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Abstract. The stability operator of a compact oriented minimal hypersurface
Mn−1 ⊂ Sn is given by J = −∆− ‖A‖2 − (n− 1), where ‖A‖ is the norm of
the second fundamental form. Let λ1 be the first eigenvalue of J and define
β = −λ1− 2(n− 1). In 1968 Simons proved that β ≥ 0 for any non-equatorial
minimal hypersurface M ⊂ Sn. In this paper we will show that β = 0 only for
Clifford hypersurfaces. For minimal surfaces in S3, let |M | denote the area of
M and let g denote the genus of M . We will prove that β|M | ≥ 8π(g − 1).

Moreover, if M is embedded, then we will prove that β ≥ g−1
g+1

. If in addition

to the embeddeness condition we have that β < 1, then we will prove that
|M | ≤ 16π

1−β .

1. Introduction and preliminaries

In 1968, James Simons [S] proved an estimate for the first eigenvalue of the
stability operator on any minimal hypersurface Mn−1 ⊂ Sn. In this paper we will
show that this estimate is sharp only for the minimal products:

Sk

(√
k

n− 1

)
× Sl

(√
l

n− 1

)
⊂ Sn ⊂ Rn+1 with k + l = n− 1.

In the case k = l = 1 the resulting minimal surface is called the Clifford torus.
We will refer to all the products above as Clifford hypersurfaces.

Let M be a compact, oriented minimal hypersurface immersed in the n-dimen-
sional sphere Sn. Let ν be a unit normal vector field along M . For any tangent
vector v ∈ TmM , m ∈ M , the shape operator A is given by A(v) = −∇̄vν, where
∇̄ denotes the Levi Civita connection in Sn. We will denote by ∆ the Laplacian
on M . Given any function f : M −→ R1 we can form the 1-parameter variational
family defined by

Mt = {exp(m, tf(m)ν) : m ∈M}

where exp(m, ·) is the exponential map at m ∈ Sn.
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It is well known (see e.g. [SL]) that the n− 1-dimensional volume of Mt satisfies

d

dt
(Vol(Mt))

∣∣
t=0

= 0 (minimality of M),

d2

dt2
(Vol(Mt))

∣∣
t=o

=
∫
M

J(f)f (second variation formula)

where J is the Jacobi or stability operator on M , given by

J = −∆− ‖A‖2 − (n− 1).

We will denote the first eigenvalue of J by λ1. This eigenvalue has the following
characterization [C]:

λ1 = min{
∫
M
J(f)f∫
M f2

: f ∈ C∞(M) , f 6≡ 0}

and it is known that its multiplicity is 1. Let ρ be an eigenfunction of J associated
with λ1.

The easiest minimal hypersurfaces to describe are the equators, i.e. the totally
geodesic Sn−1’s in Sn, and the Clifford hypersurfaces defined above.

Because of the symmetries of these minimal hypersurfaces, equators and Clifford
hypersurfaces have ‖A‖2 constant. Therefore, the stability operator and the lapla-
cian differ by a constant, hence, it is not difficult to show that λ1 = −(n − 1) for
the equators and λ1 = −2(n− 1) for the Clifford hypersurfaces.

In this paper we will show that the only minimal hypersurfaces with λ1 =
−2(n − 1) are the Clifford hypersurfaces. For minimal surfaces in S3, we will
give an additional identity that relates the genus g of M , the area |M | of M , λ1,
and the simple invariant α =

∫
M
‖∇ρ‖2
ρ2 . Notice that this invariant is independent

of the choice of ρ because the multiplicity of λ1 is 1. We also have that α is defined
not only for surfaces but for any minimal hypersurface in Sn and that α = 0 if and
only if ‖A‖ is constant.

In [S] Simons studied the function ‖A‖ and he deduced that if M is not an
equator, then λ1 ≤ −2(n − 1). This result allowed him to deduce that the only
stable cones in Rn, n ≤ 7, are the ones that come from equators, i.e. hyperplanes.
The result we just mentioned and the main result in this paper use the following
elliptic equation for the shape operator, A, found by Simons [S]:

∆A = (n− 1)A− ‖A‖2A.(1.1)

The following theorem, proven by Chern, DoCarmo and Kobayashi [C-D-K] and
independently by Lawson [L1], gives another consequence of this elliptic equation:

Theorem 1.2. If M is a compact orientable minimal hypersurface on Sn with
‖A‖2 ≡ n− 1, then M is a Clifford hypersurface.

In section §2 we find an elliptic inequality for the function f = ‖A‖ρ−1, that
will help us, after applying the maximum principle, to deduce that λ1 = −2(n− 1)
implies that ‖A‖ is a first eigenfunction of the stability operator.

