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Abstract

Bipedal robots are prime examples of complex cyber-physical systems (CPS).
They exhibit many of the features that make the design and verification of CPS
so difficult: hybrid dynamics, large continuous dynamics in each mode (e.g., 10
or more state variables), and nontrivial specifications involving nonlinear con-
straints on the state variables. In this paper, we propose a two-step approach to
formally synthesize controllers for bipedal robots so as to enforce specifications
by design and thereby generate physically realizable stable walking. In the first
step, we design outputs and classical controllers driving these outputs to zero.
The resulting controlled system evolves on a lower dimensional manifold and
is described by the hybrid zero dynamics governing the remaining degrees of
freedom. In the second step, we construct an abstraction of the hybrid zero dy-
namics that is used to synthesize a controller enforcing the desired specifications
to be satisfied on the full order model. Our two step approach is a systematic
way to mitigate the curse of dimensionality that hampers the applicability of
formal synthesis techniques to complex CPS. Our results are illustrated with
simulations showing how the synthesized controller enforces all the desired spec-
ifications and offers improved performance with respect to a classical controller.
The practical relevance of the results is illustrated experimentally on the bipedal
robot AMBER 3.
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Figure 1: The planar (2D) biped MABEL was developed for the study of dynamic locomotion.
High-level motion primitives were used on MABEL to allow walking over rough ground without
tripping. While tools for automatic low-level control algorithm synthesis are well developed, at
the state machine level, all tuning was done by hand for lack of appropriate tools. “Probable
correctness” was established through extensive simulation and experiments.

1. Introduction

Legged robots are complex dynamic cyber-physical system (CPS). As a con-
crete example, consider MABEL shown in Fig. 1. This bipedal robot possesses
nonlinear, non-order preserving, non-convex dynamics described by a hybrid
model with 14 state variables and four actuators [26]. To enable MABEL to
accept a set of high-level locomotion commands over a network, and successfully
execute the commands while responding automatically and safely to uncertainty
in the assumed profile of the environment, the finite state machine shown in
Fig. 1 was designed [25]. It allowed MABEL to compose on the fly a set of
low-level control algorithms executing a handful of motion primitives. A team
of graduate students hand-tuned the transition conditions among the various
nodes of the state machine. Each time a small change was made in one of the
software or hardware components, such as adjusting a transition condition or
adding a sensor, the entire state machine had to be completely retested, leading
often to the redesign of other software components. There is a pressing need to
understand this, and more general CPSs, in a way that allows for the automatic
synthesis of embedded control software that is provably correct by construction.

In this paper, we begin to lay the groundwork for this correct-by-construction
control software design process in the context of dynamic systems. In partic-
ular, the specific bipedal robot that will be studied is AMBER 3 as shown in
Fig. 2. We consider a walking gait with the simplest discrete structure, re-
sulting in a single-mode hybrid model with 12 state variables and 6 actuators.
While we seek formal guarantees on the behavior of the 12-dimensional closed-
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Figure 2: Bipedal walking robot AMBER 3.

loop system, we do not propose to perform formal synthesis on a model this
large. Similarly to the work in [8, 9], we focus on the regulation of a subset
of system states and use advanced nonlinear control methods to transform the
complex dynamics to a simpler, more tractable system which is amenable to the
correct-by-construction synthesis techniques. In contrast to [8, 9], where the
authors exploit differential flatness to reduce the nonlinear synthesis problem
to a controller design problem for a chain of integrators, our method applies
to the aforementioned hybrid system with non-flat outputs. Specifically, in our
approach the chain of integrators is forced to be at equilibrium and we apply
the symbolic abstraction techniques to a hybrid system that lives on an attrac-
tive, hybrid-invariant, low-dimensional manifold which is “complementary” to
the state space of the integrators [2, 35]. The low-dimensional hybrid subsystem
is called the Hybrid Zero Dynamics (HZD), and its solutions can be used to re-
construct the solutions of the high-dimensional hybrid system. The end result is
the ability to guarantee specifications on the full-order high-dimensional system
via the reduced order representation encoded by the HZD.

There is a growing interest in the synthesis of correct-by-construction con-
trollers for robotic applications as evidenced by the growing body of work on
this topic [32, 10, 19, 11]. Although the techniques we employ for synthesis are
based on the symbolic abstraction techniques described in [31], what sets the
results in this paper apart from prior work is the complexity of the system being
controlled. In particular, as previously mentioned, the hybrid model for AM-
BER 3 requires 12 state variables, which is larger than any system previously
reported in the literature for which correct-by-construction control has been
synthesized. The key to scaling the symbolic controller synthesis techniques to
this level of complexity is the new design flow based on the HZD. This is the
main contribution of the paper as we believe that its applicability transcends

3



the specific formal synthesis technique we employ and the robotics domain in
which we develop the result.

The results in this paper are based on previous work by the authors on two
lines of research that have been independently pursued in the past: 1) control
of bipedal robots via hybrid zero dynamics and 2) synthesis of controllers via
finite-state abstractions. In order to combine techniques from these two different
areas several new results, formalized in Theorems 1 through 4, had to be proved.
Theorems 1 and 2 are new because they represent a notion of physically realiz-
able walking that had not been treated previously in the context of hybrid zero
dynamics; specifically, previous work focused on asymptotic stability of periodic
trajectories lying in the zero dynamics manifold, while for the present work, a
more general notion of aperiodic upright walking gaits is required. Theorem 3
is new since prior work by the authors on the construction of abstractions for
hybrid systems considered only switched systems. The hybrid model consid-
ered in this paper, as presented in Sect. 2, is not a switched system since it is
equipped with a nontrivial guard and reset map

This paper is an extension of the conference paper [5]. In addition to new
simulation results, this paper features the first experimental implementation
of the proposed methodology of combining HZD with formal methods. Initial
results indicate that the controller based on formal methods enforces constraints
better than a controller based only on regulating system outputs. The platform
we consider in this paper, AMBER 3, is a successor to AMBER 2 [21, 38], the
platform modeled in [5]. AMBER 3 is approximately 40 % larger than AMBER
2 and its size more closely approximates an adult human. The inclusion of a
full-size torso also enables better balancing while walking. Finally, the motors
used on AMBER 3 are approximately ten times more powerful than the ones
used on AMBER 2

The remainder of the paper is organized as follows: We begin by introducing
hybrid systems in Sect. 2, with a special focus on the hybrid model of walking
robots with a single domain. In addition, we introduce the notion of a stable
walking gait (without requiring periodicity), and give conditions that ensure
that these walking gaits are physically realizable. In Sect. 3, we introduce a
means for dimension reduction through the use of a pre-feedback controller that
renders a low-dimensional surface hybrid invariant yielding HZD. Importantly,
for this initial result, the controller also results in linear dynamics on the hybrid
zero dynamics surface and, ultimately, a hybrid system with two-dimensional
continuous linear dynamics. We establish the first theoretic results of the paper
in Sect. 3, wherein it is shown that solutions of the HZD lift to solutions of the
full-order hybrid system and that the HZD manifold is stable as a set. Section 4
introduces the main results of the paper: a means for formally constructing con-
trollers via the HZD to yield provably stable walking gaits that satisfy physical
realizability constraints. The paper concludes with Sect. 5, where simulation
results and experiments on AMBER 3 using correct-by-construction control are
presented.
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2. Bipedal Robot Models, Walking Gaits and Physical Constraints

In this section, we present a formalism for hybrid systems that is sufficient
for modeling bipedal walking robots. After the introduction of these models, we
present a definition of a walking gait for a bipedal robot along with associated
physical realizability constraints. This will set the stage for formal controller
synthesis for bipedal robots.

