
induce activation of sensorimotor networks that were affected by 

lesions (Sharma et al., 2006). Up to now there are already some 

studies which reported a positive effect of MI on stroke rehabilita-

tion outcome (Johnson-Frey, 2004; Gaggioli et al., 2005; Butler and 

Page, 2006; Page et al., 2007).

Although this new rehabilitation approach seems promising 

there are two main problems accompanying this new technique. 

Firstly, as MI is a pure mental process without any motor output, 

the therapists have no information about the compliance of the 

patients. Secondly, the patients have no feedback about their MI 

performance. These problems could be addressed by using a brain–

computer interface (BCI). With a BCI electroencephalographic 

activity or other physiological measures of brain function can be 

translated into control commands for different applications (see 

Figure 1; Wolpaw et al., 2002). By means of a BCI the user can be 

provided with feedback of the actual activation state of the cortex 

and can be forced to intentionally activate certain cortical areas 

to support and reinforce plastic changes in the damaged brain 

(Birbaumer et al., 2008; Daly and Wolpaw, 2008).

A main component of the BCI is the signal processing part con-

sisting of preprocessing, feature extraction and classification (see 

Figure 1; Pfurtscheller et al., 2006). For using BCI as tool for a 

1 INTRODUCTION

According to the World Health Organization (WHO) 15 million 

people suffer a stroke every year, with one third of them left per-

manently disabled (Mackay and Mensah, 2004). One of the major 

consequences of stroke is impairment of motor function, such as 

hemiparesis or hemiplegia of the upper limbs. Recovery of hand 

function is of importance for mastering activities of daily living 

but stroke rehabilitation is limited with 30 to 60% of patients being 

unable to use their more affected arm (Kwakkel et al., 1999).

A new approach in motor rehabilitation after stroke is the usage 

of motor imagery (MI; Sharma et al., 2006; Vries and Mulder, 2007). 

As we know from former studies MI activates the motor system 

in a similar way as motor execution (ME). Both, the preparation 

of a movement and MI are accompanied by a desynchroniza-

tion of the m-rhythm (10–12 Hz) in the electroencephalogram 

(EEG) over motor cortical areas event-related desynchronization 

(ERD), especially in the hemisphere contralateral to the used arm 

(Pfurtscheller and Neuper, 1997). After the termination of a move-

ment a synchronization within the b-frequency band (13–30 Hz) 

can be observed, the so-called event-related synchronization (ERS) 

or b-rebound (Pfurtscheller et al., 1996). MI offers the opportu-

nity to access the motor system at all stages of stroke recovery and 
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feedback training a fast and easy acquisition of a reliable classifier 

to detect the appropriate activation patterns is indispensable. Up 

to now the usual procedure for training a classifier was to record 

EEG during MI without giving feedback in a first screening, evalu-

ation or calibration measurement and use these data to calculate 

a classifier (Kalcher et al., 1996; Guger et al., 2000; Blankertz et al., 

2008; McFarland and Wolpaw, 2008; Neuper et al., 2009). For a 

MI based BCI feedback training it would be advantageous if we 

could give appropriate feedback from the very beginning. So, new 

strategies for setting up a classifier are needed. There are already 

some approaches using adaptive methods (Vidaurre et al., 2011) 

or subject independent classifiers (Fazli et al., 2009) but here many 

electrode positions are required.

As known from previous work the activation patterns (ERD/

ERS) of the motor cortex are similar not only during ME and MI 

but also during passive movement (PM; Pfurtscheller and Neuper, 

1997; Alegre et al., 2002; Müller et al., 2003). According to this it 

should be possible to use data from ME or PM to set up a classi-

fier for the detection of MI. Müller-Putz et al. (2008b, 2010) and 

Solis-Escalante et al. (2010) already showed that it is possible to 

use data from foot ME to set up a reliable classifier for the detec-

tion of foot MI.

In the present study we explore, whether a similar strategy 

could be applied to data from active and passive hand move-

ments. We expect that due to the similarity of the brain activation 

patterns for PM, ME, and MI, the ERD of MI can be classified 

reliably. Besides that, a side goal of this study concerns the inves-

tigated sample. Since the probability to suffer a stroke rises with 

age (Asplund et al., 2009) and BCI studies are mostly conducted 

with young participants (students) we want to investigate the 

ERD/ERS patterns of brain activation over the motor cortex 

during passive hand movements, hand ME, and MI in elderly 

participants. In the literature there are hardly any studies about 

age and movement-related ERD/ERS. For ME Derambure et al. 

