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In recent years, there has been renewed interest in the use of field-programmable gate arrays (FPGAs) for high-performance
computing (HPC). In this paper, we explore the techniques required by traditional HPC programmers in porting HPC applications to
FPGAs, using as an example the LFRic weather and climate model. We report on the first steps in porting LFRic to the FPGAs of the
EuroExa architecture. We have used Vivado High-Level Syntheusywwi to implement a matrix-vector kernel from the LFRic code on
a Xilinx UltraScale+ development board containing an XCZU9EG multiprocessor system-on-chip. We describe the porting of the
code, discuss the optimization decisions, and report performance of 5.34Gflop/s with double precision and 5.58Gflop/s with single
precision. We discuss sources of inefficiencies, comparisons with peak performance, comparisons with CPU and GPU performance
(taking into account power and price), comparisons with published techniques, and comparisons with published performance, and
we conclude with some comments on the prospects for future progress with FPGA acceleration of the weather forecast model. (e
realization of practical exascale-class high-performance computinems requires significant improvements in the energy efficiency of
such systems and their components. (is has generated interest in computer architectures which utilize accelerators alongside
traditional CPUs. FPGAs offer huge potential as an accelerator which can deliver performance for scientific applications at high levels
of energy efficiency. (e EuroExa project is developing and building a high-performance architecture based upon ARM CPUs with
FPGA acceleration targeting exascale-class performance within a realistic power budget.

1. Introduction

Many fields in science and engineering which use high-
performance computing (HPC) to obtain high levels of
compute performance for simulation and modelling have
identified a need to progress towards exascale levels of per-
formance (order of 1018 floating point operations per second).
Achieving exascale with CPU-based technologies is techni-
cally feasible but would result in unacceptable power re-
quirements [1]. (erefore, there has been considerable
interest in recent years in novel architecture systems which
harness accelerators alongside CPUs to boost performance
while delivering substantially improved power efficiency.

Field-programmable gate arrays (FPGAs) have recently
attracted the attention of researchers in both academia and
industry as a candidate accelerator for large-scale high-

performance computing (HPC) applications [2, 3]. Limi-
tations in the programmability and ease-of-use of FPGAs for
large-scale scientific computing have recently been alleviated
through the development of high-level tools [4]. Escobar
et al. have analysed the suitability of a range of computa-
tional dwarves for acceleration using FPGAs [5]. Although
FPGAs typically run at a lower frequency compared to CPUs
and GPUs, they provide extremely competitive perfor-
mance, especially when taking into account their lower
power requirements; for example, Cong et al. have compared
FPGA and GPU performance using the Rodinia suite, which
is optimized for GPUs, and found that, “for 6 out of the 15
ported kernels, today’s FPGAs can provide comparable
performance or even achieve better performance than the
GPU, while consuming an average of 28% of the GPU
power” [6].
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Conventional hardware description languages (HDLs)
for programming FPGAs have in the past restricted this
technology to experienced hardware engineers because of its
complexity and the low level of abstraction. However, over
the past decade, high-level languages and high-level syn-
thesis (HLS) tools have been proposed to raise the ab-
straction level and the development accessibility of FPGAs
[7–10]. (ese enable hardware configurations to be gener-
ated from high-level descriptions, namely, C, C++, OpenCL,
and Java, to utilize the FPGAs with minimal experience of
hardware design. Cong et al. have demonstrated that “an
HLS solution can achieve an 11%–31% reduction in FPGA
resource usage with improved design productivity compared
to a hand-coded design” [11].

For example, Xilinx Vivado (previously AutoPilot)
provides HLS compilers and tools that transform behav-
ioural descriptions written in C/C++ to RTL languages by
supporting all design phases of FPGAs [12]. In another
example, Bosch et al. presented an OmpSs programming
model that targets heterogeneous systems including CPUs,
GPUs, and FPGAs [13]. Similar to OpenMP, OmpSs allows
programmers to annotate their applications with compiler
directives to express task parallelism with the FPGA con-
figuration files being generated using Xilinx Vivado or Altera
Quartus. Lee et al. proposed a directive-based OpenACC to
FPGA translation framework, which provides a high-level
programming model for utilising FPGAs [14]. (is frame-
work builds on the top of the OpenARC compiler, which
translates OpenACC to OpenCL, which may then be
compiled by the Altera OpenCL compiler. All of these so-
lutions aim to provide portable performance across het-
erogeneous systems. Compared with the CPUs and GPUs,
the time allotted to design solutions on the FPGA is rela-
tively long. However, this time has been reduced signifi-
cantly by HLS tools, thereby attracting researchers from the
wider HPC community to accelerate their large-scale ap-
plications on FPGAs.

Linear algebra is ubiquitous in HPC applications across
almost all scientific areas, and matrix operations form the
basis of higher level algorithms such as the solution of partial
differential equations. (e Basic Linear Algebra Subpro-
grams (BLAS) were defined in order to standardise a range of
matrix operations for use in computational algorithms and
have been categorised according to their level of compu-
tational intensity. Matrix-vector operations have been cat-
egorised as Level 2 BLAS in which results are computed one
vector (row or column) at a time [15, 16]. (eir imple-
mentation may be optimized for increased vector length
with vector results being reused in cache before being
returned to memory. For computers with hierarchical
memory and for parallel computers, the opportunity for a
further, higher level of optimization was identified, i.e., the
Level 3 BLAS, in which matrix-matrix operations may be
blocked such that submatrices are reused in cache or in local
memory [17].

Most work on implementation of linear algebra sub-
programs on FPGAs has focused on matrix-matrix multi-
plication, a Level 3 BLAS operation. Dou et al. have proposed
a general block matrix multiplication algorithm, which

enhances data locality and reusability and considers limi-
tations of local storage and I/O [18]. (is algorithm is suited
to the use of arbitrary matrix sizes and is supported by a
scalable linear array of 12-stage pipelined processing ele-
ments (PEs). Integrating 39 PEs onto a Virtex xc2vp125-7
FPGA running at 200 MHz reaches a performance of
15.6 Gflop/s for double precision with 1.6 MB local memory
and 400 MB/s external memory bandwidth.

Kumar et al. present two designs for an FPGA accel-
erator for IEEE 754 double-precision floating point matrix
multiplication on a Virtex-5 SX240T FPGA [19]. (e first
design is limited by a requirement for high I/O bandwidth;
the second reduces this by enhancing PE utilization. Xilinx
ISE 10.1sp1 and ModelSim 6.2e were used to implement and
simulate the designs. A simulated performance of
29.8 Gflop/s is reported for 40 PEs at a frequency of 373 MHz
with 750 MB/s and 5.9 GB/s bandwidth requirements for
design one and two, respectively.

Jovanovic and Milutinovic present the architecture and
implementation of an FPGA accelerator for matrix-matrix
multiplication using double-precision IEEE floating point
arithmetic [20]. (e algorithm is blocked to minimize re-
source utilization and maximise clock frequency. (e au-
thors compare the design with matrix multiplication from
high-performance libraries, such as MKL, ACML, Goto-
BLAS, and Atlas implemented on Intel and AMD micro-
processors. (e FPGA design outperforms the CPU’s with a
reported performance of 203.1 Gflop/s using 252 PEs run-
ning at 403 MHz.

We also note that another body of work has focussed on
the implementation of sparse matrix operations on FPGAs,
e.g., [21], but that sparse methods are different in compu-
tational characteristics from the dense matrix operations
considered here.