Hybrid Systems & Executions. We begin by introducing hybrid (control)
systems (also referred to as systems with impulse effects [13, 14]). We consider
hybrid systems with one domain because the specific biped models considered
in this paper applies to flat-footed walking; for more complex foot behavior,
more elaborate hybrid systems must be considered [6, 12, 14, 15, 20, 38].

A hybrid control system is a tuple,

H C = (D, U, S,∆, f, g), (1)

where D is the domain with D ⊆ R
n a smooth submanifold of the state space Rn,

U ⊆ R
m is the set of admissible controls, S ⊂ D is a proper subset of D called

the guard or switching surface, ∆ : S → D is a smooth map called the reset map,
and (f, g) is a control system on D, i.e., in coordinates: ẋ = f(x) + g(x)u with
u ∈ U . A hybrid system is a hybrid control system with U = {0}; a particular
example would include a closed-loop hybrid system, meaning that a feedback
controller has been applied, defining the inputs as functions of the state. In this
case,

H = (D, S,∆, f),

where f is a dynamical system on D ⊆ R
n, i.e., ẋ = f(x).

For the sake of simplicity, and without loss of generality for the formal results
presented, we will consider infinite solutions (or hybrid flows or executions) of a
hybrid system H . Motivated by existing definitions [20, 35, 12, 18], we define
a solution to a hybrid system H by the tuple:

χH = (I, C),

where I = {Ii}i∈N is a hybrid interval where Ii = [τi, τi+1] with τi, τi+1 ∈ R and
τi ≤ τi+1, and C = {ci}i∈N is a collection of solutions to f , i.e., ċi(t) = f(ci(t))
for all t ∈ Ii. In addition, we require the following conditions to hold:

(i) ci(t) ∈ D for all t ∈ Ii, i ∈ N,

(ii) τi+1 = inf{t ≥ τi : ci(t) ∈ S},

(iii) ∆(ci(τi+1)) = ci+1(τi+1).

The initial condition for a hybrid flow is x0 = c0(τ0). When we wish to make
explicit the initial condition of χH we will write χH (x0).

5



Robotic Hybrid System Models. Utilizing the formulation of hybrid sys-
tems, we will now construct hybrid system models for bipedal robots. Specifi-
cally, we will consider a hybrid control system of the form:

H CR = (DR, UR, SR,∆R, fR, gR). (2)

The constructions of this section will be presented in the general case of a robot
with a single discrete phase of walking, i.e., they will not be specific to the
robot—AMBER 3—that will be considered in this paper. As a result they are
applicable to both 2D and 3D robots in the case of full actuation, including
humanoid robots. It is important to note that the constructions considered in
this paper do not apply to robots with underactuation (since, in this case, there
will not be actuation in the zero dynamics), yet future work will be devoted to
considering this case as well.

Continuous Dynamics: Let QR be the configuration space of a robot with n
degrees of freedom, i.e., n = dim(QR), with coordinates θ ∈ QR. For the sake
of definiteness, it may be necessary to choose QR to be a subset of the actual
configuration space of the robot so that global coordinates can be defined, i.e.,
such that QR is embeddable in R

n, or more simply QR ⊂ R
n. Calculating the

mass and inertia properties of each link of the robot, coupled with the Euler-
Lagrange equations [23, 29], yields the affine control systems (fR, gR):

fR(θ, θ̇)=

[
θ̇

−D−1(θ)C(θ, θ̇)

]

, gR(θ)=

[
0

D−1(θ)B

]

, (3)

where D is the mass-inertia matrix, C contains the Coriolis/centrifugal effects
and gravitational terms, and B ∈ R

n×n is the actuation matrix and assumed
to be nonsingular, i.e., there is one independent actuator for each degree of
freedom. Such robot models are said to be fully actuated. Finally, since we are
assuming full-actuation, the set of admissible values is given by UR ⊆ R

n.

Domain and Guard: The domain specifies the allowable configuration of
the system as specified by a unilateral constraint function h; for the bipeds
considered in this paper, this function specifies that the non-stance foot must
be above the ground, i.e., h is the height of the non-stance foot and the system
is subject to the unilateral constraint h ≥ 0. Therefore, the domain DR is given
by:

DR =
{

(θ, θ̇) ∈ TQR : h(θ) ≥ 0
}

, (4)

where TQR is the tangent bundle of QR. The guard is just the boundary of
the domain with the additional assumption that the unilateral constraint is
decreasing:

SR =
{

(θ, θ̇) ∈ TQR : h(θ) = 0 and dh(θ)θ̇ < 0
}

, (5)

where dh(θ) is the Jacobian of h at θ.
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(a) Sideview of bipedal
robot AMBER 3.

(b) Joint angles. (c) Outputs.

Figure 3: The bipedal robot AMBER 3 (a), the joint angles (b) and outputs (c).

Discrete Dynamics. The discrete dynamics of the robot determine how the
velocities of the robot change when the foot impacts the ground, while simulta-
neously swapping the roles of the “stance” and “non-stance” legs. In particular,
the reset map ∆R is given by:

∆R : SR → DR, ∆R(θ, θ̇) =

[
∆θθ

∆θ̇(θ)θ̇

]

, (6)

where ∆θ is the relabeling of the configuration variable associated with the
stance and non-stance leg at impact. Here, ∆θ̇ determines the change in velocity
due to impact (see [16, 14] for a detailed discussion).

Example 1. The model for the bipedal robot AMBER 3 considered in this
paper is a special case of (2), with the parameters, e.g., masses, lengths and
inertias, determined from a high-fidelity SolidWorks model (see Table 1). In
particular, AMBER 3 is a 2D 7-link bipedal robot with feet (additional details
regarding the development of the model can be found in Section 5). For this
initial study, a simplified flat-footed gait will be assumed, resulting in a 6 de-
gree of freedom 12-state model. The coordinates of QR ⊂ R

6 are denoted by
θ = (θsa, θsk, θsh, θnsh, θnsk, θnsa)

T where, as illustrated in Fig. 3b, θsa is the
angle of the stance ankle, θsk is the angle of the stance knee, θsh is the angle of
the torso with the stance thigh, θnsh is the angle of the non-stance thigh with the
torso, and θnsk is the angle of the non-stance (or swing) knee, and θnsa is the
angle of the non-stance ankle (or foot). Since AMBER 3 is fully actuated, based
upon this choice of coordinates B = I6 ∈ R

6×6. Note that we will take UR = R
6

for AMBER 3, and impose physical constraints that will restrict the admissible
inputs to a subset of UR as will be discussed at the end of this section.

Walking Gaits. Before discussing the design specifications to be met through
formal methods, it is first necessary to single out a class of desired solutions
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Model Parameters
Part Mass Length Inertia x-axis Inertia z-axis

(kg) (mm) (kgmm2) (kgmm2)
Calf 3.865 406.4 29032.44 3199.56
Thigh 3.865 406.4 29032.44 3199.56
Torso 10.418 251.11 188576.35 59483.66
Foot 1.151 152.4 1541.04 8498.06

Table 1: Hardware parameters for AMBER 3.

to be realized on the hybrid system H CR. In previous work of the authors,
the focus was on asymptotically stable periodic walking motions [35, 4, 2], and
solutions constructed through the composition of periodic motions. One reason
that previous work was limited to periodic solutions was that classical nonlinear
design tools are well adapted for characterizing various kinds of stable equilib-
rium points or periodic orbits of a closed-loop system, but are less well suited
for characterizing classes of bounded trajectories with less structure that may
also correspond to walking gaits. One of the take-home messages of this paper is
that the marriage of classical nonlinear control techniques and formal methods
is able to treat a larger class of trajectories.

