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ABSTRACT

We present the first space-based microlens parallax measurement of an isolated star. From the striking differences
in the lightcurve as seen from Earth and from Spitzer (~1 AU to the west), we infer a projected velocity

~ -ṽ 250 km shel
1, which strongly favors a lens in the Galactic Disk with mass =  M M0.23 0.07 and distance

= D 3.1 0.4 kpcL . An ensemble of such measurements drawn from our ongoing program could be used to
measure the single-lens mass function including dark objects, and also is necessary for measuring the Galactic
distribution of planets since the ensemble reflects the underlying Galactic distribution of microlenses. We study the
application of the many ideas to break the four-fold degeneracy first predicted by Refsdal 50 years ago. We find
that this degeneracy is clearly broken, but by two unanticipated mechanisms: a weak constraint on the orbital
parallax from the ground-based data and a definitive measurement of the source proper motion.

Key words: gravitational lensing: micro

1. INTRODUCTION

When modern microlensing experiments were proposed
toward the Large Magellanic Cloud (Paczyński 1986) and the
Galactic Bulge (Paczyn ́ski 1991; Griest et al. 1991), it was
believed that the only information that could be extracted about
the lens massM, distance DL, and transverse motion μgeo would
come through their combination in a single measured
parameter, the Einstein timescale,
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Here qE is the angular Einstein radius, = -- -π D DAU( )L Srel
1 1

is the lens–source relative parallax, and μgeo is the lens–source
relative proper motion in the Earth frame at the peak of the
event. This would imply, in particular, that individual masses
could be estimated only to within an order of magnitude (e.g.,
Figure 1 of Gould 2000a).

It was quickly realized, however, that if two additional
potentially observable quantities could be measured, qE and the
“microlens parallax vector”


πE, then these three quantities

could be disentangled (Gould 1992),
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In modern notation, the microlens parallax vector is given by

(Gould 2000b),
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Its amplitude quantifies the lens–source relative displacement
in the Einstein ring due to motion of the observer, while its
direction specifies the orientation of this displacement as the
event evolves. Hence,


πE is in principle measurable from

photometric deviations of the event relative to what is expected
from rectilinear motion. See Figure 1 of Gould & Horne (2013)
for a didactic explanation.
While both qE and


πE are important, measurements of


πE are

more pressing for the following three reasons. First, qE is very
frequently measured “automatically” in planetary and binary
events. Hence, πE is the crucial missing link to obtain
individual masses for these high priority events, i.e., those
for which individual masses are the most important. Second, qE
is very rarely measurable in single-lens events, which means
that measuring πE is the best way to obtain strong statistical
constraints on masses of the much larger population of (dark
and luminous) single lenses. Third, while πE and qE appear
symmetrically in Equation (2), πE is actually much richer in
information than qE. This is because the great majority of lenses
observed toward the Galactic Bulge have similar proper
motions within a factor ∼2 of ~ -μ 4 mas yr 1. Thus, in the
limit that all microlens proper motions had exactly this value, a
measurement of q = μtE E would contain no additional
information, while πE would completely determine the mass

k=M μt πE E. Although this limit does not strictly apply, an
ensemble of πE measurements would constrain the mass
function very well (Han & Gould 1995).

The Astrophysical Journal, 802:76 (10pp), 2015 April 1 doi:10.1088/0004-637X/802/2/76
© 2015. The American Astronomical Society. All rights reserved.

10 Sagan Fellow.
11 Sagan Visiting Fellow.

1

http://dx.doi.org/10.1088/0004-637X/802/2/76


There are two broad classes of methods by which parallax
might be measured. The first is to make a single time series
from an accelerated platform, either Earth (Gould 1992; Alcock
et al. 1995; Poindexter et al. 2005) or a satellite in low-Earth
(Honma 1999) or geosynchronous (Gould 2013) orbit. The
second is to make simultaneous observations from two (or
more) observatories, either on two platforms in solar orbit
(Refsdal 1966), or located at several places on Earth (Hardy &
Walker 1995; Holz & Wald 1996; Gould 1997). However, with
one exception, all of these methods are either subject to
extremely heavy selection bias or are impractical for the present
and near future. In particular, out of more than 10,000
microlensing events discovered to date, fewer than 100 have
πE measurements derived from Earth’s orbital motion, and
these are overwhelmingly events due to nearby lenses and with
abnormally long timescales (e.g., Table 1 of Gould et al. 2010).
Only two events have terrestrial parallax measurements (Gould
et al. 2009; Yee et al. 2009), and Gould & Yee (2013) showed
that these are subject to even more severe selection so that even
the two recorded measurements is unexpectedly high.

Hence, the only near-term prospect for obtaining a statistical
sample of microlens parallaxes from which to derive an
unbiased mass function, as originally outlined by Han & Gould
(1995), is by combining Earth-based observations with those of
a satellite in solar orbit. There are several major benefits to such
a study. First, it is the only way to obtain a mass-based census
of stellar, remnant, and planetary populations. Several
components of this population are dark or essentially dark
including free-floating planets, brown dwarfs, neutron stars,
and black holes and therefore are essentially undetectable by
any other method unless they are orbiting other objects. In
addition, even the luminous-star mass function of distant
populations (e.g., in the Galactic Bulge) is substantially more
difficult to study photometrically than is generally imagined.

For example, a large fraction of stars are fainter components in
binary systems, with separations that are too small to be
separately resolved, but whose periods are too long (or
primaries too faint) for study by the radial velocity technique.
In 2014, we were granted Director’s Discretionary Time for

a 100 hr pilot program to determine the feasibility of using
Spitzer as such a parallax satellite for microlenses observed
toward the Galactic Bulge. The main objective of this program
was to measure lens masses in planetary events. However,
especially in view of the fact that there is generally no way to
distinguish such planetary events from single-lens events in
advance, a secondary goal was to obtain parallaxes for an
ensemble of single-lens events. Prior to this program, there had
been only one space-based parallax measurement, which was
for a binary lens toward the Small Magellanic Cloud, OGLE-
2005-SMC-001 (Dong et al. 2007).
Here we report on the first space-based parallax measure-

ment of an isolated lens, OGLE-2014-BLG-0939 L. This
measurement serves as a pathfinder and as a benchmark to
test ideas that have been discussed in the literature for almost
50 years about how to resolve degeneracies in such events.