(e use of lower precision data formats can reduce
resource utilization, reduce memory bandwidth re-
quirements, and increase circuit frequencies, thus delivering
significantly higher performance for computationally in-
tensive applications. Sun et al. investigate the use of mixed-
precision algorithms in order to utilize reduced-precision
data formats wherever possible without losing accuracy [22].
(ey have implemented a direct LU solver with iterative
refinement with a choice of three different precisions for the
iteration loop: standard 64-bit double-precision and 32-bit
and 16-bit floating point representations. Use of reduced
precision delivers two to three times the performance, can be
run with a higher clock frequency (140 MHz for 16-bit vs.
120 MHz for 64-bit), and uses fewer resources (32 embedded
multiplier blocks for 16-bit vs. 128 for 64-bit).

(e work described in this paper has been carried out in
the context of the EuroExa project which is described in
Section 2. Section 3 of this paper describes the LFRic weather
model focussing on the use of matrix-vector updates and
how they have been extracted for FPGA acceleration. In
Section 4, we describe the FPGA evaluation platform, the
details of the implementation and the optimization of the
matrix-vector code for FPGAs. Section 5 reports perfor-
mance results, and in Section 6, we discuss the results in-
cluding sources of inefficiencies, comparisons with peak
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performance, comparisons with CPU and GPU performance
taking into account power and price, comparisons with
published techniques, and comparisons with published
performance and conclude with some comments on the
prospects for future progress with FPGA acceleration of the
weather forecast model.

2. The EuroExa Project

(e EuroExa project (http://www.euroexa.eu; EuroExa has
received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agree-
ment no. 754337) titled “Co-Designed Innovation and
System for Resilient Exascale Computing in Europe: From
Applications to Silicon” proposes an HPC architecture that
is scalable to exascale performance levels and delivers world-
leading power efficiency. (is is achieved through the use of
low-power ARM processors together with closely coupled
FPGA programmable components. EuroExa combines state-
of-the-art computing components using a groundbreaking
system architecture, which applies the design flexibility of
UNIMEM [23], delivers high levels of performance to the
selected applications, and balances compute resources with
the resource demands of applications. (rough codesign
between the enabling technologies, the system software, and
the applications, EuroExa is delivering an innovative solu-
tion that achieves both extreme data processing and extreme
computing. (is solution will be demonstrated through the
design, construction, testing, and evaluation of three testbed
systems throughout the duration of the project. (is will
enable EuroExa to deliver a recipe for the creation of an
exascale computer by 2021.

In order to demonstrate the efficacy of the design, the
EuroExa partners are assessing performance using a rich set
of applications. One such application is the new weather and
climate model, LFRic (named in honour of Lewis Fry
Richardson), which is being developed by the Met Office and
its partners for operational deployment in the middle of the
next decade [24]. High-quality forecasting of weather and
climate on global, regional, and local scales is of great im-
portance to a wide range of human activities, and exploi-
tation of latest developments in HPC has always been of
critical importance to the weather forecasting and climate
research communities.

In order to prepare for execution on the EuroExa testbed
systems, we have been porting key components of the LFRic
model to a Zynq UltraScale+ ZCU102 evaluation platform
[25]. (e approach is to study the LFRic code at three levels:
the full application, compact applications or “mini-apps,”
and key computational kernels. An example of such a kernel
is the matrix-vector product which contributes significantly
to the execution time in the Helmholtz solver and elsewhere
(see Section 3.2), and this kernel forms the focus of this
paper.

(e EuroExa project has identified five programming
models which may be used to implement HPC applications
on the Xilinx FPGA hardware. (ey are (listed alphabeti-
cally) as follows:

(i) Maxeler MaxCompilerMPT development environ-
ment [26, 27]

(ii) OmpSs@FPGA [28]

(iii) OpenStream [29]

(iv) SDSoC [30] or SDAccel [31] with OpenCL

(v) Vivado High-Level Synthesis and Vivado Design
Suite [32]

For this work using the LFRic model, we have chosen to
use Vivado High-Level Synthesis (HLS) to generate IP blocks
to run as part of a Vivado design on the UltraScale+ FPGA.
HLS allows direct synthesis from the high-level C code,
which can be obtained from the weather model code, and
was available at the time of the research for our target ar-
chitecture, the Xilinx UltraScale+ development platform (see
Section 4.1). Other partners within the EuroExa project are
looking at the other programming models listed above, and
therefore, across the project as a whole, we will be in a good
position to compare the performance, ease-of-use, robust-
ness, and maturity of the tools.

3. LFRic Weather and Climate Model

3.1. Overall Description. LFRic is a new atmospheric model,
being developed at the Met Office in the United Kingdom,
which supports both weather forecasting and climate sim-
ulations. (e current operational model at the Met Office,
the Unified Model, uses a latitude-longitude grid in which
lines of longitude converge at the poles, leading to problems
in performance and scalability, especially on modern highly
parallel HPC systems. In a precursor project between the
Met Office, the Natural Environment Research Council, and
the Science and Technology Facilities Council, called
GungHo, a new dynamical core was developed using the
cube-sphere grid which covers the globe in a uniform way
[33].

(e GungHo code has also been developed specifically to
maintain performance at high and low resolutions and for
high and low CPU core counts. A key technology to achieve
this is separation of concerns, in which the science code is
separated from the parallel, performance-related code. (e
science code is written conforming to a specific application
programming interface (API), and the PSyclone code gen-
eration tool is used to automatically generate the code
targeting different computer architectures. (e LFRic
weather and climate model is based on the GungHo dy-
namical core with its PSyclone software technology [24].

LFRic uses data decomposition across parallel multinode
clusters with halo exchanges between subdomains carried
out using the message passing interface (MPI). (is paper
describes an approach to FPGA acceleration of a simple
kernel that represents the situation on a computing element
of a multinode cluster. For a full forecast model running on a
large-scale multinode parallel system, this would be mul-
tiplied up many times. (e relationship of this work to the
MPI decomposition and to halo exchange between sub-
domains is further discussed in Section 6.6.
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3.2. LFRic Profile and Call Graph. LFRic can be run in many
configurations representing a range of weather and climate
scenarios at low, medium, and high resolutions. In order to
characterise the performance, we ran and profiled a bar-
oclinic test case, which has been developed by the Met
Office as a part of their performance evaluation procedure.
(e version of LFRic used for this work implements only
parts of the scientific model, namely, the dynamics and
individual kernels. LFRic dynamics was still under devel-
opment at the time of this work, and important optimi-
zations to its algorithmic performance such as provision of
a multigrid preconditioner were not complete. Further-
more, additional science modules such as physics, ocean
coupling, and data assimilation will also need to be
addressed in the future.

Profiling was carried out on the Met Office collabo-
ration system, a Cray XC40, running on a single core.
Running the model with gprof and piping the output first
into gprof2dot.py and thence into dot, the call graph is
produced, as shown in Figure 1. (e boxes in the call graph
are coloured according to the amount of CPU time taken,
with red being the highest and blue the lowest, inclusive of
called routines.

Most of the CPU time is spent in the Helmholtz solver
that is used to compute the pressure. Two leaf nodes,
shown expanded in Figure 2, account for greater than 50%
of the CPU time for this test case. Both of these sub-
routines spend most of their time performing double-
precision matrix-vector multiplication within an outer
loop which runs over the vertical levels within the at-
mosphere. (erefore, as a first step to porting LFRic, we
are focussing on running a matrix-vector multiplication
kernel on the FPGA, using data dumped from a real LFRic
execution.

We note that the use of FPGAs as accelerators offers
considerable scope for improved performance using reduced
precision, as lower precision arithmetic operations consume
fewer resources and can operate at higher clock frequencies
[22]. Most current weather models use double-precision
throughout, but there is active research in the use of reduced
precision for some parts of the computations, e.g., [34]. For
this work, although the current LFRic code uses double
precision only, we have tested our implementation with both
single and double precision, in anticipation of the benefits of
a mixed-precision solution (however, see the conclusions
reported in Section 4.7).

