for details.

Conservative 18.3 17.0 16.5 15.1 Rejects all detectors for a given CES if more
than 40% of the detectors fail the weather, TOD,
Fourier, azimuth, spike or sun cuts.

Total 41.7 65.7 41.7 91.6 Less than the sum because of a large degree of
overlap.

Table 2.2: Summary of the QUIET cut criteria and the amount of data cut
for each criterion.
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For the indirect cuts, however, the goal is not detection of deviations
from the noise model, as the filtered regions are expected to be contami-
nated even for usable data. In this case there are two approaches to choos-
ing cut thresholds: Firstly, one can try to model the relevant contamina-
tions’ frequency dependence, and use this to establish how strong a detec-
tion in a filtered region is needed for it to significantly affect the unfiltered
region. And secondly, one can use trial and error until one finds cut thresh-
olds which cut as little as possible of the data while still passing the null
tests.12 Most of the indirect cuts in table 2.2 are based on the latter ap-
proach due to the difficulty of modelling the effect of weather, which is the
primary contaminant.

The Sun cut

As illustrated in figure 2.13, the telescope sidelobes are quite complex, ex-
hibiting both narrow, intense regions like the triple reflection sidelobe and
broader but weaker regions like the spillover sidelobe. Given some region
r in sun-relative coordinates13, we can determine the strength of detection
of the sidelobe in this region by building a map m and its covariance C in
this region, and calculating χ2 = mTC−1m.

The Sun cut is based on finding significantly contaminated regions like
these, and rejecting CES-detectors which hit them. However, the signifi-
cance of the detection depends on the choice of region: A small, sharp side-
lobe may not be detected if the region is too big, while a weak but extended
sidelobe will not be detected if the region is too small.

To get around this, we choose a hierarchical approach: For each HEALPix
Nside [26] from 256 to 1614, we calculate the χ2 for each pixel, and use this
to produce a map of the detection significance for each resolution. We then
consider a point to be contaminated by a Sun sidelobe if any of these maps
has a detection of 5 sigma or more for the corresponding pixel. We do this
independently for each module, as we observe the shape of the sidelobes
to depend on the position in the focal plane.

Contaminated regions are typically detected with a significant margin,
with chisquares up to hundreds of sigma away from the expectation value.
We can therefore afford to make some approximations in the calculation of
the χ2. By ignoring time-correlations in the TOD, and hence pixel-correlations

12Normally, being able to tweak cut parameters etc. manually would make the data anal-
ysis vulnerable to experimenter bias: If one is free to manually tweak the cut thresholds
and other parameters based on how the maps and power spectra look, then it is very easy
to end up tweaking them away from the true value towards the expected value. Null-tests
eliminate this bias by performing the test on a combination of the data that is independent
of the quantity to be measured.

13See 2.2 for the definition of this coordinate system
14These numbers are somewhat arbitrary, but correspond approximately to the observed

minimal and maximal size of the features in the sidelobes.
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in the map, we end up with a block-diagonal covariance matrix Cpp′αα′ ∝
δpp′ where p and p′ are pixel indices and α and α′ are Stokes indices. In

this case, the χ2 for a low-resolution pixel is simply the sum of the χ2 of its
constituent high-resolution pixels, meaning that only a single map-making
step is necessary per detector.

2.2 Pointing

The QUIET telescope can move with three degrees of freedom: Rotations
in azimuth (α) and elevation (ǫ), which are used to point the boresight at
a given point on the sky, and “deck rotations” (δ), which are rotations of
the focal plane around the boresight axis. These axes are connected to an
encoder, which provides readouts of their orientation as a part of the time-
ordered-data.

The translation from these coordinates to the galactic coordinates used
in the map-making step can be expressed as a rotation

�vg = Rgh�vh, (2.19)

where �vh = �e(−α, π
2 −ǫ) and �vg = �e(l, π

2 − b) are the unit pointing vectors
in horizontal and galactic coordinates respectively, in terms of

�e(φ,θ) ≡
⎡

⎣

sinθ cosφ

sinθ sinφ

cosθ

⎤

⎦ . (2.20)

Rgh is the rotation matrix from horizontal to galactic coordinates, which can
be decomposed into a rotation from horizontal to apparent equatorial coor-
dinates Rea followed by a rotation from apparent to astrometric equatorial
coordinates, and finally a rotation from equatorial to galactic coordinates
Rge such that Rgh = RgeReaRah, with

Rah = E(LST,
π

2
− bq, 0) (2.21)

Rge = E(αg, βg, γg). (2.22)

Here, E(φ,θ, ψ) is the rotation matrix corresponding to the zyz Euler angles
φ,θ, ψ:

E(φ,θ, ψ) =Rz(φ)Ry(θ)Rz(ψ), (2.23)

and LST = GMST + lq is the local sidereal time in radians, lq = −67.76166667◦

and bq = −23.02822222◦ are the telescope’s longitude and latitude re-
spectively, and αg = −57.068351386◦, βg = −62.871663896◦ and γg =
−192.859498564◦ are the J2000 Euler angles for the equatorial to galactic
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rotation. The apparent to astrometric rotation Rea is a nonlinear effect tak-
ing into account the precession, nutation and aberration etc. due to the
Earth’s orbit15.

Using equation (2.19), we can calculate the galactic pointing of each in-
dividual detector provided that we have a means of finding its horizon-
tal pointing. Each detector has a constant pointing �vb = �e(φ0d,θ0d) in
boresight-relative coordinates, so

�vh =Rhb�vb = E(−α,
π

2
−ǫ, δ)�vb, (2.24)

making the full rotation �vg = RgeReaRahRhb�vb. This expression is sufficient
for temperature detectors, but a crucial component is missing with regards
to measuring the linear polarization components Q and U.

Each of QUIET’s polarization sensitive detector measures a fixed linear
combination cos(2ψ0d)Q + sin(2ψ0dU) of the Stokes Q and U parameters
in boresight-relative coordinates, but the decomposition of linear polariza-
tion into Q and U is coordinate system dependent, and when projected on
to the sky in galactic coordinates, the detector measures a time-dependent
linear combination given by

σdt =

[

cos(2ψdt)
sin(2ψdt)

]

. (2.25)

Equation (2.24) does not prescribe how to calculate provide ψ from ψ0.
An elegant way of solving this problem is to do away with the vectors

altogether, and work exclusively with rotations. Starting from a detector-
relative coordinate system where�ez = [0, 0, 1] is the pointing and�ex is the
direction along which the detector is sensitive to linear polarization, this
system can be rotated into the boresight system by

Rbd =E(φ0d,θ0d, ψ0d). (2.26)

The full rotation from detector-relative to galactic coordinates is then

R =RgeReaRahRhbRbd. (2.27)

This rotation can be factorized into R = E(l, π
2 − b, ψ) via l = arctan2(R23, R13),

b = π
2 − arccos(R33), ψ = arctan2(R32,−R31), which provides both the

pointing and the detector orientation we need.

2.2.1 Verifying the pointing

The last two terms in equation (2.27), are hardware-dependent, and could
therefore be miscalibrated. In part to check for the presence of pointing

15This is provided by the NOVAS library.
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Object T P Remarks

Moon CD CD Hard to model
Venus CD N Few scans
Jupiter CD N
Tau A CD CD Raster scans
RCW 38 CD N
G-1 CD C Extended
G-2 CD S Extended

Table 2.3: The objects used for calibrating the telescope pointing. Columns
two and three indicate the strength of the signal in temperature and po-
larization respectively. The objects can be visible in single CES-detectors
(CD), in a single CES if all detectors are coadded (C), only if coadding over
an observing season (S), or not at all (N). The Moon is by far the strongest
source, but due to its extendedness, time-variability due to phase changes,
and its excessive brightness, it is not used for pointing.

errors, our observing strategy includes a set of calibration targets, with the
most important ones being Jupiter, RCW 38 and the galactic center patch
G-1 (see table 2.3 for a full list). These objects are strong enough to be
visible to at least some of the detectors in single constant-elevation scans,
and also have known shape, position and amplitude. This allows us to
test not only the accuracy of the pointing, but every parameter that enters
into the response matrix P. From section 4.2 we recall that, given a beam-
smoothed sky map m̃, the signal part of the time-ordered data is given by

sdt = ∑
t′hα

τdtt′ψdht′αm̃pdht′α . (4.6)

By inserting in place of m̃ a model of the source based on position, shape
and amplitude parameters, we can find the optimal parameter values by
minimizing the residual of the true TOD ddt and the predicted signal sdt:

χ2 =(d − s)T N−1(d − s). (2.28)

Figure 2.2.1 illustrates the result for this minimization for a scan of the
point-like source Jupiter and the extended source G-1, both using data from
the temperature detectors. The signal-to-noise is high enough to constrain
the model parameters with sufficient accuracy.

For each CES, the result of the fit is a set of apparent positions, shapes
and amplitudes per detector. If the pointing model, gain and beam are all
correct, these will all scatter tightly around the true values. Otherwise, the
apparent position, size and amplitude provide information about errors in
pointing, beam and gain respectively.
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Figure 2.15: Illustrations of the fitting of a source model to observations.
Top: time-ordered data for for a scan of Jupiter (left), the best fit model
(middle), and the residual (right). Middle: The same data naively projected
to pixel domain using a fast, simplified map-making procedure which ig-
nores the differential nature of the map-making equations These maps are
meant only for visually diagnosing the quality of the fit, and use a very fast,
simplified map-making procedure which ignores noise correlations and the
differential nature of the temperature detectors, resulting in spurious blue
shadows (see section 4.4.1). The fit itself happens in time-domain. The full
map-making equation does not produce these artifacts. Bottom: The data
vs. model for an extended source, the galactic center patch (G-1). The hor-
izontal and vertical axes of the maps measure the offset from the expected
position in degrees. The Jupiter model used here is a Gaussian, while the
galactic center models is an Nside = 1024 W-band map from the WMAP
satellite.
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Figure 2.16: The pointing residuals based on single-CES temperature mea-
surements of four objects: the two galactic patches, Jupiter and RCW
38. The horizontal and vertical axes show (αobs − αtrue) cos(ǫtrue) and
ǫobs − ǫtrue respectively, in units of arcminutes. The color scale encodes
the deck orientation in radians. The scatter is mostly confined within an
ellipse with a semi-major axis of ∼ 18′, most of which is due to a constant
collimation offset of 17.1′ ± 0.1′.
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Collimation A constant offset between the
true boresight and the fidu-
cial boresight.

Rcol = E(φc,θc,−φc)

Azimuth tilt An offset of the azimuth rota-
tion axis from vertical.

Ratilt = E(φa,θa,−φa)

Elevation tilt An offset of the elevation ro-
tation axis from east when the
telescope is pointing north.

Retilt = E(−α − π
2 ,θe,α + π

2 )

Flexure The effect of gravity pulling
the boresight lower due to
non-rigidity of the telescope.

Rflex = E(−α, k cosǫ,α)

Encoder offsets Errors in the calibration of
the encoder may lead to con-
stant offsets in the readouts
for each of the azimuth, ele-
vation and deck axes.

α → α − ∆α, ǫ → ǫ − ∆ǫ,
δ → δ − ∆δ

Acceleration Constant elevation scans in-
volve regular acceleration in
azimuth, which may slightly
change the effective direction
of the sag.

Table 2.4: The possible sources of pointing errors that were anticipated be-
fore observations started, and the rotations they correspond to.

Figure 2.16 shows the difference between apparent and true position for
Jupiter, RCW 38 and the galactic patches G-1 and G-2 based on observa-
tions with the temperature-specialized detectors. It is clear that the point-
ing model in equation (2.27) is far from sufficient. The effect of pointing
errors amounts to convolving the maps with an extra beam corresponding
to the pattern of residuals, which in this case is a non-Gaussian beam with
a diameter of up to 40’. This is several times larger than the W-band beam
FWHM of 11.7’, and also larger than the Q-band FWHM of 27.3, and it is
therefore critical to correct for the imperfections in the telescope pointing.

2.2.2 Mount model

From a hardware point of view, pointing errors are not unexpected, and
even before observations started, the error sources described in table 2.2.2
were anticipated. Of these, the most challenging to correct is the acceleration-
induced flexure. The overall effect of this would be extra smearing in the
horizontal direction, effectively producing a deck-angle-dependent ellip-
ticity of the beam, which we have not observed. The acceleration can there-
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Rotation Param. Value Error

Rbore = E(−α−[∆az +θef,az cos(−α +φef)],
π

2
−ǫ−[∆el +θef,el cos(−α +φef)],

δ−[∆dk +θef,dk cos(−α +φef)])

∆az −0.0357◦ 0.0041◦

∆el −0.0294◦ 0.0010◦

∆dk 0.1083◦ 0.0263◦

θef,az −0.0225◦ 0.0027◦

θef,el −0.0042◦ 0.0019◦

θef,az −0.2615◦ 0.0177◦

φef 11.3520◦ 2.8992◦

Rcol = E(φc,θc(1 +θec cos[δ +φec]),−φc)

θc 0.2948◦ 0.0015◦

φc 26.6708◦ 0.2302◦

θec 0.2126 0.0058
φec 253.8268◦ 1.5714◦

Ratilt = E(φa,θa,−φa)
θa −0.0070◦ 0.0013◦

φa −49.6202◦ 8.5147◦

Retilt = E(−α − π
2 ,θe,α + π

2 ) θe −0.0037◦ 0.0024◦

Table 2.5: The four rotations making up the mount model and their param-
eters. Except for Ratilt, all models are nonlinear. The elevation axis tilt and
the “encoder elevation flexure” are only weakly detected. Notably missing
from the model is the telescope flexure correction, which was found to be
consistent with zero. All the corrections are small, so the rotation matrices
commute to high accuracy.

fore be safely ignored.

However, of the remaining effects, none are capable of producing the
elliptical pointing residuals in figure 2.1616, nor can they explain the pe-
culiar elongation of the scatter in the angular direction in the plots or the
"U" shape observed in the residuals of Jupiter, the highest signal-to-noise
source used in the calibration17. We therefore adopted a phenomenological
mount model which allows for some unanticipated extra degrees of free-
dom in order to match the observed pointing scatter. The resulting model
has 14 parameters, and is summarized in table 2.5. Incorporating these ro-
tations into the full rotation from detector to sky results in

R =RgeReaRahRetiltRatiltRcolRboreRbd. (2.29)

A histogram of the pointing residuals from this model is shown in fig-
ure 2.17. The best-fit Gaussian to these residuals has major and minor

16The collimation error produces circular pointing residuals which can account for the
majority of the effect seen in the figure, but it cannot account for the elliptical shape.

17Observations of the Moon are also available, but due to hard-to-model temperature
variations across its disk we chose not to include these in the pointing calibration.



2.2. POINTING 53

-10 -8 -6 -4 -2 0 2 4 6 8 10

(obs. az - true az)cos(elevaltion)

-10

-8

-6

-4

-2

0

2

4

6

8

10

o
b
s
. 
e
l 
- 

tr
u
e
 e

l

0

5

10

15

20

25

30

35

40

45

Figure 2.17: A histogram of the pointing residuals from the mount
model described in table 2.5. The horizontal and vertical axes are
αcorr −αtrue) cos(ǫtrue) and ǫcorr − ǫtrue respectively, where αcorr,ǫcorr are
the mount model-corrected observations in horizontal coordinates, and
αtrue,ǫtrue are the known coordinates. A circle corresponding to a stan-
dard deviation of 1.91’ is overplotted (red) and compared with the W-band
beam rms (black). The scatter is moderately non-Gaussian, but is not large
enough to seriously affect the beam.

semi-axis of 2.15’ and 1.66’ respectively. We treat this difference as a sta-
tistical error, leading to an estimate for the scatter of 1.91′ ± 0.25′, which
corresponds to a FWHM of 4.49′ ± 0.59′. These add quadratically to the
effective beam size, increasing beams from 11.7’ to 12.5’ (W) and from 27.3
to 27.7’ (Q), both of which lead to an acceptable loss of sensitivity of 7% at
l = 500 and 27% at l = 1000.

2.2.3 Full-season validation of the mount model

As we have seen, the mount model performs adequately on the observa-
tions of the calibration targets. However, this need not be representative for
its performance on the CMB data if the calibration observations are system-
atically different from the CMB observations. This can come about through:

1. Different kinds of detectors: All the calibration observations that en-
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Figure 2.18: The distribution of the calibration observations in horizontal
coordinates compared to the CMB observations. Each CES is here indicated
with a colored disk, with one color per object. While Jupiter and Venus are
measured at systematically different azimuths than the CMB patches, the
RCW 38 and the patches G-1 and G-2 (here denoted Gc and Gb) remedy
this weakness. Together, the calibration sources cover most of the relevant
azimuth/elevation space.

tered into the pointing analysis were based on temperature detectors.