Suppose now that a feedback controller u(θ, θ̇) is applied to (2) with the
end result being a hybrid system HR. Let χHR(θ0, θ̇0) be a solution to this
system with initial condition (θ0, θ̇0) and ci(t) = (θi(t), θ̇i(t)). In addition, let
pxcom(θ) be the horizontal position of the center of mass of the robot, ṗxcom(θ, θ̇)
the velocity of the forward position of the center of mass, and pycom(θ) be the
vertical position of the center of mass. Then we formalize the following notion
of a walking gait for a bipedal robot.2

Definition 1. A solution χHR(θ−, θ̇−) to HR is a walking gait if (θ−, θ̇−) ∈
SR and there exist3 constants τmin > 0 and pmin

com > 0 such that

τi+1 − τi > τmin (Dwell Time)

ṗxcom(θi(τi+1), θ̇i(τi+1)) > 0 (Progress)

min
t∈Ii

pycom(θi(t)) > pmin
com (Upright)

for all i ∈ N. A walking gait is stable if for all γ > 0 there exists a δ > 0 such
that all solutions χHR(θ0, θ̇0) with (θ0, θ̇0) ∈ Bδ(θ

−, θ̇−) ∩ SR satisfy:

(θi(τi+1), θ̇i(τi+1)) ∈ Bγ(θ
−, θ̇−) ∩ SR (Stable)

and are walking gaits.

2We define a ball of radius δ > 0 around a point x by Bδ(x) = {y ∈ DR : ‖x− y‖ < δ}.
3These constants are defined by the user based upon the desired behavior of the walking

gait.
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(a) Graphical illustration of the definition of walking.
(b) Physical constraints on
the robot.

Figure 4: Graphical illustration of both the elements that define walking (a) and the physical
constraints on the robot (b).

The conditions singled out in Def. 1 are not universal prescriptions for walk-
ing. Rather, as mentioned previously, they are used to single out desirable
features in a walking gait without restricting ourselves to periodic locomotion.
In this case, the conditions ensure that there are no instantaneous transitions
(e.g., no Zeno behavior [18]), guarantee that the center of mass makes forward
progress via a velocity condition, and ensure that the robot is sufficiently up-
right (as defined by the user through pmin

com). Finally, note that due to the fact
that we are only considering infinite solutions, inherent in this definition is the
notion that the walking gait is indefinite.

Physical Specifications. The following physical specifications are required of
a walking gait χHR :

Torque Bounds: From the definition of a hybrid control system, any input be-
longing to UR is allowed, yet we explicitly indicate the performance limitations
of actuators through an additional physical constraint on a walking gait given
by:

sup
t∈Ii, i∈N

‖u(θi(t), θ̇i(t))‖∞ < umax, (C1)

where u is the control law that generated the gait and umax is the maximum
joint torque achievable by all of the actuators (this is assumed to be a uniform
number for the sake of simplicity).

Velocity Bounds: As with torque bounds, we require that the maximum joint

9



velocity stays under a maximum value, θ̇max, as specified by the actuators. In
particular:

sup
t∈Ii, i∈N

‖θ̇i(t)‖∞ < θ̇max. (C2)

ZMP Constraints4: We require that the feet remain flat during a walking gait,
which results in zero moment point (ZMP) type constraints [33, 14]. If ηst(θ)
is the position and orientation of the stance foot with respect to a fixed inertial
frame, then ZMP conditions are determined by viewing ηst as a holonomic
constraint. In particular, if Jηst

is the jacobian of ηst, then the forces and
moments at the stance foot are given by:

Fst(θ, θ̇, u) = (7)

(Jηst
(θ)D(θ)−1Jηst

(θ)T )−1(Jηst
(θ)D(θ)−1(C(θ, θ̇)−Bu)− J̇ηst

(θ, θ̇)θ̇),

where Fst ∈ R
3 for 2D walking robots and Fst ∈ R

6 for 3D walking robots. Con-
ditions so that the foot does not roll during walking can be expressed through
inequality constraints of the form:

sup
t∈Ii, i∈N

AZMPFst(θi(t), θ̇i(t), u(θi(t), θ̇i(t))) < 0, (C3)

where AZMP ∈ R
2×3 for 2D walking robots and AZMP ∈ R

4×6 for 3D walking
robots is a matrix that depends on the physical parameters of the feet of the
robot (in particular, the length and the width of the foot [14]).

Foot Height Constraints: To achieve walking gaits on physical bipedal robots,
it is important that the swing foot does not “scuff” before the end of a step.
We introduce, therefore, foot scuffing constraints. Let h(θ) be the height (y
position) of the non-stance (swing) foot, then we require that:

τi+1 = inf{t > τi : h(θi(t)) = 0}. (C4)

Note that this condition prevents the case when the foot “scuffs” the ground
(h(θ) = 0) before reaching the guard (where ḣ(θ, θ̇) < 0). As a result, this is
a stronger condition that the one imposed on solutions (and, specifically, (ii)).
We also note that such a τi+1 must exist due to the dwell time condition in
Definition 1.

Definition 2. A walking gait χHR is physically realizable if it satisfies con-
straints (C1)-(C4).

Example 2. For AMBER 3, based upon the specifications of its actuators cou-
pled with appropriate factors of safety, umax = 60Nm and θ̇max = 5 rad/s. For

4Note that we could also consider friction conditions in a similar fashion but will omit
doing so for brevity.
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the ZMP constraints, Fst = (F fx
st , F fy

st , F
mz
st ) (see [14]) since AMBER 3 is a 2D

robot, and the ZMP constraints are determined by:

AZMP =

[
0 −lh −1
0 −lt 1

]

,

where lt and lh are the length to the toe from the ankle and heel from the ankle,
respectively.

3. Dimension Reduction through Control

This section builds on an existing nonlinear feedback control method to
reduce the dimension of the robot model for which a correct-by-construction
controller can be practically synthesized. The reduction technique utilizes the
notion of a virtual constraint [2, 14, 35]. In particular, we will consider relative
degree 2 outputs for which a classical nonlinear controller exists that drives these
outputs to zero. Nulling the outputs will restrict the full-order dynamics of the
robot to a low-dimensional surface—termed the partial zero dynamics—wherein
the evolution of the system may be further dictated by relative degree 1 outputs.
Through pre-feedback control laws, the dynamics of the relative degree 1 outputs
defines a 2-dimensional linear hybrid control system. Solutions of this reduced-
order hybrid system will be proven to yield solutions to the full-order dynamics.
To accomplish this “lifting” of solutions from the reduced-order system to the
full-order model, two technical extensions to results in [2, 14, 35] are necessary
to allow the study of the aperiodic solutions identified in Def. 1 in a formally
correct manner. These will be noted as they are developed.

Virtual Constraints. Consider virtual constraints (or outputs) of the follow-
ing form [2, 14]:

y1(θ, θ̇, v) = ya,1(θ, θ̇)− v, (8)

y2(θ, α) = ya,2(θ)− yd,2(ρ(θ), α), (9)

where y1 and y2 will be chosen so that they are relative degree 1 and (vector)
relative degree 2, respectively. In this case, ya,1(θ, θ̇) is the “actual” velocity-
based output and v is the “desired” velocity. In the following, we will view v
as the control input to the system (after pre-feedback), and we synthesize v
through formal methods. Similarly, ya,2(θ) is the actual vector of outputs that
modulate the posture of the robot and yd,2(ρ(θ), α) gives the desired evolution
of the associated configuration variables as dictated by parameters α in the
desired evolution of the virtual constraints and a parameterization of time ρ(θ).