3.3. Matrix-Vector Updates in LFRic. (e matrix-vector
updates have been extracted into a kernel test program and
converted to C. (ere are dependencies between some of
the updates across the horizontal mesh, and a graph col-
ouring scheme is used in LFRic such that nodes within a
single “colour” have no dependencies and can be computed
simultaneously. Adams et al. describe how colouring is
used to produce independent computations for multi-
threading with OpenMP [24]. (is parallelism can also be
exploited for the FPGA acceleration. As with all acceler-
ator-based solutions, a key optimization strategy is to

minimize the overhead of transferring data between the
CPU and the FPGA.

(e test grid is a very coarse representation of the globe
in which the cube-sphere grid has 6 “faces” each consisting
of 12×12 finite-element cells, giving rise to 864 cells in the
horizontal, extruded into vertical columns with 40 vertical
levels (see Figure 1 in [24]). Today’s global weather models
are run with a resolution of order 10 km which using this
grid would have around 6 million cells in the horizontal.
(ese models would typically be distributed across thou-
sands of nodes of a highly parallel multiprocessor, so the test
grid is a good example of the subgrid size that may be found
running on a single CPU.

As a part of the Helmholtz solver for determining the
pressure, the code performs a matrix-vector update on each
cell and for each vertical level. (e size of the matrix is 8× 6;
this can increase if higher order methods are employed in the
solution of the finite-element discretisation. Each update
therefore consists of an x-vector of 6 elements, a matrix of
8× 6 elements, and an output or left-hand-side (lhs) vector
of 8 elements. (e lhs-vector is updated, so it appears as
input and output, though the current FPGA implementation
only does the matrix-vector product, leaving the update to be
performed on the ARM CPU.

For each update, there are therefore (8 + 6 + 48) ∗
864 ∗ 40 ∗ 8B � 17 MB of input data and 8∗ 864∗ 40∗
8B � 2 MB of output data. We will describe in Section 4.6
how the data are managed given the local memory con-
straints of the FPGA design.

4. Porting and Optimization for
FPGA Acceleration

4.1. Development Platform and Environment. In preparation
for access to the EuroExa testbed systems, we have been
using a Xilinx Zynq UltraScale+ ZCU102 evaluation plat-
form [25]. At its heart, this board contains a multiprocessor
system-on-chip (MPSoC) comprising, in addition to other
processors, an ARM Cortex A53 quad-core CPU running at
1.3 GHz and a Zynq UltraScale XCZU9EG-FFVB1156
FPGA. (e FPGA contains some 600k logic cells, 2,520 DSP
(digital signal processing) slices, and around 3.5 MB of
BRAM (block random access memory, which is a small, fast
memory implemented within the FPGA fabric). (e ARM
CPU is running Ubuntu 16.04.5, and we are using Vivado
Design Suite [35] and Vivado HLS [36], both at version level
2017.4, to generate IP blocks and bitstreams for the FPGA.

4.2. Starting Code. LFRic is written in Fortran making use of
many features from the Fortran 2003 standard [37]. Vivado
HLS does not accept Fortran code, so the matrix-vector
kernel was translated into C. We have hard-coded matrix
sizes and loop lengths using #define statements so that HLS
can produce its most efficient implementation and the re-
quirement for control logic is minimized.

(e resulting starting code after translation to C and
with fixed data sizes is shown in Figure 3.
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4.3. Optimized Code in Vivado HLS. Vivado HLS includes a
compiler which analyses C code, schedules operations in
time sequence on the FPGA hardware (synthesis), and then
writes the register-transfer level (RTL) code which forms an
IP (intellectual property) block which can be added to an IP
repository for later inclusion in a design using Vivado
Design Suite.

On completion of the C synthesis process, Vivado HLS
produces a synthesis report which contains performance
metrics. Metrics include the task latency (the time from the
start to the finish of the task) and the task interval (the time
between the start times of two consecutive tasks), both
measured in clock cycles. One parameter to be set in HLS is
the target clock cycle, and HLS also reports the estimated
clock cycle based upon timings achieved in the synthesised
design; thus, it is always possible to convert performance in
clock cycles into expected timings. (ere are also messages
sent to the console window providing information on op-
timizations which have or have not been performed, reasons

for lack of success in optimization, and the location of the
critical path through the code.

Using this feedback from HLS, it is possible to optimise
the code without executing it, achieving a substantial re-
duction in the reported latency. Objectives of the optimi-
zation were the following:

(i) To achieve streaming of data in and out of the IP
block with a target of one 64-bit word per clock
cycle

(ii) To achieve pipelining of the arithmetic operations
and overlapping of multiplications with additions to
achieve one 64-bit multiplication and one 64-bit
addition every cycle

(iii) To minimize use of resources on the FPGA

(e following optimizations were carried out:

(i) Loops were swapped to make the k-index over the
vertical levels the innermost loop

Figure 3: Starting code for a matrix-vector multiplication for NK vertical levels translated into C for entry into Vivado HLS.

Figure 1: Call graph produced from gprof for the LFRic baroclinic test case. (e colour coding shows which subroutines take the most CPU
time as follows: red 90%–100%, orange 80%–90%, yellow 60%–80%, green 40%–60%, aquamarine 20%–40%, teal 10%–20%, and blue
0%–10%.

34.34%
176076288×

19.44%
176076288×

_apply_variable_hx_kernel_mod_MOD_opt_apply_variable_hx_code
34.34%
(34.34%)

176076288×

_scaled_matrix_vector_kernel_mod_MOD_opt_scaled_matrix_vector_code
19.44%
(19.44%)

176076288×

Figure 2: Expanded view of two leaf nodes of the call graph which account for more than 50% of the CPU time.
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(ii) Data arrays were transposed where necessary to
ensure that data running over the k-index were
sequential in memory; together with the above, this
ensures a sequential innermost loop with a length
of 40 elements

(iii) (e HLS UNROLL pragma was applied to the
innermost loops; unrolling by hand was also tried
but was shown to result in no additional benefit

(iv) (e HLS PIPELINE pragma was applied to the
outermost loop

(v) (e code just computes the matrix-vector product,
without updating the left-hand-side (lhs) array; the
update can be performed on the ARM CPU

(vi) HLS INTERFACE pragmas were added to define the
interfaces for the subprogram arguments; in partic-
ular, the clauses num_read_outstanding� 8, max_-
read_burst-_length� 64, num_write_outstanding� 8,
and max_write_burst_length� 64 were used

(vii) Data read from and written to the subprogram
arguments were copied into and copied out from
local working arrays (local arrays are implemented
using BRAM_18K logic elements within the ma-
trix-vector IP block) using memcpy

(viii) (e input array x is constant for iterations of the
outer df loop, so x is copied into its local array once
at the start; slices of the matrix are copied in and
columns of the output lhs array are copied out at
each iteration of the loop

A comprehensive set of optimizing transformations for
developing high performance FPGA designs using HLS is
given in [38]. (e resulting code is shown in Figure 4.

(e HLS INTERFACE pragmas in the code define the
ports which will be available at the matrix-vector IP block for
interconnection in the subsequent Vivado design. (e three
array arguments are specified as AXI (Advanced Extensible
Interface) master ports (m_axi). AXI is an advanced
microcontroller bus architecture from ARM Ltd. (e three
interfaces are bundled together into a single port using the
bundle - option which helps to simplify the interconnection
network. Specifying the return argument with an interface of
s_axilite produces a slave port with the AXILite protocol,
which is the connection for the “registers” used to control the
block (see Section 4.5).