1.1. Degeneracies in Space-based Microlens Parallaxes

As already pointed out by Refsdal (1966), space-based
microlensing parallaxes are subject to a four-fold discrete
degeneracy. This is because, to zeroth order, the satellite has a
fixed separation from Earth projected on the plane of the sky

^D , and hence they measure identical Einstein timescales
= = Åt t tE E,sat E, . Since the flux evolution F(t) of a single-lens

Figure 1. Lightcurve of OGLE-2014-BLG-0939 as seen by OGLE from Earth
(black) and Spitzer (red) ~1 AU to the west. While both are well-represented
by Paczyński (1986) curves (blue), they have substantially different maximum
magnifications and times of maximum, whose differences yield a measurement
of the “microlens parallax” vector


πE. The dashed portion of the Spitzer curve

extends the model to what Spitzer could have observed if it were not prevented
from doing so by its Sun-angle constraints. Light curves are aligned to the
OGLE I-band scale (as is customary), even though Spitzer observations are at
3.6 μm. Lower panel shows residuals.

Table 1
μLens Parameters (Free FB)

Parameter Unit - +u0, , - -u0, , + +u0, , + -u0, ,

c2 dof L 273.1/ 273.7/ 281.5/ 290.2/

265 265 265 265
-t 68000 day 36.22 36.20 36.06 35.95

L 0.11 0.11 0.11 0.11
u0 L 0.922 −0.913 0.897 −0.843

L 0.132 0.129 0.125 0.110
tE day 22.87 22.99 22.91 23.87

L 2.14 2.12 2.10 2.04
πE,N L −0.248 0.220 −1.370 1.325

L 0.072 0.067 0.172 0.158
πE,E L 0.234 0.238 −0.060 0.024

L 0.028 0.030 0.025 0.018
ṽhel,N km s−1 −162.3 156.9 −55.5 54.2

L 7.2 5.5 2.2 2.1
ṽhel,E km s−1 181.6 199.7 26.6 29.9

L 37.2 39.5 0.7 0.8
FS,OGLE L 13.20 12.95 12.51 11.09

L 3.77 3.63 3.42 2.75
FB,OGLE L −2.19 −1.93 −1.49 −0.08

L 3.77 3.62 3.42 2.75
F SpitzerS, L 4.31 4.37 3.32 3.30

L 1.10 1.12 0.72 0.69
F SpitzerB, L −0.08 −0.15 0.96 1.02

1.21 1.22 0.81 0.79

2

The Astrophysical Journal, 802:76 (10pp), 2015 April 1 Yee et al.



microlensing event is given by (Paczyn ́ski 1986),
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they are therefore distinguished only by different times of peak
t0 and different impact parameters u0 (in addition to the
nuisance parameters FS and FB, the source and blended-light
fluxes, respectively). The microlens parallax


πE can nominally

be derived from these differences,
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where D = - Åt t t0 0,sat 0, , D = - Åu u u0 0,sat 0, , and where the
x-axis of the coordinate system is set by the Earth–satellite
vector ^D . The problem is that while Dt0 is unambiguously
determined from this procedure, u0 is actually a signed quantity
whose amplitude is recovered from simple point-lens events
but whose sign is not (since it appears only quadratically in
Equation (4)). Hence, there are two solutions
D =  --  Å∣ ∣ ∣ ∣u u u( ) )0, , 0,sat 0, for which the satellite and
Earth observe the source trajectory on the same side of the lens
as each other (with the “± ” designating which side this is),
and two others D =  ++  Å∣ ∣ ∣ ∣u u u( ) )0, , 0,sat 0, for which the
source trajectories are seen on opposite sides of the lens
(Gould 1994, Figure 1).

For most applications, only the second of these two
degeneracies is important. That is, the two solutions D - u0, ,

have the same amplitude of parallax πE (as do the two solutions
D + u0, , ) and so yield the same lens mass and distance. In each
case, the solutions differ only in the direction of lens–source
motion, which is usually not of major interest. However, the
two sets of solutions can yield radically different πE. Hence, if
these sets of solutions really cannot be distinguished, the value
of the parallax measurement is seriously undermined. As a
result, considerable work has been applied over two decades to
figuring out how to break these degeneracies.

Before reviewing this work, however, one should note an
important exacerbation of the underlying problem. If the four
solutions are placed in the D Dt t u( , )0 E 0 plane, they of course
all lie along a vertical line of constant Dt0. As pointed out by
Gould (1995), the error ellipses are also elongated in the
vertical direction. This is because u0 is strongly correlated with
the nuisance parameters FS and FB (since all three enter
Equation (4) symmetrically in -t t( )0 ) while t0, which enters
anti-symmetrically, is not strongly correlated with other
parameters. This continuous degeneracy enhances the prob-
ability that the discretely degenerate solutions will overlap and
become a continuous degeneracy.

Four ideas have been proposed to break the Du0 four-fold
degeneracy.

1.1.1. Measurement of DtE

Gould (1995) proposed to break the degeneracy by using the
fact that the Earth–satellite separation changes with time, and
therefore ¹ Åt tE,sat E, . For near-circular, near-ecliptic orbits
(characteristic of both Spitzer and Kepler), this works quite
well for targets near the ecliptic poles (Boutreux & Gould 1996)
because the difference in timescalesDtE is directly proportional
toDu0. However, it becomes increasing problematic for targets

close to the ecliptic, like the Galactic Bulge (Gaudi &
Gould 1997), because for targets directly on the ecliptic, DtE
does not depend at all on Du0 to linear order. That is, Du0
completely disappears from Equation (2.3) of Gould (1995).

1.1.2. Photometric Alignment of Space and Ground Observations

Gould (1995) also proposed to equip the satellite with a
camera having identical photometric response to one on the
ground, which would guarantee that = ÅF FS S,sat , and so
effectively insulateD - u0, , from uncertainties in FS by forcing
the two D - u0, , solutions to move together in a highly-
correlated way as FS is varied over its allowed range. While
this idea would be quite difficult to implement, Yee et al.
(2012) demonstrated that observations in different bands could
be aligned quite tightly with each other based on color–color
diagrams of reference stars. As a practical matter, it is not
obvious that this technique can be applied to Spitzer
observations because Yee et al. (2012) predicted FS for a
certain band by interpolating between two other measured
bands, whereas predicting Spitzerʼs μ3.6 m FS requires
considerable extrapolation from ground-based bands.