For the sake of simplicity, we will assume that the virtual constraints have
a linear structure, namely

ya,1(θ, θ̇) = cθ̇
ya,2(θ) = Hθ

s.t. rank

([
c
H

])

= n, (10)
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and that ρ(θ) = cθ − cθ+, where θ+ is the configuration at the beginning of
a step, and will be specified later. The goal is to drive both the velocity and
posture modulating outputs to zero, i.e., y1 → 0 and y2 → 0.

Example 3. In the case of AMBER 3, the virtual constraints considered in this
paper are illustrated in Fig. 3c. In particular, as discussed in [21], ya,1 is the
linearized velocity of the hip, v is the desired velocity of the hip, ya,2 consists of
a vector of configuration based functions and yd,2 is the time solution to a linear
mass-spring-damper system parameterized by the linearized position of the hip.

Pre-Feedback Control. To set the stage for obtaining the reduced order
dynamics that will be used to synthesize controllers for the system, we begin
by applying a “pre-feedback” controller based upon feedback linearization [28]
(note that this controller is a slight modification of the controller presented in
[2, 3]). With the goal of driving y2 → 0 and shaping the dynamics of y1 to be
that of a linear system with control input v, consider the feedback controller:

u
(α,ε)
FB (θ, θ̇) = −A−1(θ, θ̇)

([
0

LfRLfRy2(θ)

]

(11)

+

[
LfRya,1(θ, θ̇)

2 1
ε
LfRy2(θ, θ̇, α)

]

+

[
1
ε
y1(θ, θ̇)

1
ε2
y2(θ, α)

])

,

with control gain ε > 0 and decoupling matrix:

A(θ, θ̇) =

[
LgRya,1(θ, θ̇)

LgRLfRy2(θ, θ̇, α)

]

. (12)

Here L denotes the Lie derivative [28], and we assume that the decoupling matrix

is invertible. It follows that u
(α,ε)
FB (θ, θ̇) results in dynamics on the outputs given

by:

ẏa,1 = −
1

ε
y1 (13)

ÿ2 = −2
1

ε
ẏ2 −

1

ε2
y2 (14)

and therefore, for a control gain ε > 0, the control law u
(α,ε)
FA renders the outputs

exponentially stable [28]. That is, in the case when v is a constant (and hence
ẏa,1 = ẏ1), the virtual constraints y1 → 0 and y2 → 0 exponentially at a rate of
1
ε
.

Partial Hybrid Zero Dynamics. While the introduced controller drives
y1 → 0 and y2 → 0, we want to be able to modulate the relative 1 degree
output (through v), while forcing the relative 2 degree output to remain zero
and hence form an invariant surface. This motivates the introduction of the
partial zero dynamics surface [2]:

PZα = {(θ, θ̇) ∈ TQR : y2(θ, α) = 0, LfRy2(θ, θ̇, α) = 0}. (15)
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We say that the hybrid system (2) has partial hybrid zero dynamics (PHZD)5

if:

∆R(SR ∩PZα) ⊂ PZα. (PHZD)

In particular, we can choose the parameters α so that this holds through an
optimization of the form:

α∗ = argmin
α∈R5(n−1)

CostHD(α) (16)

s.t. ∆R(SR ∩PZα) ⊂ PZα. (17)

Note that the cost can be chosen based upon the specific objective of interest,
i.e., minimizing the cost of transport, and that this optimization can be stated
only in terms of the parameters α through the constructions introduced in [2].

The notion of PHZD allows for the construction of a hybrid system model
for the reduced order dynamics defined by the surface (15). In particular, we
reformulate the constructions in [35] in a way applicable to full-actuation [2].
Because of the specific form of ya,1 in (10) due to the linear output assumption,
we begin by picking the following coordinates for the partial zero dynamics
surface:

z1 = cθ (18)

z2 = ya,1(θ, θ̇) = cθ̇

where c ∈ R
1×n as introduced in (10). As a result of the fact that we have full

actuation and have completely linearized the dynamics with (11), the relative
degree 1 output (8) evolves according to (13). Therefore, the partial hybrid zero
dynamics evolve according to the linear ODE:

ż1 = z2 (19)

ż2 = −
1

ε
(z2 − v).

where v ∈ R is viewed as a control input. The end result is, therefore, a linear
control system:

ż = APZz +BPZv (20)

with APZ and BPZ obtained from (19).

Impact Configurations. It is important to note that the proper choice of
parameters α that determine the partial zero dynamics surface determine the
configuration of the robot at impact (foot strike). In particular, the configura-
tion of the robot at impact, θ−, is determined by the following requirement:

θ− = θ s.t.

[
y2(θ, α)
h(θ)

]

=

[
0
0

]

. (21)

5This formulation is based upon the notion of hybrid zero dynamics for underactuated
bipedal robots [36].
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By virtue of the form of the relabeling matrix, ∆θ, it follows that if h(θ
−) = 0

then h(θ+) = 0 for θ+ = ∆θθ
−. Moreover, from the fact that y2(θ, α) ∈ R

n−1,
for the proper choice of relative degree 2 outputs and parameters α, (21) has at
least two solutions for θ ∈ QR

6. Since the additional solutions are points where
the foot scuffs the ground, i.e., points where ḣ ≥ 0, we make the following
assumption:

Assumption 1. Let α be parameters solving the optimization problem (16) and
therefore guarantee (PHZD). Furthermore, assume that θ− and θ+ = ∆θθ

− are
the only two points in QR satisfying (21).

Reduced Order Hybrid Dynamics. The advantage of the partial zero dy-
namics representation is that it yields a reduced-order hybrid system representa-
tion that dictates the behavior of the full order dynamics of the system. We will
explicitly construct this hybrid system, and establish properties of its solutions
relative to solutions of the full-order hybrid system.

Pick, once and for all, parameters α solving the optimization problem (16)
and a point θ− satisfying Assumption 1 with θ+ = ∆θθ

−. We can therefore
compute z−1 = cθ− and z+1 = cθ+. From this, since (PHZD) is satisfied, the
discrete change in z1 and z2 can be determined via [2, 36]:

z+1 = c∆θθ
− (22)

z+2 = ∆PZ(θ
−)z−2

where θ− is a point that is chosen a priori and

∆PZ(θ
−) := c∆θ̇(θ

−)ΨPZ(cθ
−). (23)

This defines a linear 2-dimensional hybrid control system:

H CPZ = (DPZ, UPZ, SPZ,∆PZ, fPZ, gPZ). (24)

where the domain and guard are given by:

DPZ = {z ∈ R
2 : z+1 ≤ z1 ≤ z−1 }, (25)

SPZ = {z ∈ R
2 : z1 = z−1 }. (26)

We will not (initially) restrict the control input v and, therefore, UPZ = R. The
reset map, ∆PZ, is a linear transformation as given by (22). Finally, the control
system has fPZ(z) = APZz and gPZ(z) = BPZ.

PHZD Reconstruction. We can use the relationship between the reduced or-
der PHZD and the full-order dynamics, as afforded by the feedback control law,
to reconstruct the full-order state of the system. Note that since z1 is directly

6Note that, due to the trigonometric functions that yield h, it may be necessary to consider
subsets of the configuration space QR that limit the number of solutions to (21).
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related to the parameterization of time, we can write yd,2(z1) = yd,2(ρ(θ), α)
wherein it was assumed that we are working with a fixed parameter set α.
Therefore, defining

ΦPZ(z1) =

[
c
H

]−1(
z1

yd,2(z1)

)

(27)

ΨPZ(z1) =

[
c
H

]−1
(

1
∂yd,2(z1)

∂z1

)

it follows that:

ϑr(z) := ΦPZ(z1)

ϑ̇r(z) := ΨPZ(z1)z2
⇒ (ϑr(z), ϑ̇r(z)) ∈ PZα (28)

with z = (z1, z2)
T . Note that if we pick coordinates η = (y2, ẏ2), since y2 is a

relative degree 2 output it follows that there is a diffeomorphism Π : (θ, θ̇) →
(η, z). We also note that there is the canonical embedding ιPZ : DPZ → DR

given by ιPZ(z) = Π−1(0, z).