In section §3 we compute the laplacian of the function h = ln(ρ), then we deduce,
after applying Stokes’ theorem, the identity for minimal surfaces we mentioned
earlier.
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2. λ1-characterization of Clifford hypersurfaces

In this section we characterize the Clifford hypersurfaces as the only minimal
immersions whose first stability eigenvalue, λ1, equals −2(n− 1).

Before we state and prove our main theorem of this section we will make some
computations. Choose a first eigenfunction, ρ, of the stability operator with ρ > 0.
Then we have

−∆ρ− ‖A‖2ρ− (n− 1)ρ = λ1ρ.

For any v, w ∈ TmM , denote by DvA(w) the covariant tensor derivative of the
shape operator A. Using that ∆A = (n−1)A−‖A‖2A (equation (1.1)), we obtain,
assuming ‖A‖(m) 6= 0,

∆‖A‖ = div(∇‖A‖)

= div(
1
2
‖A‖−1∇‖A‖2)

=
1
2

(〈∇‖A‖−1,∇‖A‖2〉+ ‖A‖−1∆〈A,A〉)

= −‖A‖−1|∇‖A‖|2 + ‖A‖−1(〈∆A,A〉 + |DA|2)

= (n− 1)‖A‖ − ‖A‖3 + ‖A‖−3(‖A‖2〈DA,DA〉 − ‖A‖2|∇‖A‖|2).

Taking an orthonormal basis {e1, . . . , en−1} of TmM we have

(‖A‖2〈DA,DA〉 − ‖A‖2
∣∣∇‖A‖∣∣2) =‖A‖2

n−1∑
i=1

〈DeiA,DeiA〉 −
1
4
〈∇‖A‖2,∇‖A‖2〉

=‖A‖2
n−1∑
i=1

〈DeiA,DeiA〉 −
1
4

n−1∑
i=1

(ei‖A‖2)2

=‖A‖2
n−1∑
i=1

〈DeiA,DeiA〉 −
n−1∑
i=1

〈A,DeiA〉2.

Therefore using the Cauchy-Schwarz inequality we get

Lemma 2.1. ∆‖A‖ ≥ (n − 1)‖A‖ − ‖A‖3 and equality holds if and only for any
vector v ∈ TmM DvA = β(v)A, for some linear function β on TmM .

Define f = ‖A‖ρ−1. Let f(m0) be the maximum of f and let Ω be a region
around m0 in which f is greater than some positive constant.

Given the computations above, if we also assume that λ1 = −2(n− 1) we get on
Ω,

∆f = ∆(ρ−1‖A‖) = ‖A‖∆ρ−1 + 2〈∇ρ−1,∇‖A‖〉+ ρ−1∆‖A‖
≥ ‖A‖(2ρ−3|∇ρ|2 − (n− 1)ρ−1 + ‖A‖2ρ−1)

+ ρ−1((n− 1)‖A‖ − ‖A‖3) + 2〈∇ρ−1,∇‖A‖〉
= 2ρ−3|∇ρ|2‖A‖ − 2ρ−2〈∇ρ,∇‖A‖〉
= −2ρ−1〈∇(ρ−1‖A‖),∇ρ〉 = −2ρ−1〈∇f,∇ρ〉.

(2.2)

This puts us in the position to prove:

Theorem 2.3. If M ⊂ Sn is a compact oriented immersed minimal hypersurface
with λ1 = −2(n− 1), then M is a Clifford hypersurface.
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Proof. Assume λ1 = −2(n− 1). Then M is not totally geodesic, and therefore the
function f = ρ−1‖A‖ reaches a positive maximum. Letting Ω be defined as above,
we have by (2.2) that

∆f + 2ρ−1〈∇f,∇ρ〉 ≥ 0 on Ω.

Since the maximum of f in Ω is obtained in the interior of Ω we get by the
maximum principle that f is constant in Ω. Since M is connected, we deduce that
f is constant in all M , i.e ‖A‖ = cρ is itself a first eigenfunction of the stability
operator. Now, since λ1 = −2(n − 1), we get ∆‖A‖ = (n − 1)‖A‖ − ‖A‖3, hence
Lemma 2.1 gives us a 1-form β on M such that

DvA = β(v)A.(2.4)

We now prove that A is parallel. Fix m ∈M and choose {e1, . . . , en−1} ∈ TmM
an orthonormal basis that diagonalizes A. Then the Codazzi equations in Sn give
us

〈
n−1∑
i=1

DeiA(ek), ei〉 = 〈
n−1∑
i=1

DekA(ei), ei〉 = β(ek)
n−1∑
i=1

〈A(ei), ei〉 = 0.