1.1.3. Combining 1D Parallaxes from Space and Ground

Gould (1999) suggested that the robust one-dimensional
(1D) parallax information along the ^D (i.e., Dt0) direction
from Earth–satellite observations could be combined with
robust 1D information along the direction of Earth’s projected
acceleration from ground-based observations (Gould
et al. 1994) to break the Du0 degeneracy. This idea was
specifically motivated by the possibility of Spitzer parallax
observations toward the Magellanic Clouds, which are at high
ecliptic latitude where these two directions are nearly
orthogonal. As he noted, it is substantially more difficult to
apply this approach toward the Bulge where the two directions
are close to parallel.

1.1.4. High-magnification Events (As Seen From Earth)

Gould & Yee (2012) pointed out that for sufficiently high-
magnification events as observed from Earth Å ∣ ∣u( 1)0, , we
have Å ∣ ∣ ∣ ∣u u0, 0,sat and therefore D D-  + ∣ ∣ ∣ ∣u u0, , 0, , , so
that there is no degeneracy in the amplitude of


πE, although the

direction degeneracy persists. Moreover, if one of the satellite
observations were actually made near Åt0, , then only 1–3
satellite observations would be required. They therefore
advocated targeting such events. However, since OGLE-
2014-BLG-0939 was not a high-magnification event, this idea
is not directly relevant here and is included only for
completeness.
Because this is the first space-based parallax measurement

for a single-lens event, we systematically study the role of all
these ideas (except the last) for both characterizing and
breaking the degeneracies in practice. We note at the outset that
two of these methods are adversely affected by the Bulge being
close to the ecliptic, and that this problem is more pronounced
for OGLE-2014-BLG-0939 than for typical events because it
lies just + ◦2 . 0 from the ecliptic, i.e., about 3 times closer to it
than Baade’s Window.

3
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2. OBSERVATIONS

2.1. OGLE Observations

On 2014 May 28, the Optical Gravitational Lens Experiment
(OGLE) alerted the community to a new microlensing event
OGLE-2014-BLG-0939 based on observations with the 1.4
deg2 camera on its 1.3 m Warsaw Telescope at the Las
Campanas Observatory in Chile using its Early Warning
System real-time event detection software (Udalski et al. 1994;
Udalski 2003). Most observations were in I band, but with
three V band observations during the magnified portion of the
event to determine the source color. At equatorial coordinates
(17:47:12.25, −21:22:58.7), this event lies in OGLE field
BLG630, which implies that it is observed at relatively low
cadence, roughly once per two nights.

2.2. Spitzer Observations

The structure of our Spitzer observing protocol is described
in detail in Section 3.1 of Udalski et al. (2014). In brief,
observations were made during 38 2.63 hr windows between
HJD¢ º HJD - =2450000 6814.0 and 6850.0. Each observa-
tion consisted of six dithered 30 s exposures in a fixed pattern
using the 3.6 μm channel on the IRAC camera. Observation
sequences were uploaded to Spitzer operations on Mondays at
UT 15:00, for observations to be carried out Thursday to
Wednesday (with slight variations). As described in Udalski
et al. (2014), JCY and AG balanced various criteria to
determine which targets to observe and how often. In general,
there were too many targets to be able to observe all viable
targets during each epoch.

At the decision time (June 2 UT 15:00, HJD¢ 6811.1) for the
first week of Spitzer observations, OGLE-2014-BLG-0939 was
poorly understood, with acceptable fits having Earth-based

peaks over the range  Åt6807 68450, , i.e., from well
before to (effectively, see below) the end of the Spitzer
observing interval. Nevertheless, it was put in the “daily”
category and observed during all eight epochs, in part because
the source was bright, implying good precision Spitzer
photometry. The following week, it was degraded to “low”
priority because it was unclear that it would have low enough
u0 for an effective parallax measurement, and if u0 were low
enough, the peak would be well in the future. However, due to
a transcription error, it was left in the “daily” file and observed
during all six epochs. By upload time for the third week it was
clear first that Åt0, would occur during or near these
observations and second that the amplitude would be low
(i.e., relatively high impact parameter ~Åu 10, ). These
considerations pulled in opposite directions, resulting in
“moderate” priority and so observations during six out of
eight epochs. The fact that the predicted peak (from Earth) was
expected to occur at the beginning of the fourth week led to
classifying the event as “daily”, and so it was observed in all
seven epochs. Because OGLE-2014-BLG-0939 lies relatively
far to the west, it moved out of the Spitzer observing window
(set by the Sun angle) during the final week. Hence it was
observed during all four of the available epochs (out of eight
total). Hence, OGLE-2014-BLG-0939 was observed relatively
uniformly, close to once per day, during the entire interval that
it was observable, from 6814.1 to 6845.7.

3. LIGHTCURVE ANALYSIS

The analysis of the lightcurve is straightforward because the
magnification for a single-lens can be written in closed form
(Equation (4)), i.e., = + +A u u u( 2) ( 4 )2 4 2 1 2. While the
argument u in this equation is not as simple as in the case of
rectilinear motion illustrated in Equation (4), the deviations
from that formula due to Earth’s motion are easily incorporated
(Gould 2004). Spitzerʼs offset from the center of Earth is
treated just as any other observatory, except that it is much
larger, i.e., of order AU rather than ÅR . We adopt the inertial
frame that is coincident with the position and velocity of Earth
at the peak of the event, i.e., ¢ =HJD 6836.06. Any frame will
yield equivalent results (after a suitable transformation of
parameters). However, this (quite standard) geocentric frame
permits direct comparison with the results from Earth-only
observations, which turns out to be crucial to understanding the
degeneracies.
As expected (Refsdal 1966), the fit yields four distinct

minima, which are listed in Table 1. The best fit is shown in
Figure 1. The remaining three fits look almost identical and so
are not shown to avoid clutter.
We note that the degeneracy between the D - u0, , and

D + u0, , is marginally broken, with the latter two disfavored by

cD = 82 and 17, respectively. However, the two D - u0, ,
solutions are consistent with each other at s<1 .
In Table 1, we have fit with blending as a free parameter for

both observatories. The results show that for the preferred
solutions, the best-fit blending for OGLE is negative but
consistent with zero at the s1 level. A low level of negative
blending is permitted because the baseline photometry is
carried out against a mottled background of unresolved turnoff
stars, and the source can in principle land on a “hole” in this
background. However, plausible levels of negative blending
due to this effect are ~ -F 0.2S (on a flux scale of I = 18
corresponding to one flux unit), which is an order of magnitude

Figure 2. Four-fold degeneracy in the heliocentric projected velocity
= + Å ^v v v˜ ˜hel geo , where =


π π tṽ AUgeo E,geo E

2
E and Å ^v , is the velocity of

Earth projected on the sky at the peak of the event. Solutions are labeled
 ( , ) by their Du0 degeneracy. Two smaller ṽhel + ( , ) are disfavored by
cD = 82 and 17. Note that the error ellipses for these are quite small and partly

obscured by the “arrow heads”. The dashed curves show the s1 error for the
expected direction ṽhel (same as μhel) based on the measured proper motion of
the source and the assumption that the lens is in the Galactic Disk. This proper
motion measurement decisively breaks the degeneracy.
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smaller than what is observed. The most likely explanation is
that the blending is very small or zero and has fluctuated below
zero in the fit because of the relatively large errors in this
quantity, which are typical for low-amplitude microlensing
events.