(e last two optimizations in the list above are par-
ticularly important. Without them, data reads are not
streamed, with each word being read independently as
though the block is waiting for one read to complete before
starting the next. With the optimizations, data are
streaming at one word per cycle. We note in particular the
benefit of the use of memcpy; HLS recognises memcpy and
implements it using “burst mode” [36]. (e presence or
absence of data streaming in burst mode can be seen by
attaching in the Vivado design an Integrated Logic Ana-
lyzer (ILA) IP block to the data path between the matrix-
vector block and its BRAM. Screenshots for the two cases,
without and with the data streaming optimizations, are
shown in Figures 5(a) and 5(b).

(e analysis reports produced by Vivado HLS include a
Performance tab with a timeline which shows the issuing
and duration of operations such as reads, multiplications,
and additions. Examination of this timeline shows that,
following an initial start-up phase, an addition (dadd) and a
multiplication (dmul) are being issued every cycle.

Metrics reported in the HLS synthesis report detail the
utilization of logic elements on the FPGA chip, specifically
the numbers of BRAM elements (BRAM_18K), digital signal
processors (DSP48Es), flip-flops (FFs), and look-up tables
(LUTs). Performance and utilization data from this report
are shown in Table 1 for a range of target clock periods. For
slow clocks (50 ns and greater), HLS uses three times the
number of DSP48Es.

Examination of the performance timeline in Vivado HLS
shows that while it is at times able to carry out three additions
and three multiplications in one cycle, the effect on perfor-
mance is negligible as the execution of the whole is load/store
bound. For clock periods greater than 2 ns, HLS uses three
DSP48Es for a double-precision addition and eleven DSP48Es
for a double-precision multiplication. At high clock speeds
(clocks of 2 ns and less), fewer DSP48Es are used. (e im-
plication is that, at high clock speeds, timing constraints
cannot be met using some of the DSP48Es and that their
function is replaced by increased use of FFs and LUTs.

Table 2 shows the number of logic elements used by the
matrix-vector code synthesised with a 2 ns clock period,
compared with the total number of elements available on the
ZU9 FPGA. (e matrix-vector block uses a very small
fraction of the space available on the chip (at most 4% of the
FFs), allowing considerable scope for replicating the block
for increased parallelism (spatial parallelism) on the FPGA.

Eight BRAM_18K logic elements are used: four as a
buffer for the master m_axi port for streaming the data
arrays and four for the local array space.

Using the starting code in Figure 3, Vivado HLS reports a
latency of 69,841 clock cycles. (e optimized code, syn-
thesised with a target clock cycle of 2 ns, produces a latency
of just 2,334 cycles, an improvement of a factor of 30. (e
actual estimated clock period of 2.89 ns (346 MHz) gives a
guideline to the maximum frequency at which designs in-
cluding this IP block may be expected to operate correctly.

4.4. Analysis of Execution Time for the Matrix-Vector Kernel.
For this data case, with a matrix of size 8× 6 and 40 vertical
levels, the matrix-vector kernel executes 2× 8× 6× 40� 3840
floating point operations (flops); that is, there are one ad-
dition and one multiplication for every element of the matrix.
Detailed examination of the performance timeline affords the
following analysis of the reported latency. (e latency of 2334
cycles (at a clock period of 2 ns) breaks down as follows: (ere
is an initial period of 371 cycles comprising a start-up of 11
cycles followed by reading the 240 elements of the x matrix
into the local array (local BRAM) in the burst mode at one
element per cycle (240 cycles) and loading from the local array
into registers at two elements per cycle (120 cycles).

(en, the outer loop iterating over df is executed with a
loop count of 8. (e loop iteration comprises a pipeline
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which performs 240 additions and 240 multiplications using
one cycle for each combined multiply-add, so there are 240
cycles for each iteration of the loop. (ere is a starting/
finishing cost of 43 cycles to carry out reads to fill the pipe
(24 cycles) and writes to empty it (19 cycles), but the iter-
ations can be executed at an interval of 240 cycles, so the 43-
cycle “start-up” cost is paid once only for the loop. Eight
times 240 plus a pipeline start-up of 43 cycles and an initial
reading phase of 371 cycles yields a total of 2334 cycles.

An execution time of 2334 cycles corresponds to 1.65
flops per clock cycle, the overheads described above effecting
a reduction from the ideal target of 2.0 flops per cycle.

4.5. Integrating the Matrix-Vector Blocks into a Vivado Design.
In order to execute the matrix-vector IP block, it needs to
be incorporated into a block design using Vivado Design
Suite [35]. We use IP blocks from the Vivado IP Catalog

[39] in order to provide functions in the design for data
handling, interface with the ARM CPU, BRAMs, clock
control, etc. (ere are many ways to do this, and con-
siderable effort was expended in comparing different
options for the design. We present here two designs
which incorporate a number of matrix-vector IP blocks in
order to increase the available parallelism and which
illustrate some of the trade-offs which need to be
considered.

Both designs contain the following:

(i) A number, nblocks, of matrix-vector IP blocks

(ii) (e same number, nblocks, of Block Memory
Generator blocks to provide BRAM block memory,
one memory block per matrix-vector block

(iii) (e same number, nblocks, of AXI BRAM Con-
troller blocks to provide an AXI protocol interface
for each memory block

Figure 4: Optimized code for a matrix-vector multiplication for NK vertical levels.
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(iv) A Zynq UltraScale+ MPSoC IP block, which pro-
vides an interface to the ARM processor, through
two AXI4 high-performance master full-power
domain ports (HPM0 FPD and HPM1 FPD)

(v) A Clocking Wizard IP block, which provides a
custom clock and is used to vary the clock speed
provided to the other blocks

(vi) A Processor Reset System block

(a)

(b)

Figure 5: Waveforms from a Vivado Integrated Logic Analyzer (ILA) block inserted into the design, without (a) and with (b) streaming
optimizations.
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(e differences between the two designs then arise in the
way in which the matrix-vector blocks, the BRAMs, and the
Zynq MPSoC are interconnected. (e basic requirement is
for 64-bit data paths for the following connections:

(i) Master Zynq port to the slave port on each matrix-
vector IP block so that the ARM CPU has access to
the control registers

(ii) Master Zynq port to a slave port on each BRAM
controller so that the ARM CPU can access the
BRAMs

(iii) Master port on each matrix-vector IP block to a
slave port on each BRAM controller so that each
matrix-vector IP block can access data in the
BRAMs

4.5.1. Design 1: Full Interconnection. (is design simply uses
AXI Interconnect blocks to provide complete in-
terconnection between all matrix-vector blocks, all BRAMs,
and the Zynq MPSoC. For small numbers of blocks
(nblocks≤ 8), this can be achieved with a single AXI In-
terconnect block. We set up an AXI Interconnect block with
nblocks+1 slave ports connected to the master ports of the
nblocks matrix-vector blocks and one of the master ports on
the Zynq, and 2∗ nblocks master ports connected to the
slave ports of the matrix-vector blocks and the slave ports of
the BRAM controllers.

AXI Interconnect blocks support a maximum of 16
master ports and 16 slave ports, so for nblocks >8, two AXI
Interconnect blocks were used each using a different master
port on the Zynq and each servicing nblocks/2 matrix-
vector blocks and nblocks/2 BRAM controllers. An ex-
ample of this design with four matrix-vector blocks is
shown in Figure 6.

Having completed the design, the developer instructs
Vivado Design Suite to perform the following series of steps:

(i) Synthesis: transforming an RTL-specified design
into a gate-level representation

(ii) Implementation: placing and routing the netlist
onto device resources, within the logical, physical,
and timing constraints of the design

(iii) Bitstream generation: generating a bitstream for the
Xilinx device configuration

(ere are two types of design constraints: physical
constraints, which recognise limitations in the mapping of
logical design objects to device resources, and timing con-
straints, which define the frequency requirements for the
design. Different physical and timing constraints might be
needed for different target devices. A timing report can be
run on the synthesised design so that problems can be fixed
before implementation.