2. Different focal plane coverage: The temperature detectors are concen-
trated at one edge of the focal plane.

3. Different sampling of horizontal coordinates: If the optimal mount
model varies as a function of azimuth, elevation or deck, then the
best mount model for the calibration observations may not be the best
mount model for the part of the sky covered by the CMB observations
(but see figure 2.18 for why this is unlikely to be a problem).

We performed three tests to investigate these possibilities:

1. Comparison of an Nside = 2048 full-season co-added map of Jupiter18

based on the secondary total power data stream19 from the polariza-
tion detectors, with the expected size of a point source convolved

18This requires a coordinate system where Jupiter does not move, for example coordi-
nates centered on Jupiter. Such object-centered coordinates can be constructed by applying
an extra rotation Rog = E(0, bo ,−lo) after the transformation to galactic coordinates. Here
bo , lo are the galactic latitude and longitude of the object.

19This data stream has much higher 1/f noise than the main data stream, but is sensitive
enough to measure Jupiter’s temperature signal.
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with the beam and pointing scatter. The result can be seen in fig-
ure 2.19, where we find a FWHM of 13.1′. The fiducial beam for po-
larization horns is 11.7′, which is consistent with a scatter FWHM of
5.9′.

2. A similar test for the Nside = 2048, full-season co-added map of the
point source PMN J0538-4405 in patch CMB-2 (fig. 2.20), which finds
a best-fit FWHM of 14.2′ ± 1.0′. Comparing this to a temperature
detector beam of 13.1′ ± 0.2′, we find a scatter FWHM of 5.5′±2.5′

5.5′ .

3. We compared the full W-band season CMB temperature power spec-

trum and fit it to the model Cl = ACΛCDM
l e−l(l+1)σ2

FWHM(8 log 2)−1
to

determine the effective beam, and found a FWHM of 14.1′ ± 0.1′, re-
sulting in a scatter FWHM of 5.2′ ± 0.7′.

From these we can conclude that both the temperature and polarization
detectors see effective beams consistent with the pointing residuals both
when observing CMB patches and Jupiter. The scatter is small enough not
to be problematic, but it must be taken into account during power spectrum
estimation. We have adopted a value of 5.1′ for the rest of the analysis.

2.3 Gain and beam

The fitting procedure described in section 2.2.1 produces estimates of the
gain and beam as a by-product of the pointing fit, as illustrated in figure 2.3.
But there are several caveats one needs to bear in mind before these can be
applied in CMB analysis.

Firstly, these numbers were produced by fitting a Gaussian profile to
the signal, and while the true beam is approximately Gaussian, it is not
exactly so, having significantly heavier tails. This increases the beam’s area
on the sky compared to the value it would have for a Gaussian beam.

Secondly, the effective wavelength of the observations depends on the
spectral index of the target, which varies from 0 for the CMB to ∼ −3 for
synchrotron-dominated areas like the galaxy. With an average bandwidth
of 17% (Q), 11% (W), this can lead to differences in effective frequency of
up to 3%, which corresponds to changes of up to 6% in the area of the beam.

Thirdly, when using point sources for calibration, the observed flux de-
pends on the beam area Ωb as F ∝ Ω

−1
b . The gain is defined as the ratio of

the detector’s response s to the flux, g = s
F ∝ Ωb. Thus, changes in the area

of the beam propagate directly into changes in the gain when the latter is
based on point source observations. This is not a concern when observing
slowly varying, extended sources.

Putting these together, one can easily misestimate the gain by 5% by us-
ing the wrong beam area, and this would then translate into 10% errors in
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Figure 2.19: Top left: Co-added Nside = 2048 temperature map of Jupiter
from the QUIET W-band season in object-centered coordinates based on
the secondary total power data stream from the polarization detectors, in
arbitrary units. Top middle: Best fit Gaussian with a major FWHM of 13.2’
and a minor FWHM of 13.0’, and a bias in the position of ∆l = 0.42′, ∆b =
0.20′. Top right: Map of the residuals. Bottom row: Radial average of the
map, with a best-fit Gaussian with a FWHM of 13.0’, with linear (left) and
logarithmic (right) vertical axis.
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Figure 2.20: Left: A full-season co-added Nside = 2048 temperature map
of the source PWM J0538-4405 in patch CMB-2, based on the primary data
stream from the temperature detectors. Right: WMAP’s 7 year W-band
Nside = 1024 temperature map of the same source. The object can be seen at
consistent position in the two maps. Due to low signal to noise, the effective
beam is somewhat poorly determined, at 14.2′ ± 1.0′. Figure courtesy of H.
K. K. Eriksen.

the power spectrum. A detailed study of the beam shape was performed in
[27], which determined that the relevant beam area for temperature obser-
vations of Jupiter is 15.58 ± 0.63µSr, compared to 16.7µSr for the Gaussian
approximation. The gains from the Gaussian fit must therefore be scaled
by 0.93 before being used.

With this done, the Jupiter fit provides ∼ 500 gain measurements for
each temperature detector, which is sufficient to produce a reliable gain
model. The gains show evidence of module-dependent trends at the ∼ 5%
level, or slightly higher than the per-sample scatter of the measurements.
Due to the low amplitude of the trends, we chose to adopt a constant gain
model for the temperature gains, with the trends entering into the system-
atic error estimate.

2.3.1 Polarization gains

A thorough analysis of the polarization gains for the Q-band season was
performed in [28], where it was found that gain measurements based on
the Moon, Tau A, elevation dips and a wire-grid20 were correlated with the
measured temperature of the electronics T, resulting in a gain model of the

20An artificial polarized source consisting of a grid of thin wires mounted on a rotating
frame in front of the receiver.
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Figure 2.21: An example of gain and beam size estimates produced by fit-
ting a Gaussian profile to Jupiter observations (see section 2.2.1) for a sin-
gle detector. The top row shows the gain estimates as a function of time
(left) and a histogram of these (right). There is some evidence of time-
dependence of the gain. The bottom row shows the equivalent graphs for
the beam.
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form

gdt = αd(1 + βd[T(t) − T0]), (2.30)

with T mostly varying around T0 = 25.1K.
For the W-band season, the situation is quite different. Firstly, the source

of the gain-temperature correlation was eliminated, and secondly, the prob-
lem of gain nonlinearity is much more prominent here, making both Moon
observations and elevation dips unreliable as calibrators. The W-band gain
model must therefore be built based on a much reduced data set, consist-
ing of two Tau Ameasurements per day, half of which are for the central
horn, and of one day of wire-grid measurements at the end of the season,
providing relative gains for all the detectors at the same time.

This data set is too small to build a time-dependent gain model for each
detector; we therefore assume that the time-dependent part of the gain
is shared between detectors, and that these only differ by a constant fac-
tor. This picture is supported by figure 2.3.1, which shows that the gain is
clearly time-dependent, and that this time-dependence is common for all
four detectors for which a significant amount of data is available. The time
dependence has the form of a wave with a period of approximately one
year, and a slight downwards trend. This motivates the model

gd(t) = αd [1 + β(t − t0) + γ sin(ω(t − t0) + δ)] , (2.31)

where only the overall factorαd is diode dependent, and the shape parame-
ters β, γ,ω and δ are shared between detectors. Two fits of this model to the
data are shown in the figure: a maximum likelihood fit based on the cen-
tral horn only, and a fit based on all the detectors. These have χ2 = 679 for
492 data points and 8 parameters, and χ2 = 2381 for 1920 data points and
313 parameters respectively. In both cases, there is evidence for extra scat-
ter beyond that expected from the error bars. This is not surprising given
the simple and ad-hoc nature of the gain model and the small amount of
data available from which to construct it. However, the fit for the full data
set is comparatively worse compared to the central horn only case, and as
seen in the figure, the other detectors seem to prefer a different phase and
amplitude of the modulation than the one exhibited by the central horn.
This may indicate that the assumption of a common time dependence for
all detectors is inaccurate. Still, the model is a useful approximation to the
gain, and performs better than the hypothesis of constant gains or linearly
changing gains. We therefore adopt this as the polarization gain model,
and interpret the extra scatter in the residuals as a systematic error.
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Figure 2.22: Top: Polarization gain measurements from Tau Aand the wire-
grid for the four detectors in the central module. These are shown as red
points with error bars. A roughly seasonal modulation is clearly visible,
as well as a slight downwards trend, and the shape of these is the same
for the four detectors. The green curve shows the best fit harmonic+linear
model based on these four detectors while the blue curve shows the best
fit including data from the other 305 usable polarization detectors, which
have only on average 4.6 data points each. The blue curve is a somewhat
worse fit to the central module data. This may indicate that not all detectors
prefer the same time dependence as the central module. Bottom: Residuals
of the full model as a function of time.



Chapter 3

Null tests

As the calibration chapter shows, the analysis pipeline has a large number
of tunable parameters, including the pointing model, gain model, filter pa-
rameters and cuts. Both which parameters to use and their value will end
up affecting the final result, which thus in a sense inherits the tunability of
the parameters: The amplitude of the power spectrum will change depend-
ing on the gain model, and a poor pointing model will lead to less power
on small scales, to name two examples.

This introduces the danger of observer bias – the tendency to observe
what one excepts to observe because unexpected results will tend to get
more scrutiny than expected results. A famous example of this is related
by Richard Feynman [29]:

Millikan measured the charge on an electron by an experi-
ment with falling oil drops, and got an answer which we now
know not to be quite right. It’s a little bit off, because he had the
incorrect value for the viscosity of air. It’s interesting to look at
the history of measurements of the charge of the electron, after
Millikan. If you plot them as a function of time, you find that
one is a little bigger than Millikan’s, and the next one’s a little
bit bigger than that, and the next one’s a little bit bigger than
that, until finally they settle down to a number which is higher.

Why didn’t they discover that the new number was higher
right away? It’s a thing that scientists are ashamed of–this history–
because it’s apparent that people did things like this: When they
got a number that was too high above Millikan’s, they thought
something must be wrong–and they would look for and find a
reason why something might be wrong. When they got a num-
ber closer to Millikan’s value they didn’t look so hard. And so
they eliminated the numbers that were too far off.

61
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3.1 Signal-less validation

The standard way of avoiding observer bias is through blind analysis, which
is the practice of performing the experiment and data analysis without
peeking at the results underway. In CMB data analysis, the analysis pipeline
itself can be validated through end-to-end simulations, while most calibra-
tion can be tested through calibration-dedicated subsets of the data, such
as Jupiter observations in our case. But as we saw in sections 2.1.2 and
2.1.3, some calibration parameters deal with removing variable contami-
nants such as the atmosphere from the data, and these must be tested on
the main data set itself. It is, however, possible to perform this test without
exposing oneself to the results, and thus the results to bias. One simply
sub-divides the data set into two halves such that each should have the
same signal, and considers their difference:

∆d = d2 − d1 = (s + n2 + c2) − (s + n1 + c1) = ∆n + ∆c. (3.1)

Here d is the data, s is the signal, and n and c represent the noise and con-
taminants respectively. Since ∆d is independent of the signal, it can be
safely used without introducing bias, and one can ensure the quality of
one’s cuts and filters by demanding that ∆d have no ∆c contribution, i.e.
that it is consistent with noise. This technique is known as null-testing.

3.2 Map null-tests

The QUIET maximum likelihood pipeline uses two kinds of null-tests: map-
based and pseudo-Cl power spectrum based estimators. The former of
these is the most straight-forward: Given two sub-sets of the data, com-
pute the map m and covariance matrix M of each of these sets. Then the
difference map m2 − m1 should consist of Gaussian noise with covariance
M2 + M1. We can check this by computing the χ2:

χ2 = (m2 − m1)
T(M2 + M1)

−1(m2 − m1), (3.2)

which should be chisquare-distributed with Ndof = NpixNstokes degrees of
freedom, with a mean of Ndof and a standard deviation of

√
2Ndof. A sig-

nificant excess in this number indicates that there remains unfiltered junk
in the data1, while a significant shortfall only can be produced by an over-
estimate of the noise.

Null-tests based on maximum likelihood maps are expensive both time-
wise and memory-wise, because they impart the full expense of computing
unbiased maps and their covariance matrix. When considering that one
will want to perform more than just a single split of the data in order to look

1Or that the noise has been under-estimated.
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for different kinds of pollution, these null-tests can easily come to totally
dominate the computational expense of the data analysis. Or put another
way, it is only possible to perform a small number of null-tests this way.

3.3 Pseudo-Cl null-tests

An alternative, less expensive way of detecting deviations from null is by
replacing covariance matrices with simulations. Given, as before, maps m1

and m2, and a set of simulations based on the same split of the data, {ξ1i}
and {ξ2i}, we can compute null maps ∆m ≡ m2 − m1 and {∆ξi ≡ ξ2i −
ξ1i}. Given some function of the null maps f (∆m), we can compute the
deviation of the actual null map from the null simulations by computing
the probability to exceed the observed value of f :

PTE( f ) ≈ counti( f (∆ξi) > f (∆m))

Nsim
. (3.3)

The function f allows us to choose which parts of the maps we wish to
test. We are ultimately interested in computing the binned angular power
spectra2 CEE

b , CBB
b and CEB

b . It therefore makes sense to make f simply be
the pseudo-Cl approximation of power in these bins,

CAB
b (m) =

∑(l∈b)m l(l + 1)m̃A∗
lm m̃B

lm

∑(l∈b)m l(l + 1)
. (3.4)

This is more conveniently expressed as a χ value, i.e. the normalized devi-
ation from the mean of the simulations:

χAB
b (m) =

CAB
b (m) − 〈CAB

b 〉
√

var(CAB
b )

. (3.5)

Here uppercase Latin indices run over the polarization component, that is
E or B, and m̃A

lm is the pseudo-harmonic coefficients of the map m. The
choice f = χ not only allows us to individually test each of the angular
scales we are interested in, it also makes it easier to track down the cause
of a failed null-test by its l-dependence.

The two major causes of null-test failures are contaminations, which
result in extra power (high χ) and thus too low PTEs, and noise misestima-
tions which result in either too low or high PTEs. As a catch-all for both

these cases, it is useful to consider the χ2 AB
b , for which both types of devia-

tions end up as high values, and thus low PTEs.

2The binning is necessary due to the low sky coverage, which strongly correlates nearby
multipoles. For patches of ∼ 1% of the sky, a bin size of 50 is sufficient to decorrelate the
bins (see fig. 5.3).
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An advantage of this variant of null-tests is that by processing the data
and simulations the same way, any bias in the map-making procedure is
automatically taken into account. Hence, we do not need to use the full,
unbiased maximum likelihood map-making equation; much faster, but bi-
ased, binned maps3 can be used instead. Together with the lack of need
for the covariance matrix, this results in the pseudo-Cl null-tests being 1-2
orders of magnitude faster than the maximum likelihood null-tests, greatly
increasing the practical number of null-tests.

This does not come completely for free, though. Due to using different
map-making and power spectrum estimation than the full analysis would,
maximum likelihood and pseudo-Cl null-tests could in theory be sensitive
to different things, even when using the same data splits and power spec-
trum binning. To test for this possibility, we ran a small number of null-tests
through both the ML and PCL machinery. This confirmed that the two test-
ing methodologies were consistent, allowing us to choose PCL null-tests as
the primary tests for the Q- and W-band analysis.

3.4 Null test suite

Table 3.4 shows a summary of the W-band null test suite together with
the final probability to exceed (PTE) for each combination of test and CMB
patch4. The suite consists of 23 individual data splits, each of which results
in one test per multipole bin per EB-combination for each patch, for a total
of NtestNbinNspec = 23 · 20 · 3 = 1380 tests per patch, or 5520 tests in total.

Based on this, we compute 3 summary statistics for each patch: PTE(max[χ2 AB
b ]),

which exposes the worst individual null-failure; PTE(∑ χ2 AB
b ), which ex-

poses persistent deviations from expected power independent of the direc-
tion; and PTE(∑ χAB

b ), which exposes systematic excess or lack in power.
Our requirement for declaring the null-suite as passed is that these 12 sum-
mary statistics should have no significant excess of very low < 0.05 or very
high > 0.95 values. The Maximum Likelihood pipeline W-band analysis
reached this milestone April 2012, 16 months after the data taking finished,
making the null-tests the most time-consuming and comprehensive part of
the analysis effort. At this point, we finally allowed ourselves to “open
the box” and calculate the non-null maps and power spectra, which are
described in the next chapters.