(1993) report a less focused and more widespread ERD dur-

ing the preparation of a movement in elderly persons. To our 

knowledge, concerning PM and MI, there is no study reporting 

about age effects on ERD/ERS pattern. Referring to the finding 

of Derambure et al. (1993) we expect to find a more widespread 

ERD for the preparation of ME. For PM and MI we expect the 

same as PM and MI reveal similar ERD/ERS patterns and recruit 

the same cortical network as ME.

2 MATERIALS AND METHODS

2.1 PARTICIPANTS

Nineteen elderly volunteers took part in this investigation, 10 

females and 9 males. They were aged from 40 to 78 (M = 53.89; 

SD = 12.62), with no history of neurological or psychiatric dis-

ease and had normal or corrected-to-normal vision. All partici-

pants were right handed (M = 10.82; SD = 6.96; measured by the 

Hand Dominanz test Steingrüber and Lienert, 1971). They gave 

informed consent and were paid for participating in the inves-

tigation. The study was approved by the local ethics committee 

(Medical University of Graz) and is in accordance with the ethical 

standards of the Declaration of Helsinki. Four participants had to 

be excluded from data analysis due to artifacts in the EEG.

2.2 EXPERIMENTAL PARADIGM

The participants performed three different tasks. The first task was 

PM of the left or right hand. These PMs were conducted with the 

Amadeo® (Tyromotion GmbH, Austria), a mechatronic finger reha-

bilitation device (Tyromotion GmbH, Austria), which was already 

used in stroke rehabilitation (Scherer et al., 2006). The Amadeo® 

is a finger/hand orthosis, which ergonomically simulates a grasp-

ing movement (see Figure 2; for more details about the device 

see http://www.tyromotion.com). This grasping movement lasted 

about 2 s and in each trial the Amadeo® performed the movement 

once. The second task was active hand movement (ME). Here the 

participants were instructed to perform the same hand movement 

as the Amadeo® did in the first task. The third task for the partici-

pants was to only imagine the same movement (MI) as they did 

in the tasks before. As the hand orthosis could not be attached to 

both hands at the same time the PM task had to be conducted 

separately for left and right hand. Therefore, two runs with 30 trials 

were performed separately for every hand. For the ME and MI task 

three runs à 40 trials were performed for left and right hand (both 

within one run) in randomized order. This resulted in 60 trials per 

hand for every task. One trial lasted 7 s (see Figure 3) resulting in 

FIGURE 1 | Schema of a Brain–Computer Interface. FIGURE 2 | Finger rehabilitation device Amadeo.
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the trials (Delorme and Makeig, 2004). The statistical significance 

of the ERD/ERS values was determined by applying a t-percentile 

bootstrap algorithm (Davison and Hinkley, 1997) with a signifi-

cance level of a = 0.01. In the ERD/ERS maps statistically significant 

ERD values were plotted as orange dots and significant ERS values 

were plotted as blue dots.

2.3.2 Feature extraction and classification

As it is a main goal to see the quality of classifiers trained on PM-, 

ME-, and MI-data, classifiers were calculated (by means of a linear 

discriminant analysis) with data from passive hand movement, 

active hand movement and MI for detecting MI compared to rest 

(see Figure 4). Up to three relevant bandpower features were indi-

vidually selected for each participant by means of distinction sensi-

tive learning vector quantization algorithm (Pregenzer et al., 1996) 

and evaluation of ERD/ERS maps applied on the PM- and ME-data. 

Here, the features were the band powers in certain frequency bands 

at certain points in time, recorded on certain channels. As an 

example, a possible feature selection consisted of frequency bands 

16–18 Hz at channel C4 and 14–16 Hz at channel Cz. Frequency 

bands were chosen to be at least 2 Hz wide. These features were 

then used to train the classifiers.

For later comparison, six different linear classifiers (LDA) were 

generated to classify ERD: one classifier for each class (left and right), 

each generated with three different data sets (PM, ME, and MI). So 

two classifiers were trained on PM data, one on left and one on right 

hand PM data, two classifiers were trained on left and right hand 

ME data and two classifiers were trained on left and right hand MI 

data. The classifiers were set up to classify the ERD pattern of the 

respective active class against a rest class. This rest class was obtained 

by using one sample every 100 ms within a time window between 

4 s before the cue until the time of cue presentation. For the active 

class one sample every 100 ms from the time of cue presentation 

until the end of the trial were used (see Figure 4). During the classi-

fier generation the best classification time was tested with a 10 × 10 

cross validation for varying times within the trials in steps of 100 ms. 