Vivado carries out a static timing analysis which
computes the expected timing of the circuit without re-
quiring a simulation of the full circuit. (e timing report
summarizes any negative slack found in the analysis; neg-
ative slack is generated when a path is too slow, and the path
must be sped up (or the signal must be delayed) if the whole
circuit is to work at the desired speed. In particular, the
report provides figures for the worst negative slack (WNS),
the worst slack of all the timing paths, and the total negative
slack (TNS), the sum of all WNS violations [40]. If the
design violates these timing constraints, bitstream genera-
tion will fail.

4.5.2. Design 2: Reduced Interconnection. Testing Design 1
showed that the maximum clock speed at which the design
could be run before timing violations induce failure was
relatively low, just 250 MHz. As we have provided each
matrix-vector IP block with its own BRAM, it does not
need to access the other BRAMs and full interconnection
between every matrix-vector block and every memory is
not required. Design 2 implements a simplified design
while still providing the required connectivity described
above. In addition, AXI Interconnect blocks have a high
degree of internal complexity as they include capabilities
for converting between different AXI protocols and be-
tween paths having different data widths. In this design,
we used, where possible, AXI Crossbar blocks, which are
internally simpler.

As we are running with double-precision floating point
data, all data paths in the design were set to 64-bit. However,

Table 1: Performance and utilization metrics from the Vivado HLS synthesis report for the double-precision matrix-vector code for a range
of target clock periods.

Target clock (ns) Estimated clock (ns) Latency (clocks) DSP48E total DSP48E dadd DSP48E dmul FF LUT

100 87.50 2306 42 3 11 28960 9023
50 43.75 2306 42 3 11 28960 9023
20 17.50 2312 14 3 11 20423 6751
10 8.75 2315 14 3 11 20742 6889
5 4.99 2321 14 3 11 21466 6860
2 2.89 2334 10 0 10 23199 7203
1 1.96 2336 10 0 10 23570 7200
0.5 1.96 2336 10 0 10 23570 7200

Table 2: Number of logic elements used by the matrix-vector code
synthesised with a 2 ns clock period, compared with the total
number of elements available on the ZU9 FPGA.

Logic element BRAM_18K DSP48E FF LUT

Matrix-vector block 8 10 23199 7203
Available 1824 2520 548160 274080
Percentage used 0.44 0.4 4.23 2.63
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the master ports on the Zynq are fixed at 128-bit. We
therefore start with an AXI Interconnect block to provide
conversion from 128-bit wide HPMx FPD ports to 64-bit
wide data paths to the matrix-vector blocks and the BRAM
blocks. From one master port on the AXI Interconnect, an
AXI Protocol block provides conversion between AXI4 and
AXI4Lite for the slave ports on the matrix-vector blocks.
(is design differs from Design 1 in that we use the two
master ports on the Zynq for different purposes; one services
the control registers of the matrix-vector blocks, and the
other accesses the BRAM blocks.

For the control registers, one AXI Crossbar switch
allows the MPSoC HPM0 FPD port to fan out to the slave
ports on multiple matrix-vector blocks. A second AXI
Crossbar switch allows the MPSoC HPM1 FPD port to fan
out to the slave ports on the BRAM controllers. However,
both these latter connections and the master ports on the
matrix-vector blocks need access to the BRAMs, so each
BRAM controller is attached to a simple AXI Crossbar
with two slave ports and one master port. An example of
this design with four matrix-vector blocks is shown in
Figure 7.

4.5.3. Comparison of the Designs. In the previous two sec-
tions, we have produced two designs with twelve matrix-
vector blocks. (e ZU9 FPGA has around 3.5 MB of BRAM.
Using twelve matrix-vector blocks each with its own dedi-
cated BRAM leads to twelve BRAMs of 256 kB each or 3 MB
in total, utilizing most of the available BRAM resources.
Fewer matrix-vector blocks would provide limited paral-
lelism. Larger numbers of blocks would mean reducing the
capacity of the BRAMs to 128 kB. In addition, we are close to
the limitations imposed by timing constraints; a trial design
with sixteen matrix-vector blocks failed with timing
violations.

A comparison of the interconnect requirements of the
two designs is as follows:

Design 1: two AXI Interconnect blocks each with 7
slave ports and 12 master ports (7×12)

Design 2: one AXI Interconnect block (2× 2)

one AXI Protocol converter
two AXI Crossbar blocks (1× 12)
12 AXI Crossbar blocks (2×1)

4.5.4. Managing Memory and Address Spaces. Having suc-
cessfully completed the steps to generate a bitstream in
Vivado Design Suite, we can export the hardware platform
specification file. It is most easily viewed using the Xilinx
SDK [41], which shows the “registers” for each matrix-vector
block. (is is an area in memory which contains control
words whose bits are used to control the block, e.g.,
AP_START to start the block and AP_IDLE to test whether
the block has completed its execution and is idle. (is area
also contains the addresses for each of the arguments in the
interface to the matrix-vector subprogram. Setting the ad-
dresses to locations in BRAM for the three arrays (matrix, x,
and lhs) prior to starting the block effectively “points” the
block to the required input and output data locations.

Each HPM FPD master port is associated with an ad-
dress space; for HPM0 FPD, the address space starts at
xA0000000, and for HPM1 FPD, the address space starts at
xB0000000. (e Vivado Design Suite Address Editor [42] is
used to allocate address ranges for each master interface. For
Design 2, HPM0 FPD only has access to the slave ports on
the matrix-vector blocks, so the address space from
xA0000000 is used for them. In contrast, HPM1 FPD only
has access to the memories, so it uses the space from
xB0000000. (e size of the BRAM blocks is also specified in
the address editor, by specifying the address range.

Although the primary goal of the design and optimi-
zation process is to minimize execution time, there is also a
trade-off against utilization of FPGA resources. We have
discussed in Section 4.3 the utilization report from HLS
showing the resources used by a single matrix-vector IP
block. Vivado Design Suite also provides a utilization report
for the whole design. FPGA utilization for the two designs is
shown in Figure 8. While the utilization of DSPs and BRAMs
is the same as they derive from, respectively, the number of
matrix-vector blocks and the number of BRAM blocks, the
simplification of the interconnect in Design 2 relative to
Design 1 has resulted in a small but significant reduction in
the numbers of FFs and LUTs used. As we shall see when
looking at performance in Section 5, this allows faster clock
speeds and/or additional spatial parallelism, leading to
higher performance.

4.6. CPU Driver Code. (e FPGA bitstream generated by
Vivado Design Suite is driven by an application code
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Figure 6: Design 1, the full interconnect design, with four matrix-vector blocks and four BRAM blocks implemented in Vivado Design
Suite.
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running on the ARM processor. At present, this is a driver
which exercises the matrix-vector code using real data
written out from a run of the LFRic code. (is is a pre-
paratory step, prior to running the full LFRic weather
model on the ARM with kernels, including matrix-vector
multiplications and other kernels, offloaded onto the
FPGA.