3See section 4.4.1.
4The Q-band null test suite is very similar, and is therefore not included here.
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Split Sensitive to 1 2 3 4

Time (MJD) Gain drifts 0.24 0.01 0.89 0.77
Focal plane radius Ground, beam ellipticity 0.15 0.51 0.21 0.61
ADC nonlinearity Uncorrected nonlinearity, weather 0.68 0.95 0.54 0.02
Power at fscan Ground, weather 0.25 0.35 0.53 0.76
Power at 10 Hz Electronic problems 0.41 0.56 0.53 0.48
Elevation Ground, mount 0.58 0.08 0.39 0.55
Deck angle Ground, mount 0.54 0.12 0.27 0.77
Azimuth Ground, mount 0.76 0.95 0.66 0.11
Tencoder Weather, electronics 0.08 0.09 0.24 0.06
∆Tencoder Weather, electronics 0.13 0.54 0.09 0.51
Tcryostat Weather, electronics 0.17 0.86 0.31 0.26
∆Tcryostat Weather, electronics 0.86 0.51 0.07 0.68
Gain Gain model 0.55 0.81 0.01 0.34
Water vapour (PWV) Weather 0.52 0.30 0.79 0.94
Wind Pointing 0.33 0.02 0.57 0.94
Tambient Weather 0.62 0.16 0.42 0.92
fknee Weather, noise model 0.21 0.81 0.49 0.03
σ0 Weather, noise model 0.25 0.41 0.06 0.52
Module mean ν Strong foregrounds 0.58 0.27 0.58 0.87
Assembly board Electronic problems 0.55 0.38 0.60 0.25
TOD rms variability Weather 0.93 0.18 0.47 0.17
Q vs. U detectors 0.73 0.36 0.99 0.29
I → QU leakage Leakage misestimation 0.16 0.11 0.91 0.43

Total χ2 Deviation from expected power 0.31 0.08 0.31 0.43
Max χ2 Individual null-failures 0.63 0.02 0.72 0.80
Mean χ shift Power excess 0.20 0.27 0.21 0.97

Table 3.1: Summary of the pseudo-Cl null-tests used in the W-band anal-
ysis. The last four columns correspond to each of the 4 CMB patches in
the polarization analysis, and specify the probability to exceed (PTE) the
observed value in the test, based on 100 simulations. The tests are divided
into two types: individual tests and summary tests, corresponding to the
top and bottom sections of the table. The main categories of individual
tests are splits based on pointing, features in the TOD, temperature of elec-
tronics, detector type and weather conditions. Before opening the box, we
demanded that there should be no significant excess of very low (< 0.05)
or very high (> 0.95) PTEs in the summary null-tests.
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Chapter 4

Map making

4.1 Measuring the sky with a scanning telescope

Most people’s idea of how a telescope takes images of the sky is that it
works much like a normal camera: There is an array of detectors (pixels)
behind an optical system for focusing the light, and a picture is taken by
pointing the instrument at an object and exposing the detectors for a short
while. This is a reasonable sketch of how a typical optical telescope works,
but when going to lower frequencies, this mode of operation becomes im-
practical: The practical size of a detector scales in proportion to the wave-
length, greatly reducing the number that can be fit in the focal plane. For
CMB experiments, the typical number of detectors is from tens to a few
thousands, compared to a few millions to hundreds of millions for optical
telescopes. Additionally, the signal-to-noise ratio per unit of time is often
much lower in radio experiments, and there may not be enough signal to
construct a useful image in one continuous exposure before the target ro-
tates below the horizon.

To get around these limitations, telescopes at low frequencies scan the
sky, using their small number of detectors as a paint brush and the scanning
motion as paint strokes to paint a larger image. The direct output of such a
telescope is not a single value per pixel, but instead a time series of values
for each detector, called the time-ordered data (TOD). Based on this TOD
and information about the telescope’s scanning pattern, it is possible to
reconstruct an image of the sky in a process called “map making”. When
low S/N data are involved, it is critical that the resulting map has well-
understood statistical properties, which in turn means that one needs to
understand the properties of the TOD. Hence, to produce an image with
a scanning telescope, one must first build up an accurate model for how
the telescope transforms the signal from sky to TOD, and then invert this
model to reconstruct the sky from the TOD.

67
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4.2 From sky to time-ordered data

Given a sky m, the most general possible response function give us the
noise-free time-ordered data s(d, t) for the detector labeled d and the time t
as

s(d, t) = P(d, t, m(t)). (4.1)

It is not practical to work with infinite-resolution skies or time-streams with
arbitrary response functions, so in practice one has to make a few simplify-
ing assumptions:

Discrete TOD The telescope provides a set of samples instead of a contin-
uous time-stream.

Discrete sky We model the sky as consisting of a set of discrete pixels. This
is of course not true, but it is a good approximation as long as the
pixels are smaller than our angular resolution.

Constant sky We assume that the sky does not change for the duration of
our data set. This implies that we are using sky-fixed coordinates
such as galactic or equatorial coordinates.

Linear response The TOD is a linear function of the sky signal. Nonlinear
responses are difficult to work with, so having a linear response is a
design requirement for most detectors.

Together, these assumptions allow us to write equation (4.1) as a matrix
multiplication:

sdt =Pdtiαmiα . (4.2)

Here i is the pixel index while α is the signal component within the pixel1.
Our job, then, is to expand Pdtiα into something concrete enough to be im-
plementable. A very general such expansion is

sdt = ∑
t′i jkαβγ

gdtτdtt′σdt′αδi0Bdt′i jαβRdt′ jkβγmkγ . (4.3)

Here the indices t and t′ are time steps, d is the detector, i, j, k and 0 are
pixels, with 0 indicating zenith, and Greek indices are Stokes components.
So the sky m is rotated into detector-relative coordinates with the pointing
matrix R and smoothed with the beam matrix B, after which the Stokes

1This could be frequency, Stokes parameter or particle type, etc. depending on what the
detectors are sensitive to. In the following, I will assume that it is the Stokes parameters
only, since it is common for detectors to be sensitive to linear combinations of these (as is
QUIET), but not so for different frequency bands. An experiment with multiple frequencies
can therefore analyse these frequencies independently.
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parameters at zenith are read off and linearly combined to a single value
using the detector Stokes sensitivity σ . This value is then convolved with
the detector time response function τ , and finally scaled with the gain g to
form the signal s at each time step for each detector.

This daunting expression can be dramatically simplified by adding a
few reasonable assumptions. The most important of these comes from as-
suming a constant, detector-independent, circular beam2. A circular B will
commute with R, and if B additionally is constant, we can apply it to the
map once and for all, avoiding the need to convolve the map with the beam
at every time step,

sdt = ∑
t′i jkαβγ

gdtτdtt′σdt′αδi0Rdt′i jαβB jkβγmkγ

= ∑
t′ jαβ

τtt′gdt′σdt′αRdt′0 jαβm̃ jβ. (4.4)

Here m̃ = Bm is the beam-smoothed map, and I have used the approxima-
tion that the g and τ commute3.

Each detector points towards a single point on the sky at a given time-
step, so to pixel accuracy R will only have a nonzero contribution from a
single pixel pdt′ of the beam-smoothed sky. The spatial part of the rotation
therefore becomes a delta function, and we are left with the Stokes param-
eter part of the rotation, ρ. Hence, Rdt′0 jαβ = δ jpdt′ρdt′αβ, and

sdt = ∑
t′ jαβ

τdtt′gdt′σdt′αδ jpdt′ρdt′αβm̃ jβ

= ∑
t′αβ

τdtt′gdt′σdt′αρdt′αβm̃pdt′β. (4.5)

This model for the response is much more efficient than equation (4.3) due
to the elimination of full-sky convolutions and rotations. However, this
simplification came at the cost of assuming a single circular beam for each
detector, which leaves out a common class of detectors, namely differential
detectors. These measure signal differences between two spots on the sky,
and have a beam consisting of two sub-beams, each with the same circular
shape, but with opposite signs in their contribution. But since each of these
beams are circular, we can still use the formula above, as long as we sum
over the contributions from each sub-beam h, weighted by its amplitude

2These are usually good approximations – most experiments are designed to have as
round beams as possible, and detectors in the same focal plane will have very similar beams
provided that they are sensitive to the same frequencies, which I assume here.

3The gain is ideally constant, but detectors are imperfect, and the gain may in practice
drift gradually. However, it will never be allowed to drift at anywhere near the time scale
of the detector time response. Hence, gdtτdtt′ ≈ τdtt′ gdt′ .
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adh.

sdt = ∑
t′hαβ

τdtt′adhgdt′σdt′αρdt′αβm̃pdt′β

= ∑
t′hα

τdtt′ψdht′αm̃pdht′α . (4.6)

Here I have introduced the rotated sensitivity ψdht′α = adhgdt′σdt′βρdt′βα.
The biggest remaining expense in equation (4.6) is the detector time

convolution τ . The importance of this factor is strongly dependent on the
type of detector used. For amplifier-based radiometers it is practically a
delta function, and can be ignored, while for bolometers it takes the form

τdtt′ = e
− t′−t

zd for t′ > t and 0 otherwise, with zd normally being 10 ms or
smaller. The effect of τ is similar to the effect of sampling at discrete time
steps – it acts as a low-pass filter that limits sensitivity at high frequencies
and hence, via the scanning pattern, the smallest scales on the sky. The
scanning pattern is typically chosen with this in mind, so that τ has negli-
gible effect on the scales of interest for the experiment, and it is therefore
usually safe to ignore this factor even for bolometers.

Equation (4.6) corresponds to an explicit form of the response matrix of

Pdtiα = ∑
t′h

τdtt′ψdht′αδpdhti. (4.7)

This is a sparse matrix, with the sparsity contained in the Kronecker delta,
and this sparsity ensures that multiplications with P are not prohibitively
expensive.

4.3 The noise

So far we have only looked at the signal part of the time-ordered data,
which are typically a minor constituent of the TOD, with the majority being
made up by noise,

ddt =sdt + ndt. (4.8)

As discussed in section 2.1, the noise is Gaussian and approximately sta-
tionary within one CES, with covariance given by equation (2.2), which is
repeated here for convenience:

Ndd′ f f ′ =
√

φd( f )φd′( f )Cdd′ f δ f f ′ . (2.2)

A note on notation here: We will need 3 different representations of co-
variance matrices: the time domain version (Ndd′tt′), the frequency domain
version (Ndd′ f f ′), and the power spectrum. The latter is simply the diagonal
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of the frequency domain representation (Ndd′( f ) = Ndd′ f f )
4 . If the detector

indices are left out, as in Ntt′ , the result is an ndet × ndet sub-matrix instead
of a single element.

Since equation (2.2) is block-diagonal, we can find its inverse simply
by inverting each ndet × ndet sub-block. The block-diagonality also makes
operating with N on dense vectors and matrices very efficient in Fourier
space, which will come in handy. However, the advantage of working
in Fourier space is lost for vectors and matrices which are sparse in time-
domain. For these, we will need the time-domain version of N and N−1.

The discrete Fourier transform Ft f = 1√
ns

e−
2π it f

ns , F−1
t f = 1√

ns
e

2π it f
ns of a diag-

onal Fourier-domain matrix A f f ′ = a f δ f f ′ is

Att′ = ∑
f f ′

F−1
t f A f f ′F f ′t′ =

1√
ns

∑
f

F−1
(t−t′) f

a f , (4.9)

with n being the number of time samples, so

N±1
dd′tt′ =

1√
ns

∑
f

F−1
(t−t′) f

N±1
dd′ f f . (4.10)

This expression only depends on the time difference ∆t = t − t′, so we only
need to store the time correlation function5 N±1

dd′ (∆t) = N±1
dd′0∆t.

4.4 From time-ordered data to sky

With our signal and noise model in hand, we are ready to reconstruct a
map of the sky. The time-ordered data are given by

d =Pm + n, (4.11)

resulting in cov(d) ≡ 〈ddT〉 = 〈nnT〉 ≡ N. The likelihood of a sky m given
the data stream is

L(m) =
e−

1
2 (d−Pm)T N−1(d−Pm)

√

|2πN|
, (4.12)

which gives a maximum likelihood estimator of

dL(m̂)

dm̂
=0 ⇒ m̂ = (PT N−1P)−1PT N−1d. (4.13)

4Using the same symbol in all these cases is convenient because they all refer to the same
underlying quantity. But if we actually insert numbers for the indices, the notation becomes
ambiguous. In the rare cases where this happens, I will specify the domain explicitly.

5I here use the convention from signal processing, where the correlation function is not
normalized by dividing by the variance. This quantity could therefore be more accurately
called the time covariance function.
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This is an unbiased estimator

〈m̂〉 =〈(PT N−1P)−1PT N−1(Pm + n)〉 = m, (4.14)

with covariance

M =〈(PT N−1P)−1PT N−1ddT N−1P(PT N−1P)−1〉
=(PT N−1P)−1PT N−1NN−1P(PT N−1P)−1

=(PT N−1P)−1. (4.15)

For implementation purposes it will be convenient to introduce the quan-
tity

r =PT N−1d, (4.16)

such that M−1m̂ = r. Working with r and M−1 has the advantage that
these are linear in the data - if one has several series of time-ordered data,
the contributions from each of these can be directly added into the total r
and M−1. Efficiency-wise, it is convenient that the covariance matrix and
the matrix used when solving for the map turn out to be the same, as these
matrices can have formidable sizes.

In practical applications, data will be contaminated by various poorly
modeled effects, such as signal from the atmosphere, ground pickup, etc.,
and this makes it necessary to filter the data. It is easy to see that replacing
N−1 by a general matrix K in equation (4.13) still yields an unbiased esti-
mator, and we can use this to implement filtering by choosing K = FN−1

m̂ f = (PT FN−1P)−1PT FN−1d. (4.17)

This filtered estimator has covariance

M f =〈(PT FN−1P)−1PT FN−1ddT N−1FP(PT FN−1P)−1〉
=(PT FN−1P)−1PT FN−1FP(PT FN−1P)−1. (4.18)

Here the filter F has been assumed to be symmetric. Implementation-wise,
m̂ f and M f must be built up in terms of

r f =PT FN−1d (4.19)

A−1
f =PT FN−1P (4.20)

A−1
f f =PT FN−1FP, (4.21)

such that

A f m̂ f =r f (4.22)

M f =A f A−1
f f A f . (4.23)
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We see that introducing the filter means that we now have to deal with
three matrices instead of one: A f , A f f and the covariance matrix itself,
making m̂ f a more computationally expensive estimator compared to m̂.

Under certain circumstances it is possible to avoid this expense: If FN−1F =
FN−1, equation (4.18) will simplify to

M f =(PT FN−1P)−1. (4.24)

A common case is for both N and F to be diagonal in Fourier space, in
which case the condition simplifies to F2 = F, implying a hard filter with
abrupt jumps between the values 0 and 1. As we shall see, hard filters like
this correspond to very long correlations in the time domain, limiting the
usefulness of this approach.

An informative way of rewriting the filter which we shall need later is

FN−1 =(N + G)−1, (4.25)

so that

m̂ f =(PT(N + G)−1P)−1PT(N + G)−1d. (4.26)

The observant reader will notice that this form of the filtered estimator is
equivalent to an unfiltered map estimator based on the data model d =
Pm + n + g, where g is an extra Gaussian component with covariance G.
That is, an alternative way of implementing filtering is by assuming the
presence of extra noise. This leads to the same map estimator, but a sim-
pler form for the covariance: M = (PT(N + G)−1P)−1. However, for this
to be valid the extra noise must actually be present in the data, otherwise the
covariance of the final map will be overestimated6. If signal contaminants
like bad weather and ground pickup could be accurately modeled as Gaus-
sians, this would be an optimal and efficient way of handling them. This is
unlikely to be the case in practice.

4.4.1 Binned maps

It is sometimes convenient to be able to make approximate maps of the sky
without paying the full computational cost of equation (4.17), for example
for diagnostic output of subsets of data going into the full map-making
procedure. A simple way of doing this is to ignore the non-diagonal ele-
ments of PT FN−1P, replacing it with its diagonal D. This leads to the fast
but biased map estimator

m̂b = D−1PT FN−1d. (4.27)

6Implementing filtering by assuming an extra noise component when it is not actually
present is equivalent to assuming that FN−1 = FN−1F when using a soft filter.
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In the absence of filtering and differential detectors, this is equivalent to
equation (4.13), but filtering inevitably biases the resulting map, producing
characteristic stripes and shadows around strong sources.

4.5 Filters

The job of the filters is to remove parts of the data that cannot be incorpo-
rated into the noise model, either because it is not Gaussian, not stationary,
or too poorly known. Common effects that need to be filtered out include
atmospheric disturbances, sidelobe pickup from the ground and the sun,
glitches in the electronics, etc. (see section 2.1.2). A good filter should re-
move as much as possible of these effects while removing as little as pos-
sible of the actual signal7 and this requires a rough model for where the
effects appear, such as a frequency range, certain time intervals, etc., so
that these regions can be specifically targeted.

Since we assume N to be diagonal in Fourier space, filters with the same
property can be much more efficiently implemented than other, more gen-
eral types. We will therefore decompose the full filter into a frequency filter
and a general filter.