In addition to the parameter values, in Table 1 we also list
the heliocentric projected velocity ṽhel,

= + =Å ^


π

π t
v v v v˜ ˜ ; ˜

AU
, (6)hel geo , geo

E,geo

E
2

E,geo

where -Å ^
-v (N, E) ( 0.5, 28.9) km s,

1 is the projected
velocity of Earth at the peak of the event and where we have
explicitly noted that


πE and tE are evaluated in the geocentric

frame (as in Table 1). Figure 2 shows the projected velocities
and s1 error ellipses for each of the four solutions.

We also show in Table 2 the parameter values and errors
under the assumption that FB = 0. As expected from the fact
that FB was consistent with zero, the central values hardly
change after application of this restriction. Note also that while
the errors in u0, tE, and π EE, (all of which are strongly
correlated with FB) shrink dramatically under this assumption,
the errors in ṽhel hardly change. This is because the east
component of ṽhel (the one that is heavily correlated with tE) is
directly determined from Dt0 together with the physical
separation between Spitzer and Earth at the times of the
respective peaks, both of which are direct empirical quantities,
which do not depend on the fitted Einstein timescale tE.

4. INTERPRETATION

Here we illustrate the power of measuring πE for estimating
the mass and distance, even when qE is not measured or

constrained by considering the specific example of OGLE-
2014-BLG-0939.
The D - u0, , solutions are significantly favored by c2 so we

consider these first. The solutions are nearly identical except
that u0 and π NE, reverse sign. This is expected under the
“ecliptic degeneracy” (Skowron et al. 2011), which is
particularly strong in the present case because the source lies
only 2° from the ecliptic.
The magnitude of ~ -ṽ 250 km shel

1 strongly favors a
Galactic disk lens at intermediate distances, an inference that
follows from the relation between ṽ and μ

=μ π
ṽ

AU
. (7)rel

If the lens were in the Bulge ( π 0.02rel ), then this would
imply relative proper motion = -μ π1.05 mas yr ( 0.02)hel

1
rel .

This compares to typical Bulge lens–source proper motions
~ -μ 4 mas yr 1. Since the probability of an event scales asµμ2

, Bulge lenses are strongly disfavored but not ruled out by this
argument. On the other hand, for nearby lenses π π( )Lrel , the
projected velocity ṽ is nearly equal to the space velocity of the
lens in the frame of the Sun, v̂ . Since there are very few stars
moving at these speeds, this hypothesis is also disfavored.
At intermediate distances, we would expect that the lens–

source motion would be dominated by the fact that both the
observer and lens partake in the same flat rotation curve. Thus,
apart from the peculiar motion of the Sun and the lens (and
random “noise” introduced by the proper motion of the source),
we expect the lens to be moving in the direction of Galactic
rotation (~ 30 east of north) at the proper motion of SgrA*,

= -μ 6.4 mas yrSgrA*
1. In fact, one of these two solutions

D - -u( )0, , does show motion similar to this direction (52° east
of north), making it the preferred solution.
To make a more precise comparison between the expected

and observed heliocentric motions, we measure the proper
motion of the “source” (actually the “baseline object” that is
coincident with the source) using four years of OGLE-IV data.
We find

= -  -  -μ (N, E) ( 0.64 0.45, 5.31 0.45)mas yr . (8)S,hel
1

In principle it is possible that this “baseline object” is a blend of
two or more stars. However, because the blending FB from the
microlensing fit is consistent with zero and because the surface
density of stars that are bright enough to substantially affect the
proper motion measurement is small, we tentatively assume
that the proper motion of the microlensed source and this
“baseline object” are the same.
Thus, ignoring the peculiar motion of the lens, we then

expect

f= -

=   -

μ μμ ˆ

(6.2 0.5, 8.5 0.5)mas yr (9)

Sexp,hel SgrA* ,hel

1

where f̂ is the direction of Galactic rotation. The direction of
this proper motion is ◦ ◦53 . 9 2 . 7 east of north. We show
immediately below that when account is taken of the dispersion
in lens peculiar motions, the error bar widens to

= - ◦ ◦
μ

μ
tan 53 . 9 8 . 5. (10)1 exp,hel,E

exp,hel,N

This s1 range of proper motions is shown on Figure 2, which

Table 2
μLens Parameters ( =F 0B,OGLE )

Parameter Unit - +u0, , - -u0, , + +u0, , + -u0, ,

c2 dof L 273.6/ 274.1/ 281.8/ 290.2/

266 266 266 266
-t 68000 day 36.22 36.20 36.07 35.95

L 0.11 0.11 0.10 0.11
u0 L 0.840 −0.840 0.840 −0.840

L 0.002 0.002 0.002 0.002
tE day 24.29 24.27 23.92 23.93

L 0.16 0.16 0.15 0.15
πE,N L −0.214 0.192 −1.292 1.321

L 0.044 0.043 0.029 0.029
πE,E L 0.217 0.222 −0.052 0.024

L 0.006 0.008 0.018 0.033
ṽhel,N km s−1 −164.9 158.3 −56.4 54.3

L 4.8 4.7 1.3 1.3
ṽhel,E km s−1 195.5 212.4 26.7 29.9

L 34.2 36.3 0.7 0.8
FS,OGLE L 11.01 11.01 11.01 11.01

L 0.00 0.00 0.00 0.02
FB,OGLE L 0.00 0.00 0.00 0.00

L 0.00 0.00 0.00 0.00
F SpitzerS, L 3.85 3.93 3.10 3.29

L 0.68 0.69 0.47 0.50
F SpitzerB, L 0.34 0.25 1.15 1.04

L 0.87 0.88 0.64 0.66
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demonstrates that μexp,hel agrees extremely well with ṽhel for the
D - -u0, , solution, and disagrees with all the other solutions. Of
the three other solutions, only D + -u0, , has a direction of ṽhel
even remotely close to μexp,hel, and this solution is disfavored

by cD = 172 (see Tables 1 and 2, and Section 5.2, below).
Therefore, the degeneracy is decisively broken by the

combination of the measurement of the source proper motion
μS and the fact that the value of ṽhel strongly indicates that the
lens is in the Galactic disk. This is a new form of degeneracy
breaking that was not previously anticipated.