Key Properties.The entire purpose of the reduction step is prepare the ground
for correct-by-construction synthesis on the basis of a model of a size that is
amenable to existing algorithms. To support this process, it must be shown that
correctness of the reduced-order closed-loop system induces correct behavior for
the full-order system in an appropriate neighborhood of the invariant surface.
This is established next.

Suppose that we have a feedback control law v(z) that is applied to the
hybrid control system H CPZ with the end result being a hybrid system HPZ.
The application of this control law in (11) via y1 (which depends on v(z)) to
H CR, yields a hybrid system HR.

Theorem 1. Let χHPZ = (I,Z), with Z = {zi}i∈N, be a solution to HPZ

with τi+1 − τi ≥ τmin. If χHR = (I, Cr), with Cr = {cri }i∈N where cri (t) =
(ϑr(zi(t)), ϑ̇r(zi(t))), satisfies (Progress), (Upright), and (C1)-(C3), then χHR

is a physically realizable walking gait of HR.

Proof. We need only verify that if χHPZ is a solution to HPZ then χHR is
a solution to HR; the remaining statements then follow from the fact that
(Progress), (Upright), and (C1)-(C3) are satisfied for the reconstructed solution:
cri (t) = (ϑr(zi(t)), ϑ̇r(zi(t))). To establish that χHR is a solution to HR, we must
verify both the continuous and discrete conditions on a solution to a hybrid
system.

The continuous conditions on χHR are given by the requirement that ċri (t) =
fcl(c

r
i (t)), where fcl is the closed-loop dynamics obtained by applying v(z) to

(3) via (19) and (11). Since the initial condition (ϑr(z0(0)), ϑ̇r(z0(0))) ∈ PZα,
and because the dynamics in the η and z coordinates evolve in a decoupled
fashion according to (13) and (14), we need only verify that y2(ϑr(zi(t))) = 0
and ẏ2(ϑr(zi(t)), ϑ̇r(zi(t))) = 0 for all t ∈ Ii and i ∈ N. This follows from the
construction of ϑr and ϑ̇r and, specifically, (27) and (28).
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The discrete conditions on χHR are given by (i), (ii) and (iii) as stated in
Section 2. Condition (i) is satisfied by Assumption 1 (which also implies (C4)),
i.e., the boundary of the domain DR cannot be reached until the guard SR is
reached, and the configuration in which the guard is reached is given by θ−.
Similarly, (ii) is satisfied again because the first configuration where the guard
is reached is θ−, z−1 = cθ− and τi+1 satisfies (ii) for χHPZ . Finally, (iii) is
satisfied again through the formulation of the reset map (23).

The previous result concerned executions of the closed-loop hybrid model
where the initial conditions lie in the invariant surface defined by the partial
zero dynamics. The next result strengthens the conclusions of Theorem 1 to
address executions with initial conditions drawn from an open neighborhood
of the invariant surface. This is clearly important for the applicability of the
method. The results will also be used in Section 4 to establish an attractivity
property for the behavior designed through formal methods.

To establish this extension, we utilize a notion of distance between a set and
solutions. In particular, given a set S and an execution χHR :

dist(χHR , S) = sup
i∈N

inf
t∈Ii,x∈S

‖ci(t)− x‖. (29)

Theorem 2. Let P ⊂ DPZ be an invariant set of H CPZ under a feedback
control law v(z). Then ιPZ(P ) ⊂ PZα, and for any γ > 0 there exists a δ > 0
such that for ‖η0‖ < δ any walking gait χHR(η0, z0) with z0 ∈ P satisfies:

dist(χHR , ιPZ(P )) < γ.

Proof. Define κ(i, t) such that

κ(i, t) = inf
x∈ιPZ(P )

‖ci(t)− x‖ (30)

for arbitrary i ∈ N and t ∈ Ii. Moreover, since ιPZ is the canonical embed-
ding ιPZ(z) = Π−1(0, z) and because the dynamics of the system evolve in a
decoupled fashion according to (13) and (14), it follows that the only nontrivial
component of the distance will be contributions from the y2 and ẏ2 dynamics.
Formally, writing (ηi(t), zi(t)) = Π(ci(t)) = Π(θi(t), θ̇i(t)), it follows that

κ(i, t) ≤ ‖ηi(t)‖ =

∥
∥
∥
∥

yi2(t)
ẏi2(t)

∥
∥
∥
∥

≤
λ1

ε
e−

λ2
ε
τmin

︸ ︷︷ ︸

β(ε)

∥
∥
∥
∥

yi2(τi)
ẏi2(τi)

∥
∥
∥
∥

(31)

for some constants λ1, λ2 > 0, where the second inequality follows from [4] since
y2 and ẏ2 evolve according to the linear system (14), picking t = τi+1, and
utilizing the dwell time assumption: τi+1 − τi > τmin.

To understand the role of the discrete dynamics, we note that in the coor-
dinates (η, z) we can decompose the reset map as follows: ∆R ◦ Π−1(η, z) =
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(∆η(η, z),∆z(η, z)). The assumption of partial hybrid zero dynamics (PHZD)
implies that ∆η(0, z) = 0. By assumption ∆η is Lipschitz continuous with
Lipschitz constant L∆η

, wherein:

‖∆η(η, z)‖ = ‖∆η(η, z)−∆η(0, z)‖ ≤ L∆η
‖η‖.

Combining this with (30) and (31) implies that:

κ(i, t) ≤ β(ε)i+1Li
∆η

δ ∀t ∈ Ii (32)

for any i ∈ N. The RHS is a geometric sequence in i with ratio r(ε) = β(ε)L∆η
.

Since β(ε) → 0 as ε → 0, there exists an ε > 0 such that β(ε) < 1
L∆η

, i.e. such

that r(ε) < 1, for all 0 < ε < ε. Thus, for all 0 < ε < ε we have that

dist(χHR , ιPZ(P )) = sup
i∈N

inf
t∈Ii

κ(i, t)

≤ sup
i∈N

r(ε)iβ(ε)δ (33)

= β(ε)δ

<
δ

L∆η

Therefore, picking δ < γL∆η
yields the desired result.

4. Abstraction Based Controller Synthesis

In this section, we show how to synthesize an abstraction based controller for
the linear hybrid system H CPZ, defined in (24), enforcing the desired specifica-
tions by construction. The techniques to be employed are described in [37] (see
also [31] for an introduction to abstraction based controller synthesis) and were
developed for discrete-time systems. Hence, we start by defining discrete-time
executions for a hybrid system H .

Let ts ∈ R
+ be a sampling time and let χH = (I, C) be a hybrid execution

of hybrid system H . A discrete-time hybrid execution of H with sampling
time ts, denoted by χH

d = (Id, Cd), is given by a collection of time intervals
Id = {Id,i}i∈N where Id,i = {τi, τi + ts, τi +2ts, . . . , τi+1}, and by a collection of
functions Cd = {cd,i}i∈N where each cd,i : Id,i → D is given by the restriction of
ci to the set Id,i.