4.5.1 Frequency filters

A frequency filter can be represented as a power spectrum Fdd′( f ) with a
value close to zero in contaminated regions and close to one outside. We
have already seen that the noise itself can be represented as a power spec-
trum Ndd′( f ). These are simply the diagonals of the Fourier space covari-
ance matrices, so (leaving out the detector indices in the following)

(FN−1)tt′ = ∑
f

F−1
(t−t′) f

F( f )N( f )−1

(FN−1F)tt′ = ∑
f

F−1
(t−t′) f

F( f )2N( f )−1. (4.28)

So effectively frequency filters simply act as an update to the noise power
spectrum, producing the two new effective spectra N−1

F ≡ FN−1 and N−1
FF ≡

FN−1F.
For example, to completely suppress every frequency below the fre-

quency α, one would use F( f < α) = 0 and F( f ≥ α) = 1. See figure 4.1
for an illustration of this.

While one is theoretically free to choose any F( f ), correlation length
considerations prevent us from choosing a shape with too sharp transitions.

7There is a trade-off between statistical and systematic error here. More aggressive fil-
tering will decrease systematic systematic effects but increase error bars by removing more
signal.
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Figure 4.1: Frequency filters are straightforwardly implemented as mode-
wise multiplication with the inverse noise power spectrum. The x and y
axes are frequency and inverse power in arbitrary units, respectively.

This is illustrated in figure 4.5.1. We have found a 1/f-type filter F( f ) =
(

1 +
[

f
fcut

]αcut
)−1

to provide a reasonable trade-off between sharpness in

the two domains.

4.5.2 General filters

When the filters are not diagonal in frequency domain, we cannot simply
merge F with N, and must find another way of implementing the filter.
The filtered estimator is built up from three sub-expressions given in equa-
tions (4.19,4.20,4.21), and using equation (4.25) we can express these as

r f =PT(NF + G)−1d (4.29)

A−1
f =PT(NF + G)−1P (4.30)

A−1
f f =PT(NFF + G)−2NFFP. (4.31)

This form is amenable to manipulation with the Woodbury matrix identity
[30, 31]

(A + UCV)−1 =A−1 − A−1U(C−1 + VA−1U)−1VA−1. (4.32)

The identity is effectively a prescription for how to find (A + UCV)−1 if
you already know A−1 without needing to invert A−1. This comes at the cost
of needing to invert the matrix C−1 + VA−1U, so for this expansion to have
any point, C must be a much smaller matrix than A,

How can this be used in practice? Consider the case where we have
a small number of basis vectors {�Ui} which span our model for the con-
tamination g. This could, for example, be a set of Legendre polynomials in
terms of the azimuth α: Uti = Pi(2 αt−αmin

αmax−αmin
− 1), or perhaps a set of time

steps τi which contain a strong glitch: Uti = δτit. We can then build up g as
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Figure 4.2: The shape of the frequency filter greatly affects the correlation
length, which drives the main computational cost of building the pixel co-
variance matrix. Shown in the first panel are three different inverse power
spectra, corresponding to no filter, a hard filter and a soft filter respectively.
In the second panel, the inverse time correlation functions of the same three
cases are shown. For the hard filter, the correlation never falls below 1% of
the maximal value in this example, meaning that the correlation length is
greater than the length of the time-ordered data.

gt = Utiγi, with covariance 〈γγT〉 ≡ C, giving G ≡ 〈ggT〉 = UCUT, which
is of the form we need for the Woodbury identity.

Note that we are not assuming that the covariance G is a good model
for the contamination here – if we had a good model of it we could treat
it as a noise component instead8. Instead, what is being assumed here is
that G is much larger than the variance of the spurious signal, so that to a
good approximation the latter no longer matters. A simplifying assump-
tion that guarantees this is to let the nonzero parts of G → ∞ by setting
C−1 = 0. In addition to removing C from equation (4.32), it also results in
(NFF + G)−2NFF = (NFF + G)−1, greatly simplifying the application of the
Woodbury identity to equation (4.31).

Applying this to equations (4.29,4.30,4.31), we get

r f = PT N−1
F d − PT N−1

F U(UT N−1
F U)−1UT N−1

F d (4.33)

A−1
f = PT N−1

F P − PT N−1
F U(UT N−1

F U)−1UT N−1
F P (4.34)

A−1
f f = PT N−1

FF P − PT N−1
FF U(UT N−1

FF U)−1UT N−1
FF P. (4.35)

The first terms here are analogous to those from the filterless estimator
(4.15,4.16), while the second term corresponds to a post-hoc update. Defin-
ing rFu ≡ PT N−1U, rFFu ≡ PT N−1U and N−1

Fu ≡ UT N−1
F U, N−1

FFu ≡ UT N−1
FF U,

8See section 4.4.
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this simplifies somewhat to

r f = PT N−1
F d − rFuNFuUT N−1

F d (4.36)

A−1
f = PT N−1

F P − rFuNFurT
Fu (4.37)

A−1
f f = PT N−1

FF P − rFFuNFFurT
FFu. (4.38)

This update is dominated by the cost of calculating the two ruNurT
u terms,

which will be cheap as long as the number of basis functions is kept low,
and has the additional advantage that general filters can be added to an
existing program simply by adding a small section for updating r f , A f and
A f f .

4.6 Practical implementation of the map-making equa-

tions

We saw in the previous section that the filtered map estimator m̂ f in rough
steps can be described as

1. Apply the Fourier filters to the noise covariance

2. Build the components of the map-making equations by projecting
into pixel space with P

3. Apply the general filters to these

4. Solve for the map and its covariance

Most of these operations involve straightforward matrix operations, but
operations involving the response matrix P need to be tailored to take into
account its sparsity in order to avoid prohibitive computational cost. P
appears in two types of products: PTDV, where D is a Fourier-diagonal
matrix and V is a dense matrix; and the heavier operation PTDP.

4.6.1 Implementing PTDV

By using equation (4.7), we see that

W ≡PTDV ⇒
Wiα I = ∑

dt

Pdtpα[DV]dtI

= ∑
dth

ψdhtαδipdht
[τDV]dtI . (4.39)
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The detector time response function is stationary, so τ is well-approximated
as diagonal in frequency space, as is D. The product in the brackets can
therefore be efficiently calculated with fast Fourier transforms:

[τDV]dtI = ∑
f t′d′

F−1
t f (τdf f Ddd′ f fF f t′Vd′t′ I). (4.40)

This means that support for detector time response functions comes almost
for free.

To be useful equation (4.39) needs to be reorganized to exploit the spar-
sity encoded in the Kronecker delta. This results in the following algorithm

W = 0
for all d, t,α, I, h do

Wpdhtα I += ψdhtα[τDV]dtI

end for

4.6.2 Implementing PTDP

Starting again from equation (4.7), we find

W ≡PTDP

Wi jαβ = ∑
dd′tt′

PdtiαDdd′tt′Pd′t′ jβ

= ∑
dd′tt′hh′

ψdhtαδipdht
[τTDτ ]dd′tt′δ jpd′h′ t′ψd′h′t′β. (4.41)

As before, the product in the brackets can be computed efficiently in Fourier
space:

[τTDτ ]dd′tt′ = ∑
f

F−1
(t−t′) f

τdf f Ddd′ f f τd′ f f . (4.42)

Using the sparsity in equation (4.41) and the fact that equation (4.42) only
depends on ∆t = t − t′, we arrive at

W = 0
for all d, d′, t, h, h′,α, β do

for −tcorr ≤ ∆t ≤ tcorr do

Wpdht pd′h′(t+∆t)αβ += ψdhtα[τTDτ ]dd′∆t0
ψd′h′(t+∆t)β

end for

end for

This algorithm is often the most expensive part of map-making, and
since its computational time is proportional to the time correlation length
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tcorr, the time difference where τTDτ becomes negligible, this puts con-
straints on the form of D and τ (refer to figure 4.5.1 for an illustration of
this).

4.6.3 Solving the map-making equation

Equation (4.22) for solving for the final map and its covariance matrix con-
sist of a straightforward dense matrix operation9, and can be handled by
a linear algebra package like LAPACK10 [35]. In principle the matrices
involved are all symmetric and positive definite, and could be efficiently
solved by using Cholesky factorization. Sadly, this is sabotaged by the ef-
fect of filtering, which tends to make the covariance matrix poorly con-
ditioned or singular. For example, a high-pass filter which assigns zero
weight to low-frequency modes will make the average of the map com-
pletely indeterminate. The map covariance matrix will therefore have an
infinite eigenmode corresponding to the average of the map. Similar ef-
fects apply to a lesser degree to other modes that are damped by filters11

One must therefore use slower, more robust methods such as eigenvalue
decomposition.

4.6.4 Implementation in the QUIET pipeline

Table 4.1 summarizes the steps for implementing the filtered map estima-
tor m̂ f . These steps are implemented in two components of the QUIET
maximum likelihood pipeline.

9If one is only interested in the map itself, and not its covariance, these equations can
be solved without actually needing to store or invert large matrices by using conjugate
gradients [32]. But one ignores the covariance matrix at ones peril. As I will describe in
the section on postprocessing, a map that is both filtered and unbiased will contain large,
correlated noise modes which will be given undue weight if one does not have covariance
information.

10One of the weaknesses of maximum likelihood map making is the expense of storing
and operating on the matrices involved, which will easily grow larger than what is practical
to handle with LAPACK. This can be mitigated by using parallel solvers such as those in
ScaLAPACK [33] and Elemental [34].

11Cross-coupling by scanning the same part of the sky in several different directions will
reduce the degeneracy for other modes.
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N−1
F = FN−1 eq. (4.28)

N−1
FF = FN−1F

r = PT N−1
F d alg. (4.6.1)

A−1
f = PT N−1

F P alg. (4.6.2)

A−1
f f = PT N−1

FF P

rFu = PT N−1
F U alg. (4.6.1)

rFFu = PT N−1
FF U

N−1
Fu = UT N−1

F U

N−1
FFu = UT N−1

FF U

r –= rFuNFuUT N−1
F d

A−1
f –= rFuNFurT

Fu

A−1
f f –= rFFuNFFurT

FFu

m̂ f = A f r eq. (4.22)

M f = A f A−1
f f A f eq. (4.24)

Table 4.1: Summary of the steps needed for calculating the filtered estima-
tor m̂ f .

Building r, A−1
f and A−1

f f is done in the program tod2map, which con-

sists of about 4000 lines12 of Fortran 90 code, which processes constant ele-
vation scans in parallel using MPI, and co-adds these into the final r, A−1

f

and A−1
f f . The computation time for this step scales linearly with the total

length of the time-ordered data involved, and required ∼ 104 CPU hours
to process all the CMB patches in the Q-band analysis, and ∼ 5 · 104 CPU
hours for the W-band analysis due to the larger amount of data involved.

In addition to the use of parallelization, tod2map received a large speedup
through the use of data decimation. The algorithmic complexity of this part
of the map-making algorithm is O(NsampNcorrNd fd), where Nsamp is the to-
tal number of samples per detector, Ncorr is the noise correlation length,
measured in samples, Nd is the total number of detectors, and fd is the av-
erage fraction of these that each detector is correlated with. Both Nsamp

and Ncorr scale with the sampling rate of the time-ordered-data, and conse-
quently one can achieve a quadratic speedup simply by reducing the sam-
pling rate.

Given a typical sky scanning speed v and a Gaussian beam with a stan-

dard deviation of σ = σFWHM(8 log(2))−
1
2 , the time-ordered data will be

12This number does not include supporting libraries that are shared with other parts of
the pipeline.
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smoothed by

bTOD( f ) =e
− 1

2
f 2σ2

v2 , (4.43)

which has a typical width of σtod = v
σ

. For QUIET, v ∼ 1◦/s13, giving
σtod = 5.2Hz in the Q-band and 12 Hz in the W-band. The sampling rate
must be at least twice as high as the highest frequency one wishes to repre-
sent, so these numbers correspond to sampling rates of 10.4 Hz and 24 Hz
respectively, which are both significantly lower than QUIET’s native sam-
pling rate of 50 Hz. This led us to downsample the TOD to 25 Hz in the
W-band analysis, resulting in a factor 4 speedup.

Memory-wise, the cost is driven by the need to store the two A-matrices,
though their symmetry permits us to only store half of each. To avoid artifi-
cial loss of resolution due to pixelization, the pixels should be significantly
smaller than the beam, which in the Q- and W-bands have a FWHM of 27’
and 12’ respectively14. We therefore require a HEALPix Nside of at least 256
and 512 corresponding to a pixel diameter of 13.7’ and 6.9’ for the two fre-
quency bands. For a typical QUIET CMB patch, this results in ∼ 104 pixels
in the Q-band and ∼ 4 · 104 in the W-band, which coupled with two po-
larization components per pixel in the case of a polarization only analysis
results in ∼ 2 · 104 and ∼ 8 · 104 degrees of freedom in the map, and the
square of these numbers in the matrices. Using single-precision (4 bytes
floating point numbers) for the matrices, this amounts to about 1.5 GB (25
GB) of memory to store one full matrix for the Q-band (W-band) analysis.

4.7 Biaslessness and deconvolution

The estimator m̂ f described in the previous sections was constructed to be
unbiased even in the presence of filters. The immediate effect of the filters is
to scale parts of the signal down (FN−1d), and heavily filtered signal com-
ponents are effectively eliminated by this. In order to recover an unbiased
map, the filters must be subsequently unapplied. In time (or frequency) do-
main, this could be done without loss of sensitivity by simply multiplying
by (FN−1)−1, but the projection operator P has the effect of mixing noise
modes, introducing extra noise in the down-scaled modes. When the fil-
ters are unapplied ((PT FN−1P)−1), this noise is scaled up together with the
signal, resulting in high-noise modes in the final map.

Unbiased filtered map-making is therefore a form of deconvolution,
completely analogous to the process of deconvolving the instrument beam
from the map. In the case of a beam, the dampened modes correspond

13The telescope scans at 2◦/s in azimuth, which at a typical elevation of 60◦ corresponds
to 1◦/s on the sky.

14See section 2.
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to the small scales, and deconvolving these produces very high amplitude
small-scale noise. In contrast, for unbiased map-making with a high-pass
filter the dampened modes correspond to large scales, and deconvolution
results in large-scale, i.e. correlated, noise modes. See figure 4.3 for an
illustration of these effects.

The full effect of these deconvolution-induced noise modes is described
in the covariance matrix, which ensures that they are assigned no more
weight than they are due. However, the presence of these modes makes
visual inspection of the maps very difficult. When plotting the maps, we
therefore apply an eigenvector-filter, defined by

mcut =VKVTm. (4.44)

Here V is the eigenvector matrix of the map m’s covariance matrix M,
M = VEVT, E is a diagonal vector consisting of M’s eigenvalues, and
Ki j = kiδi j with ki = (Ei < ǫ).15 The plots in the results section employ
ǫ = 100min(E), which typically results in ∼ 20 − 40 large scale modes
being cut.16

The eigenvector-filter is a filter based purely on the noise properties of
the map. If one is willing to make assumptions about the signal itself, one
can do better by filtering based on the signal-to-noise ratio using a Wiener-
filter [36]. If the signal is taken to be Gaussian with covariance matrix S
(see section 5.1.1), then the Wiener filtered map is given by

mcut =(1 + S−1N)−1m. (4.46)

Making assumptions about S, one of the quantities one is trying to mea-
sure, is dangerous. For example, if the fiducial power spectrum does not
contain any B-modes, then neither will the filtered map. It is therefore
best to estimate the Wiener-filtered map jointly with the covariance matrix.

15I here use the C language convention that true/false maps to 1/0. Thus ki is 1 if Ei < ǫ,
and otherwise 0.

16While primarily a means of visualization, it is also possible to use this as a cut before
further data analysis. This could for example be done if one has evidence that certain eigen-
modes are contaminated by ground pickup, atmosphere, or similar17. In this case, the cor-
responding modes in the covariance matrix should be assigned infinite variance, reflecting
the fact that the value of these eigenmodes is being ignored:

M−1
cut =VKVT M−1VVT . (4.45)

17If there were a 1-1 correspondence between filtered Fourier modes and noise modes in
the final map, all the filtered pollution would be completely restored when deconvolving
the map (but would still be assigned a huge variance in the covariance matrix). However, at
least in the case of more than a single CES being analysed, there is no 1-1 correspondence,
and each mode will be a linear combination of different frequencies in the TOD. In this
linear combination, the heavily filtered modes weigh little, and may thus be a small part of
the deconvolved result.
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The Gibbs sampling procedure described in section 5.1.3 produces Wiener-
filtered maps based on an unbiased estimate of the power spectrum as a
by-product of the map-sampling step.