We then apply Equation (7) to derive

k

~ =

= ~ D - - ( )

π μ
v

M
π

π
M u

AU

˜
0.20 mas,

0.23 . (11)

rel exp,hel
hel

rel

E
2 0, ,

Note that by inserting μexp,hel into the first expression in
Equation (11), we are essentially applying the method
described in Section 1 (paragraph below Equation (3)), except
that we are making a more precise estimate of μhel, which is
possible because the lens is already identified as being in the
disk and because we have a measurement of the source proper
motion.

What is the precision of these estimates? The error in the
expected proper-motion estimate along the direction of motion
is about 5%, while the error in ṽhel in this direction is about 8%.
The direction of motion is inclined~ 22 to the Galactic plane.
Adopting dispersions of -18 km s 1 perpendicular to and

-33 km s 1 parallel to the Galactic plane, we derive dispersions
of -20 km s 1 perpendicular to and -30 km s 1 parallel to the
direction of motion. These must be multiplied by ~π π 1.6L rel

to project them on the observer plane, i.e., 32 and -48 km s 1,
respectively. The former was added in quadrature to the proper
motion measurement error to obtain the error bar in
Equation (10). The latter contributes 19% to the error in the
comparison of amplitudes. Combining these in quadrature
yields = π 0.20 0.04 masrel , or = D 3.1 0.4 kpcL . The
error inM can be estimated from =GM c v μ t4 ˜2

hel hel E,hel
2 . The

first two terms have the same fractional error as above (25%),
with only a very small fraction of this contributed by the
lightcurve. Therefore it is appropriate to treat the error in the
last term (18%) as uncorrelated, which yields

=  M M0.23 0.07 . Note that even without considering
reddening, these mass and distance measurements imply

~I 22lens (Baraffe & Chabrier 1996), i.e., that the lens is
extremely faint, and its flux is consistent with the model value
of zero or negative “blended” (non-source) light (Section 3).

5. DEGENERACIES AND DEGENERACY-BREAKING
INFORMATION FROM THE LIGHTCURVE

As discussed in Section 4, we have decisively broken the
four-fold degeneracy by measuring the source proper motion
μS and taking advantage of the fact that the lens lies in the
Galactic Disk, which has well-organized motion. However, it is
also useful to ask how well this degeneracy can be broken from
lightcurve information alone since, in general, source proper
motion measurements can be very difficult or impossible (see
Section 7) and not all lenses are in the Galactic Disk (or, more
importantly, can be localized as being in the Disk).

5.1. Four-fold Degeneracy

Figure 3 (modeled on Figure 1 of Gould 1994) gives a
schematic view of the major sources of information that go into
the parallax measurement and thus into the origins of the
discrete and continuous degeneracies. The larger “ellipses”
(which are so flattened that they look like line segments)
represent the measurements of t0 and u0 based on a fit to OGLE
data assuming rectilinear lens–source relative motion, i.e.,
according to Equation (4). Properly speaking, we should plot
results of a similar fit for the Spitzer lightcurve. However,
because there are no wing or baseline data from Spitzer, such a
fit would be extremely poorly constrained. Instead, we
therefore plot the results of a fit with the Spitzer timescale
fixed at the best-fit OGLE value. This is legitimate because in
the combined fit to the data, the Spitzer timescale is very tightly
constrained by the OGLE timescale, although the constraint is
slightly offset from equality due to Earth–Spitzer relative
motion and lens–source relative parallax. The parameters of
these single-observatory (OGLE or Spitzer) fits are listed in
Table 3.
Within the framework of this diagram, any line segment can

be drawn from an OGLE ellipse to a Spitzer ellipse. The length
of this line segment relative to the radius of the Einstein ring
(large circle) corresponds to the length of Earth–Spitzer
projected separation ^D relative to the projected Einstein radius

ºr π˜ AUE E. That is, = D + D ^π t t u D( ) AUE 0
2

E
2

0
2 1 2 . Simi-

larly, the direction of the line segment gives the direction of

πE

according to Equation (5). Four classes of line segments can be
drawn, corresponding to the four-fold degeneracy. In addition,
within each class, there is some freedom (primarily in the

Figure 3. Origin of Refsdal (1966) four-fold degeneracy. Lightcurves from
Figure 1 unambiguously determine peak times t0 (abscissa) as seen from Earth
and Spitzer but only specify u0 (ordinate) up to a sign. Hence, there are four
ways to “connect” the Earth and Spitzer measurements, which in each case is
identified with the Earth–Spitzer projected separation ^D to determine the
microlens parallax vector


πE according to Equation (5). Dashed circle

represents the Einstein radius, which brings the two axes to the same system
by scaling the abscissa by the Einstein timescale tE. For each possible solution,
the connecting line segment divided by ^D is equal to π AUE . Two such line
segments are shown explicitly, with tD º Dt t0 E. Hence there is a four-fold
degeneracy in the direction of


πE but only a two-fold degeneracy in its

magnitude. Error ellipses for each solution generate much smaller errors, which
become important only if the discrete degeneracy is broken.
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vertical direction) to place the line segments within the two
error ellipses. Not represented in this diagram is the fact that the
Einstein timescale tE also has an error bar, so that while Dt0 is
extremely well determined, the fractional error in Dt t0 E (the
quantity going into


πE) is basically the same as the fractional

error in tE. Nevertheless, since such errors are usually modest
(~10% in the present case), the fractional errors in Du0 are
likely to be larger, particularly for D - u0, , . Thus, the Du0
direction is generically most problematic both because it suffers
from a four-fold discrete degeneracy and because each of the
four local error ellipses are elongated in the Du0 direction.