The best times were updated sequentially by varying either the time 

of the active class or the time of the rest class. Only after no more 

updates were necessary, the timing information was used to calculate 

the final classifiers which were stored for future analysis. After these 

classifiers were created they were used to check whether the ERD 

pattern of newly recorded MI data could successfully be classified 

by weighting the same characteristics that proved significant during 

the offline analysis. To simulate an online cue-based experiment, 

the LDA output was calculated by multiplying the logarithmized 

and moving average filtered band power of the selected frequency 

bands and channels with the weights of the classifier. This output was 

an absolute measurement time of about 45 min. At the beginning 

of a trial a green fixation cross appeared for 6 s in the middle of a 

black screen. At second 2 an acoustic cue appeared for 70 ms, to 

catch the attention of the participant to the visual cue appearing 

at second 3. The visual cue consisted of a red arrow pointing to the 

left or to the right indicating which hand would be moved (PM 

task) or which hand should be used for the task (ME and MI). Every 

time the visual cue appeared, the hand orthosis or the participants 

immediately performed the task. At second 5 the visual cue and 

at second 6 the fixation cross disappeared for a pause time of 1 s 

followed by a random intertrial interval of 0 to 1 s. All data was 

recorded on the same day.

2.3 DATA ACQUISITION AND PROCESSING

Electroencephalogram was recorded from 15 Ag/AgCl scalp elec-

trodes (Easy Cap, Germany) over the motor cortex (orthogonal 

derivation of C3, Cz, C4) referenced to the left mastoid, ground 

at the right mastoid. The signals were acquired with a g.BSamp 

amplifier (Guger Technologies, Austria) with 500 Hz sample rate, 

0.5 Hz high-pass, and 100 Hz low-pass filter and a sensitivity of 

100 µV. An additional 50 Hz notch filter was used. To control for 

movement artifacts the electromyogram (EMG) of the musculus 

extensor carpi radialis of the left and right arm was recorded.

2.3.1 Preprocessing and calculation of ERD/ERS

From the 15 monopolarly recorded channels three Laplacian chan-

nels were calculated (C3, Cz, C4) by subtracting the mean of the 

four surrounding channels (Hjorth, 1975). The EEG data of the 

three Laplacian channels were manually corrected for artifacts using 

the biosignal analysis software g.BSanalyze (Guger Technologies, 

Austria). Trials with artifacts were discarded. If more than 40% of 

the trials had to be discarded the participant was excluded from 

further analysis due to lack of data.

Event-related desynchronization and ERS are defined as the 

percentage of power decrease (ERD) or power increase (ERS) in 

a defined frequency band in relation to a reference interval (in 

this study 0.5 to 1.5 s; Pfurtscheller and Lopes da Silva, 1999). 

To evaluate relative changes in the activation of the motor cortex 

during passive and active movement and during MI the ERD/ERS 

maps (Graimann et al., 2002) for frequency bands between 2 and 

30 Hz were calculated. To that end, sinusoidal wavelets were used to 

assess changes in the frequency domain by calculating the spectrum 

within a sliding window, squaring, and subsequent averaging over 

FIGURE 3 | Timing of a trial. FIGURE 4 | Timing for classification.
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(“left,” “right”) and the dependent variable “classification accuracy” 

was performed. Whenever the sphericity assumption was violated 

Greenhouse-Geisser corrected values were used for further analy-

sis. In case of statistically significant main factors or interactions a 

Newman–Keuls posttest was performed.

2.4.2 Analysis of movement-related brain patterns

To investigate differences in the neurophysiological response 

according to the different tasks (PM, ME, and MI) the calculated 

ERD/ERS values (see Section 2.3.1) were averaged over two time 

epochs. The first time epoch (move) corresponds to the time, 

while the movement or movement imagination was performed 

(second 3.2–5 of the trial). The second time epoch (postmove) 

corresponds to the time after the termination of the movement 

or movement imagination (second 5–6.5 of the trial). The mean 

logarithmic bandpower values for the reference interval (0.5–1.5 s) 

and the mean ERD/ERS values for the two time epochs “move” 

and “postmove” were calculated for frequency bands between 

4–30 Hz (4–6, 6–8, 8–10, 10–12, 12–16, 16–20, 20–24, 24–30 Hz) 

for each electrode position (C3, Cz, C4). For a statistical analysis 

of the ERD/ERS values a 3 × 2 × 2 ANOVA for repeated measures 

with the within subject factors “position”(C3, Cz, C4), “hand” (left 

versus right), and “phase” (“move,” “postmove”) was calculated 

for every task. The statistical analysis of the ERD/ERS values were 

performed separately for every task due to the differences in the 

measurement procedure. Whenever the sphericity assumption was 

violated Greenhouse-Geisser corrected values were used for further 

analysis. In case of statistically significant main factors or interac-

tions a Newman–Keuls posttest was performed.