4.8 Results

4.8.1 CMB maps

Temperature and polarization maps for QUIET’s four CMB patches are
shown in figures 4.4-4.7. These have all been subjected to a mild eigenvector-
filter in order to remove large, correlated noise modes which mostly corre-
spond to multipoles lower than the 25 ≤ l ≤ 1200 that QUIET can com-
fortably measure with its small patch size. This typically results in the ∼ 30
noisiest modes out of ∼ 6 · 104 being removed. An example of what these
modes look like is shown at the bottom of figure 4.4.

The figures compare the QUIET maps with WMAP at the same frequen-
cies after removing the same modes. In the temperature maps the CMB
anisotropies are clearly visible, with both QUIET and WMAP observing
the same pattern. QUIET does not quite reach WMAP’s noise levels, but as
described in the calibration and instrument chapter, the temperature maps
are based on only ∼ 3% of the detectors and a temperature cut efficiency of
only ∼ 30%, so this was to be expected.

In polarization, however, the noise level is low enough to faintly make
out the ∼ 5µK E-mode polarization signal from the second and third peak
of the EE-power spectrum by eye. This is most clearly visible in the W-band
map of the first CMB patch (and in the wiener-filtered version of the patch,
which can be seen in figure 4.8). The corresponding WMAP maps are here
completely noise dominated.

Several point sources are visible in the maps, with CMB patch 2 be-
ing most affected, containing four strong sources and several weaker ones.
These are easily visible in the Q-band temperature maps, and one of the
sources is even visible in polarization. We therefore applied a point source
mask to the maps before further analysis for the Q- and W-band tempera-
ture analysis and the Q-band polarization analysis.

At the time of writing, the W-band first results article has still not been
released, and these maps should therefore be considered preliminary and
may be subject to change.

4.8.2 Foreground maps

Figures 4.9-4.10 show polarization maps for QUIET’s two foreground patches.
In galactic coordinates, the galactic plane is aligned in the +Q direction and
its axis of rotation in the -Q direction, so it is not surprising that the galactic
emissions are predominantly characterized by Stokes Q. The emissions are
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Figure 4.3: The effect of deconvolution on noise. Top left: Input CMB map,
based on the power spectrum shown below. Top middle: Map after adding
the effects of the beam and noise. This map is biased, as shown by the cor-
responding power spectrum is shown in green below. Top right: The map
after deconvolving the beam is unbiased, but is dominated by noise at small
scales, shown in blue below. The bottom row shows the same sequence for
filters instead of a beam. The left map is the input, the middle is the biased
map PT FN−1d, and the right is the unbiased map (PT FN−1P)−1PT FN−1d.
Again, the deconvolution has amplified noise modes that now dominate
the map, but these are now large-scale modes due to the high-pass and
azimuth filters.
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Figure 4.4: Maps for CMB patch 1, centered on galactic l = 292.2◦, b =
22.8◦, with a diameter of ∼ 25◦. The columns are temperature (left), Stokes
Q polarization (middle) and Stokes U polarization (right). Row 1-2: The
QUIET Q-band result compared to the WMAP Q-band map, both at Nside =
256. Row 3-4: The QUIET W-band result compared to the WMAP W-band
map, both at Nside = 512. An E-mode signal is faintly visible in the QUIET
maps, particularly in the W-band map at small scales. The temperature
map is consistent with WMAP, but a bit more noisy. Row 5: Maps of the
high-noise modes removed by the eigenvalue filter for QUIET’s W-band
maps. While high in amplitude, these maps contain only � 50 very high
variance degrees of freedom.
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Figure 4.5: Maps for CMB patch 2, centered on galactic l = 243.2◦, b =
−35.3◦, with a diameter of ∼ 25◦. The columns are temperature (left),
Stokes Q polarization (middle) and Stokes U polarization (right). Row 1-2:
The QUIET Q-band result compared to the WMAP Q-band map, both at
Nside = 256. Row 3-4: The QUIET W-band result compared to the WMAP
W-band map, both at Nside = 512. The S/N is lower here than for patch
1, but it is still possible to make out an E-mode signal. A polarized point
source is visible in the Q-band map. This and several other point sources
were masked out before the power spectrum was estimated. The tempera-
ture map is consistent with WMAP, but noisier.
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Figure 4.6: Maps for CMB patch 3, centered on galactic l = 304.6◦, b =
−69.1◦, with a diameter of ∼ 25◦. The columns are temperature (left),
Stokes Q polarization (middle) and Stokes U polarization (right). Row 1-2:
The QUIET Q-band result compared to the WMAP Q-band map, both at
Nside = 256. Row 3-4: The QUIET W-band result compared to the WMAP
W-band map, both at Nside = 512. The S/N is lower here than for patch 1,
but it is still possible to make out an E-mode signal in the central, lowest-
noise region. The temperature map is consistent with WMAP, but noisier.
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Figure 4.7: Maps for CMB patch 4, centered on galactic l = 7.0◦, b =
−62.0◦, with a diameter of ∼ 25◦. The columns are temperature (left),
Stokes Q polarization (middle) and Stokes U polarization (right). Row 1-2:
The QUIET Q-band result compared to the WMAP Q-band map, both at
Nside = 256. Row 3-4: The QUIET W-band result compared to the WMAP
W-band map, both at Nside = 512. The S/N very low here due to the
limited exposure time. The thin band of zero signal at the bottom of the Q-
band maps are pixels that were cut by the eigenvalue filter due to having
excessive noise. The temperature map is consistent with WMAP, but much
noisier.
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Figure 4.8: Wiener-filtered maps of CMB patch 1 from the Gibbs sampling
chain. The top row shows the Stokes Q and U components from left to right,
with a clear E-mode signature (“+”-shape in Q, “x”-shape in U) visible.
The bottom row shows maps of the E and B modes, confirming a strong
detection of E-modes, while the B-modes are consistent with noise. Figure
courtesy of H. K. K. Eriksen.
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several times stronger in the Q-band than W-band, but their shape is differ-
ent in the two bands, with the emissions being more concentrated towards
the plane of the galaxy in the W-band. This is consistent with a transi-
tion from synchrotron dominance to a weak dust-dominance when going
from Q to W-band, with the W-band being close to the foreground min-
imum. Most of the galactic emissions are in the +Q-direction, which for
synchrotron radiation indicates electrons spiraling in a north-south mag-
netic field. However, in the galactic center there is a small, vertically elon-
gated region with very strong -Q emissions which indicates a horizontal
magnetic field here. This feature is part of a structure called the galactic
center lobe [37, 38, 39], and has been previously imaged in the Q-band at
higher resolution but lower sensitivity than QUIET [37], revealing it to be a
thin, vertical and plume-like feature.

The same features are visible in the WMAP Q and W-maps, but the
signal-to-noise is quite low, particularly in the W-band. Due to the steep
spectral index (s ∝ να, α ∼ −3) of synchrotron, much higher signal-to-
noise synchrotron maps are available at lower frequencies. In the bottom
row of the two figures, I therefore plot the WMAP Ka-band polarization
maps for comparison. These have a similar signal-to-noise as the QUIET
Q-band maps, and agree well with these considering the differences in an-
gular resolution.

Note that the QUIET foreground maps shown here are still preliminary.
In particular, QUIET’s temperature-to-polarization leakage, which is at ∼
1% in the TOD, but much lower in map space due to frequent rotation
of the polarization angles, has not been corrected here. Hence, regions of
strong, unpolarized emission may show up as a spurious component in
these polarization maps. This will be rectified in a future QUIET article on
foregrounds.
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Figure 4.9: Maps of QUIET’s central galactic patch, centered at l = 0.1◦, b =
−0.1◦, with a diameter of ∼ 20◦. The QUIET Q- and W-band results are
consistent with WMAP, but WMAP’s high noise level makes a visual com-
parison difficult. I therefore provide the high S/N WMAP Ka-band map
in the last row. The QUIET Q-band and WMAP Ka-band maps are both
synchrotron-dominated, and show excellent agreement.



92 CHAPTER 4. MAP MAKING

Q U

QUIET Q

WMAP Q

QUIET W

WMAP W

-100 µK 100 µK -100 µK 100 µK

WMAP Ka

-300 µK 300 µK -300 µK 300 µK

Figure 4.10: Maps of QUIET’s other galactic patch, centered at l = 329◦, b =
0◦, with a diameter of ∼ 20◦. The columns are the Q and U Stokes param-
eters respectively. The top two rows show the QUIET and WMAP maps
for the Q-band, while the next two rows have the corresponding maps for
the W-band. WMAP is consistent with QUIET, but is very noisy, making
comparison difficult. However, as synchrotron dominates below ∼ 80GHz,
and has a steeply falling spectrum, the WMAP Ka-band map is signal dom-
inated, allowing for a straightforward visual comparison.



Chapter 5

Power spectrum and parameter
estimation

Though map-making is a necessary step of the analysis pipeline, and maps
are very useful for e.g. foreground analysis, they are not the final scientific
goal of CMB experiments. As discussed in chapter 1, the CMB anisotropies
are understood to be ultimately sourced by quantum fluctuations set up
during inflation, and while the value of these fluctuations at any given po-
sition is random, their statistical distribution is governed by the physics
from inflation to the surface of last scattering, providing us with a powerful
probe of the physics of the early universe. If these fluctuations are Gaus-
sian, homogeneous and isotropic as indeed they seem to be, then they can
be completely described by a covariance matrix which is block-diagonal in
spherical harmonic basis1:

alm ≡(aT,lm, aE,lm, aB,lm)T ∼ N(0, Cl) (5.1)

〈aX,lmaY,l′m′〉 =CXY
l δll′δmm′ , (5.2)

The indices X, Y run over T, E, B, and the power spectrum Cl is the {T, E, B}×
{T, E, B} covariance matrix for a given multipole. aT,lm are the normal
spherical harmonic coefficients of the temperature map mT, and aE,lm, aB,lm

are rotationally invariant linear combinations of the spin-weighted spher-
ical harmonic coefficients of the linear polarization fields mQ and mU , and

1A word on notation here: Due to the polarization degrees of freedom, alm is not a
scalar quantity, but a vector of length Npol. Similarly, Cl is an Npol × Npol matrix. I will
use the notation C to mean the Nl Npol × Nl Npol matrix with Cl on the diagonal, such that

CXY
l ≡ (C)XY

ll .

93
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are given by [11]

aT,lm =
∫

Ω

Y∗
lm(n̂)mT(n̂)dΩ (5.3)

aE,lm = −1

2

∫

Ω

[

Y∗
2,lm(n̂) + Y−2,lm(n̂)

]

[mQ(n̂) + imU(n̂)] dΩ (5.4)

aB,lm =
i

2

∫

Ω

[

Y∗
2,lm(n̂) − Y−2,lm(n̂)

]

[mQ(n̂) + imU(n̂)] dΩ. (5.5)

For a given cosmological model one can calculate the predicted power
spectrum in terms of that model’s parameters2, and observational bounds
on the power spectrum can therefore be used to constrain the cosmologi-
cal parameters, or exclude the model altogether. Our primary interest in
the sky maps is therefore to use them to estimate the power spectrum and
ultimately the cosmological parameters.

5.1 Power spectrum estimation

Starting from equation (5.1), we see that given the harmonic coefficients,
the likelihood for the power spectrum is

L(Cl) =P(alm|Cl) = ∏
m

1
√

|2πCl |
e−

1
2 aT

lmC−1
l alm , (5.6)

corresponding to an independent Wishart distribution for each multipole
in the power spectrum:

Cl ∼W

(

(2l + 1)−2 ∑
m

almaT
lm, 2l + 1

)

. (5.7)

The spherical harmonics coefficients used in these expressions are defined
in equations (5.3-5.5), and while these appear to require O(N2

l Npix) ∼
O(N2

pix) calculations, they can actually be implemented much more effi-

ciently due to the existence of O(Npix
3
2 ) algorithms such as those provided

in the HEALPix package [26]3. Thus, for full-sky noise-less maps (or maps
with uniform, uncorrelated noise), the full likelihood of the power spec-
trum can be very efficiently calculated.

However, in real applications the map, and thus its harmonic coeffi-
cients, will not be exactly known. Typically, the noise in the map will be

2This can be done by using a numerical Boltzmann solver such as CAMB [40], CMBfast
[41] and CMBEasy [42].

3Asymptotically faster algorithms are under active research [43, 44], and Fast Legen-
dre Transform-based algorithms promise an asymptotic complexity of O(Npix log(Npix)

2).
However, current implementations of these algorithms have extremely high memory over-
head and large pre-factors, which outweighs their advantages in most cases.
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Gaussian with variance varying from pixel to pixel, and as we saw in chap-
ter 4, instrument 1/f-noise and filters result in the noise in different pixels
and stokes parameters being correlated, resulting in a dense pixel covari-
ance matrix. Additionally, part of the sky will usually be masked out due
to lack of observations or foreground contamination, effectively leading to
infinite variance in those pixels, and the telescope optics smoothes out the
small scales of the map, biasing the higher multipoles low.

5.1.1 Brute force evaluation

The most straightforward approach for dealing with these complications
is brute-force pixel-space evaluation of the likelihood. The covariance be-
tween the signal components at two points on the sky, m(n̂1) and m(n̂2),
depends on the power spectrum as

S(n̂1, n̂2) =R(n̂1, n̂2)
{

∑
l

2l + 1

4π
λl(n̂1 · n̂2, blClbl)

}

R(n̂2, n̂1) (5.8)

λl(β, Cl) =

⎡

⎣

dl
00CTT

l dl
20CTE

l −dl
20CTB

l

dl
20CTE

l ∆
l
+CEE

l + ∆
l
−CBB

l −dl
2−2CEB

l

−dl
20CTB

l −dl
2−2CEB

l ∆
l
−CEE

l + ∆
l
+CBB

l

⎤

⎦ . (5.9)

Here, R(n̂1, n̂1) is a matrix representing the rotation of the Stokes param-
eters when under parallel transport from n̂1 to n̂2, bl is a diagonal matrix
with the temperature and polarization beams bT,l , bE,l and bB,l on the diag-
onal, and dl

mm′(β) are Wigner d-matrices, and ∆
l
± ≡ 1

2 (dl
22 ± dl

2−2) [45].
When evaluated at the pixel locations in the map, equation (5.8) pro-

vides us with the pixel covariance matrix corresponding to a given power
spectrum, which combined with the noisy map data yields the following
likelihood

L(Cl) =P(m|C) =
e−

1
2 mT [S(C)+M]−1m

√

|2π [S(C) + M]|
. (5.10)

From this, the maximum likelihood solution can be found with a nonlinear
search such as Newton-Raphson iteration, and error bars can be found by
grid evaluation, Monte Carlo sampling or through a local Gaussian approx-
imation [46]. These are all quite heavy, as they involve covariance matrices
of size (Nl Ncomp)2, which are needed because limited sky coverage, corre-
lated noise and filtering induce correlations between nearby multipoles.

Binning

The complication of correlated multipoles can be removed by binning sev-
eral of them together, such that

Cb = ∑
lXY

PXY
bl CXY

l , (5.11)
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where PXY
bl is a projection operator down to the binned space, with a typical

choice being (following [47])

PXY
bl =(∑

l∈b

)−1 l(l + 1)

2π
δ[XY][XY]b , if l ∈ b, otherwise 0. (5.12)

That is, each bin is the average of the flattened4 spectrum in multipole
ranges, with the different spectra and cross-spectra mapping on to differ-
ent bins (i.e. not being averaged together). Expanding back from bins to
multipoles can be done with the operator

QXY
lb =

2π

l(l + 1)
δ[XY][XY]b , if l ∈ b, otherwise 0, (5.13)

i.e. piecewise constant interpolation of the flattened spectrum. With suffi-
cient bin size, each bin will be approximately independent, removing the
need for evaluating marginals and covariances.

Direct evaluation of cosmological parameters

Instead of estimating the power spectrum, it is also possible to directly es-
timate cosmological parameters, and in many ways the latter is easier than
the former due to the much smaller number of free parameters, typically of
the order of 5 - 10. In this case, no binning is necessary. Since the likelihood
for a given power spectrum can be calculated directly, the likelihood for a
set of parameters θ is simply

L(θ) =L(C(θ)). (5.14)

As for the power spectrum itself, the maximum likelihood point can be effi-
ciently found using a non-linear search, and the likelihood can be mapped
out using grid evaluation (when the number of parameters is small), or by
MCMC sampling such as that provided by CosmoMC [48], or newer ap-
proaches such as MultiNest [49].

Practicality

While straightforward and exact, this method scales poorly with the num-
ber of pixels. The cost of an evaluation of the likelihood is driven by the cal-
culation of the determinant, which scales as O(n3), where n = NpixNcomp

is the number of degrees of freedom in the map, so each doubling of the
angular resolution results in 64 times higher cost.