5.2. Degeneracy-breaking Information

There are two striking differences between the full solution
presented in Table 1 and the schematic solution presented in
Figure 3 and Table 3. First, many of the geocentric parameters
in Table 1 are better constrained than the OGLE-only
parameters in Table 3. This includes u0, tE, and especially FS

and FB. These parameters are strongly correlated, so it is not
surprising that if the errors in one are improved, then all will be
improved. Nevertheless, this result is puzzling because the
OGLE and Spitzer data appear to couple only through tE, and
we have already noted that the Spitzer data by themselves
contain virtually no information about tE.

Second, from the standpoint of the simple Paczyński (1986)
fits that are tabulated in Table 3 and whose differences are
displayed in Figure 3, the + u0, , and - u0, , solutions appear
equally good. That is, the ±u0 solutions shown at the top and
bottom of Figure 3 produce exactly the same lightcurve in
Equation (4), so there cannot be any c2 difference between one
combination of these and another. However, according to
Table 1, the - u0, , solutions are clearly preferred.

What is the source of additional information that reduces the
parameter errors and discriminates between the four discrete
solutions when the two lightcurves are fit simultaneously
relative to when they are fit separately?

The answer cannot be either of the two previous suggestions
that were summarized in Sections 1.1.1 and 1.1.3. As just
noted, the Spitzer data by themselves contain essentially no
timescale information, so DtE cannot be measured and hence
cannot be used to discriminate among solutions with different
Du0. In addition, because the field lies extremely close to the
ecliptic, DtE would give information about the parallax in a
direction that is very nearly parallel toDt0 (i.e., ^D axis). And,
for the same reason (as already noted by Gould 1999), the

instantaneous Earth (or satellite) acceleration is almost
perfectly aligned with ^D , which implies that the “1D parallax”
due to this instantaneous acceleration (Gould et al. 1994)
provides almost no information about Du0.
For the second effect (discrimination between discrete

minima) the answer turns out to be a previously unrecognized
source of degeneracy-breaking information. The OGLE data,
by themselves, give an extremely crude 2D parallax measure-
ment (due to changing acceleration of Earth over the course of
the event), so crude that it would not normally be considered of
any use, and indeed by itself would not be of use in the present
case. However, if we fix =π 0.24EE, (the preferred value
for the D - u0, , solutions), the OGLE data by themselves
yield > = π u( 0) 0.85 0.95NE, 0 and < =π u( 0)NE, 0

- 0.55 0.54, which are consistent with the fitted values from
the full fit (−0.25 and+0.22) at 1.2σ and 1.4σ. However, when
fixed to = -π 0.06EE, (the preferred value for the D + u0, ,

solutions), the OGLE data by themselves yield
> = π u( 0) 1.15 0.91NE, 0 and < =π u( 0)NE, 0

- 0.76 0.54, which are in conflict with the full-solution
values at s2.7 and s3.9 , respectively. These values
explain both the quantitative preference for the D - u0, ,

solutions and also why D + -u0, , is substantially more
disfavored than D + +u0, , .
However, this “hidden information” at most partly explains

the first effect (improved constraints on geocentric parameters).
Imposing a mathematical constraint on π EE, (to reflect the
physical constraint on Dt0 coming from the combination of
data from Earth and Spitzer) does drive down the errors in
u t F F( , , , )S B0 E relative to no constraint, but the errors in these
quantities are still larger than those in Table 3, which assume

=

π 0E . Moreover, the errors in the OGLE-only π NE,

measurement are an order of magnitude larger than the (local
solution) errors in π NE, from the joint fit. Thus, they are useful
only for discriminating between widely differing π NE, solutions
but not for the modest tightening of individual solutions.
Hence, the source of the improvement in the constraints
remains unknown.
We do note, however, that the relative improvement in flux

errors compared to u0 errors is well understood. The peak flux
Fpeak and the baseline flux = +F F FS Bbase are both extremely
robust parameters. Hence, so is their difference:

- =
æ

è

çççççç

+

+
-

ö

ø

÷÷÷÷÷÷
F F F

u

u u

2

4
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Treating the left-hand side of this equation as a constant and
differentiating yields,

d
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4

0
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2 3 2

where the evaluation is for =u 10 . Thus, we expect that the
fractional improvement in FS will be about twice as great as
that in u0.
Finally, we note that, overall, it is far more important to

break the discrete degeneracy than to tighten the errors on
individual solutions, so the understanding of the former that has
been achieved is by the same token more important than the
remaining uncertainty about the latter.

Table 3
Single-observatory Parameters

Parameter Unit OGLE Spitzer

c2 dof L 242.9/ 28.0/

238 26
-t 68000 day 36.20 31.57

L 0.11 0.09
u0 L 1.012 0.668

L 0.166 0.052
tE day 21.48 21.48

L 2.31 0.00
FS L 15.99 4.32

L 5.47 0.81
FB L −4.98 −0.13

L 5.47 1.00

7

The Astrophysical Journal, 802:76 (10pp), 2015 April 1 Yee et al.



5.3. Degeneracy Breaking From -I( [3.6])S Color

As discussed in Section 1.1.2, it may in principle be possible
to break the four-fold degeneracy by using external information
to determine the “color” (log of the ratio of source fluxes)
between bands used for observations from Earth and the
satellite. In our case, this would be the -I( [3.6])S color. The
usual way to determine the color of a microlensed source is
regression. That is if, for example, a series of V and I flux
measurements are taken at nearly the same time,

= +F t F A t F( ) ( )V i S V i B V, , and = +F t F A t F( ) ( )I i S I i B I, , , then
without even having a model to tell one the magnifications
A t( )i , one can write = +F t aF t b( ) ( )V i I i , yielding

- = - +V I a( ) 2.5 log ( ) constS . This also implies that any
model of the lightcurve must yield very similar -V I( )S
colors, assuming that there are substantial contemporaneous
magnified data in these two bands.