Provision is made within Vivado HLS for the automatic
generation of IP-specific application program interfaces
(APIs), specifically C routines which can be used on the
ARM processor to control the IP block, e.g., to initialize,
start, and monitor status and read and write data [43]. We
have chosen to develop our own API, initially in C for the
matrix-vector kernel, but it has also been implemented in

standard Fortran and tailored to the needs of the LFRic
application. (e methodology is as follows:

(i) We add devices /uio0 and /uio1 to the Linux OS
providing access to the ports HPM0 FPD and
HPM1 FPD

(ii) We call mmap to map each device into the user
space

(iii) We assign pointers to locations in the user space
for the register space for each block, and for the
data arrays in each BRAM

(iv) We divide the work into groups of columns which
will fit into the FPGA BRAM (see below)
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Figure 8: Comparison of the FPGA utilization reported by Vivado Design Suite for Design 1 (a) and Design 2 (b).
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Figure 7: Design 2, the reduced interconnect design, with four matrix-vector blocks and four BRAM blocks implemented in Vivado Design
Suite.
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(v) For each group of columns (see below), we per-
form the following:

(a) Assign to a matrix-vector block
(b) Copy input data from CPU RAM into BRAM
(c) Set the control word “registers” for the block
(d) Start the block by setting AP_START
(e) Wait for the block to finish by watching

AP_IDLE
(f) Copy output data from BRAM back to CPU

RAM

(vi) In practice, we separate execution time from data
copy time by filling all of the BRAMs, then running
all nblocks matrix-vector blocks, and finally
copying output data back and repeat

(vii) We perform a single execution to check correct-
ness by comparing with the standard answer

(viii) We time the code by executing within a repeat loop
to amortize start-up costs over a larger body of
work

On the UltraScale+, we are limited to around 3.5 MB of
BRAM space. (e two FPGA designs in Section 4.5 use
BRAMs of size 256 kB so that twelve such BRAMs deliver
3MB of capacity. (e code therefore blocks the data for each
matrix-vector block so that it fits within its 256 kB of BRAM.

(e LFRic data consist of vertical columns comprising a
horizontal cell from the finite-element grid with all its 40
vertical levels. With an input x array of 6 elements, an output
lhs array of 8 elements, and a matrix of 8× 6 elements, each
column requires (8 + 6 + 48)∗ 40∗ 8 B� 19840 B or around
19 kB. We can accommodate just 13 columns within the
256 kB BRAM for each matrix-vector block. (e driver code
on the ARM contains code to manage the allocation of the
864 total columns in the model across the number of matrix-
vector IP blocks given the limitation of 13 columns per
block.

4.7. Modifications for 32-Bit Floating Point Data. In order to
assess the effect on performance and chip utilization of re-
duced precision, we repeated the above procedure with 32-bit
single-precision “float” data. (e only changes required on the
FPGA side were changing from double to float in the C code
which was passed to Vivado HLS and changing the width of
some of the data paths in the Vivado design from 64-bit to 32-
bit, i.e., those data paths between the matrix-vector blocks and
the BRAM blocks and between the Zynq and the BRAM
blocks. (e ARM driver code was modified with single-
precision versions of the key data-handling subprograms.

Estimated performance reported by Vivado HLS for the
single-precision code was 2328 ns compared with 2334 ns for
double precision, a saving of only 0.26%. (e imple-
mentation in HLS is still targeting two flops per cycle
irrespective of the precision. Where we hope to make major
gains in using single precision is that the logic required for
the computation is expected to consume fewer resources on
the chip meaning that we can implement a larger number of
IP blocks delivering greater parallelism.

Table 3 shows the resource utilised for a single IP block in
both single and double precision and for a full 12-block
Vivado design (reduced interconnect) in single and double
precision. Indeed, the resources utilised are much reduced
with single precision, using for the full design only 30% of
the DSP48Es, 54% of the FFs, and 64% of the LUTs.
However, this does not translate into larger numbers of IP
blocks as, once again, the violation of timing constraints was
found to limit the number of blocks to 12 and the clock
frequency to 333 MHz.

We noted earlier that the use of FPGAs as accelerators
offers considerable scope for improved performance using
reduced precision, as lower precision arithmetic operations
consume fewer resources and can operate at higher clock
frequencies [22]. However, our attempt to exploit higher
levels of parallelism in single precision by replicating IP
blocks across the FPGA has not been successful, raising the
question of whether an alternative technique is required to
generate more parallelism in this case.

5. Performance

Performance of the matrix-vector code was timed, excluding
the data transfers between the ARM CPU and the FPGA. (e
reason for this is that the need for transferring data depends
on the context. (e major part of this dataset, 17 MB out of
19 MB, consists of the matrices. In any completed port of the
LFRic weather model to the FPGA system, the matrices will
be generated and used on the FPGA and so will never need to
be transferred.

Timings are converted to execution rates in Gflop/s
knowing that each 8× 6 matrix-vector multiplication re-
quires 2× 8× 6 flops; there are two operations, one addition
and one multiplication, for each matrix element.

Performance results are shown in Figure 9 and Table 4.
Performance is reported for the two designs, full in-
terconnect and reduced interconnect, showing the scaling in
performance with the number of matrix-vector blocks used,
at the clock frequencies of 100 MHz, 250 MHz, and
333 MHz. We also include for Design 2 (reduced in-
terconnect) the performance scaling for single precision at
333 MHz. (e maximum performance achieved with twelve
matrix-vector blocks is 5.34 Gflop/s for double precision and
5.58 Gflop/s for single precision.

(e performance for Design 2 (reduced interconnect)
exceeds that for Design 1 by 10% at 8 IP blocks, but more
importantly, it functions correctly out to 12 IP blocks,
whereas Design 1 is limited to 8 IP blocks because of vio-
lation of timing constraints.

For Design 2, the speed increase for twelve blocks rel-
ative to one block is 10.5x representing a parallel efficiency of
94%, where parallel efficiency on n IP blocks, En, is defined as
En�T1/(n ·Tn), where T1 is the execution time on one IP
block and Tn the execution time on n IP blocks. Scaling with
clock speed is also good. With twelve matrix-vector blocks,
the performance improves from 1.71 Gflop/s to 5.34 Gflop/s
at clock frequencies from 100 MHz to 333 MHz, an efficiency
of 94%. We note that the maximum clock frequency for the
DSP48 logic cells on the ZU9EG FPGA is 775 MHz [37].
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In order to compare FPGA performance against state-of-
the-art CPU performance, we have run the matrix-vector
kernel, after conversion to C but before modification for
FPGAs, on a single node Intel CPU. (e CPU is an Intel
Broadwell E5-2650 v2 2.60 GHz CPU with 8 cores. As it is
part of a Cray multiprocessor system, we used the C
compiler from Cray Compilation Environment version
8.5.8, as this generally delivers better performance than
GCC. OpenMP was used to exploit the benefits of all eight
cores. (e speed increase on the Intel CPU from 1 to 8 cores
was 5.8x, i.e., 72% parallel efficiency. (e performance
comparison is shown in Table 5. Peak performance of the
Broadwell CPU is simply derived from 16 flops/cycle× 8
cores× 2.6 GHz. Peak performance of the ZCU102 FPGA is
from the study in [45]. (is figure does not take into account
the precision of the data in the computation and so is
probably a considerable overestimate for 64-bit precision.

(e FPGA performance is 54% of that of the Broadwell
8-core CPU; however, for comparison of CPU and FPGA

performance, it is essential to take into account the relative
power consumption and the relative price of the two devices.
(is will be done in Section 6.3.

6. Discussion

6.1. Performance of the Matrix-Vector Kernel. We have de-
scribed the development and implementation using Vivado
HSL and Vivado Design Suite of a matrix-vector multi-
plication kernel which has been used to process a signif-
icant dataset, 864 columns of 40-level data, from the LFRic
weather and climate model. A kernel which processes a
single column of data (40 double-precision floating point
matrix-vector multiplications with an 8× 6 matrix) has
been implemented as an IP block and replicated twelve
times across the logic cells of a Xilinx ZU9EG FPGA. (e
resulting performance is 5.34 Gflop/s for double precision
at a clock speed of 333 MHz on the programmable logic
side. (is is the rate of computation from BRAM to BRAM
on the FPGA, neglecting data transfers from other parts of
the system.