3 RESULTS

3.1 CLASSIFICATION ACCURACIES

Figure 6 shows the classification accuracies for detecting MI 

(against rest) of the classifiers obtained from data of the different 

tasks. The mean performance of every classifier was above random 

(>62.5%; Müller-Putz et al., 2008a). The mean accuracies and SD 

for every classifier can be seen in Table 1. The ANOVA revealed a 

significant difference in the classification accuracies obtained by 

the different classifiers [F
(2,28)

 = 5.35; p < 0.05] but only between PM 

(M = 67.58; SD = 7.57) and MI (M = 71.53; SD = 8.38).

triggered at the beginning of each trial to average the classification 

results. The bias of the classifiers was adapted to fit to the new data 

after simulating all trials, i.e., the bias was changed in order to obtain 

an averaged classifier output of zero for the same number of rest 

trials and active MI trials. This adapting is also carried out during 

online experiments if a classifier noticeably prefers one class to the 

other (Shenoy et al., 2006). During the whole time of a trial, the 

percentage of classification for each sample was averaged for every 

subject. This percentage should be small before the presentation of 

the cue (rest class) and start growing afterward. To avoid euphemized 

values due to peaks, 10% of the highest percentage numbers during 

the active class time period and the lowest 10% during the rest class 

period were removed (see Figure 5).

2.4 STATISTICAL ANALYSIS

2.4.1 Analysis of classification accuracies

To investigate differences in the offline performance of the calcu-

lated classifiers an ANOVA for repeated measures with the main fac-

tors “classifier” (with the levels “PM,” “ME,” and “MI”) and “hand” 

FIGURE 5 | Classification accuracy during the time of a whole trial for one 

exemplary subject. Here, a classifier, generated with data recorded during 

ME, was applied on MI data. The upper 10% during active MI and the lower 

10% during rest were removed and the remaining highest/lowest values were 

kept as classification rates to avoid unrealistically high results due to peaks.

FIGURE 6 | Histogram of classification accuracies for different classifiers.
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FIGURE 7 | Grand average time–frequency map for every task.

Table 1 | Mean and SD of classification accuracies in detecting motor 

imagery for classifiers calculated with data of different tasks.

 Left Right

Passive movement (%) 68.7 (6.79) 66.5 (8.35)

Motor execution (%) 68.89 (6.54) 69.56 (7.43)

Motor imagery (%) 71.44 (9.71) 71.61 (7.05)

3.2 MOVEMENT-RELATED BRAIN PATTERNS

In Figure 7 grand average maps (15 participants) of PM, ME, and 

MI are plotted for the left and right hand. The ERD/ERS pattern 

for the different motor tasks show ERD during movement or move-

ment imagination, especially in a- and b-frequency bands, which 

turns to an ERS after termination of movement. Interestingly the 

patterns are most pronounced during PM followed by ME and 

weakest during MI. ERD in the PM task seems to last some time 

after termination of movement before the ERS appears, whereas 

in the ME task ERS starts as soon as the movement stopped. After 

MI only weak ERS can be observed.

3.2.1 Passive movement

The statistical analysis of the ERD/ERS values of the PM task 

revealed a significant main effect “phase” in every frequency band 

from 4 up to 30 Hz. The movement phase was associated with 

an ERD whereas during the post-movement phase an ERS can 

be observed (see Table 2). In addition to this a significant three-

fold interaction “hand × position × phase” emerged in nearly all 

frequency bands from a- up to the b-band (8–10, 10–12, 12–16, 

16–20, 24–30 Hz). For 24 to 30 Hz during PM of the left hand the 

ERD is significantly stronger at C4, contralateral to the moved hand 

as compared to C3. For PM of the right hand and in all other fre-

quency bands the interaction shows that during movement there’s 

no significant difference in the strength of the ERD at the different 

positions, whereas the upcoming ERS after the termination of the 

movement has a lateralized pattern depending on which hand was 

moved. The ERS of the area contralateral to the passively moved 

hand was stronger as the ERS of the other positions. So for right 

hand the ERS at the left sensorimotor area (C3) and for left hand the 

ERS at the right sensorimotor area (C4) was significantly stronger. 

For right hand movement this effect can be found in all frequency 

band, where the interaction was significant, whereas for left hand 

movement the lateralization is only significant in the frequency 

bands from 8 to 10 Hz and from 24 to 30 Hz (see Table 3).

3.2.2 Motor execution

The statistical analysis of the ERD/ERS values of the ME task 

revealed a significant main effect “phase” in the a- and b-frequency 

bands (8–10, 10–12, 12–16, 16–20, 20–24, 24–30 Hz) with an ERD 

during movement and a post-movement ERS (see Table 2). In addi-

tion to this an interaction between “hand” “position” and “phase” 

can be observed in some frequency bands (8–10, 12–16, 16–20, 

20–24, 24–30 Hz; see Table 4). Comparable to the results for the 

PM task there is a lateralized activation pattern for ERS in the 

post-movement phase especially after right hand movement, with 

a stronger ERS contralateral to the moved hand. After left hand 

movements this can only be observed in frequency bands from 8 

to 10, 20 to 24, and 24 to 30 Hz.