On the other hand, using (2.4) we conclude

〈
n−1∑
i=1

DeiA(ek), ei〉 =
n−1∑
i=1

〈β(ei)A(ek), ei〉 = β(ek)〈A(ek), ek〉.

If 〈A(ek), ek〉 6= 0, then β(ek) = 0 and DekA = 0. If 〈A(ek), ek〉 = 0, then for
any w ∈ TmM ,

DekA(w) = DwA(ek) = β(w)A(ek) = 0

and we get again that DekA = 0.
Since this holds for all k, A is parallel. It follows that ‖A‖ is constant. The

stability equation then shows ‖A‖2 = n−1. Theorem 1.2 then implies the result.

Remark 2.5. For n = 7 we showed that λ1 < −12 if M is not an equator or a
Clifford hypersurface. An improvement of the previous estimate to λ1 ≤ −12.25
would be of great interest, as it would show that the only stable cones in R8 are
hyperplanes (cones over equators) and cones over Clifford hypersurfaces in S7 [S].
Together with the results in [SS], this would yield a complete classification of all
area-minimizing hypersurfaces in R8.

3. Minimal surfaces in S3

In this section, for the case n = 3, i.e. for M an oriented minimal immersed
surface of S3, we will find an identity relating the genus of the surface, its area,
the value α defined in §1, and λ1. This identity will give us a different proof of the
result in §2 and of Simons’ result in [S] which states that λ1 ≤ −4 if M is not an
equator.

Let ρ be as in §2, we have

−∆ρ− ‖A‖2ρ− (n− 1)ρ = λ1ρ.
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Let us compute ∆lnρ:

∆lnρ = div(∇(lnρ))

= div(ρ−1∇(ρ))

= {〈∇ρ−1,∇ρ〉+ ρ−1∆ρ}
= {(−1)ρ−2|∇ρ|2 + (−λ1 − ‖A‖2 − (n− 1))}.

Integrating the equation above we find∫
M

ρ−2|∇ρ|2 = (−λ1 − (n− 1))|M | −
∫
M

‖A‖2.(3.1)

In the case where M is a minimal surface, the Gauss equation, gives us a relation
between the norm of the shape operator, ‖A‖2, and the Gauss curvature of the
surface, K. Namely,

K = 1− ‖A‖
2

2
.

If we integrate the relation above and use Gauss-Bonnet, we get

8π(1− g) = 2|M | −
∫
M

‖A‖2.

Now combining the equation above with (3.1) we obtain the following proposi-
tion.

Proposition 3.2. Let M be a compact oriented minimal immersed in S3. If ρ is
an eigenfunction associated to the first eigenvalue of the stability operator λ1 and
we define α =

∫
M
‖∇ρ‖2
ρ2 , then

α+ 8π(g − 1) = (−λ1 − 4)|M |.

Corollary 3.3. Let M be a compact non-totally geodesic oriented minimal surface
in S3. Then the first eigenvalue of the stability operator, λ1, satisfies λ1 ≤ −4.
Moreover, λ1 = −4 if and only if M is a Clifford torus.

Proof. Since M is non-totally geodesic, then the genus, g, of M is greater than 0,
because the equator is the only minimal immersion of a sphere in S3, [A]. Now,
since g ≥ 1, we get from the proposition above that λ1 ≤ −4, with equality only
if g = 1 and ρ is a constant function. The stability equation gives us that if ρ is
constant and λ1 = −4, then ‖A‖2 ≡ 2. Therefore M is a Clifford torus by Theorem
1.2.

Remark 3.4. If we drop α in Proposition 3.2 and we define β = (−λ1− 4), then we
get

8π(g − 1) ≤ β|M |.(3.5)

This inequality can also be achieved by plugging the test function f ≡ 1 into
the Rayleigh-quotient (see characterization of λ1 in the introduction). If M is
embedded, then Choi and Wang [C-W] proved that |M | ≤ 8π(g + 1). Combining
this inequality with (3.5) above we get

β ≥ g − 1
g + 1

and if β < 1, then |M | ≤ 16π
1− β .
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Moreover, if M is embedded by the first eigenfuntions of the laplacian, i.e. if
Yau’s conjecture were true, then Yang and Yau [Y-Y] proved that |M | ≤ 4π(g+ 1),
therefore the inequalities above can be improved to

β ≥ 2
g − 1
g + 1

and if β < 2, then |M | ≤ 16π
2− β .
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