4The power spectra have a natural scaling of 2π
l(l+1)

. Flattering the spectrum refers to

dividing by this produces a much more slowly varying spectrum, which is more suited for
binning. The flattened spectrum is also the standard when plotting the power spectrum.
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The speed of the algorithm can be somewhat improved by performing
a change of basis [50]. Let R = N−1S0N−1, where S0 is a fiducial signal
covariance matrix, and compute its eigenvalue decomposition QΛQT = R.
This provides an orthogonal basis based on signal-to-noise modes, which
allows one to truncate the basis at the signal-to-noise level corresponding to
the required accuracy, resulting in a smaller number of degrees of freedom
n′. In the truncated basis, S + N → S′ + N′ = Q′T SQ′ + Q′T NQ′, and
m → m′ = Q′Tm, where Q′ is the n × n′ truncated eigenvector matrix.
This basis only needs to be calculated once, and can provide a substantial
performance boost when n′ is significantly smaller than n. Low signal-to-
noise modes are generated by filtering, and may also be present due to the
scanning pattern, and with QUIET’s filters and scanning strategy a relative
eigenvalue threshold of 10−8 resulted in n/n′ ∼ 2.5, for a speedup of a
factor of 15.

Notwithstanding this optimization, the practical limit for this method
is of the order 105 − 106 degrees of freedom with current clusters. For
comparison, a full-sky polarization map with a HEALPix Nside parame-
ter of 2048, corresponding to a pixel resolution of 1.7 arcminutes, has n ∼
1.5 · 108. So for experiments which need both high sky coverage and high
resolution, like Planck, a cheaper method is needed.

5.1.2 Pseudo-Cl estimation

The idea of Pseudo-Cl (PCL) power estimation as implemented in the MAS-
TER algorithm [47], is to divide the estimation of C into two steps: A fast
but biased estimator producing an initial estimate C′, and a correction step
which compensates for the bias of that estimate. In general the true spec-
trum and the initial estimate can be related through

C′ = f (C), (5.15)

where the function f represents the effect of creating a realization of the
spectrum and the effect of telescope optics, filtering, mapmaking and the
biased power spectrum estimator. Most of these steps are linear in the map,
and thus quadratic in power. Hence we cannot expect f to be a linear func-
tion. However, it is still possible to approximate it as such, and this approx-
imation turns out to work well in practice,

〈C′
b〉 ≈∑

b′
αbb′Cb′ + βb. (5.16)

Here b are the power spectrum multipole and polarization component bins,
and αbb′ and βb are coefficients that approximate the effect of f . Provided
estimates ofα and β, which can be determined using signal-only and noise-
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only Monte Carlo simulations respectively5 the unbiased power spectrum
can be easily recovered by solving for C in equation (5.16):

Ĉ =α−1(C′ −β). (5.17)

In principle, this expansion has Nbin(Nbin + 1) parameters that must
be determined through simulations. However, most of the non-diagonal
structure in α is due to limited sky coverage, an effect which can be calcu-
lated analytically in the case where C′ is the pseudo-spectrum of the map.
The pseudo-spectrum is defined as the observed spectrum of the weighted
map {wimi}. The weights are usually chosen to be wi = σ−2

i , where σi is
the noise level in pixel i, and their effect is to make the map well-behaved
(but biased) on the whole sky, allowing equations (5.3-5.5 and 5.7) to be
used. The result is the parametrisation

αbb′ = ∑
lXYX′Y′

PXY
bl MXX′YY′

ll′ bX′
l′ bY′

l′ Fl′Q
X′Y′
l′b′ . (5.18)

M here models the effect of the partial sky coverage, and is a function only
of the PCL map weighting w, b is the instrument beam, and F is the trans-
fer function, which incorporates the effect of biased map-making, filters,
correlated noise, etc. The task of estimating α is thus reduced to that of
estimating the transfer function.

The uncertainty of the resulting power spectrum estimate can deter-
mined using signal + noise Monte Carlo simulations based on a smooth
version of the output spectrum. Given a set of such simulations {Ci

b}, the
covariance of the estimator is

Covbb′ =〈(Ci
b − Ĉb)(Ci

b′ − Ĉb′)〉. (5.19)

The MASTER algorithm sketched above has become the most popu-
lar of power spectrum estimators currently in use, and is the only of these
that is currently capable of handling the high number of pixels involved
in high-resolution full-sky experiments like Planck. It also has the advan-
tage of being very flexible – any effect that can be efficiently simulated is
automatically taken care of by the transfer function, making it easy to e.g.
quantify the effects of new systematics as they are discovered. And due to
not needing unbiased maps and their covariance matrix like the brute force
method does, its memory requirements are also much smaller.

This convenience comes at the price of being sub-optimal, due in part to
not taking the full noise properties into account when weighting the map,

5Equation (5.16) is only approximate, which means that it matters slightly which input
spectrum is used for the simulations. This spectrum should therefore be a reasonable esti-
mate of the true spectrum. To protect against biasing oneself towards the fiducial spectrum,
the process can be iterated by starting over with the output spectrum as the new fiducial
spectrum.
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and approximate, because f (C) is not truly linear. The practical result of
this is that the uncertainty of the result is larger than for the brute force
method, and that the error bars are slightly inaccurate.

5.1.3 Gibbs sampling

It is possible to have both the optimality and exactness of the brute force
estimator while avoiding its O(n3) complexity. As in the PCL approach
above, the key to efficiency is to find a way to use the fast full-sky ex-
pressions in equations (5.3-5.5 and 5.7), as these benefit from the speed of

O(N
3
2
pix) full-sky spherical harmonics transformations. The PCL approach

to this is to fill in the missing parts of the sky with zeroes6, a choice which
makes it necessary to bias-correct the spectrum later. Gibbs sampling, on
the other hand, makes it possible to use the full-sky expressions by produc-
ing full-sky samples of what the noiseless CMB could look like, which are
then amenable to efficient spherical harmonics transformations [51, 52, 53].

Mathematically, this is based on the observation that

P(a, b, . . .) =P(a|b, . . .)P(b, . . .) ∝ P(a|b, . . .), (5.20)

which implies that given some sample (ai, bi, . . .) from the joint distribution
of (a, b, . . .), we can produce a new sample from the joint distribution by
drawing a new a from the conditional distribution P(a|b, . . .) and keeping
the others constant, producing (ai+1, bi, . . .). This can then be repeated for
each other parameter in turn. In the context of power spectrum estimation,
this allows us to jointly sample the power spectrum C and the CMB sky s
from P(C, s|m, M) through the iterative scheme

si+1 ←P(s|Ci, m, M)

Ci+1 ←P(C|si+1, m, M). (5.21)

The sky sampling step constructs a constrained realization of C given
the observed sky m and its covariance M′. Such a realization can be eco-
nomically produced by solving the system

(S−1 + M−1)s = M−1m + S− 1
2 ω1 + M− 1

2 ω2 (5.22)

through Conjugate Gradients iteration [51, 32]. ω1 and ω2 are here vec-
tors of independent samples from the standard normal distribution N(0, 1).
Conceptually, this amounts to Wiener-filtering m, and then adding enough
fluctuations to compensate for the bias in power introduced by the wiener
filter, resulting in a map with covariance S as required.

6Unobserved regions of the sky have infinite variance, making w = σ−2 = 0.



100CHAPTER 5. POWER SPECTRUM AND PARAMETER ESTIMATION

The resulting map s is a representative sample of the full, noise-less sky
– the full effect of the noise in m is taken into account through the scatter
in {s}, and since subsequent steps are conditional on a given s, they do not
have to worry about the observed map or its noise at all. The second step
of the sampling, C ← P(C|s, m, M) = P(C|s), is therefore straightforward.
Equations (5.3-5.5 and 5.7) apply directly to s, allowing us to efficiently
sample a new power spectrum within the cosmic variance of the observed
map.

By sampling only from the conditional distributions, Gibbs sampling
allows a form of separation of responsibilities, letting each step in the sam-
pling chain care about a single effect only. This makes is easy to expand the
procedure with new effects, such as foreground separation.

Parameter estimation

The set of samples {C} contain all the information we have about the power
spectrum, together representing P(C|data). We can use this for cosmologi-
cal parameter estimation by testing the power spectrum given by a partic-
ular choice of parameters, C(θ), against P(C|data). However, this is com-
plicated by P(C|data) only being available as a set of samples, requiring
some binning and interpolation scheme, such as the Blackwell-Rao estima-
tor [54], to be able to evaluate the probability at the required point.

However, as with brute force likelihood evaluation, it is possible to re-
place the power spectrum C with the cosmological parameters θ as inde-
pendent variables. This results in the scheme

si+1 ←P(s|θi, m, M)

θi+1 ←P(θ|si+1, m, M). (5.23)

The result is a set of samples {θ, s} that directly provide the probability
of the parameters P(θ|data). As C is a function of θ, the first step is un-
changed from above. The second step differs in that the we do not have a
simple expression for θ(C), preventing us from simply drawing a C from
the distribution in equation (5.7), and translating it into a set of parame-
ters. But we can combine the probability density function of said Wishart
distribution with a short MCMC chain in θ to still sample θ ← P(θ|s) at
relatively low cost7.

7This is a planned feature in an upcoming version of H. K. K. Eriksen’s cosmological
Gibbs sampler Commander [55]. Long correlation lengths when sampling high S/N vari-
ables (like most cosmological parameters) was a barrier to direct cosmological parameter
estimation in Gibbs sampling previously, but this was solved in [52].
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Figure 5.1: A sketch of the three power spectrum estimation methods de-
scribed in this chapter. Top: Brute force maximum likelihood estimation.
The likelihood of a set of cosmological parameters is computed by translat-
ing them into a signal covariance matrix S via the power spectrum Cl and
the two-point correlation function C(r). The observed map m should then
be m ← N(0, S + M), which is evaluated directly in pixel space. Middle:
The MASTER pseudo-Cl estimator works by using simulations to compute
a transfer function Fl (and a noise bias, which is neglected here for sim-
plicity) which accounts for the bias introduced by the map-making and
filtering. This is then used to derive an unbiased spectrum from the data,
and the simulations also provide error bars. Bottom: Gibbs sampling jointly
samples P(θ, C, s|m, M) by iteratively sampling over the conditional distri-
butions. Only the sky sampling step actually involves the data.
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5.2 Application to QUIET

As described in section 2, the QUIET telescope performs deep scans of rela-
tively small parts of the sky, resulting in a relatively low number of pixels in
each patch, typically ∼ 3 · 104, and twice that number of degrees of freedom
in the case of a polarization only analysis. It is this low number that allows
us to use the maximum likelihood map-making described in chapter 4 to
obtain both an unbiased map m and its noise covariance M. This makes it
possible in theory to use any of the three power spectrum/parameter esti-
mation methods described in the previous section, but our limited number
of pixels makes the brute force likelihood evaluation a natural choice, hav-
ing computational costs comparable to the map-making algorithm.

The average area of each of QUIET’s four CMB patches is ∼ 250 deg2

and this limited sky coverage sets up strong correlations in nearby mul-
tipoles. We therefore bin the spectra in bins of 50 multipoles (see sec-
tion 5.1.1), which makes the bins mostly independent (see figure 5.3). This
results in 9 bins for the Q-band analysis and 19 bins for the W-band anal-
ysis. Since these bins are only weakly correlated, a good approximation
of the likelihood is provided by the conditional distributions for each bin,
where the other bins are held fixed at the maximum likelihood point as
found through Newton-Raphson iteration. For each frequency, there are
6 spectra to evaluate (TT, TE, TB, EE, EB and BB), resulting in a total of
54 (114) slices being needed for Q (W). Mapping out these slices required a
few thousand likelihood evaluations, which is expensive but still less costly
than the map-making step.

Based on each slice, we extracted a 68% confidence interval by lowering
a likelihood threshold until 68% of the curve is above this likelihood, as
illustrated in figure 5.2. The mode as well as the upper and lower limits
found this way are what we report as the value and error bars for each bin.

For the tensor-to-scalar ratio we model the power spectrum as

Cl =Cscalar
l + Ctensor

l r, (5.24)

where we have assumed for simplicity that tensor- and scalar perturbations
have the same primordial spectral behavior. Cscalar

l is here the power spec-
trum in the absence of tensor modes, and Ctensor

l is the tensor-only spectrum

for the case r = 1, as provided by CAMB [40]. If we know Cscalar
l , we can

calculate Cl for each r and evaluate its likelihood using equation (5.10). But
in practice, Cscalar

l is among the quantities we are trying to estimate, and
must therefore be marginalized over to reflect our ignorance of it. In prac-
tice, this would involve an integral in as many dimensions as there are bins
in our power spectrum, which is unfeasible with brute force evaluation8.

8It would, however, be an automatic by-product if we used Gibbs sampling. This is one
of the major advantages of Gibbs sampling.
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Figure 5.2: Illustration of how the reported value and error bars for a power
spectrum bin are determined. The red curve shows the conditional distri-
bution for a single bin of the W-band EE spectrum, which we take as an
approximation of the marginal distribution for that bin. The reported value
for the power in this bin is the mode of the distribution, while the upper
and lower error bars are found by lowering a likelihood threshold (shown
in blue) until 68% of the likelihood (green shaded area) is above the thresh-
old.
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0 100 200 300 400 500

0

1

Figure 5.3: The bins used in the Q-band power spectrum analysis. Each bin
is 50 multipoles wide, and are centered on every multiple of 50 between 0
and 500. The horizontal bars show the location and extent of each bin, while
the curves show which multipoles contribute to each bin. A bin width of
50 is enough to ensure a low level of correlation between the bins. In the
W-band analysis, the same bin size is used, but the lmax used here is 1000.
This figure was computed for the PCL pipeline, but the level of correlation
between the bins is mostly due to the shape of the sky cut, which is the
same for both pipelines.

We therefore approximate the marginal with a partial conditional:

Cscalar
l ≈Cfix

l + C
marg
l . (5.25)

Here the spectrum has been split into a part which will be held fixed at
the maximum likelihood value, and a part which will still be marginalized
over. We chose Cfix

l to be the multipoles l > 25 and C
marg
l to be a single bin

containing the multipoles l ≤ 25, which is enough to make the marginal-
ization manageable.

Though the tensor-to-scalar ratio must necessarily be positive (as it is
the ratio of two positive quantities), the properties of the CMB maps only
depends on the combined power spectrum, and the likelihood above there-
fore assigns a nonzero value even to clearly unphysical negative values. We
can apply knowledge that r ≥ 0 as a prior P(r) ∝ Θ(r), where Θ(x) is the
Heaviside step function, which results in a posterior with these unphysical
values removed.

5.3 Results

As described in section 2, QUIET is sensitive to both the polarization and
overall intensity of the incoming radiation, but due to its focus on measur-
ing B-modes and the tensor-to-scalar ratio, the vast majority of its sensi-
tivity and analysis effort is concentrated on the polarization results. In the
absence of temperature information, the three available power spectra are
EE, EB and BB, which can bee seen in figures 5.4-5.6.

Of these, the EE spectrum is the most easily measured, and is sourced
by the same density perturbations that source the TT spectrum. EE is there-
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fore well constrained by the ΛCDM best fit to existing temperature exper-
iments, such as WMAP [6]. The EE spectrum has also been directly mea-
sured by several polarization experiments such as BICEP [17] and QUAD
[16], which were consistent with ΛCDM. As seen in figure 5.4, this is also
the case for the QUIET Q-band and W-band EE power spectra. The agree-
ment is especially striking in the W-band spectrum due to its small error
bars, and to my knowledge this is the most precise measurement of the
second peak of the EE power spectrum at this time.

The BB spectrum is expected to be produced by primordial gravita-
tional waves at low multipoles and by lensing [13] and possibly higher-
order effects like non-adiabaticity and magnetic fields at higher multipoles
[14]. Neither of these have as yet been detected, and only upper bounds
exist for the BB spectrum. As shown in figure 5.6, both QUIET data sets
are consistent with a non-detection of B-modes. This was to be expected
based BICEP and QUAD’s null-results, as these experiments have similar
sensitivity to QUIET. QUIET’s 95% upper limit on BB power is compared
with other current limits in figure 5.7. The QUIET W-band limits are seen
to provide the lowest upper bounds in the multipole range 150 ≤ l ≤ 400.

Like the BB spectrum, EB is expected to have a non-zero contribution
from lensed E-modes and possible second-order effects, but is not sensitive
to primordial gravitational waves. As seen in figure 5.5, QUIET observes
an EB power consistent with zero.

5.3.1 Temperature spectra

Figure 5.8-5.10 show the QUIET TT, TE and TB power spectra. These in-
clude data from the temperature maps shown in section 4.8.1, which have
relatively poor sensitivity compared to the polarization maps, and which
have less well understood systematics. They are therefore not a part of
the primary QUIET results, but they can still serve as a consistency check
for the polarization results. Taken together, the three spectra are consistent
with the ΛCDM expectations.