The starting point for abstraction based controller synthesis is the construc-
tion of a finite-state abstraction S(H CPZ) of H CPZ by following the methods
in [37]. This abstraction comes equipped with an ε-approximate alternating
simulation relation from S(H CPZ) to H CPZ guaranteeing that any controller
synthesized for S(H CPZ) can be refined to a controller for H CPZ resulting
in the same closed-loop behavior up to an error of ε ∈ R

+. In other words, let
us denote by S(HPZ) the hybrid system resulting from composing S(H CPZ)
with a controller and let us denote by HPZ the hybrid system resulting from
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composing H CPZ with the refined controller. Then, for every discrete-time hy-

brid execution χ
S(HPZ)
d any corresponding discrete-time hybrid execution χHPZ

d

satisfies:
dist

(

χ
S(HPZ)
d , χHPZ

d

)

≤ ε.

Moreover, ε is a design parameter that can be made as small as desired, at the
expense of a larger finite-state abstraction.

Convexity of Reachable Sets. The key technical assumption required for
the results in [37] is the possibility of computing an over-approximation of the
reachable set of H CPZ. Hence, we describe in this section how this can be
efficiently done. We start by recalling a few notions.

A vector x ∈ R
n is a convex combination of m vectors x1, . . . , xm ∈ R

n if x
can be written as

x =

m∑

i=1

λixi, λi ≥ 0,

m∑

i=1

λi = 1. (34)

A set is convex if it contains the convex combination of its elements. A point
x ∈ B is called an extreme point of a compact convex set B ⊂ R

n if it cannot be
represented by a convex combination of any two points x1, x2 ∈ B, with x1 6= x
and x2 6= x. The convex hull of a set B ⊆ R

n is the set of all convex combinations
of points in B and is denoted conv(B). It follows that any compact convex set
is the convex hull of its extreme points.

Definition 3. The set reached by the trajectories of (19) from B ⊆ DPZ in
time ts ∈ R

+
0 under constant input v is denoted by Rts

v (B) and defined as:

Rts
v (B) =

{
z′ ∈ R

2 | z(0) ∈ B ∧ z(ts) = z′
}
,

where z(t) is a solution to (19) with the constant input v and initial condition
z(0). Moreover, we define Rv(B) by:

Rv(B) = ∪ts∈R
+
0
Rts

v (B).

To simplify notation we write Rv(x) rather than Rv({x}) when B is the
singleton {x}.

We now show that the intersection of Rv(B) with the guard set SPZ is a
convex set.

Theorem 3. Consider the convex set B ⊆ R
2 defined by:

B = [a1, b1]× [a2, b2],

with a1, a2, b1, b2 ∈ R, a1 < b1, and a2 < b2. Denote by ẑ1, . . . , ẑ4 ∈ B the
extreme points of B. If the linear dynamics (19) satisfies ż1 ≥ c on DPZ for
some c > 0, then:

Rv(B) ∩ SPZ = conv{Rv(ẑ1) ∩ SPZ, . . . ,Rv(ẑ4) ∩ SPZ}.
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Proof. In this proof we denote by Ft : R
2 → R

2 flow of the linear system (19)
with constant input v, i.e., if z(t) is the solution of (19) with initial condition z′

and constant input v then Ft(z
′) = z(t). We will also say that (19) is transversal

to the boundary of B at z′ ∈ B when ż1 6= 0 for z′ belonging to the vertical
boundaries and when ż2 6= 0 for z′ belonging to the horizontal boundaries.

We first state and prove two facts.

Fact 1: If z belongs to the boundary of Rv(B)∩SPZ, then z is the image under
Ft of a boundary point of B for some t ∈ R.

It suffices to show that Ft maps interior points of B to interior points of
Rv(B) ∩ SPZ. But this follows directly from the fact that F−t, the inverse of
Ft, exists and is continuous. The inverse image of an open set by a continuous
map is an open set. Hence, let O′ ⊆ B be an open set containing a point z′ in
the interior of B and let ts satisfy Fts(z

′) = z ∈ SPZ. Since ż1 ≥ c > 0 and the
guard is given by z1 = z−1 , ts exists. Then the set O = F−ts(O

′) is an open set
containing the point z in Rv(B)∩ SPZ. Since O ⊆ Rv(B) and O ∩ SPZ is open
in the topology induced on SPZ by the standard topology in R

2, z is an interior
point of Rv(B) ∩ SPZ.

Fact 2: If z belongs to the boundary of Rv(B) ∩ SPZ, then z cannot be the
image under Ft of a point in the boundary of B where (19) is transversal to the
boundary.

We will show that if z′ belongs to the boundary of B and (19) is transversal
to the boundary at z′, then the flow takes z′ to an interior point of Rv(B)∩SPZ.
Let O′ be an open set in the boundary of B containing z′. Consider the set
B′ = B ∪ Ft(O

′) for sufficiently small t (t is positive if the vector field points
to the outside of B and negative otherwise). It is clear that Rv(B) = Rv(B

′).
Moreover, we can now take an open (in R

2) subset O of B′ containing z′.
Applying the argument used to prove Fact 1, we see that Ft takes z′ into an
interior point of Rv(B) ∩ SPZ.

Proof of Theorem 3: Facts 1 and 2 tell us that boundary points of Rv(B)∩SPZ

are the image under the flow of extreme points of B or of boundary points of
B where (19) is not transversal. The assumption ż1 ≥ c > 0 implies that the
transversality condition can only fail on the horizontal boundaries. Moreover,
the dynamics of z2 given by (19) shows that if (19) is not transversal at a point
on a horizontal boundary then all the points in that horizontal boundary are on
the same trajectory. We thus conclude that boundary points of Rv(B)∩SPZ are
the image under the flow of extreme points of B. Let now γ : [0, 1] → R

2 be a
continuous curve contained in B and joining the extreme point ẑ1 to the extreme
point ẑ2, i.e., γ(0) = ẑ1, γ(1) = ẑ2, and γ(r) ∈ B for r ∈ [0, 1]. By continuity
of the map Ft ◦ γ we have Rv(∪r∈[0,1]{γ(r)}) ∩ SPZ = conv(Rv(ẑ1),Rv(ẑ2)).
Since this argument does not depend on the choice of extreme points, the result
follows.

The abstraction techniques in [37] require the over-approximation of Rts
v (B)

when the guard is not reached in ts units of time. In this case the linearity of
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(19) implies that Rts
v (B) is a convex set and can be computed as:

conv(Rts
v (ẑ1), . . . ,R

ts
v (ẑ4)).

If the guard can be reached in ts units of time or less, then we need to over-
approximate the set of points that can be reached up to the time the guard is
hit and immediately after the reset. This set can be over-approximated by:

(conv(Rts
v (ẑ1), . . . ,R

ts
v (ẑ4)) ∩ DPZ)

∪∆PZ (conv{Rv(ẑ1) ∩ SPZ, . . . ,Rv(ẑ4) ∩ SPZ}) . (35)

Once again, all the sets are convex and can thus be efficiently computed since
we only have to perform numerical simulations for the vertices of B.

Walking Gait Generation. One of the main advantages of abstraction based
control is the possibility to enforce the specifications by construction. In our
case, for a stable robot walking gait, there are seven specifications that have to
be satisfied: the (Dwell Time), (Progress) and (Upright) constraints in Defini-
tion 1, as well as the physical requirements (C1), (C2), (C3), and (C4). For our
system, the constraints (Dwell Time), (Upright), and (C4) are enforced by the
choice of output functions (8),(9) and the feedback linearizing controller. The
(Progress) constraint is automatically satisfied by the dynamics since ż1 = z2
and DPZ only includes points where z2 is strictly positive. Therefore, we only
have to cater to the physical constraints (C1)-(C3).