This logic breaks down for parallax observations because
one does not know a priori that the magnifications are the same
for contemporaneous observations. Indeed, it is only if these
magnifications differ that one can measure the parallax. Thus,
different solutions may have different colors. Indeed, Tables 1
and 2 show that the four solutions have substantially different
instrumental -I( [3.6])S colors, which range from

- = -I( [3.6]) 1.17S to −1.43. Immediately below, we briefly
describe how we use the method of Yee et al. (2012) to
measure the source color to be

- = - I( [3.6]) 1.216 0.044.S However, including this mea-
surement into the fits does not significantly alter the c2

differences among the four solutions. The reason appears to be
that the color errors shown in Table 1 are of the same order as
the color differences between solutions, so that the solutions
can accommodate constraints on the color within this range
without significantly changing c .2

The problem would appear to be that we lack Spitzer
baseline data, which substantially degrades the determination
the -I( [3.6])S color. For instance, if we put in an artificial
baseline measurement with a precision of 0.005 mag (which
could, e.g., be acquired in future Spitzer seasons), we find that
the color error from the fits is reduced by a factor ∼3 from
∼0.20 to ∼0.07 mag. However, including both this artificial
baseline measurement and our actual color measurement only
increases the c2 difference between solutions from 8 to 10,
despite the fact that both our real color measurement and our
artificial baseline measurement agree perfectly with the
preferred solution, while they do not agree with the alternate
solutions.

We conclude that, at least in this case, a fairly accurate
-I( [3.6])S source color measurement is not of substantial

value in distinguishing between solutions.
For completeness, we outline our method of measuring the
-I( [3.6])S source color, which is a variant of the method used

by Yee et al. (2012). In our first attempt, we constructed a
-I( [3.6]) versus -V I( ) color–color diagram by matching

field stars in OGLE V I( ) and Spitzer ([3.6]) photometry, using
the same instrumental system that was used for the lightcurve
photometry. We then measured the -V I( )S source color from
regression (as described above), with an error of 0.026 mag.
However, because of the steep slope and significant scatter in
the color–color diagram, we found this approach to be
unsatisfactory.

Therefore, we used H-band data of the event taken with the
ANDICAM camera on the 1.3 m CTIO-SMARTS telescope,

combined with OGLE I-band data to measure -I H( )S, and so
derived -V H( )S, which has a factor two longer wavelength
baseline than -V I( ), i.e., a factor ∼3 compared to a factor
∼1.5. Of course, these added steps led to larger errors in the

-V H( )S color (0.044 mag), but the color–color diagram had a
substantially shallower slope and also less scatter. We note that
for future events, a more precise -I( [3.6])S source color could
be obtained by an increased number of V and H band
observations.

6. FUTURE MASS MEASUREMENT

As we have emphasized, the ensemble of single-lens parallax
measurements can be used to infer the mass function of stars
(and other objects) in the field without any additional data. In
the present case, we have shown that the four-fold degeneracy
is broken. Whether broken, partially broken, or unbroken, the
ensemble of measurements can be tested against various trial
mass functions using a likelihood estimator.
However, here we point out that essentially all such parallax

measurements can be turned into individual mass (and distance
and transverse velocity) measurements by direct imaging of the
lens. We use OGLE-2014-BLG-0939 as a concrete example.
Figure 2 shows the measured projected velocities (and s1

error ellipses) of the four solutions. The essence of this new
method for measuring lens masses is simply to take a late-time
high-resolution image (e.g., using adaptive optics (AO)) of the
source and lens after they have separated. From the measured
vector separation qD and the elapsed time Dt (and for the
moment making the assumptions that the source and lens were
coincident at the peak of the event and that the image is taken at
the same time of year as the event), we can then derive the
heliocentric proper motion,

q
=

D
D

μ
t

. (14)hel

Comparing the direction of this vector to the four, clearly
distinct directions of the solutions shown in Figure 2 one can
unambiguously pick out the correct solution. Then it is a simple
matter to obtain

k
= =π

v
μ M

π

π

AU

˜
; . (15)rel

hel
hel

rel

E
2

For example, the Giant Magellan Telescope (GMT) will
have a FWHM in J band of 11 mas. For typical events, the
proper motion will be 3–7 -mas yr 1, and hence the source and
lens will have separated by 2 FWHM in 3–7 yr. In particular,
by the time GMT is operational (perhaps 2024), it is very likely
that the lens and source of OGLE-2014-BLG-0939 will be
separated enough to make this measurement.
We now address various departures from our zeroth-order

assumptions. First, the lens and source are not coincident at
peak but are separated by dq q= Åu0, E. However, since q 1E

mas while qD 20 mas, this will not interfere with choosing
the correct solution from comparison to Figure 2. Then, once
the correct solution is known, the actual path of the lens relative
to the source will also be known, allowing μhel to be correctly
estimated.
Second, the followup image may not be taken at the same

time of year, which would lead to parallax effects. However,
since <π 1rel mas in essentially all cases, while qD 20
mas, this will again not interfere with choosing the correct
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solution, and hence allowing for proper correction of parallax
effects using the known πrel.

Third, in a substantial minority of cases, the microlensing
event will be due to the less massive (and so less luminous)
member of a binary system. When the AO image is taken, the
brighter companion will be mistaken for the lens, yielding an
incorrect μhel. Gould (2014) discusses this problem in detail for
the more difficult case that a 1D geocentric parallax has been
measured (rather than the simpler four-fold discrete degeneracy
under consideration here). In the current context, this will give
rise to two types of discrepancy. First, the inferred μhel will not
agree with any of the directions of the four ṽhel solutions.
Second, the inferred mass will not agree with the photometric
estimates based on the measured brightness and inferred
distance of the system. In these cases, one can take a second
epoch of AO observations to measure μhel of the brighter
companion. If the orbit is relatively tight (few AU, correspond-
ing to 1 mas) then the apparent motion of the companion
relative to the source will be similar to that of the lens, so the
original inferred proper motion will be correct, and it will be
realized that the lens was the fainter (unseen) companion. If the
orbit is more than a few AU, then the proper motion of the
companion between the first and second epochs will be very
similar to the proper motion of the lens during the event, so this
companion proper motion can just be used for μhel. In this case,
one will be able to derive the projected separation of the binary
as well by tracing the companion position back to the time of
the microlensing event when the lens had a known position
relative to the source. Note that the lack of binary signatures in
the lightcurve will exclude some range of binary companions.
In the case of high-magnification events, this can include
several decades of projected separation (e.g., Batista
et al. 2014), but even for more typical events the exclusion
range can be significant.