3.2.3 Motor imagery

The statistical analysis of the ERD/ERS values of the MI task revealed 

similar results as for the PM and the ME task with a significant main 

effect “phase” in every frequency band (4–6, 6–8, 8–10, 12–16, 16–20, 

20–24, 24–30 Hz) except from 10 to 12 Hz, where the significance level 

was just missed (p = 0.066). Again the movement phase is accom-

panied by a significant ERD whereas after the termination of the 

movement a smaller ERD (4–6, 8–10 Hz) or an ERS emerges (see 

Table 2). In addition to the main effect “phase” a significant threefold 

interaction “hand × phase × position” can be found in some frequency 

bands (6–8, 10–12, 12–16, 20–24, 24–30). The type of this threefold 

interaction differs from the results in the PM and the ME task and 

is not consistent over the different frequency bands (see Table 5). In 

the frequency bands 10 to 12 and 12 to 16 Hz differences between 

the sensorimotor areas emerge only during movement but not after 

the termination of movement. For right hand MI the ERD of the 

corresponding area (C3) is stronger as compared to the other posi-

tions (Cz and C4). For left hand MI differences between the positions 

emerge only in the frequency band from 12 to 16 Hz but do not show 

a lateralized pattern. In both sensorimotor areas (C3 and C4) the ERD 

is stronger as compared to Cz, so a bilateral activation can be found. 

For the frequency band 20 to 24 Hz there are no differences between 

the different positions during MI. After the termination of the MI 

the ERS over Cz is stronger as the ERS or slight ERD over C3 and C4.

In summary we found differences between movement and post-

movement phase in all three tasks, with ERD during movement 

and ERS or weaker ERD after termination of movement. A differ-

ence between PM and MI and ME and MI was found for the ERS 

pattern after termination of movement, which is lateralized in PM 

and ME but not in MI.

4 DISCUSSION

4.1 CLASSIFICATION OF MOTOR IMAGERY

The main objective of this study was to investigate whether 

data from (PM) or active hand movement (ME) can be used to 

detect hand MI. The results suggest, that this is possible. All of 
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data block. For the classifiers calculated from PM and ME the 

data used for classifier calculation differs from the data used for 

testing the classifier. The classifier based on PM data reached a 

significantly lower classification accuracy as the classifier based 

on MI data. Nevertheless the classifier based on PM data showed 

an acceptable performance, which did not differ significantly 

from performance of the classifier based on ME data. We could 

show in this study that it is possible to use classifiers calculated 

the classification results achieved an accuracy above random. 

The classifiers calculated from PM- and ME-data did not dif-

fer significantly from each other regarding the performance in 

detecting MI. The classifiers calculated from hand ME data did 

not even differ from the classifiers calculated from hand MI data 

although the classifiers calculated from MI data were favored due 

to the fact that for these classifiers the data for classifier calcula-

tion and testing its ability to detect MI descend from the same 

Table 2 | F-values, mean, and SD of ERD/ERS values for the significant main effect “phase.”

Frequency 4–6 Hz 6–8 Hz 8–10 Hz 10–12 Hz 12–16 Hz 16–20 Hz 20–24 Hz 24–30 Hz

PASSIVE

F
(1,14)

 8.36* 8.65* 8.82* 15.25** 17.58*** 39.38*** 22.51*** 38.48***

Move −8.54 (9.79) −19.19 (21.01) −31.12 (21.74) −31.82 (19.04) −31.88 (21.43) −42.29 (19.51) −39.67 (18.87) −27.51 (16.17)

Postmove 6.22 (15.30) 12.98 (31.53) 38.01 (79.12) 28.57 (54.92) 53.38 (69.34) 52.74 (53.44) 36.64 (54.69) 13.27 (17.08)

MOTOR EXECUTION

F
(1,14)

 n.s. n.s. 8.75* 9.91** 11.53** 14.44** 27.48*** 26.09***

Move   −19.16 (25.00) −21.69 (18.86) −18.07 (26.24) −19.65 (32.20) −21.43 (26.22) −11.16 (22.31)

Postmove   6.78 (21.13) 34.70 (68.72) 45.10 (78.70) 42.25 (72.67) 34.47 (46.35) 12.27 (16.26)

MOTOR IMAGERY

F
(1,14)

 5.14* 12.73** 4.81* n.s. 8.71* 12.95** 11.57** 11.33**

Move −7.90 (9.86) −11.32 (14.52) −12.75 (18.67)  −7.90 (18.66) −13.40 (22.09) −11.54 (17.88) −10.96 (17.51)

Postmove −0.11 (7.78) 1.24 (10.76) −3.23 (14.45)  11.00 (32.49) 5.85 (29.59) 8.10 (25.30) 6.19 (10.35)

*p < 0.05; **p < 0.01; ***p < 0.001.