5.3.2 Foregrounds

In temperature (total power) emissions, the foregrounds are quite well known,
consisting of synchrotron radiation from electrons spiraling in magnetic
fields, free-free emission from electrons scattering off ions and dipole ra-
diation and thermal radiation from dust. The spectral behavior of these is
shown in figure 5.11.

The situation is less well known for polarization, but free-free and spin-
ning dust are not expected to be significantly polarized. Synchrotron emis-
sion, on the other hand, is 3% − 30% polarized, while thermal dust is po-
larized at the 1% − 6% level, leaving these as the dominant foregrounds
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Figure 5.4: The QUIET EE power spectrum based on data from all four
CMB patches. The W-band results are indicated using “+”-symbols with
1 sigma (green) and 2 sigma (red) error bars, while the Q-band results use
“x”-symbols with 1 sigma (purple) and 2 sigma (blue) statistical error bars.
These are compared with the best-fit ΛCDM model based on the WMAP
7-year data (light blue). The overall amplitude of the QUIET W-band spec-
trum shown here is calibrated based on the WMAP EE spectrum. Hence,
the ΛCDM best fit and the W-band spectrum necessarily agree on the over-
all amplitude. However, the shape of the power spectrum is independently
measured by QUIET, and is consistent with ΛCDM. The two QUIET sea-
sons are also consistent with each other. The first three peaks of the EE
power spectrum are clearly visible.
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Figure 5.5: The QUIET EB power spectrum ( l(l+1)
2π

CEB
l ) based on data from

all four CMB patches. The W-band results are indicated using “+”-symbols
with 1 sigma (green) and 2 sigma (red) statistical error bars, while the Q-
band results use “x”-symbols with 1 sigma (purple) and 2 sigma (blue)
error bars. Due to the large magnitude difference between high and low
multipoles, the graph is logarithmic – the upper and lower panels corre-
sponding to positive and negative numbers respectively. The W-band gain
is calibrated to WMAP via the EE power spectrum, greatly reducing the
systematic errors, which would otherwise be ∼ 18%. The spectrum is con-
sistent with the expectation of zero EB power except for a 2.7 sigma outlier
in the W-band bin centered on l = 350. The probability of observing one or
more such outliers in one of the (19 + 9) · 3 = 84 bins of the EE, EB and BB
spectra is 44%.
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Figure 5.6: The QUIET BB power spectrum based on data from all four
CMB patches. The W-band results are indicated using “+”-symbols with 1
sigma (green) and 2 sigma (red) statistical error bars, while the Q-band re-
sults use “x”-symbols with 1 sigma (purple) and 2 sigma (blue) error bars.
Due to the large magnitude difference between high and low multipoles,
the graph is logarithmic – the upper and lower panels corresponding to
positive and negative numbers respectively. The W-band gain is calibrated
to WMAP via the EE power spectrum, greatly reducing the systematic er-
rors, which would otherwise be ∼ 17%. The spectrum is consistent with
zero BB power. Though BB cannot physically be negative, we are using
the Gaussian error approximation here, which does allow this. Negative
power should be interpreted as cases where the noise happened to fluctu-
ate high. Though the truncated, positive part of the distribution is a useful
approximation to the likelihood, we do not rely on this when estimating
the tensor-to-scalar ratio, which is estimated from the exact likelihood.
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Figure 5.7: Top: The QUIET EE power spectrum compared with the two
other most precise measurements to date, BICEP and QUAD, and with
the WMAP 7-year best fit ΛCDM spectrum. Bottom: The QUIET BB
power 2 sigma upper limits compared with BICEP and QUAD. In both
cases, QUIET has the most precise measurements in the multipole range
150 ≤ l ≤ 400.
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is excellent. The l = 50 bin in W-band and CMB patch 3 in Q-band failed
the temperature null-tests, and are therefore not included here.



5.3. RESULTS 111

-250

-200

-150

-100

-50

 0

 50

 100

 150

 200

 250

 0  100  200  300  400  500  600  700  800  900  1000

l(
l+

1
)/

2
p

i 
C

(l
) 

(u
K

^2
)

l

QUIET Q-band co-added
LCDM best fit to WMAP 7

Figure 5.9: The QUIET Q-band TE power spectrum based on data from all
four CMB patches, compared to the WMAP 7-year best-fit ΛCDM model.
The temperature results are based on a less comprehensive null test suite
than the polarization results, and have not been subject to the same de-
tailed systematics study. The results are consistent with the expectation
from ΛCDM. The spectrum prefers to shift the top near l = 300 towards
higher multipoles, but this is not significant. The W-band temperature
cross-spectra were not yet ready at the time of writing.
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Figure 5.10: The QUIET Q-band TB power spectrum based on data from all
four CMB patches. The temperature results are based on a less comprehen-
sive null test suite than the polarization results, and have not been subject
to the same detailed systematics study. Based on our sensitivity, we expect
TB to be consistent with zero. This is the case all bins but those at l = 150
and l = 350, which are nonzero by 2.4 and 2.2 sigma based on the statis-
tical errors. The probability of observing 2 outliers of > 2.2 sigma among
the 45 bins in the TT, TE and TB spectra is 35.7%, so this does not amount
to a detection. Furthermore, the systematic errors were not included in the
error bars, and would further reduce the significance.
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Figure 5.11: The spectral behavior of the diffuse foregrounds in total power
as a function of frequency. Blue: Synchrotron, green: free-free, pink: spin-
ning dust, red: thermal dust. The horizontal line shows the amplitude of
the CMB anisotropies. The corresponding graph for polarization is still
poorly determined, but due to synchrotron’s high polarization fraction
(3% − 30%), it is expected to be the only relevant diffuse component un-
til thermal dust takes over at ν ∼ 80GHz. This figure is taken from [56].
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[56]. In comparison, the CMB itself is polarized at the 10% level, which is
comparable to that of the foregrounds. The CMB polarization is however
predominantly in the form of E-modes, and the B-mode amplitude may
well be low enough that foregrounds pose a serious problem.

Figure 5.12 shows the expected foreground contamination for QUIET’s
four CMB patches in the W-band based on the Planck Sky Model [57]. Ac-
cording to this model, dust is by far the most important polarized fore-
ground at 95 GHz, with an amplitude approaching the statistical error
level in the l = 50 bin for CMB patch 1, which is the most foreground-
contaminated patch due to its proximity to the Milky Way. In the Q-band,
the situation is reversed. With a spectral index of ∼ −3, the synchrotron
component has ∼ ( 44GHz

95GHz)−6 ∼ 102 times higher power, which is enough
to make it detectable in the lowest multipole bin for CMB patch 1; indeed,
the Q-band l = 50 bin EE-power is measured to be 0.55 ± 0.14µK2 for this
patch, a 3σ outlier which is consistent with the expected synchrotron con-
tribution.

Aside from the first bin for CMB patch 1, we do not expect foregrounds
to be significant at our sensitivity. However, if the tensor-to-scalar ratio is
of the order r � 0.02 a better understanding of the polarized foregrounds
will be needed in order to disentangle these from the CMB.

5.3.3 Systematic errors

The error bars in figures 5.4-5.6 do not include the systematic errors, but a
summary of these can be seen in figure 5.13. Most of these errors are much
smaller than the statistical error, and have no impact on the results. How-
ever, the absolute gain uncertainty, which is by far the largest systematic
error, is significantly larger than the statistical error in signal-dominated
regions. Luckily, the effect of the absolute gain is simply to scale all the
polarization spectra up or down by a constant factor, making this error
completely correlated between all multipoles. Rather than add large, 100%
correlated systematic error bars to the power spectra, which would make
it hard to visually judge the impact of this systematic, we instead chose to
factorize the power spectra as follows:

Cl =ACnorm
l . (5.26)

Here Cnorm
l is the spectrum with the amplitude normalized to a reference

value, which we choose to be the WMAP 7-year best-fit spectrum, and A
is the relative EE amplitude between ΛCDM and QUIET. Thus, A contains
the amplitude degree of freedom of the spectrum and its relatively large
systematic uncertainty, while Cnorm

l holds all the remaining NbinNspect − 1
degrees of freedom of the shape of the spectrum, which have only negligible
systematics. The spectra in figures 5.4-5.6 are all of the Cnorm

l type, and
hence only contain relative amplitude information.
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Expected synchrotron power in the W-band

Expected dust power in the W-band

Figure 5.12: The expected power spectrum contamination from syn-
chrotron (top) and dust (bottom) in the W-band, compared to QUIET’s sta-
tistical error and the ΛCDM expectation for EE modes, lensing B-modes
and primordial B-modes for r = 0.1 and r = 0.01, based on the Planck
foreground model v. 1.7.4. The graphs in this figure were produced by
Osamu Tajimao as part of his systematics study for the W-band analysis.
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The primary contributions to the absolute gain uncertainty are the un-
certainty in the polarized intensity of Tau A, beam area, and gain variations
between detectors. These are multiplicative errors, so A can be approxi-
mated as having a log-normal distribution, with A ∼ logN (log(1.0), 0.13)
in the Q-band and A ∼ logN (log(1.35), 0.17) in the W-band (prelimi-
nary). The latter is high by 1.8 sigma compared to the expected value of 1,
indicating that this preliminary 17% may be an underestimate.

To avoid propagating this uncertainty into the estimate of the tensor-to-
scalar ratio r, we can instead consider A, as determined from the EE power
spectrum, as a measurement of the absolute gain, and use this instead of
the uncertain Tau A-derived estimate. In this case, the uncertainty of A is
reduced to the statistical uncertainty from the EE power spectrum fit, which
is only 3.7%. This is similar to the approach of calibrating the gain against
the TT power spectrum, which is the standard approach for bolometer-
based CMB polarization experiments.

5.3.4 Parameters

The tensor-to-scalar ratio likelihood derived from the Q-band and the pre-
liminary W-band analysis is shown in figure 5.14. Based on these, we find
r = 0.35+1.06

−0.87 (Q-band) and r = 1.08+0.88
−0.78 (W-band), with 95% upper limits

of 2.2 (Q) and 2.8 (W). Though the W-band data set has a slightly higher
sensitivity than the Q-band set, each central value is noisy due to limited
statistics, and this noise fluctuated towards higher values for the W-band
analysis, resulting in a poorer limit on r.
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Figure 5.13: The Q-band (top) and W-band (bottom, preliminary) system-
atic effects compared to the statistical error and the expected signal. With
the exception of the absolute gain, the systematic errors are all significantly
smaller than the statistical errors. The absolute gain uncertainty is rela-
tively large, but acts as a simple scaling of all spectra by ±18%. The sim-
plest way of ensuring that this does not affect the B-mode limits is to sac-
rifice a single EE degree of freedom by calibrating the EE spectrum against
ΛCDM, since the same gain applies to both E and B. Figure courtesy of
Osamu Tajima.
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Figure 5.14: The Q- and W-band likelihood for the tensor-to-scalar ratio
r. While the W-band measurement is slightly more sensitive than that for
the Q-band, the latter results in a lower limit on r because it happened to
fluctuate lower. Both graphs extend into the area of unphysical negative
tensor-to-scalar ratios. These regions should be excluded by the prior, but
plotting the likelihood directly with these negative regions included makes
it easy to see at a glance that these measurements are consistent with zero.



Chapter 6

Non-gaussianity

The power spectrum and parameter estimation in the previous chapter is
all based on the assumption that the CMB is a Gaussian random field. The-
oretically, the primordial perturbations derive from quantum fluctuations
during inflation, and these are expected to be in the ground state of the
harmonic oscillator, which is a Gaussian [58, 1]. The subsequent evolution
towards the surface of last scattering preserves this to linear order in per-
turbation theory, which is still a good approximation, resulting in a CMB
which should be very close to Gaussian1.

However, this conclusion can change based on the model of inflation
and the importance of second and higher order effects during the subse-
quent evolution of the universe, neither of which are settled issues [60, 61].
Testing the Gaussianity of the CMB provides an indirect way of probing
these issues, and has become an active field of research [62, 63, 59]. As
there are infinitely many ways of being non-Gaussian, a large set of tests
have been suggested. These can be divided into targeted tests, which test
for a specific kind of non-Gaussianity2, and general tests, which can find
any kind of non-Gaussianity, at the cost of being less sensitive. Examples of
the latter are the Kolmogorov-Smirnow test, the Cramér–von Mises statistic
and the Anderson-Darling test3, which all work by comparing the empiri-
cal cumulative distribution function with the theoretically expected one.

In 2010 Gurzadyan et al. [65] published the result of the application
of the Kolmogorov-Smirnov test to look for non-Gaussianity in the CMB.
Their surprising result was that only 20%(!) of the CMB anisotropies be-
have as a random Gaussian field, with the remaining 80% being “non-

1During its travel from the surface of last scattering, small levels of non-Gaussianity
enters the CMB due to various effects such as inhomogeneous recombination and gravita-
tional lensing. The latter has been recently been detected [59].

2These can be tests for a particular kind of non-Gaussianity predicted by a specific the-
ory, or can be more generic such as testing the higher moments of the empirical distribution.

3When applied as a test for normality, the Anderson-Darling test is usually the most
sensitive of these [64], but the Kolmogorov-Smirnov test is still popular.
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Figure 6.1: Illustration of the Kolmogorov statistic K, which is the maximal
difference between the empirical and theoretical cumulative distribution
functions. K is the maximal vertical difference marked in blue.

random”4. This analysis later became the basis of a highly publicised claim
for evidence for the Conformal Cyclic Cosmology hypothesis [66], which
in turn prompted three independent follow-up studies [67, 68, 69]. Neither
of these follow-ups found any significant detection. Subsequent correspon-
dence5 made it clear that the reason for the difference in significance was
due to Gurzadyan and Penrose [66] using simulations with much lower
variance than the standard model due to the claim in Gurzadyan et al. [65]
that the CMB is only “20% random”, a claim that had gone unnoticed by
most of the community, but which would be revolutionary if true.

To test the “20% random” claim, I repeated the analysis of Gurzadyan
et al. [65] in paper IV of this thesis. Here the Kolmogorov-Smirnov (K-S)
test was applied to 104 randomly chosen 1.5◦ radius disks from the WMAP
7-year W-band temperature map after excluding regions of galactic latitude
|b| < 30◦.

According to the Kolmogorov theorem, the maximal difference K be-
tween the theoretical and empirical cumulative distribution functions of
a set of independently identically distributed samples will in the limit of in-

4What they mean by this term is not defined in the article, but based on their simulations
in later articles, they appear to mean that 80% of the CMB would be the same between
different cosmic realizations.

5This rapid exchange, with 8 articles following each other in rapid succession in response
to each other, all in the space of half a year, and the first 5 within one month, is an example
of how preprint-services can drastically reduce the scientific turn-around time compared to
traditional journals.
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finitely many samples be distributed according to [64]:

P(x < K) =FKS(
√

NsampK) (6.1)

FKS(x) =1 − 2
∞

∑
i=1

(−1)i−1e−2i2x2
. (6.2)

This relation can then be used to test the hypothesis that a set of samples
were drawn from a given distribution. However, the pixels si within the
1.5◦ CMB disks do not fulfil the criterion of being independently identi-
cally distributed due to the CMB anisotropies’ correlatedness6, which are
described in pixel space by the covariance Si j + Ni j as provided by equa-
tion (5.8) and the noise properties of the experiment. But it is possible to

whiten s and thus make it eligible for the test: The vector s′ ≡ S− 1
2 s will

follow the distribution N(0, 1), and thus be independently identically dis-
tributed if s ∼ N(0, S + N).

After applying the K-S test to the s′ of all 104 disks with N(0, 1) as
the theoretical distribution I found a result fully consistent with the CMB
anisotropies being fully described as a random Gaussian distribution with
an angular power spectrum Cl given by the ΛCDM best fit to the WMAP
7-year data. This result is clearly incompatible with Gurzadyan et al. [65],
where the K-S test consistently failed. I was, however, able to reproduce
their K-S failure by ignoring the correlations, and instead testing s against
N(µ,σ2), where µ and σ are the measured mean and standard deviation of
s respectively. This strongly suggests that Gurzadyan et al. [65]’s claim of a
“weakly random” CMB stems from incorrectly ignoring the covariance of
the CMB.

6Ignoring these correlations amounts to assuming a flat angular power spectrum.
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Chapter 7

Summary and outlook

CMB B-modes provide the most promising avenue for detection of the pri-
mordial tensor fluctuations predicted by inflation. Such a detection would
in addition to validating inflation itself constitute a probe of physics at far
higher energies than those reachable in particle colliders. So far, no exper-
iment has been able to detect B-modes, which implies that the tensor-to-
scalar ratio must be less than 0.7. This limit is still worse than the limit of
r < 0.2 from T and E-modes, but this is likely to change with future B-mode
experiments.