We thus synthesize a controller forcing the closed-loop trajectories to remain
in the set P = P1∩P2∩P3 for all time where each set Pi describes the constraint
(Ci) in the PHZD:

P1 = {z ∈ DPZ : |u(ϑr(z), ϑ̇r(z))| < umax}

P2 = {z ∈ DPZ : |ϑ̇r(z)| < θ̇max}

P3 = {z ∈ DPZ : AZMPFst(ϑr(z), ϑ̇r(z), u(ϑr(z), ϑ̇r(z))) < 0}.

Main Result. Recall that we denote by HPZ the hybrid system obtained by
composing H CPZ with the refined controller. This composition restricts the
behavior of H CPZ in two different ways: by restricting the available inputs,
and by restricting the initial conditions. The set of initial conditions is denoted
by Dinit

PZ
and is a subset of DPZ. It then follows from Proposition 9.4 in [31]

that the hybrid executions of HPZ starting in Dinit
PZ

remain in:

P ε = {z ∈ DPZ | ‖z − z′‖ ≤ ε for some z′ ∈ P},

for all time. By bounding the inter-sample behavior using a standard Lyapunov-
type argument [22, 24, 17] we conclude that the (continuous-time) hybrid ex-
ecutions of HPZ remain in P δ(ε,ts) for all time where δ is a continuous and
increasing function of ε and ts satisfying δ(ε, 0) = 0. Therefore, we can al-

ways find a subset P of P and a choice of ts and ε so that P
δ(ε,ts)

⊆ P . By
synthesizing a controller enforcing the stricter constraints defined by P we then
guarantee that executions remain in P as desired. This discussion, when coupled
with Theorem 1 and 2, can be summarized in the following result.
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Theorem 4. Let HPZ be the hybrid system resulting from composing H CPZ

with the controller obtained by refining the controller synthesized for the finite-
state abstraction of H CPZ. Any hybrid execution of HPZ starting in Dinit

PZ

remains in P for all time. Moreover, any hybrid execution of HR with initial
condition in ιPZ(D

init
PZ

) is a physically realizable stable walking gait.

5. Simulation and Experimental Results

In this section, we present simulation and experimental results for the custom
built bipedal robot AMBER 3. Additionally, we include information about how
the abstraction building software PESSOA [27] is used to generate mappings
for inputs to the zero dynamics. We present a brief description of how this
mapping is refined to a feedback controller. The end result is the realization
of this controller in simulation and the illustration that it is able to enforce
constraints that were not enforceable by traditional gait generation software.
The section concludes with experimental realization on AMBER 3; this sets the
stage for a qualitative discussion in the next section.

To achieve the simulation results presented, we utilizes two control methods
as a point of comparison: existing hybrid zero dynamics based controllers for
fully actuated robots that have proven successful on hardware [34, 30, 15, 38],
termed the “constant v” controller, and the abstraction-based controllers pre-
sented in this paper. Importantly, the simulation results are performed to both
show the improved performance of the abstraction-based controller in terms
of realizing the specifications enumerated in the first part of this paper. In
this context, the small gap between theory and simulation will be seen (due
to discretization and numeric approximation). The simulation results set the
stage for experimental realization on the robotic platform AMBER 3. Taking
advantage of the significant gear ratio between the actuators and the links to
approximate the inverse dynamics controller, i.e., we approximate the synthe-
sized controllers with a time-based trajectory tracking implementation. Data
from the experiments will be presented in this section. A qualitative discussion
of our interpretation of the experiments will be presented in Sect. 6 so that fact
and opinion are carefully separated. To the authors knowledge, the experimen-
tal trials presented here will be the first time that a “correct-by-construction”
controller in any form, approximate or otherwise, has been implemented on a
bipedal robot.

Control Synthesis. We consider two separate controllers: a nominal controller
in which v is held at a constant value and a controller in which v is selected
according to the abstraction-based technique outlined in Section 4. Both con-
trollers were synthesized using the same set of parameters α found by solving
(16) with the additional constraints (C1) and (C2). No feasible solution could
be found that satisfied (C3) with constant v, so this constraint was relaxed.

The over-approximation of the reachable sets based on Theorem 3 has been
implemented in the tool PESSOA, see [27]. In order to compute the finite-
state abstraction we restricted the set of states to the operating region Zabstr =
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(a) Phase portrait for the state of the system (θ, θ̇) over four steps. The maximum angular
velocity, ±5rad/s (Constraint (C1)), was never violated by the system under either controller.
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(b) The torques applied at each of the joints over four steps. The torque bounds of ±60Nm
are illustrated with horizontal black lines (Constraint (C2)). The torque remains bounded
under each of the controllers.
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Figure 5: Simulations demonstrating different specifications for the walking gait obtained
from a constant v controller as generated in [21] and the formal methods controller.
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(a) Maximum violation of (C3) over four simulated steps. The upper bound of this constraint
is equal to zero as illustrated by the horizontal red line. As we can see, the constant v controller
causes this constraint to be significantly violated, while the formal methods controller obeys
this bound.
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(b) Maximum violation of (C3) for constant v controller (left) and the formal methods con-
troller (right) calculated from experimental data. The upper bound of this constraint is equal
to zero as illustrated by the horizontal black line. For both of the controllers, the constraint is
frequently violated; however, the formal methods controller violates it to a lesser degree—this
is evidenced by the moving average (in red). In particular, the constant v controller has large
spikes that violate the constraints, while the abstraction based controller only has small spikes
(corresponding to foot strike) where the constraints is violated. The difference between these
controllers is further illustrated in Fig. 11, wherein the actual ZMP point remains in the foot
for a longer duration. See the discussion at the end of this section for further details.

Figure 6: The maximum value of the violation of Constraint (C3), i.e. ||AZMPFst||∞ for
simulated and experimental data.
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[−0.165, 0.16]×[0, 0.6] and the input space to Uabstr = [0.22, 0.6]. The operating
region Zabstr contains z−1 and z+1 . The abstraction is then computed by dividing
Zabstr into boxes B of length 0.005, by quantizing the input space Uabstr with
a resolution µ = 0.0025, and time discretization of ts = 0.018 s. See [37] for the
definition of these parameters. The state space is covered by 7153 boxes and
we consider 152 different input values. The abstraction was computed in about
3.5 hours on a computer with a 2.6 GHz dual core processor. A controller for
this abstraction that maintains the system within the set (36) was found after
less than 5 seconds.

The controller synthesized by PESSOA is a mapping ν : Zabstr → 2Qµ(U
abstr)

such that ν(z) is the set of all quantized inputs that can be applied at state z
that can enforce safety 7. This is illustrated in Fig. 7, where the total number
of available inputs, i.e. |ν(z)|, is shown for each point z ∈ Zabstr. In the state
space of the abstraction, many states exist for which no input enforcing the
specifications exists at all; however these states are not part of Dinit

PZ
and are

never reached. The non-deterministic controller is refined to a deterministic
mapping

vfm(z) = argmin
v∈ν(z)

CoT (z, v), (36)

where CoT is the cost of transport. The input that is applied to the system,
called here the “formal methods controller”, is given as

v(t) = vfm(z(n(t)ts)) ∀t ∈ [n(t)ts, (n(t) + 1)ts) (37)

where n(t) is the maximum integer n such that nts < t

Simulation Results. Simulation results comparing the constant v controller
and the formal methods controller are shown in Fig. 5. Fig. 5a and Fig. 5c show
four steps of AMBER 3 in the (θ, θ̇) plane, and in the (z1, z2) plane, respectively.
Note that for both the constant v controller and the formal methods controller,
when starting from some nearby point, the trajectory eventually settles into a
stable periodic orbit. This behavior is by design in the constant v controller,
but this phenomenon occurs with the formal methods controller even though
we did not include it in the safety specification. In Fig. 5c, we see that due
to the varying v, z2 changes much more in the case of the abstraction based
controller than in the case of constant v. We also note that the constraint (C2)
is satisfied since the magnitude of the angular velocities never exceed 5 rad/s.
Fig. 5b and Fig. 6a show the satisfaction of the torque constraint and the ZMP
constraint (C1) and (C3), respectively. The constant v controller is not able
to enforce the ZMP constraint, while the formal methods controller enforces all
of the constraints. Together these simulation results indicate that the formal
methods controller can be used to generate a stable, physically realizable walking

7Notation: 2A is the power set of A and Q∆(B)is the discretization of B with resolution
∆.
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Figure 7: Number of available inputs for each state in the domain of the abstraction-based
controller.

gait, and in particular, is able to generate such a gait when other methods are
insufficient.