Table 3 | F-values, mean, and SD of ERD/ERS values for the significant interaction “hand × phase × position” in passive movement task.

Frequency 8–10 Hz 10–12 Hz 12–16 Hz

F
(2,28)

  4.98* 13.36** 8.89**

  Left Right Left Right Left Right

Move C3 −30.39 (31.36)a −40.51 (31.76)f −29.35 (24.12)a −44.13 (26.34)f −25.07 (19.43)a −44.10 (25.39)e

 Cz −22.22 (23.11) −24.14 (26.41) −23.68 (23.39)b −19.00 (34.58)g −27.59 (23.65)b −17.50 (46.02)f

 C4 −36.68 (28.44)b −32.80 (26.10)h −41.65 (23.06)c −33.08 (22.91)h −45.09 (22.86)c −31.91 (20.37)g

Postmove C3 23.56 (64.87)a,c,e 68.06 (106.00)e,f,i,j 20.01 (60.67)a,d 52.05 (89.31)d,f,i 50.86 (116.19)a 78.71 (99.58)e,h,i

 Cz 16.04 (59.01)d 10.62 (36.29)i 20.18 (48.37)b 31.00 (66.31)g 44.84 (58.28)b 44.92 (75.39)f,h

 C4 77.51 (184.44)b,c,d,g 32.23 (70.30)g,h,j 40.38 (67.57)c,e 7.83 (44.14)e,h,i 71.17 (77.61)c,d 29.78 (55.80)d,g,i

Frequency 16–20 Hz 24–30 Hz

F
(2,28)

 7.39** 14.40***

  Left Right Left Right

Move C3 −38.45 (22.46) −52.71 (22.15)d −20.87 (17.75)a,b,g −33.59 (17.98)g,i

 Cz −37.83 (21.43)a −26.92 (44.61)e −24.58 (26.28)c −26.85 (24.52)j

 C4 −56.84 (19.28)b −40.96 (21.05) −33.48 (20.60)a,d −25.69 (22.23)k

Postmove C3 28.88 (74.08)c 104.05 (117.73)c,d,f,g 5.46 (21.60)b,e,f 7.24 (24.21)i,l

 Cz 48.51 (56.95)a 28.36 (32.98)e,f 20.08 (22.39)c,e 18.14 (23.12)j,l,m

 C4 83.29 (120.79)b 23.36 (25.45)g 24.49 (26.84)d,f,h 4.19 (17.87)
h,k,m

*p < 0.05; **p < 0.01; ***p < 0.001.
a,b,c,d,e,f,g,h,i,j,k,l,mSame letters within a frequency section mark relevant significant differences.
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Table 4 | F-values, mean, and SD of ERD/ERS values for the significant interaction “hand × phase × position” in motor execution task.

Frequency 8–10 Hz 12–16 Hz 16–20 Hz

F
(2,28)

 10.41*** 6.59* 18.63***

  Left Right Left Right Left Right

Move C3 −24.17 (29.94)a −28.61 (33.81)g −23.34 (31.30)a −27.85 (31.98)f −13.75 (51.74)a −29.40 (33.4)f

 Cz −19.73 (29.66)b −9.41 (28.99) −8.51 (29.84)b 7.91 (43.13) −14.04 (38.72)b −9.13 (37.39)g

 C4 −16.79 (39.39)c −16.26 (44.63) −30.28 (33.26)c −26.34 (21.14) −30.54 (27.14)c −21.05 (42.95)

Postmove C3 2.83 (28.49)a,d,e 26.02 (60.97)e,g,h,i 33.36 (68.41)a,d 79.64 (165.82)d,f,g 27.35 (75.93)a,d 86.36 (131.75)d,f,h

 Cz 2.58 (20.02)b 1.60 (21.44)h 42.32 (64.78)b 44.52 (76.22) 38.53 (65.63)b 35.91 (72.27)g,h

 C4 17.91 (31.88)c,d,f −10.27 (21.92)f,i 62.36 (107.55)c,e 8.40 (36.45)e,g 56.82 (63.65)c,e 8.53 (56.14)e,h

Frequency 20–24 Hz 24–30 Hz

F
(2,28)

 20.46*** 9.79**

  Left Right Left Right

Move C3 −18.79 (36.91)a −27.96 (22.23)h −8.18 (26.98) −16.30 (22.53)e

 Cz −20.28 (29.59)b −7.22 (44.98)i −8.38 (35.47)a −2.77 (38.47)f

 C4 −30.95 (26.67)c −23.37 (29.81) −18.70 (34.44)b −12.61 (23.94)