(ere are three factors which determine and which limit
the achieved performance for our matrix-vector kernel:

(i) (e performance in flops/cycle of an individual
matrix-vector IP block

(ii) (e number of matrix-vector IP blocks in the design

(iii) (e clock frequency used to drive the pro-
grammable logic (PL), principally the matrix-vector
blocks but also the associated blocks, e.g., the BRAM
blocks

(e performance of an individual matrix-vector IP block
is targeting a peak of 2 flops/cycle but is limited in practice to
1.65 flops/cycle because of overheads associated with data
transfers and pipeline start-up costs (according to the
performance estimate of Vivado HLS). (e number of IP
blocks employed and the clock frequency of the PL are
limited by timing constraints. In particular, we would like to
be able to exploit all the available logic of the FPGA but find
that, in practice, these timing constraints place a limitation
which is more severe than the amount of resources required.
In other words, for our application, timing constraints
outweigh resource constraints.

An ideal or peak performance figure, P0, for this design
with twelve blocks running at 333 MHz would be 2 flops/

Table 3: ZU9 FPGA resource utilization for the 333 MHz reduced interconnect designs using 12 matrix-vector IP blocks for single and
double precision.

BRAM_18K DSP48E FF LUT

Double-precision IP block 8 10 23199 7203
Single-precision IP block 4 3 11934 6391
Single-precision IP block resource relative to double
precision (%)

50 30 51 89

Double-precision 12-block Vivado design 816 120 302606 204616
Single-precision 12-block Vivado design 792 36 162726 131758
ZU9 FPGA available resource 912 2520 548160 274080
Single-precision Vivado design resource relative to
double precision (%)

97 30 54 64
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Figure 9: Performance of Design 1 (full) and Design 2 (reduced)
for double precision on the UltraScale+ FPGA at different clock
frequencies, showing scaling with the number of matrix-vector IP
blocks used. Also shown is Design 2 (reduced) for single precision
at 333 MHz.
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cycle× 12 blocks× 333 MHz� 7.99Gflop/s. (e actual per-
formance, Pa, may be obtained from the ideal performance
by two efficiency factors, the single block efficiency, effs, and
the efficiency with which the blocks are combined in parallel
in the design, effp; thus,

Pa � P0 × eff s × effp � 5.34 Gflop/s. (1)

Again assuming the performance estimate from Vivado
HLS is realised in practice, a value of 85% for effs is given,
which implies the parallel efficiency figure for the design,
effp, is 79%.

(ere is a relationship, a trade-off, between the number
of blocks and the maximum clock speed. For a simple
design, we can run the code at a higher clock speed, but as
the number of matrix-vector blocks and memories in-
creases, the complexity of the design increases and the
maximum clock speed decreases. As the clock speed in-
creases and/or the number of matrix-vector blocks in-
creases, the design reaches a point at which timing
constraints become important and timing violations cause
the implementation to fail.

(e maximum clock frequency at which Design 2
operates correctly is shown in Table 6 for different
numbers of matrix-vector blocks. (e impact on per-
formance is that although increasing the number of blocks
from one to twelve potentially delivers up to a twelvefold
increase in performance, the clock speed is reduced from
450 MHz to 333 MHz, a reduction of 74%, so the 12x
potential increase is immediately limited to 8.9x. A similar
impact on performance is reported by Khayyat and
Manjikian who stated that “Increasing the system size
eight times, from 8 to 64 arithmetic units, results in
halving the maximum achievable frequency from 320 to
160 MHz” [46].

6.2. Peak Performance of FPGAs. It is usual to compare the
sustained performance of an algorithm on a processor with
the processor’s peak performance in order to assess the
efficiency with which the hardware is being utilised and to
look for sources of inefficiency. (e peak performance for a
fixed-hardware processor such as a CPU or GPU is obtained
by summing the number of adders and multipliers, followed
by multiplying by the number of floating point results they
return per cycle (in streaming or vector mode, if available)
and then multiplying by the maximum clock frequency. (is
represents the maximum processing rate, which can never be
attained in practice, but it is approached by the most efficient
algorithms, which manage to keep arithmetic hardware busy
despite overheads of data transfer, instruction scheduling,
etc.

Determining the peak performance of programmable
logic, such as FPGA hardware, is less straightforward. (e
nature of the hardware means that the number of adders
and multipliers is unknown, being an output of the
implementation. Moreover, an almost limitless number of
different floating point representations are available, the
choice of which has an effect on floating point performance.
(e ideal performance derived above for our design is
certainly not the peak performance of the FPGA, being
dependent as it is on the number of blocks and the clock
frequency, which are determined by the design, not by the
hardware.

(is problem has been addressed by Parker [45], who
specifically examined the peak performance capabilities
of digital signal processors (DSPs), GPUs, and FPGAs.
With regard to our problem, outlined above, of being
unable to utilize all the logic resources of the chip because
of timing constraints, he wrote “. . . when large numbers
of floating point operators are packed together, the result

Table 5: Comparison of ZU9 FPGA double-precision matrix-vector performance with Intel multicore CPU performance.

Hardware Matrix-vector performance (Gflop/s) Peak performance (Gflop/s) Percentage peak

ZCU102 FPGA 5.34 600 0.9%
Intel Broadwell E5-2650 v2 2.60 GHz 8-core CPU 9.86 332.8 3.0%

Table 4: Performance in Gflop/s using different numbers of matrix-vector IP blocks of Design 1 (full) and Design 2 (reduced) for single and
double precision on the UltraScale+ FPGA at different clock frequencies.

Number of matrix-vector IP blocks

Design 2 (reduced interconnect) Design 1 (full interconnect)

Single precision Double precision Double precision

333 MHz 333 MHz 250 MHz 100 MHz 333 MHz 250 MHz 100 MHz

1 515.7 510.6 386.3 157.9 483.1 362.0 148.3
2 1025.5 1016.2 768.7 312.7 950.7 720.7 292.6
3 1512.0 1496.4 1140.2 463.9 1385.9 1048.5 432.7
4 2008.8 1995.7 1508.6 616.8 1808.4 1370.5 562.0
5 2511.3 2477.7 1889.8 772.9 2253.3 1711.1 705.3
6 2947.1 2900.2 2208.0 907.0 2645.9 2007.9 828.2
7 3414.7 3351.6 2545.8 1047.3 3033.7 2314.7 960.4
8 3956.5 3862.6 2944.9 1209.2 3508.4 2666.1 1105.4
9 4390.0 4286.3 3275.1 1351.7 — — —
10 4761.8 4629.6 3527.9 1465.6 — — —
11 5274.2 5040.3 3875.9 1610.0 — — —
12 5580.1 5338.8 4084.6 1707.9 — — —
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is routing congestion. (is causes a large reduction in
achievable design clock rates as well as logic usage which
is much higher than a comparable fixed-point FPGA
design.”

6.3. FPGA vs. CPU Comparison. We have reported FPGA
performance for the double-precision matrix-vector ker-
nel which is 5.34 Gflop/s and which is 54% of that of an 8-
core Intel Broadwell CPU. Clearly for “acceleration,” we
wish to outperform typical CPUs; however, we have noted
that it is critical to take into account the comparison
between power consumption and price between these two
devices. It has been reported that GPUs achieve a price
efficiency ranging from 0.07 to 0.12 €/Gflop/s and power
efficiency of up to 20 Gflop/s/W [47], and the use of GPUs
as accelerators in multi-CPU systems implies that their
efficiencies certainly exceed those of CPUs. For midclass
FPGAs, the equivalent figures are a price efficiency of
0.29 €/Gflop/s and a power efficiency which exceeds
70 Gflop/s/W [47].