Fourth, in general, one needs to consider the impact of
binary sources. Well separated binary sources are not likely to
be confused with the lens because they are unlikely to lie in one
of the four directions allowed by the four-fold degeneracy. In
case of doubt, these can be vetted by second-epoch observa-
tions in which they would show common proper motion with
the source. Unresolved binary sources might lead to displace-
ment of the light centroid from the position of the source. This
is relatively unlikely simply because microlensing events are
heavily biased toward brighter sources, while flux ratios for
solar-mass binaries tend to be high. However, it is also possible
to vet against this possibility by comparing the source flux
derived from the lightcurve (i.e., FS) with the observed flux in
the high-resolution image, to determine whether there is any
unresolved light. In sum, the possibility of contamination of the
astrometric measurements by binary sources must be investi-
gated on a case by case basis, but generally is not expected to
be a major problem.

Finally, dark lenses (free-floating planets, brown dwarfs,
neutron stars, black holes, and some white dwarfs) will
obviously not appear in followup AO images. To understand
this case, let us consider how such a non-detection would be
interpreted from AO observations taken 10 years after the peak
of OGLE-2014-BLG-0939. For definiteness, we will assume
that if the lens were at least 20 mas from the source it would
have been detected. Recall that there are basically two
solutions, =-

-ṽ 250 km shel,
1 and =+

-ṽ 60 km shel,
1, with

corresponding ~π 0.35E and 1.35, respectively.

Non-detection implies either that the lens is dark or that it is
moving < -μ 2 mas yrhel

1. In the latter case, according to
Equation (15) the lens would have

= < < π M M( , ) ( 0.04 mas, 0.04 )rel or
= < < π M M( , ) ( 0.16 mas, 0.01 )rel . Thus, if it were moving

too slowly to be seen (under the glare of the source) then it
would also be dark (specifically because it was substellar). Of
course, this would not by itself allow one to estimate its mass: it
could be dark because it is a brown dwarf or because it is a
massive black hole. However, applying a likelihood function to
an ensemble of such objects with microlens parallax measure-
ments that are definitely known not to be luminous will enable
substantially more precise reconstruction of the mass function
than if the entire ensemble of detections must be considered.
To illustrate this for OGLE-2014-BLG-0939, the assumption

of an = M M5 black hole would imply k=π Mπrel E
2, which

yields 5 and 75 mas, for D - u0, , and D + u0, , , respectively.
While it would be very exciting to have such a black hole
passing within 200 pc (or 13 pc) of the Sun, the prior
probability of this is extremely low, and it would be highly
discounted by any reasonable likelihood function.

7. GENERAL UTILITY OF SOURCE PROPER MOTION IN
DEGENERACY BREAKING

While directly measuring the lens–source relative proper
motion is the cleanest way to break the microlens parallax
degeneracies, for this event, we were able to use the measured
proper motion of the baseline object instead (see Section 4).
The reason, as discussed in Section 4, is that for lenses at
intermediate distances, the primary source of “noise” in the
source-lens relative proper motion comes from the proper
motion of the source, which dominates over the peculiar
motion of the lens whose impact is diminished by -DL

1. Hence,
the impact of measuring the source proper motion on resolving
the four-fold parallax degeneracy depends on the distance to
the lens. If both the source and lens are in the bulge, they
contribute equally to the relative proper motion, so measuring
the source proper motion halves the number of unknowns.
However, if the lens is nearby (1 kpc), its motion will
dominate the proper motion, so a measurement of the source
proper motion is relatively unimportant. The source proper
motion measurement is most useful for cases such as this one,
for which it can be established that the lens is at intermediate
distances.
In general, using this technique to resolve the parallax

degeneracy depends on being able to determine that the
detected source light is uncorrupted by the lens or ambient stars
in the field. In this case, we were confident in identifying the
baseline object as corresponding to the source because the
source was bright and the blending was consistent with zero,
making it unlikely that the detected light was significantly
contaminated by unrelated, blended stars. However, because
most sources are fainter than this one, significant blends will be
more common, so it may not be as easy to establish that the
visible object is indeed the source rather than a melange of
stars.
Source proper motion measurements can be made from long-

baseline microlensing survey data, as was done here, or using
proper motion measurements from Gaia. In fact, Gaia
potentially has higher resolution than available from the
ground, and so can give a better understanding of the blending
by comparing the position of the centroid of the event with the
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centroid of the baseline object. This can serve as an important
test of blend measurements with ground-based data.12

8. CONCLUSIONS

The lightcurves of OGLE-2014-BLG-0939 as seen from
Earth and Spitzer differ dramatically, with substantially
different maximum magnifications and times of maximum.
As predicted by Refsdal (1966), this allows to measure the
microlens parallax vector


πE and corresponding projected

velocity ṽ up to a four-fold degeneracy.
In Section 4 we have developed a new way to break this

degeneracy. First, we show that the magnitude of the projected
velocity ~ -ṽ 250 km shel

1, by itself, strongly favors a disk
lens. If the lens is then assumed to be in the disk, our
measurement of the source proper motion leads to a prediction
for both the magnitude and direction of the lens–source relative
proper motion μhel. The direction of μhel is then found to agree
closely with that of the ṽhel of one of four solutions and is
clearly inconsistent with all of the other three. The magnitude
of μhel then yields an estimate = =π μ vAU ˜rel hel hel

0.20 0.04 mas and k= =  M π π M0.23 0.07rel E
2 . This

new method is very powerful, but can only be applied to the
minority of events that are amenable to source proper-motion
measurements.

In Section 5, we have investigated three of the four ideas for
breaking this degeneracy based on photometric data alone that
have been developed over the past 20 years, as discussed in
Sections 1.1.1–1.1.3. The fourth idea (Section 1.1.4) is not
applicable to the present case. We find that the degeneracy in
the magnitude of these vectors is basically broken, but the less
important degeneracy in direction remains intact. We find that
the mechanism for this degeneracy breaking was not previously
anticipated.

We note that the D - -u0, , solution picked out by the proper
motion argument (Section 4) is favored over the two D + u0, ,

solutions by cD = 82 and 17. While such c2 differences
would not be completely convincing on their own, as
confirmation of the already strong proper-motion argument,
they are compelling. In particular, of the three solutions whose
directions of ṽ conflict with the proper motion argument, only
the D + -u0, , solution is remotely near consistency, and this is

disfavored in the lightcurve fit by cD = 172 . See Table 1 and
Figure 2.

An ensemble of such microlens parallax measurements,
building on those from this Spitzer program, can measure the
single-lens mass function, including dark objects (Calchi
Novati et al. 2014). We show that this measurement could be
improved substantially by high-resolution imaging of the
luminous lenses using, for example, the GMT, roughly 10 years
after the Spitzer–Earth parallax measurement.
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