Postmove C3 18.82 (38.12)a,d,e 65.00 (58.78)e,h,j 2.80 (10.39)c 17.16 (31.99)e

 Cz 29.09 (58.84)b,f 54.03 (104.69)f,i,k 12.08 (23.33)a 16.22 (28.22)f

 C4 40.36 (42.65)c,d,g −0.49 (17.76)g,j,k 23.12 (24.03)b,c,d 2.24 (17.45)d

*p < 0.05; **p < 0.01; ***p < 0.001.
a,b,c,d,e,f,g,h,i,j,kSame letters within a frequency section mark relevant significant differences.

Table 5 | F-values, mean, and SD of ERD/ERS values for the significant interaction “hand × phase × position” in motor imagery task.

Frequency 6–8 Hz 10–12 Hz 12–16 Hz

F
(2,28)

 3.45* 8.13** 9.53***

  Left Right Left Right Left Right

Move C3 −12.06 (18.01)a −18.32 (15.00)c −6.74 (22.09)c −24.68 (23.50)c,e,f −12.14 (21.61)a,c −16.92 (21.04)h,i,j

 Cz −13.76 (20.56)b −7.00 (35.34) −5.19 (21.58)a −12.15 (18.15)e −0.72 (26.39)a,b,d 0.67 (40.45)h,k

 C4 −8.03 (23.52) −8.77 (14.92) −12.32 (29.14)b −10.28 (24.28)f −14.93 (21.80)b,e,f −3.34 (21.11)f,i,l

Postmove C3 1.57 (14.32)a 5.16 (16.25)c 4.89 (31.13) 4.36 (40.52) 2.36 (24.56)c,g 15.26 (50.21)g,j

 Cz 2.56 (16.24)b −1.22 (21.83) 10.03 (37.27)a 7.83 (40.79) 10.05 (30.63)d 18.90 (48.46)k

 C4 0.89 (19.66) −1.52 (15.54) 14.88 (57.89)b,d −4.94 (25.40)d 10.51 (35.15)e 8.90 (39.50)l

Frequency 20–24 Hz 24–30 Hz

F
(2,28)

 10.66*** 4.83*

  Left Right Left Right

Move C3 −12.63 (22.34) −16.52 (15.03)f −5.02 (26.46) −9.34 (21.13)e

 Cz −8.50 (44.72)a −11.09 (31.00)g −16.09 (27.74)a −11.76 (34.43)f

 C4 −15.97 (20.56)b −4.52 (30.90) −16.50 (13.39)b −7.08 (21.62)

Postmove C3 −5.42 (14.60)c,e 12.34 (25.71)e,f,h 0.71 (11.95)c 6.52 (13.17)e,g

 Cz 19.85 (67.78)a,c,d 19.51 (40.54)g,i 12.55 (31.88)a,c,d 16.98 (24.14)f,g,h

 C4 3.83 (18.48)b,d −1.50 (26.07)h,i 2.54 (9.73)b,d −2.16 (17.58)h

*p < 0.05; **p < 0.01; ***p < 0.001.
a,b,c,d,e,f,g,hSame letters within a frequency section mark relevant significant differences.
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the moved hand and a weaker ERS or slight ERD over the hand 

motor representation area ipsilateral to the moved hand, especially 

after movement of the right hand. The bilateral occurrence of the 

ERD during the movement of the hand and also the pattern of 

the post-movement ERS are comparable to the patterns found 

in younger people (Pfurtscheller et al., 1998, 2003; Neuper et al., 

2006). Another common finding in younger participants is the lat-

eralized ERD during the preparation of a movement, with an ERD 

contralateral to the moved hand before movement onset (Neuper 

et al., 2006). This effect cannot be observed in the present sample 

of elderly participants. There is an ERD before movement onset, 

but it occurs not only contralateral to the moved hand but also 

ipsilateral. This finding is consistent with results from Derambure 

et al. (1993) and Labyt et al. (2004), who found a smaller and 

more lateralized ERD in younger participants compared to a more 

bilateral and widespread ERD in elderly participants during the 

preparation of movements.

4.2.3 Motor imagery

The pattern found during MI were weaker as for PM and ME, espe-

cially the ERS in the post-movement phase. A weak ERS emerged 

only in b-frequency bands after termination of MI, whereas in 

lower frequencies the ERD of the movement phase continues in an 

attenuated form. Possibly some of the participants had difficulties 

in stopping the MI promptly. In contrast to the results for the PM 

and ME task, where a lateralized ERS pattern accompanied the 

post-movement phase, the interaction between “hand,” “phase,” and 

“position” showed a lateralized pattern of ERD during the imagi-

nation phase especially for right hand MI in a- and b-frequency 

components. Left hand MI was associated with a more bilateral 

activation of the motor cortex. So the EEG patterns for the MI 

task showed the typical pattern which was already found in for-

mer studies (Pfurtscheller and Neuper, 1997; Müller et al., 2003; 

Neuper et al., 2009).