6.4. Comparison with Published Techniques. Cong et al. [48]
argue that FPGA programming with HLS can be made easy
by following a simple set of five “best-effort” guidelines or
steps. Comparing our work with these guidelines, the fol-
lowing are found:

(i) Data caching: we load the data into BRAM which
acts as a fast cache for the FPGA matrix-vector
blocks.

(ii) Pipelining: we achieve pipelining using HLS
directives.

(iii) PE duplication: we achieve duplication of pro-
cessing elements using Vivado with multiple IP
blocks.

(iv) Computation/communication overlap: we achieve
overlap as communication is performed by the
ARM CPU which overlaps with computation on the
FPGA, though we also discount communication
time for well-considered reasons discussed earlier.

(v) Scratchpad reorganization: this is something we
have not tried. (is technique is mainly aimed at
building larger data structures from small data types
(e.g., 8-bit) to amortize costs, and as we mainly use
64-bit data, it is probably not worthwhile. Cong
et al. say of their 64-bit benchmarks (GEMM and
SPMV) that the speed increase achieved with this
technique is “limited.”

6.5. Comparison with Published Performance. Of the re-
search papers dealing with the implementation of dense
linear algebra algorithms on FPGAs, there are many which
report the performance of matrix-matrix multiplication
(MXM) but few which look at matrix-vector multiplication
(MVM). In order to sensibly compare our results with
published performance figures, we examine here the char-
acteristics of these two algorithms and the effect on the
performance of changes in problem size.

MXM in its standard form with square matrices of
rank N requires 2N3 flops, 2N2 reads, and N2 writes, so
there are 3N2 data moves. (ere are other algorithms, of
which the best known is Strassen’s method, which result in
better scaling of the numbers of flops with matrix size.
Other techniques for small matrix multiplication are
discussed in [49]. For eight-byte double-precision ele-
ments, the computational intensity (the ratio of compu-
tation to communication) is N/12 flops/byte. (us, as the
size of the matrices increases, the computational intensity
increases and problems with data access and data
movement become much reduced. A matrix as small as
12 ×12 gives a computational intensity of one flop/byte,
and most papers report performance for matrices much
larger than this.

For MVM, however, the situation is different: both flops
and bytes scale as N2 : 2N2 flops and 2N + N2 data moves,
leading to a computational intensity of 2N/(8(2 + N)) flops/
byte. For a large N, this asymptotically approaches
0.25 flops/byte. (us, even in the best case, we have to
transfer four bytes for every floating point operation.

(erefore, although it is tempting to compare our MVM
results with the performance of MXM, it should be re-
membered that MXM is much more computationally in-
tensive and that MVM performance is always going to be
dominated by data transfer costs.

We referred earlier (Section 1) to published performance
for matrix-matrix multiplication on FPGAs. Dou et al. re-
ported “reaching a performance of 15.6 Gflop/s,” e.g., [18];
however, closer inspection reveals that this is a peak per-
formance calculated as 2 flops/cycle× 200 MHz× 39 PEs�
15.6 Gflop/s. Jovanović and Milutinović wrote about
“achieving 203.1 Gflop/s” [20], but this is also a calculated
or simulated figure obtained from (2 flops/cycle× 252 PEs
− 1)× 403.87MHz� 203.1Gflop/s. Kumar et al. claimed that
“a sustained performance of 29.8Gflop/s is possible.” Sus-
tained performance usually refers to an actual measurement
as opposed to peak performance, but in this case,
the performance is also obtained from 2 flops/cycle × 40
PEs × 373 MHz � 29.8 Gflop/s. It would appear that many
authors are content to report calculated or peak performance
rather than real measurements. (e equivalent calculated

Table 6: Maximum clock frequency at which Design 2 still operates correctly for different numbers of matrix-vector blocks.

Number of matrix-vector blocks Maximum clock frequency (MHz) Matrix-vector performance (Gflop/s)

1 450 0.688
4 400 2.372
8 333 3.863
12 333 5.339
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performance in our case is 2 flops/cycle× 12 PEs× 333MHz�
8.0Gflop/s, of which 5.34Gflop/s is measured. (e sources of
the overheads which cause this reduction in achieved per-
formance were discussed in Section 6.1.

A final comparison may be made with the paper by Bosch
et al. which uses the OmpSs programming model [13]. (is
model offers a high-level directive-based programming ap-
proach which is easier to use than our approach but ultimately
uses the Vivado toolset, including Vivado HLS, under the
hood. Measured performance is reported for single-precision
matrix-matrix multiplication using a blocking procedure
which splits larger matrices into blocks of size 128×128. (e
best performance figure reported is 13.2Gflop/s noting that
the OmpSs parallel model utilizes four ARM CPU cores as
well as the FPGA. Given that this is single precision compared
to our double-precision multiplication and that this is matrix-
matrix multiplication compared to our much less compu-
tationally efficient matrix-vector multiplication, we believe
this sets our result in a good light.

6.6. Prospects for the Weather Forecast Model. We have
established a methodology for implementing the matrix-
vector multiplication kernel on FPGAs. (is methodology is
general and extensible so that similar benefits can be brought
to other BLAS kernels and to other kernels within the LFRic
weather and climate code. In current and future work, we are
proceeding to apply these techniques to other LFRic kernels
and investigating the effect on the performance of the full
LFRic code.

We note that the programming model described here is
rather programmer unfriendly requiring some low-level
concerns, including address manipulation, setting and ex-
amining start and stop bits, and setting widths of data paths.
However, as described in Section 3.1, LFRic uses the sepa-
ration of concerns to ensure that scientists do not have to
concern about themselves with parallel, platform-dependent
coding. In the future, in order to fully support an FPGA port
using this methodology, the PSyclone system could be
modified to support automatic generation of the FPGA-
dependent code.

LFRic can be run in many configurations representing
a range of weather and climate scenarios at low, medium,
and high resolutions. (e profiling of the baroclinic test
case has been shown in Section 3.2. (e Helmholtz kernel,
apply_hx_variable_code, will now be offloaded to the
FPGA. It consists of a series of matrix-vector multipli-
cations and ancillary calculations on six input variables.
(e only difference in our methodology compared with the
matrix-vector kernel is that this time we will write the
ARM code in standard Fortran rather than C, in order to fit
better with the LFRic programming model. (is kernel,
together with the matrix-vector kernel, will be imple-
mented in a design with twelve IP blocks capable of
running independently, thus exploiting spatial parallelism
on the FPGA.

A key issue for the LFRic code in exploiting the accel-
eration potential of the FPGA, with any accelerator, is

reducing the overhead of transferring data between the host
CPU and the FPGA. (us, it makes little sense to look at the
performance of one small kernel in isolation where that
performance will be dominated by data transfer costs. We
need to port a full workflow consisting of a sequence of
kernels so that key data structures exist on the FPGA for long
periods and ideally are created and used entirely in FPGA
memory.

LFRic uses data decomposition across parallel multinode
clusters with halo exchanges between subdomains carried
out using MPI. A part of a workflow may therefore be
represented as follows:

(i) Kernel 1

(ii) Halo exchange for variable x1

(iii) Kernel 2

(iv) Halo exchange for variable x2

(v) Kernel 3

(vi) Halo exchange for variable x3

In offloading a whole workflow, it is therefore essential to
take into account the MPI communications required for
halo exchange. Initially, the halo exchange will be carried out
between host CPUs with data transferred to and from the
FPGAs. We note that the amount of data involved for halo
exchange is much smaller than the entire data arrays as only
boundary data need to be transferred. As a further opti-
mization step, MPI communications will be available di-
rectly from FPGA to FPGA, using communication libraries
under development in the EuroExa project.
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