One of the current experiments aiming to measure B-modes is QUIET.
QUIET’s defining feature is its use of large, compact arrays of coherent
amplifier detectors. Until recently, such arrays of microwave polarimeters
were only practical with bolometers. However, a recent breakthrough has
allowed the miniaturization of coherent amplifier detectors to a polarimeter-
on-a-chip format, and QUIET is the first deployment of these in the field.
In addition to the measurement of B-modes itself, one of QUIET’s goals is
therefore to demonstrate the viability of these detectors for high-precision
CMB measurements.

After deploying in 2008, QUIET observed in the Q- and W-bands until
the end of 2010, resulting in measurements of the CMB E- and B-modes in
the multipole range 25 < l < 1000. The W-band measurements provide
world record sensitivity between l = 150 and l = 400. QUIET did not
observe any CMB B-modes, resulting in limits of r < 2.2 (Q) and r < 2.8
(W) at 95% confidence. While these are wider than the best limits avail-
able, QUIET’s results are demonstrated to have very low systematic errors,
corresponding to r < 0.1.

A first step towards this sensitivity will be taken by combining the Q-
and W-band data sets into a single estimate on r, which will be performed
in a future article. This will provide an approximate factor of 2 improve-
ment. To go beyond this, more observations are needed. With the viability
of the detectors validated, plans are underway for a full deployment of this
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technology as QUIET-2.
QUIET 2 would include 500-1000 detector modules, for a total of 2000-

4000 concurrent polarization measurements. The majority of these will
be W-band detectors with significantly improved sensitivity compared to
those used in the current QUIET experiment. This will allow QUIET-2 to
reach statistical errors of r � 0.01 or better, which is enough to rule out all
large-field models of inflation and some small-field models [7].

However, to reach this level, it is clear that it will no longer be possi-
ble to ignore foregrounds. Polarized component separation will be needed,
and that requires sensitive polarization maps at multiple frequencies and
a better understanding of the behavior of polarized foregrounds. QUIET 2
will include detectors sensitive in the Ka-low, Ka-high and W-band, which
in principle is enough to disentangle CMB, synchrotron and dust. Addi-
tionally, Q-band measurements in the same patches will be provided by
the FOCUS experiment, a planned re-deployment of the existing QUIET
Q-band array, which is currently the most sensitive array in this frequency
band.1

Though foregrounds are a nuisance for CMB measurements, they are
interesting from an astrophysical perspective. The current QUIET exper-
iment includes two foreground-dominated patches in the galactic plane.
The maps of these patches, which represent some of the most sensitive mi-
crowave polarization measurements of the galaxy, will be the subject of a
future QUIET foreground paper.

A strength of the maximum likelihood analysis pipeline described in
this thesis is its production of unbiased maps with fully quantified statis-
tical properties. This makes the maps useful in their own right instead of
simply being an intermediate step before power spectrum estimation. The
maximum likelihood pipeline will therefore be central in the QUIET fore-
ground analysis both for the current QUIET and for the future QUIET-2.

1Other upcoming experiments will also improve our knowledge of foregrounds:

• C-Bass is currently making polarization maps of the full sky in the C-band (5 GHz).
These will essentially be 100% synchrotron radiation with very high signal-to-noise
due to synchrotron’s steep spectral index.

• Planck will produce full-sky polarization maps at a large number of frequencies be-
tween 30 GHz and 857 GHz. While these will have low S/N for the CMB polariza-
tions, Planck will have good S/N for dust and synchrotron.
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Abstract

A recent application of the Kolmogorov-Smirnov test to the WMAP 7 year W-band maps claims evidence that the
CMB is “weakly random”, and that only 20% of the signal can be explained as a random Gaussian field. I here repeat
this analysis, and in contrast to the original result find no evidence for deviation from the standard ΛCDM model.
Instead, the results of the original analysis are consistent with not properly taking into account the correlations of the
ΛCDM power spectrum.

Key words. cosmic background radiation

1. Introduction

In astronomical data analysis, it is often useful to be able
to test whether a set of data points follows a given dis-
tribution or not. For example, many analysis techniques
depend on instrument noise being Gaussian, and to avoid
bias, one must check that this actually is the case. There are
many different ways in which two distributions can differ,
and correspondingly many different ways to test them for
equality. The simplest ones, such as comparing the means
or variances of the distributions, suffer from the problem
that there are many ways in which distributions can differ
that they cannot detect no matter how many samples are
available. For example, samples from a uniform distribution
can easily pass as Gaussian if one only considers the mean
and variance.

The popular Kolmogorov-Smirnov test (K-S test) re-
solves this problem by considering the cumulative distribu-
tion functions (CDF) instead: Construct the empirical CDF
of the data points and find its maximum absolute difference
K from the theoretical CDF. Due to the limited number of
samples, the empirical CDF will be noisy, and K will there-
fore be a random variable with its own CDF, which in the
limit where the number of samples goes to infinity is given
by

P (x < K) = FKS(
√

NobsK) (1)

with

FKS(x) = 1 − 2
∞
∑

i=1

(−1)i−1e−2i2x2

. (2)

In contrast with the simplest tests, this test can detect any
deviation in the distributions, but may require a large num-
ber of samples to do so, especially in the tails of the distri-
bution.

Recently, a series of papers (Gurzadyan et al. 2011;
Gurzadyan & Kocharyan 2008; Gurzadyan et al. 2010)

has applied this test to WMAP’s cosmic microwave back-
ground (CMB) maps, resulting in the remarkable claim
that the CMB is “weakly random”, with only 20% of the
CMB signal behaving as one would expect from a ran-
dom Gaussian field. This result went on to be used in
a much discussed series of papers (Gurzadyan & Penrose
2010a,b, 2011) claiming a strong detection of concentric
low-variance circles in the CMB, which was taken as evi-
dence for Conformal Cyclic Cosmology. Other groups failed
to significantly detect the circles (Wehus & Eriksen 2010;
Moss et al. 2011; Hajian 2010). The difference in signif-
icance was due different CMB models: Wehus & Eriksen
(2010); Moss et al. (2011); Hajian (2010) used realizations
of the best-fit ΛCDM power spectrum, while Gurzadyan &
Penrose (2010b) used a “weakly random” CMB model.

Both in order to resolve this issue, and because a weakly
random universe would be a strong blow against the ΛCDM
model in its own right, it is important to test this result.

2. Method

Before applying the K-S test, one must be aware of its lim-
ited area of validity: Equation (1) requires an infinite num-
ber of independently identically distributed samples, while
CMB maps actually consist of a limited number of corre-
lated samples. However, both the correlations and number
of samples can be compensated for, as we shall see.

2.1. Application of the K-S test to correlated data

Though the K-S test is not immediately applicable to a
correlated data set, it is possible to perform an equivalent
test on a transformed set of samples. The question we are
trying to answer with the K-S test is “Do the samples follow
the theoretical distribution?”. The truth or falseness of this
is preserved if we apply the same transformation to both
the samples and the distribution we test them against, and
to be able to use the K-S test, the logical transformation
to use is a whitening transformation, which results in an
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Figure 1. ΛCDM two point correlation function after
applying the WMAP W-band beam and the HEALPix
(Górski et al. 2005) nside 512 pixel window.

independent, identical distribution for the samples. With
original samples d with covariance matrix C, the whitened
(uncorrelated with unit variance) samples r are given by:

r = C−
1

2 d (3)

Thus, to test whether the data points d ← N(0,C), we can
test the equivalent hypothesis r ← N(0,1).

In the case of CMB maps, both the data itself and the
noise is expected to be Gaussian, so the obvious theoretical
distribution here is N(0,S + N), where the CMB signal
covariance matrix S is given by the two-point correlation
function:

Sij =

∞
∑

l=0

√

2l + 1

4π
ClBlPl(cos(|pi − pj|)) (4)

Pl(x) are the Legendre polynomials normalized to 1

2π
, and

pi and pj are the direction vectors for pixel i and j in the
disk. Cl is the ΛCDM angular power spectrum, while Bl

accounts for the beam and pixel window. N is instrument
dependent, but for the WMAP W-band CMB map we will
use here, the noise is nearly diagonal, and given by the
corresponding W-band RMS map.

2.2. Application of the K-S test with few samples

The other problem we need to account for is our finite
number of samples. In this case equation (1) is only ap-
proximate. For most uses of the test, this approximation is
good enough, especially when employing analytical expres-
sions for improving the quality of the approximation for low
numbers of samples (von Mises 1964). For example, when
performing a single test to accept or reject a test distribu-
tion, a bias of a few percent in the confidence with which
the hypothesis is rejected is not important.

However, when making statistics for a large number of
such test results, such a bias may make the results ambigu-
ous. Given a set of experiments with a corresponding set of
maximum deviations {Ki}, the corresponding probabilities
{pi = P (x < Ki)} should be uniformly distributed if the
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Figure 2. When applying the K-S test to samples known
to come from the correct distribution, the resulting val-
ues {pi = P (x < Ki)} should be uniformly distributed,
but when working with a limited number of samples,
the Kolmogorov distribution is only approximate, and the
actual CDF of the results, G(p), differs from the ideal
G∞(p) = p. This is shown in the upper panel for the case
of 540 samples per experiment, where G(p) is the solid line
and G∞(p) is dashed. The lower panel shows the deviation
between the two, which is of the order of 1% in this case
(but larger with fewer samples).

samples actually follow the theoretical distribution, and a
histogram of {pi} should therefore be flat. Deviations from
this indicate that the theoretical distribution does not ac-
curately describe the samples. However, the approximate
equation (1) also introduces a small non-uniformity in {pi}
even if the samples actually do follow the distribution. To
avoid the ambiguity this causes, we will instead compute a
numerical correction function mapping the approximate p
to the true p′. 1

To build up the correction, we simulate a large number2

of experiments, each with the same number of samples as
the actual data set, but drawn directly from the theoretical
distribution. Thus, for these, {pi} should be uniform, with a
CDF of G∞(p) = p. However, since equation (1) is inexact,
for small numbers of samples, the actual CDF is G(p) �=
G∞(p). The mapping between the approximate p and true
p′ is given by G(p) = G∞(p′) ⇒ p′ = G−1

∞
(G(p)) = G(p).

Thus, for a limited number of samples

P (x < K) = G(FKS(
√

NobsK)). (5)

Figure 2 illustrates the correction function for 5 · 106 simu-
lations of 540 each. For this many samples, the correction
is only of the order of 1%.

1 What we do here is essentially replacing the analytical
Komolgorov distribution (equation (1)) with a numerical dis-
tribution. This could also be done without using the analytical
distribution as a basis, at a small cost in clarity.

2 The number necessary depends on the level of accuracy
desired. The noise in the estimate of G(p) propagates to the
final results. To make this a subdominant noise contribution,
the number of simulations should be at least as large as the
number of actual experiments, preferably much higher.
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Figure 3. A randomly selected disk before (left) and after
(right) the whitening operation. The samples are strongly
correlated and thus unsuitable for the K-S test before the
transformation, but afterwards no correlations are visi-
ble and the variance is 1. Note that whitening the data
does not mean that we are “forcing” the K-S test to pass.
The whitened data will only end up matching N(0, 1) af-
ter whitening if they followed our theoretical distribution
N(0,C) before.

3. Does ΛCDM fail the K-S test?

With this in hand we can finally apply the K-S test on CMB
data. Following Gurzadyan et al. (2011), we randomly pick
10 000 disks with a radius of 1.5 degrees from the WMAP
7 year W-band map (Jarosik et al. 2011), with the region
within 30 degrees from the galactic equator excluded. Each
disk contains on average 540 pixels, which are whitened us-
ing equation (3). A typical disk before and after the whiten-
ing operation can be seen in Fig. 3. After whitening, the
values should follow the distribution N(0, 1) if our model
is correct.

The histogram of resulting probabilities {pi = P (x <
Ki)} from of applying equation (5) to the hypothesis r ←
N(0,1) is shown in Fig. 4, together with the 68% and
95% intervals from 300 simulations. The data and simu-
lations are consistent, and follow a uniform distribution as
expected3: The CMB map is fully consistent with ΛCDM
+ WMAP noise as far as the K-S test is concerned.

This is dramatically different from the curve found by
Gurzadyan et al. (2011), which was strongly biased towards
low values. Low values of P (x < K) would mean that the
empirical CDF of the samples matches the theoretical one
too well, i.e. even better than samples drawn directly from
the theoretical distribution.

What could cause Gurzadyan et al. to get results so dif-
ferent from ours? One way biasing P (x < K) low is by bas-
ing the parameters of your test distribution on the values
themselves. However, even without doing this, it is possible
to get low values if the values used in the K-S test are cor-
related. This is also consistent with the presentation given
by Gurzadyan et al. (2011) who apparently applied the K-S
test directly to the raw samples d, or equivalently, that they
model the pixel values as coming from a 1-dimensional dis-

3 It should be noted that the histogram bins are not com-
pletely independent for two reasons: Firstly, some disks are go-
ing to overlap, meaning that the same samples enter into several
different K-S tests, and secondly, while our transformation has
made the samples within each disk independent, the correlation
between different disks is still present.
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Figure 4. Histogram of results of the K-S test. Each panel
compares the results from properly taking the correlations
into account (solid line) with those one gets from ignor-
ing them (dashed line), together with 68% and 95% inter-
vals (dotted lines) from simulations. The upper panel corre-
sponds to using samples further than 30 degrees away from
the galactic equator, while the lower panel instead uses the
WMAP KQ85 analysis mask. In both cases, both the map
and the simulations pass the K-S test when taking the cor-
relations into account, while if the are ignored, the K-S test
fails in the same way Gurzadyan et al. (2011) reported.

tribution. To check this, I repeated the analysis, this time
using the theoretical distribution d ← N(µ, σ2), where µ
and σ2 are the measured mean and variance of the samples
in the disk. The result is also shown in Fig. 4. This time,
the bias towards low values is clearly recreated.

It therefore seems likely that Gurzadyan et al.’s re-
ported “weak randomness” is the result of not properly tak-
ing the CMB’s correlations into account. One is, of course,
free to use whatever distribution one wants as the theo-
retical distribution in a K-S test, even a model where the
CMB pixels are independently identically distributed, with
no correlations at all. The problem lies in the interpreta-
tion of the test results. For Gurzadyan et al. (2011), the K-S
test results are clearly not uniform, indicating that the cho-
sen theoretical distribution has been disproven. However,
Gurzadyan et al. then go on to create a set of simulations
(linear combinations of 20% Gaussian and 80% static sig-
nal) that fail the test in the same way as the WMAP map
does. But having two sets of samples fail the K-S test the
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same way does not prove that they have the same proper-
ties. It simply means that the chosen test distribution was
a poor choice.

4. Kolmogorov maps

While Gurzadyan et al.’s Kolmogorov statistics are bi-
ased by not taking the correlations into account, the ap-
proach of making sky maps of K-S test results introduced in
Gurzadyan et al. (2009) is still an interesting way to search
for regions of the sky that do not follow the expected dis-
tribution. Making an unbiased Kolmogorov map straight-
forwardly follows the procedure in Sect. 3, with the main
difference being the selection of pixels. Instead of randomly
selecting disks, we now systematically go through nside 16
pixels, using the 1024 nside 512 subpixels inside each one
as the samples. These are then tested against N(0,C) by
whitening them via equation (3) and then comparing the
whitened samples to N(0, 1).

The result is the nside 16 map of P (x < K) shown in
Fig. 5. Regions that pass the test have a value uniformly
distributed between 0 and 1, and we see that this applies
to the CMB-dominated areas of the sky, while areas domi-
nated by the galaxy fail the test as expected.

For comparison, Fig. 5 also includes the result of mak-
ing the same map while ignoring correlations. In this case,
the whole sky fails the test: The CMB-dominated areas are
biased low, while the galaxy is biased high. This map is sim-
ilar to the map in Gurzadyan et al. (2009), which is also
too low outside the galaxy, and too high inside, which is,
again, consistent with Gurzadyan et al. applying the K-S
test directly to the raw samples.

5. Summary

The Kolmogorov-Smirnov test is a useful and general way
of testing whether a data set follows a given distribution or
not. However, it only applies to independently identically
distributed samples. The CMB is strongly correlated, and
thus not immediately compatible with the test. However,
this can be resolved by the application of a whitening trans-
formation, replacing the hypothesis d ← N(0,C) with the

equivalent C−
1

2 d ← N(0,1). With this, we find that the
ΛCDM passes the K-S test. This is incompatible with the
original analysis by Gurzadyan et al. (2011), which claimed
detection of an unknown non-random component making
up 80% of the CMB based on the CMB failing the K-S test
there. It turns out that this analysis did not take the CMB
correlations into account, which we confirm by producing
the same failure of the K-S test when we skip the whitening
step. When the correlations are handled properly, there is
no need for a weakly random universe.
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