In summary the results of the classifier and the results of the 

movement-related brain patterns support each other. In all three 

tasks during movement phase ERD can be found in a- and b-fre-

quencies. Due to the similarity of the ERD patterns during move-

ment phase the discriminant frequency bands of the three tasks 

are comparable and classification of MI above random level with 

classifiers trained on data of PM or ME is possible.

5 CONCLUSION

The results of this study confirm former findings concerning 

the activation pattern of the motor cortex in elderly persons. 

The preparation of hand movements is accompanied by a less 

lateralized and more widespread activation, not only in terms 

of spatial distribution but also in terms of frequency domain. 

Furthermore, the activation pattern of the motor cortex was 

also described for passive hand movements and hand MI. 

Concerning the classification of MI we could extend the find-

ings from Müller-Putz et al. (2008b, 2010) and Solis-Escalante 

et al. (2010), who used foot ME data to calculate classifiers for 

detecting foot MI. Our results suggest, that this approach can be 

applied to hand ME and hand MI. In addition we could show, 

that also robot-assisted PM can be used for classifier calcula-

tion, which is of interest for BCI in stroke rehabilitation. The 

with data from passive hand movement and hand ME to detect 

MI with reasonable accuracy. Up to now this has only been shown 

with foot ME and foot MI (Müller-Putz et al., 2008b, 2010; Solis-

Escalante et al., 2010).

The advantage of using passive hand movement or hand ME 

in respect to the classifier calculation for a MI based stroke BCI 

is based on the fact that PM and ME are part of the normal reha-

bilitation measures. So, if a MI based stroke BCI is used for reha-

bilitative purposes, EEG data can be recorded during a normal 

physiotherapy session and these data can be used for setting up a 

classifier. BCI-rehabilitation training can immediately start with 

feedback sessions. As the sample in our study were healthy elderly 

participants the next step is to use this approach for gaining a clas-

sifier in stroke patients.

4.2 MOVEMENT-RELATED BRAIN PATTERNS

If a BCI is used for rehabilitative purposes not only the classification 

accuracy but also the physiological validity of the reinforced brain 

patterns is of importance. An additional aim was the investigation 

of the brain patterns during the different motor tasks in the elderly 

participants.

4.2.1 Passive movement

For passive robot-assisted movements the activation pattern was 

typical for hand movements, with a stronger ERD contralateral to 

the used hand and an ERS after the termination of the movement. 

In contrast to the findings in younger participants (Alegre et al., 

2002; Müller et al., 2003) these effects occurred not only in a- and 

lower b-frequency bands but more widespread from u- up to the 

upper b-frequencies (6–30 Hz).

There are three main points in which the present study differs 

from the studies by Müller et al. (2003) and Alegre et al. (2002). 

Firstly, the age of the sample, secondly, the device for the PM and 

thirdly, the type of the movement. Regarding the age of the sample, 

the age range in the present study is from 40 to 78 years, which is 

quite broad, so no clear conclusions can be drawn. Concerning 

the used devices for the PM Müller et al. (2003) used functional 

electrical stimulation and in the study by Alegre et al. (2002) the 

experimenter used a pulley system to passively move the partici-

pants hands. Hence every study used a different device for per-

forming the PM, but we do not know how this influences the 

results. Regarding the type of the movement Müller et al. (2003) 

and Alegre et al. (2002) recorded PM of the wrist, whereas in 

the present study mostly the fingers are moved. Analyzing how 

different types of PM and different devices for performing these 

PM influence sensorimotor EEG changes are beyond the scope 

of this study.

4.2.2 Motor execution

The brain activation during the ME task revealed a significant 

effect of “phase” in the a- and b-frequencies with an ERD dur-

ing the movement and an ERS after the movement. The ERD 

during the movement emerged independent from the moved 

hand over the whole motor cortex with slightly stronger values 

in both hand motor representation areas (C3 and C4). However, 

the ERS, which occurred after the termination of the movement, 

showed a lateralized pattern with stronger ERS contralateral to 
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advantage of this approach is that PM and ME are part of the 

normal stroke rehabilitation. For working with stroke patients, 

a physiotherapy session would be used to obtain data for train-

ing a classifier and the BCI-rehabilitation training could start 

immediately. After this promising results the next step is to test 

this approach in stroke patients.
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