Experimental Platform and Methods. Both the constant v and the approx-
imated formal-methods controllers are implemented on the AMBER 3 robot,
shown in Fig. 2 and Fig. 3a. The kinematic parameters of the robot are
listed in Table 1. The main processing unit onboard the robot is a National In-
struments C-Rio. The C-Rio communicates with six ELMO motion controllers
through an EtherCAT network. Each controller powers a joint motor and reads
data through an attached encoder. National Instruments modules read sensor
input from the torso encoder and push-buttons located on the heels and toes.
The software architecture used to control AMBER 3 is almost identical to the
implementation previously used for AMBER 2 (described in [21]).

We approximated the two controllers by integrating equation (19) forward
over time with the input v∗ = 0.34 for the constant v controller and v(t) for the
formal methods controller. Then, we used the mapping (28) to reconstruct the
trajectories in the full state space of the robot. The reconstructed trajectories
were then tracked online via PD controllers at each joint 8.

Experimental Results. One step of the walking gait generated by the formal
method’s controller is illustrated in the tiles shown in Fig. 8. A video comparing
the two controllers can be found at [1]. Experimental data collected from the
time-based implementation of each controller is shown in Figures 9. Figure 9a
illustrates that each gait is stable and shows that the maximum angular velocity
bound of ±5 rad/s is respected. Similarly, Fig. 9b shows that the torque applied
to each joint in the robot is well within the bound of ±60 Nm.

8PD tracking was used instead of directly implementing the torque controllers because
position and velocity measurements on the hardware have proven to be more reliable than
torque measurements.
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Figure 8: Tiles of the walking gait generated by the formal methods controller (video at [1].)
The images in the top row are from the point of view of the boom. The images in the bottom
row were taken from outside the radius of the boom.

The ZMP specification given by constraint (C3) is not directly measured by
any sensor on the robot. Instead, the data presented in Fig. 10 is calculated from
the experimentally collected position, velocity and torque at each of the robot’s
joints. A related quantity that gives insight into the ability of the controllers to
keep the feet flat while walking (the reason for constraint (C3)) is the location of
the Zero Moment Point (ZMP) along the foot, i.e. the point along the ground in
which the net moment due to the torque acted on the robot and ground reaction
forces is zero [7]. When this point is located inside the foot, the foot does not
roll. On the other hand, if the ZMP is in front of the foot, the heel is lifted, and
if it is located behind the foot, the toe is lifted. Figure 11 shows that the ZMP
constraint is violated by each of the controllers.

6. Qualitative Discussion

In this section, we provide our personal interpretation of the experiments,
all the while keeping in mind that any model will always be an approximation
of reality, and hence even if we had “exactly” implemented the “formally cor-
rect controller”, when placed in closed-loop with the robot, it would no longer
be formally correct. The experimental data show that neither controller sat-
isfied the ZMP specification. This said, as engineers, we should ask ourselves
whether the experiments with the controller based on formal methods revealed
any redeeming qualities9 that merit further exploration.

Figure 10 shows the portion of time that the ZMP remains within the foot
is 0.4975, 0.4835 and 0.7902 for the constant v trials, and 0.8352, 0.7652, and
0.7942 for the formal methods trials, respectively. In a professional design,

9The reviewers objected to our interpretations unless we stated them with these caveats.
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(a) Phase portrait for the state of the system (θ, θ̇). The maximum allowed angular veloc-
ity, ±5rad/s (Constraint (C1)), was never violated by any joint in the robot under either
controller.
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(b) The torques applied at each of the joints of the robots. The torque bounds of ±60Nm are
illustrated with horizontal black lines (Constraint (C2)). The torque remains bounded under
each of the controllers.

Figure 9: Experimental data collected from walking trials of AMBER 3 under the constant
v controller (left) and the formal methods controller (right).
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Figure 10: The violation of constraint (C3) for three experimental trials with the constant
velocity controller and the formal methods controller; note that this is the same quantity
plotted in Fig. 6 except it is not plotted over a much longer time window and over multiple
experimental runs.
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Figure 11: The location of the zero moment point relative to the point on the ground directly
below the stance ankle. The black lines represent the boundaries of the foot; when the blue
line indicating the instantaneous position of the ZMP leaves the region bounded by the black
lines, a violation of the ZMP constraint occurs, allowing the foot to roll about its extremities.
The portion of time the ZMP remains within the foot is 0.4975, 0.4835 and 0.7902 for the
constant v trials and 0.8352, 0.7652, and 0.7942 for the formal methods controller.
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margins would be included when formulating the specifications. Such practical
precautions were not taken here because our goal was to qualitatively evalu-
ate how a based on formal methods would perform on a real robot. Figure
10 reveals, nevertheless, that the inclusion of very small margins on the ZMP
constraint would result in the formal method’s controller meeting the specifica-
tion. In our opinion, even though foot roll was not completely eliminated, the
experiments indicate that the controller based on formal methods does a better
job of controlling foot roll than the constant velocity controller.

We attribute the violation of the ZMP constraint to two factors: the dif-
ference between the designed pre-feedback control and the more reliable PD
implementation on the physical hardware, and unmodeled phenomena such as
imperfections in the walking surfaces and interactions with the boom. Possible
ways to bridge these gaps include using counterexamples (i.e. data from failed
experiments) in the synthesis algorithm, refining the synthesized controller us-
ing progressively more complex models, and “robustifying” the mapping of vfm
by assigning inputs for states outside the safe region to drive the system back
to safety, i.e. render the safe set invariant and attractive. In addition, as men-
tioned above, in a professional engineering implementation, margins would be
included when doing the actual design.

7. Conclusion

In this paper, we showed how to combine the theory of virtual constraints
with formal methods to generate correct-by-construction controllers for a highly-
dynamic non-linear system. The use of virtual constraints reduces the dimension
of the planning space of the problem, while abstraction-based control synthe-
sis allows for the synthesis of inputs in this low-dimensional space that enforce
safety and hardware constraints to yield physically realizable walking. The main
theoretical result of this paper indicates that this combination of methods yields
a solution to the full-order system that satisfies given safety specifications. The
practical relevance of the theoretical work was investigated by preforming the
first experimental implementation of a controller based on formal methods on a
bipedal walking robot. The experiments compared a formally correct controller
and a heurtisc controller. In our qualitative comparison of the results, we ar-
gued that the controller based on formal methods was better able to satisfy
important constraints on the robot’s evolution, in particular, the zero moment
point constraint, than a nominal gait found via optimization techniques. Fu-
ture research directions include extending the technique in this paper to handle
nonlinear zero dynamics and using abstractions to synthesize controllers for
underactuated systems, e.g. bipedal robots with unactuated ankles.
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